
Scheduling vehicles with spatial conflicts

Oddvar Kloster1, Carlo Mannino1,2, Atle Riise1, and Patrick Schittekat1

1SINTEF Digital, Oslo, Norway, e-mail: atle.riise@sintef.no

2University of Oslo, Norway

Abstract

When scheduling the movement of individual vehicles on a traffic network, one

must ensure that they never get too close to each other. This is normally modeled

by segmenting the network and forbidding two vehicles to occupy the same segment

at the same time. This approximation is often insufficient or too restraining. This

paper develops and systematizes the use of conflict regions to model spatial prox-

imity constraints. By extending the classical disjunctive programming approach to

job-shop scheduling problems, we demonstrate how conflict regions can be exploited

to efficiently schedule the collective movements of a set of vehicles; in this case air-

craft moving on an airport ground network. We also show how conflict regions can

be used in short term control of vehicle speeds, to avoid collisions and deadlocks.

The overall approach was implemented in a software system for air traffic manage-

ment at airports, and successfully evaluated for scheduling and guiding airplanes

during an extensive "human in the loop" simulation exercise for Budapest airport.

Through simulations, we also provide numerical results to assess the computational

efficiency of our scheduling algorithm.

1



1 Introduction

1.1 Background.

The theoretical and algorithmic results presented in this paper were developed for an

application in air traffic management (ATM), namely that of dynamically determining

optimal routes and schedules for the collective movement of aircraft and other vehicles

on the airport ground surface. This airport surface includes taxiways, runway exits and

entrances, holding points, stands, de-icing facilities, and so on. The responsibility for

efficient and safe airport ground operations rests with airport ground controllers, who,

by means of radio communication with the pilots, dynamically manage the vehicle move-

ments. The focus of this work was to demonstrate how airport ground control can be

improved by a combination of dynamic (online) re-planning and automated communica-

tion with the aircraft crew to control the taxi route and speed.

Figure 1: The interaction of the (continu-
ously changing) current situation, continuous re-
planning, guiding (control), and pilot behaviour.

The concept is illustrated in Fig. 1.

The current situation is continuously

evolving as new information arrives (e.g.

from the landing of new aircraft, delayed

boarding, etc.). Therefore, re-planning is

done regularly (e.g. every few seconds) to

provide an updated plan for the routing

and scheduling of all vehicles. A dedicated

guiding (or control) software then uses the

this plan, together with input about the

vehicles’ current locations and speeds, to

produce a guiding signal that shows each

pilot where to, and how fast the vehicle should move. In our application, the guid-

ing signal is a combination of adjustable-length Taxiway Center line Lights (TCL) and

stop bar lights. However, this guiding signal could also have been communicated by

other means, e.g. directly to in-cockpit systems. This automated communication partly

2



replaces radio communication, and thus reduces the work load for the airport ground

controllers. Depending on how closely the human pilot follows the guiding signal, the

aircraft’s movement may deviate - sometimes significantly - from the current plan, which

again contributes to the dynamically changing overall situation.

As a suggested replacement of the current manual planning and communication, this

concept of continuous integrated re-planning and guiding is new to the airport ground

controllers and ATM industry. The development and validation of such new concepts is

the purpose of the European modernization program for Air Traffic Management known

as the Single European Sky Joint Undertaking (SESAR, [28]). The technology presented

in this paper was evaluated as a part of the SESAR project "PJ03a SUMO" ([27]), in

collaboration with both airport ground controllers and software industry partners. The

resulting software was integrated with an industrial tower control software system and

evaluated favourably by airport ground controllers during a one-week validation exercise.

The simulation took place at EUROCONTROL research center in Brétigny-sur-Orge,

using data from Budapest airport.

1.2 Problem description and literature review

Our dynamic approach depends heavily on the ability to produce realistic adjusted plans

for the collective movement of all aircraft in a very short time. To produce the ad-

justed plan, we solve an optimization problem, in the following called the Airport Surface

Routing and Scheduling Problem (ASRSP).

The ASRSP may be described informally as follows: We are given a set of vehicles

with certain properties in terms of size, speed restrictions, etc. Furthermore, a physical

network is defined on which these vehicles could move. There are constraints that may

limit the movement of certain vehicles on certain segments of the network, e.g. movement

may be illegal, or special speed limits may apply. The problem is to choose a route for

each vehicle, and a schedule for the movement of each vehicle along its route, so that

no vehicle gets too close to any other. Depending on specific objectives or constraints,

different variants of the ASRSP have been addressed in the literature (see, for instance,

3



[4, 12, 13, 16]). In general, we want the schedule to minimize some cost function which is

related to an efficient airport throughput, such as punctuality, taxi time from push-back,

fuel consumption, etc. In particular, reducing congestion at the airport is a crucial issue

(see the thorough discussion of this question in [7]). Solving the ASRSP, besides allowing

automatic ground-control operations, represents one viable and powerful approach to

achieve this. For example, in an official validation test against expert controllers at the

airport of Hamburg (in Fig. 2), the solutions returned by the optimization model led to an

average reduction of taxi-time by 35% (see [16]). Solving the ASRSP is an example of a so

called departure metering approach, which is a class of methods that mitigate congestion

through the assignment of appropriate holds for departing aircraft at their gates so as

to minimize taxi-out ([5, 22]). In [6], the authors distinguish between two classes of

departure metering approaches, namely queue-based and trajectory-based. In the former

class, mitigation of congestion is obtained by exploiting queuing and simulation models

(as in [5]) or by re-computing (with a given frequency and according to a set of rules) a

suitable rate of pushbacks at the gates (e.g. [26]). The ASRSP belongs to the latter class

of trajectory-based approaches (as e.g. [12, 13, 16, 21]), which make use of a directed

graph to represent the airport surface network and to build the full trajectory for each

airplane, from gate to take-off point (and from landing point to gate). Rather than looking

only at the time when a departing airplane leaves its gate, these methods actually "follow"

the airplane movement from the start (at the gate) to the take-off point, by selecting the

spatial route and the time at which the vehicle should be at any point on its route. To this

end, the problem is modeled as an optimization problem, which in turn can be solved by

various techniques (for instance by Mixed Integer Linear Programming, as in this paper

and many others, by Simulated Annealing, as in [6], etc.). Note that since we are solving

an optimization model, the target of taxi-out minimization can be pursued explicitly with

a term in the objective function. Also, maintaining a high level of runway utilization

(another important target in departure metering approaches) is implicitly obtained by

considering punctuality as a main component in the objective function. According to the

experiments reported in [6], a queue-based approach with robust control performs better

4



than a trajectory-based one, and this is attributed mainly to the uncertain behaviour

of airplanes along their taxi-routes. Techniques which explicitly account for uncertainty

(as queue-based models and robust control) are more likely to perform better. However,

uncertainty can also be handled in optimization models, either directly (as in the robust

optimization approach followed in [21]), or indirectly, by simply recomputing an entire

plan (i.e. routing and scheduling) for all aircraft whenever a deviation from the current

plan occurs, which is done in this paper. Moreover, as also observed in [6], the uncertainty

in running times can be mitigated by collecting more and better data or, more drastically,

by directly controlling aircraft speed (as suggested in this study).

Figure 2: The routes chosen for the blue, red
and green aircraft overlap. The schedule must
prevent conflicts in the use of shared network
segments.

While we considered the full ASRSP

in our validation exercise, the main fo-

cus of this paper is on the scheduling sub-

problem in which the route of each vehicle

is taken as given. We call this the Airport

Surface Scheduling Problem (ASSP).

A realistic model of the ASSP requires

an accurate representation of the physical

proximity between vehicles. Furthermore,

it is important that the proximity model

can effectively translate into constraints on

the variables of the ASSP. The classical approach is to define two vehicles as too close if

they are on the same network segment (or neighbouring segments) at the same time. We

call this a resource-based conflict model, since it is equivalent to treating the problem as a

resource constrained scheduling problem [9] where the resources are the network segments.

This is also the customary approach to vehicle scheduling with conflict avoidance with

severe limitations (see [17]). However, for general network layouts and vehicle geometries,

a resource based approach will at best lead to either a model that is too restrictive

(introduces unnecessary constraints), or requires a very fine discretisation of the network,

compromising the efficiency of the solution process, “wasting non-negligible optimization

5



potential” ([17], Section 5).

To solve the real world ASSP, therefore, we instead model proximity constraints using

the concept of conflict regions. This model captures exactly where, along their respec-

tive routes, two vehicles cannot feasibly be at the same time due to physical (spatial)

proximity conflicts. We provide a theoretical background and a concrete algorithm for

computing realistic conflict regions based on the vehicles’ geometrical properties and the

geometry of the network on which they move. Note that a similar concept was intro-

duced independently in [2], [15] and [30], but with some important differences: Where

these authors use conflict regions to optimize the movement of vehicles through a local

bottleneck (e.g. a junction), we use them for longer term planning of all vehicles on a

much larger network (the airport surface). Also, to better tackle general airport layouts

and vehicle geometries, we do not limit the shape of conflict regions to hexagons as in

[2, 3] or ellipsoids as in [30]. We can do this efficiently because, in contrast to [2, 3], in

our approach the shape of the conflict regions does not affect the number of disjunctions

(or binary variables) in the optimization model. It is worth observing that in [30] the

authors also consider possible random variations in the airborne speed of the aircraft

due to wind, a component that we do not address here since only ground operations are

involved.

In order to build our optimization model of the ASSP, we first observe that the

problem is naturally modelled as a disjunctive program ([8]). Indeed, whenever a potential

conflict is identified, for instance when the routes of two aircraft cross at an intersection,

the decision of who goes first must be taken. This choice translates into a disjunction

between two (sets of) precedence constraints. In the classical resource-based approach,

each term in the disjunction is a single linear precedence constraint (see [20]). In our

conflict region approach, however, each term may be the conjunction of several linear

precedence constraints, determining who goes first through a potentially large set of

shared network resources. In Section 5, we present a branch & bound algorithm for

the ASSP that exploits this modelling power. Incidentally, note that similar disjunctive

programs also arise when modelling and solving airborne conflicts between aircraft (e.g.

6



[10, 19]).

In addition to being a tool for solving the ASSP, conflict regions are also very useful

for the automated guiding described above (see Fig. 1). While the guiding software

attempts to guide the aircraft according to the current solution, it must also take into

account the fact that human pilots do not always drive at the suggested speeds. To avoid

conflicts, the guiding service therefore uses conflict regions to model near future physical

proximity, based on current speeds and positions of the all aircraft. The guiding signals

(TCL strip lengths and stop bar light signals) are calculated directly based on properties

of the conflict regions.

1.3 Contribution

Summarizing, the main contributions of this paper are that:

• we formally introduce conflict regions and related concepts, and prove some relevant

properties,

• we describe a procedure for constructing conflict regions,

• we exploit conflict regions in computing optimal schedules by extending the classical

disjunctive approach for job-shop scheduling,

• we apply our algorithm to on-line vehicle scheduling, and demonstrate that it is

efficient enough for practical use in airport control software,

• we explain how conflict regions can be exploited as a basis for vehicle guiding under

non-perfect control,

• we validate our concept of integrated on-line planning and guiding in a large scale

human-in-the-loop simulation for a real airport case.

The remainder of this paper is laid out as follows: Sections 2 and 3 show how to

represent vehicle movements and conflicts. In Section 4, we show how to model our

problem as a disjunctive program. In Section 5, we employ all the novel structures and

7



methods in a branch&bound method for the ASSP as part of a decomposition strategy

to solve the full ASRSP problem. Section 6 describes the usefulness of conflict regions in

steering the guiding process, while the user evaluation and our numerical experiments are

presented in Section 7. The procedures for constructing and extending conflict regions

are given in Appendices A and B.

2 Representing conflicts and vehicle schedules

In order to model spatial conflicts we first need a suitable representation of how vehicles

move on the physical network. We assume for now that the route for each vehicle is given,

and concern ourselves with the timing aspect of a vehicle’s movement along this route.

Because our experiments deal with vehicles on a surface, we focus here on movements in

IR2, but the extension to IR3 is straightforward.

Consider a single vehicle a moving over time along its route, Ra, which is a curve

in the Euclidean plane. Let La be the length of Ra and let x ∈ [0, La] denote the

distance the vehicle has moved along its route (e.g. as measured at the nose wheel of an

airplane). Note that, for any x ∈ [0, La], Ra determines the vehicle’s physical position

and orientation at that point in the route.

Let [0, H] be the time horizon and let the timing function, or vehicle schedule ta(x) ∈

[0, H] define the time at which the vehicle reaches a distance x ∈ [0, La] along its route.

A solution to the ASSP consists of the union of all vehicle schedules, denoted by the

schedule vector t.

In our scheduling model, we approximate each vehicle schedule by a piecewise linear

function, ta , as follows: We first define a set of unique control points (coordinates)

pa1, p
a
2, . . . on Ra, selected such that the movement of vehicle a can be realistically modelled

under the assumption that a’s speed is constant between each pair of consecutive points.

Typically, such control points are positioned at the beginning of the route and at the

intersections of the taxiways (as in [14]), plus possibly at other points in the airport. It

follows that each control point pai corresponds to a distance xai along the route at which

8



the speed can change (see Fig.3).

ta(x)

p1

p2

p3
p4

p5

p6

p7

p8
H

x8=Lax1x2 x3 x4 x5 x6 x7

a

Figure 3: On the left side the route of airplane a across the airport surface with some control
points p1, p2, . . . . On the right, the corresponding trajectory, assuming constant speed between
successive positions x1, x2, · · · ∈ [0, La].

It follows that the ta(x) is piecewise linear, with breakpoints only at the distances

xa1, x
a
2, · · · ∈ [0, La]. Also, ta(x) is continuous, since our definition of ta(x) does not allow

a vehicle to stop at a single point (exception at the boundary, where xa = La). As a

scheduling model, this is sufficient, as we can always add control points very close to

each other on the route if it is necessary to model (almost) stopping. However, during

the real execution of the plan, the vehicles will normally deviate from the constant speed

assumption. In Section 6 we will explain how, in our application, automated guiding

plays together with the on-line scheduling, to tackle this.

For the following discussion, we also introduce the position function xa(t), which

defines the vehicle’s position (or distance) along its route at any time t ∈ [0, H]. Note

that xa(t) is continuous and monotonically increasing, with xa(0) = 0 and xa(H) = La.

Under our "constant speed, no stopping" assumption above, xa(t) is the inverse function

of ta(x), and is also piecewise linear.

2.1 Conflict regions

Consider now the concurrent movements of a pair of vehicles, a and b, along their routes

Ra and Rb of length La and Lb, respectively. For any t ∈ [0, H], a will be at xa(t) and b

9



will be at xb(t). We call the pair (xa(t), xb(t)) the concurrent position of a and b at time

t. We further define the IR2 region of all such concurrent positions, Bab = {(xa, xb) : xa ∈

[0, La], xb ∈ [0, Lb]}, as the concurrent positions space.

t

xa

La

xa(t)

t

xb

Lb

xb(t)

xa

xb

Lb

La

Tab

Figure 4: Two position functions and the concurrent trajectory

Suppose now that the situation corresponding to (xa, xb) ∈ Bab is impossible, due

to the vehicles occupying a common region of physical space, or undesirable, due to the

vehicles being too close for safety. We then call the point (xa, xb) a conflict point. A

conflict region is a connected set C ⊆ Bab of conflict points. The exact shape of C in the

Bab plane depends on the geometrical shape of each vehicle, the geometrical properties

of the network on which the vehicles move, and the vehicles’ routes on this network.

Note that there can be several conflict regions in Bab. A theoretical basis and a concrete

algorithm for constructing conflict regions are given in Appendix A.

2.2 Concurrent trajectories

The set of concurrent positions that are actually realized, with a choice of position func-

tions xa(t) and xb(t), is Tab = {(xa(t), xb(t)) : t ∈ [0, H]}.

We call Tab the concurrent trajectory of a and b. While Tab ⊂ Bab is technically a set,

we can also consider it as a continuous parametrized curve f(xa, xb) = 0. The concurrent

trajectory Tab has the following important property:

Property 2.1 (Monotonicity) Let (xa0, x
b
0), (x

a
1, x

b
1) ∈ Tab. (i) If xa1 > xa0, then xb1 ≥

xb0. (ii) If xb1 > xb0, then xa1 ≥ xa0

10



Proof. We show (i) ((ii) is analogous). For i = 0, 1, let ti ∈ [0, H] be such that

xai = xa(ti) and xbi = xb(ti). Since xa1 > xa0 and xa(t) is non-decreasing, we have t1 > t0.

Then, since xb(t) is non-decreasing, we have xb1 = xb(t1) ≥ xb(t0) = xb0. �

Recall that xa and xb are piecewise linear functions of t. We can therefore partition

the domain [0, H] into intervals such that in each interval, both xa and xb are linear

functions of t (and not just piecewise linear). Consequently, Tab describes a line segment

in Bab when restricted to one of these intervals, and we have the following:

Property 2.2 If both xa(t) and xb(t) are piecewise linear functions in [0, H], then the

concurrent trajectory is also piecewise linear.

2.3 Trajectory feasibility

Consider the concurrent positions space B for vehicles a and b, with a single conflict

region C (in the following, we skip the subscript when denoting the concurrent positions

space Bab and the concurrent trajectory Tab). We say that a (concurrent) trajectory T

is feasible if it does not pass through the interior of the conflict region C, and infeasible

otherwise (see Fig. 5).

C

T2

T3

𝑥𝑎
𝐿𝑎

𝑥𝑏

𝐿𝑏
T1

𝑥1
𝑎 𝑥2

𝑎

ҧ𝑥𝑏

ҧ𝑥𝑎

Figure 5: A conflict region C. The concurrent trajectories T1, T2 are feasible, whereas T3

is infeasible. T2 is below-right, T1 is above-left. Note that (x̄a, x̄b) ∈ C◦, (xa1, x̄
b) ∈ T1 and

(xa2, x̄
b) ∈ T2, with xa1 < x̄a < xa2

.

In general, a conflict region can be difficult to describe analytically. We will assume

that the conflict region is described by a polygon, which is sufficient in our practical

11



application. Furthermore, we will assume C is open in B, i.e. a concurrent trajectory T

is infeasible if it intersects the interior C◦ of the conflict region C. In Appendix B we will

show that there may be concurrent positions outside the conflict region, which cannot

possibly belong to any feasible concurrent trajectory because any concurrent trajectory

through such a point must also intersect C. In the following, unless otherwise specified,

we consider conflict regions that have been "extended" to include all such points.

Above or below. Given a conflict region C, we can classify the feasible concurrent

trajectories according to their position with respect to C. Informally, a feasible trajectory

either lies above and left of C◦, or it lies below and right of C◦. In the first case we say that

vehicle b goes first, because b traverses the positions corresponding to potential conflict

points before vehicle a. In the other case, we say that a goes first.

Remark 2.3 Let T be a feasible trajectory, and C be an (extended) conflict region. Then

we have two possibilities:

1. (b goes first): the trajectory lies above and left to the conflict region. That is, for

any x̄b ∈ [0, Lb] we have that (xaT , x̄
b) ∈ T and (xaC , x̄

b) ∈ C◦ implies xaT < xaC.

Similarly, for any x̄a ∈ [0, La] we have that (x̄a, xbT ) ∈ T and (x̄a, xbC) ∈ C◦ implies

xbC < xbT .

2. (a goes first): the trajectory lies below and right to the conflict region. That is, for

any x̄b ∈ [0, Lb] we have that (xaT , x̄
b) ∈ T and (xaC , x̄

b) ∈ C◦ implies xaC < xaT . For

any x̄a ∈ [0, La] we have that (x̄a, xbT ) ∈ T and (x̄a, xbC) ∈ C◦ implies xbT < xbC.

So, if b goes first, any point on the trajectory lies to the left of any infeasible point

at same height and above any infeasible point with same x-coordinate. We call such a

trajectory an above-trajectory, (↑) with respect to C. If a goes first, any point on the

trajectory lies to the right of any infeasible point at same height and below any infeasible

point with same x-coordinate and we call the trajectory a below-trajectory (↓) with respect

to C.

The above Remark 2.3 has very important consequences for the construction of con-

current trajectories.

12



Figure 6: Two airplanes sharing the same path. To the left, the paths on the airport surface,
and the shaded areas where the aircraft may be in conflict. To the right, the corresponding
conflict region, C.

2.4 Modelling power

In the resource based approach for traffic management problems (e.g. [20, 25]), the

physical routes are "discretized" into fixed capacity segments, typically corresponding

to some physical architecture elements. For instance, railway tracks are subdivided into

block sections, which in practice are always preceded by a physical signal (as a traffic

light): each block section can accommodate at most one train. Similarly, airport taxi-

ways are subdivided into unit capacity segments, where each segment must be cleared

before a vehicle can enter it. To ensure this, the timing variables are associated with

the beginning of each physical segment, and disjunctive constraints ensure that, for each

segment shared by two vehicles, one vehicle can enter only when the other one has left

the segment.

This resource based approach has some severe limitations in terms of modelling power.

First, unless all segments are quite short, the disjunctive constraints will be too restrictive.

Second, disallowing the sharing of single segments is not enough, since two aircraft can be

of two connected segments and still collide because they are both close to the connecting

node. Next, consider the small example in Fig. 6. Here, the two aircraft f and g have

a shared path along the segments (A,B,C,D). It is obvious from the left hand figure

that if f goes first on A, it must also go first on B, C, and D, since the airplanes cannot

overtake each other on their common path. However, the resource based approach offers

no immediate way of expressing this. You will need to decide who goes first for each

13



segment individually. This applies whether the aircraft move in the same, or in opposite

directions on their common path. Furthermore, there are many situations where two

aircraft are moving on different network segments, but still are close enough to each

other to be in physical conflict. One example is the movement of f and g on segments E

and F , respectively, in Fig. 6. The resource based approach offers no immediate way of

representing this. It is of course possible to work around these limitations, even within the

resource based model. However, this requires extensive ad-hoc analysis of each case, and

the introduction of a large number of extra artificial resources, and/or extra constraints.

Also, this analysis would have to carefully consider the geometry of the aircraft and the

movement network.

The conflict region approach offers a generic way of performing this spatial analysis,

and a rather more elegant alternative way of modelling the spatial conflicts. For example,

one would model all the proximity constraints of Fig.6 (including proximity of aircraft

on segment pairs E,F and G,H) with a single conflict region C. This means that there

is only one choice of who goes first for the the entire conflict: should the concurrent

trajectory be above or below C. Also, the exact distances at which the conflict begins

or ends are known, independently of the segment definition (see the right hand side of

Fig .6). The same generic logic applies regardless of the direction of movement of the

aircraft, or of whether they use the same network segments or merely segments that are

close to each other. The only difference would be the shape of C.

3 Constructing feasible concurrent trajectories.

In the following we show how we can construct a concurrent below-trajectory (↓) with

respect to a single conflict region C, as well as the constraints on the problem variables

that this concurrent trajectory must satisfy in order to be feasible (the logic for above-

trajectories is analogous). We start from our assumption that the vehicle schedules ta(xa)

and tb(xb) are piecewise linear. Let Ga = {0 = xa1, x
a
2 . . . , x

a
q = La}, where xa1 < xa2 · · · <

xaq denote the distances along the route of a corresponding to potential breakpoints of

14



ta(xa), namely points on the route where the speed of a can change (in Section 7.1 we

describe how such points are selected for our real-life cases). This implies that ta(xa) is

completely defined by its values in these breakpoints, and we take as our timing variables

ta1 = ta(xa1), t
a
2 = ta(xa2), . . . t

a
q = ta(xaq). Note that the minimum time for a to move from

xai to xai+1 is an input parameter λai , and so the timing variables must respect the following

set of speed constraints:

tai+1 − tai ≥ λai i = 1, . . . , q − 1 (1)

Similarly, for vehicle b, we define Gb = {0 = xb1, x
b
2 . . . , x

b
r = Lb}, with xb1 < xb2 <

· · · < xbr, and the set of timing variables tb1, tb2, . . . tbr, where tbj is the time when b reaches

xbj ∈ Gb.

We now define a rectangular grid G over the concurrent positions space B, by the

points G = {(xai , xbj) : xai ∈ Ga, xbj ∈ Gb}, as depicted in Fig. 7.a). By Property 2.2, any

concurrent trajectory is piecewise linear and can only have breakpoints in G.

We start by building a reference below-trajectory T ↓C such that no other feasible

concurrent below-trajectory can go above T ↓C . In other words we build T ↓C "as close as

possible" to the conflict region.

T ↓C can be described by a finite ordered list Q↓C = ((0, 0) = p1, p2, . . . , (L
a, Lb)) of

breakpoints in G. To be feasible, we need to make sure that, for any two successive

points pj, pj+1 ∈ Q↓C , the segment joining pj and pj+1 does not intersect the interior of

the conflict region. To construct T ↓C , first observe that the grid G subdivides region B

into rectangles (Fig. 7). Each such rectangle Rij, for i = 1, . . . , q − 1, j = 1, . . . , r − 1,

is identified by the set of corner points {(xai , xbj), (xai+1, x
b
j), (xai+1, x

b
j+1), (x

a
i , x

b
j+1)}. The

diagonal from the left-lower corner to the right-upper corner splits a rectangle into two

triangular regions, the upper triangle and the lower triangle (Fig. 7). Consider now the

set R↓ of rectangles of the grid that contain some conflict points, but such that there

are no rectangles below which contain conflict points; these are coloured in light blue

in Fig. 7.a). The set of breakpoints of T ↓C will contain only corners of such rectangles.

In particular, for each rectangle R ∈ R↓, we distinguish two cases. If there are conflict

15



upper

lower

a) b) c)

C

𝐿𝑏

𝑥1
𝑏

𝑥2
𝑏

𝑥3
𝑏

𝑥4
𝑏

𝑥5
𝑏

𝑥6
𝑏

𝑥7
𝑏

𝑥1
𝑎 𝑥2

𝑎 𝑥3
𝑎 𝑥4

𝑎 𝑥5
𝑎 𝐿𝑎

𝑥𝑎

𝑥𝑏

Figure 7: The grid. The reference trajectory in red goes below C passing through corners of
the grid rectangles that contain the lower boundary. In b) and c) we show how such passing
corners are chosen.

points in the lower triangular region of R, then the set of breakpoints contains the two

bottom corners of R (Fig. 7.b)). Otherwise, all conflict points lie in the upper triangle

of R and the set of breakpoints contains the bottom-left corner and the top-right corner

of R (Fig. 7.c)). Finally, (0, 0) is the first point of the trajectory, and (La, Lb) is the last.

By construction, the concurrent trajectory so built lies entirely below the conflict region

and is as close as possible to it (for the given set of potential breakpoints). The reference

concurrent above trajectory T ↑C is constructed in an analogous way.

C

𝐿𝑏

𝑥𝑗
𝑏

𝑥𝑖
𝑎 𝐿𝑎

𝑥𝑎

𝑥𝑏

𝑇𝐶
↓

𝑇

𝑥ℎ
𝑏

𝑥𝑘
𝑎

Figure 8: The reference concurrent below-trajectory T ↓C and another concurrent trajectory T
which lies below it. On the reference trajectory, vehicles a and b arrive simultaneously at point
(xai , x

b
j). On trajectory T , instead, when a is in xai , b is in xbh < xbj . When b reaches xbj , a is in

xak > xai .

16



Constraints for feasible concurrent trajectories. If T ↓C is the reference below-

trajectory (with breakpoint list Q↓C), and the actual trajectory T lies at or below T ↓C ,

then, for any breakpoint (xai , x
b
j) of T ↓C , at the time a reaches xai , b has not yet passed xbj

(see Fig. 8). This occurs if and only

tai ≤ tbj (xai , x
b
j) ∈ Q

↓
C (2)

Symmetrically, if the actual trajectory T lies at or above the reference above-trajectory

T ↑C is the reference above-trajectory (with breakpoint list Q↑C), then we have:

tai ≥ tbj (xai , x
b
j) ∈ Q

↑
C (3)

Since any feasible concurrent trajectory is either a below-trajectory or an above-

trajectory (w.r.t. C), then any feasible schedule t satisfies either all constraints (2) or all

constraints (3). The pair of constraint systems (2) and (3) forms a disjunctive constraint

system pair.

4 Computing Feasible schedules

The previous discussion is limited to two vehicles and one conflict region. In general,

we have a fleet F of vehicles. For each a ∈ F we are given its route and the set Ga =

{xa1, xa2, . . . } of distances along the route where the vehicle can change its speed. Next,

for each pair {a, b} ⊆ F of vehicles, we may have several disjoint conflict regions Cab. Our

problem is to find a (feasible) schedule for each vehicle so that some cost function c(t) of

the overall schedule is minimized. To this end, we proceed as follows:

1. For each pair {a, b} ⊆ F of vehicles compute the set of disjoint conflict regions Cab

2. For each pair {a, b} ⊆ F and each conflict region C ∈ Cab compute the two reference

trajectories and the alternative lists of breakpoints Q↑C and Q↓C .

17



3. Solve the following disjunctive program

min c(t)

(i) tai+1 − tai ≥ λai , xai ∈ Ga \ {La}, a ∈ F

(ii)

tbj− tai ≥ 0 (xai , x
b
j) ∈ Q

↓
C ,∨

tai− tbj ≥ 0 (xai , x
b
j) ∈ Q

↑
C


C ∈ Cab, {a, b} ⊆ F

ta ∈ IRGa

+ , a ∈ F

(4)

Constraints (4.i) are the speed constraints (1). We also have other fixed time precedence

constraints corresponding to time windows, but we drop them here for sake of simplicity.

Constraints (4.ii) are the disjunctive systems of constraints introduced in the previous

section. If, for a given pair of vehicles and for a conflict region C, the schedule satisfies

the inequalities in the first term of (4.ii), then the trajectory will go below C. Otherwise,

the schedule must satisfy the second term and the trajectory will go above C.

Program (4) extends the disjunctive model for job-shop scheduling with blocking,

no wait constraints discussed by Mascis and Pacciarelli in [20], which in turn extends

the seminal model for job-shop scheduling introduced by Balas in [8]. In these classic

models, each disjunctive constraint is the disjunction of two terms. Each term is a time

precedence constraint of the form tj − ti ≥ lij. For every disjunctive constraint, exactly

one of the two terms must be satisfied by any feasible schedule t. In our model, the

disjunctive constraint (4.ii) is again the disjunction of two terms. But now each term is

the conjunction of several time precedence constraints, one for each breakpoint of a list.

Already in its simple form with only one time precedence constraint per term, solving

Program (4) is NP-hard (see [20]), even when the objective function c(t) is linear.

Observe that choosing "who goes first" for all conflicts C ∈ Cab, for all vehicle pairs

{a, b} ⊆ F , corresponds to choosing which term in each disjunction must be satisfied by

t, or, equivalently, to dropping one term for each disjunction from Program (4).

This leaves a linear program later denoted as timing problem. The timing problem

18



can be shown (see, for instance, [18]) to be the dual of a min-cost flow problem and can

be solved effectively by ad-hoc algorithms, such as the Network Simplex Method (see [1]).

Objective function. The objective function is a linear combination of different cost

components. Some of these concern timing variables, depending on vehicle schedule

makespans, deviations from target times for lineup or parking, and deviations from pre-

ferred speeds of vehicles. Another objective component prioritises, in any conflict res-

olution, a vehicle that was cleared for taxi over any vehicle that had not yet received

such clearance. Finally, in order to maintain some stability in the proposed solutions,

an objective was defined to penalise changes in sequencing priorities as compared to the

currently employed solution. That is, the solution is penalised for each spatial conflict

where the choice of "who goes first" is opposite to the corresponding choice in the cur-

rently accepted plan. The presence of this objective was critical to the evaluation of the

methodology, as it let the model react adequately to changes to the situation while still

not bothering the user with wildly fluctuating sequencing decisions.

To provide a formal description of our objective function c(t) we need to introduce a

number of support variables. First, for each C ∈ Cab, {a, b} ⊆ F , we introduce variable

yabC , with yabC = 1 if and only if a goes first. We then define kabC to be the cost of letting

a go before b in a conflict C (the wanted order has zero cost). Next, for each a ∈ F ,

depending on whether a is departing (lining-up) or arriving (parking) let T a
p be the target

time and tap be the time variable associated with the line-up point or parking point of a.

Then, we let dap = max(0, tap − T a
p ) be the delay and eap = max(0, T a

p − tap) be the earliness

(at line-up or at parking depending on the nature of a), with cap be the cost of a unit of

delay or of earliness. Next, a preferred running time γi is given for any pair of successive

break-points xai , xai+1 on the trajectory of a ∈ F . Then we let sai = |tai+1 − tai − γi| be the

running time deviation and cas be the cost of a unit of deviation.

Then the objective function c(t) is the sum of the following terms:

• Earliness-Tardiness:
∑

a∈FD
capd

a
p +

∑
a∈FA

cape
a
p, where FD is the set of departures,

and FA is the set of arrivals.

19



• Running time deviation:
∑

a∈F
∑

xa
i ,x

a
i+1∈Ga cass

a
i .

• Priority:
∑
{a,b}⊆F

∑
C∈Cab k

ab
C y

ab
C .

• Stability: Let us denote by ȳ the ordering of the flights associated with the potential

conflicts in the currently accepted solution. Then the cost of "changing" the solution

will be cs|y − ȳ|, where cs is the cost of one exchange.

5 Solution algorithm

We are now ready to describe our solution algorithm for ASRSP. We consider first the

ASSP sub-problem.

5.1 Solving the scheduling problem

In the ASSP, the set of routes R is pre-determined, one route for each vehicle. The

ASSP is completely expressed by Program (4), and its solution is an optimal schedule t

as defined in section 2. Conflict regions between each pair of aircraft are also in input

to our problem. Each region is defined completely by the (sub-) routes and the physical

sizes of the involved aircraft. It needs to be computed at most once (using the efficient

procedure described in the appendix), and can then be saved for later use. In practice,

therefore, the computation of the conflict diagrams has no impact on the solution time.

We solve the ASSP by Branch & Bound with delayed constraint generation ([23]), i.e.

we iteratively generate the constraints of (4). The algorithm works as follows: We start

by dropping all disjunctive constraints (4.ii) and by keeping only constraints (4.i). We

denote this linear program by P0. Note that, since the objective function is linear and all

constraints are of the form ty − tx ≥ lxy (plus upper and lower bounds on the variables),

problem P0 is the dual of a min-cost flow problem. We solve P0 by the network simplex

method to find an optimal schedule t0 (if no such schedule exists then the overall problem

is infeasible). If, by chance, t0 does not violate any proximity constraints, then t0 is also

feasible and optimal for the overall problem (4) and we are done. However, because P0

is a relaxation of the original problem, t0 may be infeasible for the ASSP. In this case,

20



there is at least one pair of vehicle {a, b} ⊆ F whose concurrent trajectory Tab intersects

the interior of a conflict region C ∈ Cab and the corresponding disjunctive constraint is

violated by t0. According to the row generation approach, we add this constraint to the

problem and solve the resulting non-linear program. In practice, we immediately branch

on the disjunctive constraint by creating two new branching node problems P ↑0 and P ↓0 ,

corresponding to the cases of the trajectory Tab going above or below C, respectively. Each

of these are constructed by extending P0 with the corresponding term in the disjunction,

namely by adding a set of time precedence constraints. Note that each new problem is

again a timing problem, i.e. the dual of a min-cost flow problem, and can be solved in

the same fashion as P0. The process is thus repeated recursively, backtracking whenever

a timing problem is infeasible, when we can cut on objective bounds, or when a new best

feasible (i.e. without conflicts) solution is found.

The scheduling algorithm is illustrated by pseudocode (5.1) where T is the list of open

problems to solve, whereas t̄ is the incumbent best solution. Bounding is performed in

the standard way. Initially T = {P0} and the incumbent solution t̄ may be found by

some heuristic or, if no incumbent is available, we let c(t̄) =∞.

Algorithm 5.1: SurfaceScheduling(R)

T ← {P0}, t̄

while T 6= ∅

do



Pick a problem P from T and let T ← T \ {P}

Solve P and let t∗ be the solution.

if P is feasible and c(t∗) < c(t̄)

then



if t∗ is globally feasible (no conflicts are violated)

then t̄← t∗

else


Select a violated conflict region C

Generate two new sub-problems P ↑ and P ↓

T ← T ∪ {P ↑, P ↓}

return (t̄)

As mentioned before, the problem solved at each branching node is the dual of a

21



min-cost flow problem. Our implementation of the simplex network algorithm exploits

the fact that each node problem is obtained from its parent by only adding a few linear

inequalities, and the previous solution can be used to warm start the next optimization

run. This has a significant impact on the performance of our scheduling algorithm.

Note that our approach is somewhat similar to the resource-based branch and bound

search of [29], in that at each node a timing sub-problem is solved before checking for

conflicts, and that each conflict resolution consists of a set of linear time precedence con-

straints. In our case, however, exploiting conflict regions lets us represent each conflict

with a single disjunctive constraint (4.ii), rather than one disjunctive constraint per re-

source. We thus get a much shallower search tree, and so a much more efficient algorithm.

Note that this gain in efficiency is not limited to tree search algorithms. One can for ex-

ample think of local search algorithms that exploits conflict regions to efficiently model

"who goes first" decisions.

5.2 Solving the full routing and scheduling problem

Now, to solve the full ASRSP, we need to also consider the routing aspect. Many airports,

including the airport that we considered in our project, operate with the concept of default

taxi routes, which is a set of pre-defined routes between each pair of possible start and

destination points. Default routes may be different for different types of aircraft or other

vehicles.

Other routes are chosen only when we have a deadlock. This can happen, for example,

when pilots do not comply strictly with the current plan (see also Section 6), causing the

current position of a pair of vehicles to be in the extended part of the conflict region.

Also, there may be a gridlock in which the current position of three or more vehicles

together makes the scheduling problem infeasible. In such cases, the algorithm must

find alternative route(s) for one or more vehicles, and a new optimal schedule must be

computed. The overall algorithm is illustrated in Fig. 5.2.

22



Algorithm 5.2: Surface Routing and Scheduling()

R←the default route for each vehicle

do



t← SurfaceScheduling(R) (see Algorithm 5.1)

if feasible

then return (R, t)

else R←Resolve deadlocks or gridlocks by rerouting some vehicle(s)

The re-routing is done in a heuristic fashion, using Dijkstra’s shortest path algorithm

with some special requirements to avoid certain points in the network (and thus resolve

the deadlock). As our re-routing procedure is rather straightforward, and not the focus

of this paper, we omit the details of this.

6 Guiding

In our application the "current plan" is continuously adjusted by on-line re-solving of the

ASRSP. A dedicated guiding system then communicates this plan to each pilot, providing

information about the aircraft’s planned route and speed, and the need to yield to other

vehicles (see Fig. 1). Since the aircraft are piloted by humans, however, their actual speed

will often deviate from the plan. We therefore need the guiding logic to act as a safety

net, to makes sure that the aircraft follows the current plan with sufficient accuracy. In

particular, the guiding ensures the correct sequencing of aircraft at any junction or lineup,

and prevents aircraft to get too close to each other or to enter a deadlock situation.

The guiding communicates speed by means of a sequence (or "strip") of green center-

line lights where the length of the light strip indicates speed. The logic is that the front

of the aircraft should be at the end of the light strip in a certain number of seconds

into the future. We believe this is an intuitively understandable way to communicate

speed adjustments; A "standard" strip length indicates that the current speed should be

maintained, an increasing strip length indicates that the aircraft should speed up, and a

decreasing strip length indicates that the aircraft should slow down. An aircraft should

23



never pass the end of the light strip (one may also signal a full stop by letting the last

lamp on the strip be red instead of green).

As long as an aircraft taxis follows it’s schedule exactly, it is easy to calculate the strip

length from the current plan. As mentioned above, however, this is rarely the case, and

the strip length calculations must also take the actual position and speed into account.

We find that conflict regions still offer an elegant way of computing the correct light strip

length. Consider the situation in Fig. 9.

Figure 9: A situation where the concurrent position of vehicles a and b has deviated from the
planned concurrent trajectory T , approaching the conflict region. The relative speed of b to a
needs to be reduced because the concurrent position is above T .

As it can be seen from the planned concurrent trajectory T in the left part of the figure,

we want a to go before b on the overlapping part of their respective routes. However,

their relative movement has deviated from T , because b has gone too fast, a too slow, or

both. To tell b to yield to a, the light strip of b must end before b goes too far. Indeed,

the last possible stopping point corresponds to the position where b reaches the lowest

point of the conflict region; if b goes further, a can no longer go first. We can therefore

calculate the length of the light strip directly as the distance between the current position

of b along its route (i.e. x̂b in Fig. 1) and the conflict region’s projection on the xb axis.

24



7 Performance and Real-life Validation

The methodology presented in the paper was validated in a project under the umbrella of

EU’s SESAR Joint Undertaking [11], in which new technologies, concepts and modes of

operations for ATM are developed and validated. In our project, the main new concepts

were the continuous re-scheduling aircraft movements, coupled with an above ground

level-based guiding of vehicles that also included using the length of the light strip to

indicate speed. Furthermore, an automatic detection of up-coming deadlock- and gridlock

situations were to be communicated not only as alarms, but accompanied with a suggested

re-routing of the involved vehicles. The controllers could then just accept this re-routing,

as opposed to having to manually come up with re-routing solutions.

7.1 Experiments and numerical results

The validated methodology depended on the ability of our solver to compute optimal

adjustments to the current plan every few seconds. It is therefore interesting to assess

the performance of our optimization methods. For this we used the data sets that was

made available by Budapest Airport, and compiled by Eurocontrol, for the purpose of

the technology evaluation mentioned above. These comprised a total of five realistic

scenarioes, each of a duration of 1 to 1.5 hours, starting in the early morning. Using real

time simulation, we ran through all of these scenarioes, and solved a new problem instance

every few seconds to continuously update the current plan. Each such problem instance

was therefore quite similar to the previous one, except that some time had passed during

which new arriving or departing flights may have been added, some taxi movements

may have been completed, and the (simulated) pilots and controllers may have deviated

from the previously accepted schedule for push-back and taxi of each individual aircraft.

In total, 11457 optimization problem instances were generated during the five scenario

simulations.

Our focus here is the scheduling subproblem, which is the computationally challeng-

ing part of the full algorithm in 5.2. We applied the scheduling algorithm 5.1 to solve

25



the disjunctive program (4) for each problem instance. A small fraction of these (3.4%)

could not be solved, because the simulation, without human input, sometimes generated

gridlocks making the scheduling problem infeasible. In a real world settings, these dead-

locks would be reported back to the controller with suggested re-routing fixes; in our

experiments we simply ignored these instances. All the remaining instances were solved

to optimality.

Recall that timing variables must be defined for a set of distances Ga along the route

of each aircraft, a. In our implementation, these timing function breakpoints were defined

as follows: For each aircraft a, Ga is initially based on the topological network nodes along

the route of a (see Section 3). In some situations, e.g. due to (simulated) pilots going

faster than indicated by the current schedule, these breakpoint sets lack the necessary

flexibility to make the scheduling problem feasible. I.e., the current concurrent position of

a pair of aircraft may be too close to the (extended) conflict region, so that any schedule

based on their basic breakpoint sets will be infeasible. In this case, we added additional

breakpoints between the aircraft’s current position and the position where the aircraft

would enter the extended conflict region. Note, however, that even in such situations,

the automated guiding always ensured that no pair of aircraft actually enter an extended

conflict region (see Fig. 9).

The experiments were carried out on a normal laptop computer, an HP ZBook 15 G4,

32 GB RAM, 4-core Intel(R) Core(TM) i7-7700HQ cpu.

Fig. 10 shows the distribution of problem instances across problem sizes (number of

aircraft). Fig. 11 illustrates the average run times for our algorithm, within each of these

size classes. It shows that for problems of up to 27 aircraft, the average computation time

is mostly within 100 milliseconds, and all run times were well below 200 milliseconds.

We conclude that at least for problem instances of these sizes, the performance of the

scheduling algorithm is sufficient for real life use.

26



Figure 10: The number of problem instances for different problem sizes (number of aircraft).

Figure 11: The average time to compute the optimal solutions (in ms), for different problem
sizes (number of aircraft). The filled boxes show the mean ± std.dev, while the horizontal lines
show the minimum and maximum observed run times.

27



7.2 Practical validation

For the purpose of validation exercise in the SESAR project, the above methods for

continuous re-routing and re-scheduling, combined with guiding, were implemented in

SINTEF’s optimization software for ATM. This was integrated in a third party tower

control system from Frequentis AG. The total integrated system was evaluated using

Eurocontrol’s airport simulator, using data based on real world traffic at Budapest Air-

port. The project validation report, as well as the ATM-specific characteristics of the

test scenarios, can be found in the project data pack [24].

The controllers concluded that the approach of continuous re-scheduling combined

with speed-controlling guidance can work well in practice, and would save communication

workload. Also, they appreciated that the automatic suggestions of new routes to avoid

deadlocks were useful, and released the controller from having to continuously look out

for deadlock situations. However, it was noted that through this automation, it was

easy for the controllers to lose some situational awareness, as they no longer needed to

continuously keep every aircraft movement, and potential future conflicts, in their minds.

However, the expected increase in airport traffic will increase the controller’s workload

significantly. We therefore believe that in the future, controllers must be supported by

automated systems that detect, and offer solutions to, up-coming traffic conflicts. Our

proposed system was a step in that direction.

8 Conclusions

The focus of this work was to demonstrate how airport ground control can be improved

by a combination of dynamic (online) re-planning and automated guiding of aircraft. The

practical evaluation by air traffic controllers indicated that the concept is promising, and

that it would reduce the controllers’ workload and thus enable higher airport efficiency

even as traffic volumes are expected to rise. A note was made, however, that it is

challenging to retain situational awareness when decision- and communication processes

are partially automated.

28



In order to generate optimal plans we developed a innovative approach which exploits

the concept of conflict region to model and handle conflicts caused by spacial proximity.

This allowed us to define a disjunctive formulation for the scheduling problem, which

we then solved by branch & bound. The overall solution algorithm was able to tackle

real-life instances from Budapest airport, returning plans every few seconds, as required

by the practical setting.

Regarding the concept of conflict diagrams, we have presented both the theoretical

aspects necessary to develop our solution approach as well as a practical algorithm for

computing conflict diagrams from general route and vehicle geometries (see the Appendix,

Section A).

Future developments may go in several directions.

• Conflict diagrams can be generalized to three or even more vehicles.

• Control points could also model push-back operations.

• We only experimented with a medium-sized airport (Budapest) and our approach

may not always scale well for very large airports. In this case, we expect that

the efficiency of the approach can be substantially improved by exploiting various

techniques from combinatorial optimization and integer programming (e.g. decom-

position, reformulation, strong cuts, etc.). Then, it may be necessary to resort to a

state-of-the-art MILP solver (such as GUROBI or CPLEX).

• For airports which do not make use of pre-defined taxi-routes, a sophisticated route

generation procedure may be necessary.

• Airports that are very different from the one we studied may require modifications

to our approach. For example, for an airport with areas without a well defined

movement network, the possibility of guiding an aircraft along a certain path is

more limited. For such airports, the presented approach must be extended to include

rapid re-routing that takes actual aircraft movements into account.

29



• The inherent stochastic nature of the problem raises significant future research

challenges.

• Future ground controller software must exploit work-reducing computational sup-

port while maintaining sufficient situational awareness for the controllers. How to

achieve this is an interesting (cross-disciplinary) research question in itself.

Acknowledgments

The work presented in this paper was done in project "PJ03a SUMO" ([27]), and was

partially funded through the EUROPEAN UNION’s Single European Sky Joint Under-

taking (SJU) as a part of the SESAR Programme [28]. The paper was also partially

funded by the Research Council of Norway, through the project OPSTRA (p.nr.267554).

Opinions expressed in this paper reflect the authors’ findings only, and the SJU shall not

be considered liable for them or for any use that may be made of the information con-

tained herein. The authors are grateful for the fruitful collaboration within the project

consortium. In particular, we wish to thank the participating air traffic controllers for

their invaluable input, HungaroControl for providing data for Budapest airport, and,

especially, Alina Graf and the team at Frequentis.

References

[1] Ravindra K Ahuja, Thomas L Magnanti, James B Orlin, and K Weihe. Network

flows: theory, algorithms and applications. Prentice Hall, 1993.

[2] Florent Altché, Xiangjun Qian, and Arnaud de La Fortelle. Time-optimal coordina-

tion of mobile robots along specified paths. CoRR, abs/1603.04610, 2016.

[3] Florent Altché, Xiangjun Qian, and Arnaud de La Fortelle. An algorithm for

supervised driving of cooperative semi-autonomous vehicles (extended). CoRR,

abs/1706.08046, 2017.

30



[4] Jason AD Atkin, Edmund K Burke, and Stefan Ravizza. The airport ground move-

ment problem: Past and current research and future directions. In Proceedings of the

4th International Conference on Research in Air Transportation (ICRAT), Budapest,

Hungary, pages 131–138, 2010.

[5] Sandeep Badrinath, Hamsa Balakrishnan, Emily Joback, and Tom G Reynolds. Im-

pact of off-block time uncertainty on the control of airport surface operations. Trans-

portation Science, 54(4):920–943, 2020.

[6] Sandeep Badrinath, Hamsa Balakrishnan, Ji Ma, and Daniel Delahaye. Comparative

analysis of departure metering at united states and european airports. Journal of

Air Transportation, 28(3):93–104, 2020.

[7] Hamsa Balakrishnan. Control and optimization algorithms for air transportation

systems. Annual Reviews in Control, 41:39–46, 2016.

[8] Egon Balas. Disjunctive programming. In Annals of Discrete Mathematics, volume 5,

pages 3–51. Elsevier, 1979.

[9] Peter Brucker, Andreas Drexl, Rolf Möhring, Klaus Neumann, and Erwin Pesch.

Resource-constrained project scheduling: Notation, classification, models, and meth-

ods. European journal of operational research, 112(1):3–41, 1999.

[10] Sonia Cafieri and David Rey. Maximizing the number of conflict-free aircraft using

mixed-integer nonlinear programming. Computers & Operations Research, 80:147–

158, 2017.

[11] European Commission. Single european sky atm research joint undertaking.

https://www.sesarju.eu.

[12] Julien Guépet, Olivier Briant, Jean-Philippe Gayon, and Rodrigo Acuna-Agost. The

aircraft ground routing problem: Analysis of industry punctuality indicators in a

sustainable perspective. European Journal of Operational Research, 248(3):827–839,

2016.

31



[13] Julien Guépet, Olivier Briant, Jean-Philippe Gayon, and Rodrigo Acuna-Agost. In-

tegration of aircraft ground movements and runway operations. Transportation re-

search part E: logistics and transportation review, 104:131–149, 2017.

[14] Harshad Khadilkar and Hamsa Balakrishnan. Network congestion control of airport

surface operations. Journal of Guidance, Control, and Dynamics, 37(3):933–940,

2014.

[15] Dag Kjenstad, O. Kloster, K.F. Pettersen, M. Smedsrud, C. Schulz, P. Schittekat,

and T.E. Nordlander. Simulation of rail replacement bus service in oslo. In Lecture

Notes in Management Science, volume 8, pages 16–21. ORLAB, 2016.

[16] Dag Kjenstad, Carlo Mannino, Patrick Schittekat, and Morten Smedsrud. Integrated

surface and departure management at airports by optimization. In Modeling, Simu-

lation and Applied Optimization (ICMSAO), 2013 5th International Conference on,

pages 1–5. IEEE, 2013.

[17] Elisabeth Lübbecke, Marco E Lübbecke, and Rolf H Möhring. Ship traffic optimiza-

tion for the kiel canal. Operations Research, 2019.

[18] Carlo Mannino and Alessandro Mascis. Optimal real-time traffic control in metro

stations. Operations Research, 57(4):1026–1039, 2009.

[19] Carlo Mannino, Andreas Nakkerud, and Giorgio Sartor. Air traffic flow management

with layered workload constraints. Computers & Operations Research, 127:105159,

2021.

[20] Alessandro Mascis and Dario Pacciarelli. Job-shop scheduling with blocking and no-

wait constraints. European Journal of Operational Research, 143(3):498–517, 2002.

[21] Mayara Condé Rocha Murça. A robust optimization approach for airport departure

metering under uncertain taxi-out time predictions. Aerospace Science and Technol-

ogy, 68:269–277, 2017.

32



[22] A Nakahara, TG Reynolds, T White, C Maccarone, and R Dunsky. Analysis of a

surface congestion management technique at new york jfk airport. 11th american

institute of aeronautics and astronautics aviation technology. In Integration, and

Operations Conference, Virginia Beach, VA, pages 20–22, 2011.

[23] Manfred Padberg. Linear optimization and extensions, volume 12. Springer Science

& Business Media, 2013.

[24] PJ03a - 01 consortium. Solution pj.03a-03: V2 data pack, 2019.

"https://ec.europa.eu/research/participants/documents/", Last accessed on 2019-

12-31.

[25] Marcella Samà, Andrea D’Ariano, Paolo D’Ariano, and Dario Pacciarelli. Air traf-

fic optimization models for aircraft delay and travel time minimization in terminal

control areas. Public Transport, 7(3):321–337, 2015.

[26] Ioannis Simaiakis, Harshad Khadilkar, Hamsa Balakrishnan, Tom G Reynolds, and

R John Hansman. Demonstration of reduced airport congestion through pushback

rate control. Transportation Research Part A: Policy and Practice, 66:251–267, 2014.

[27] SESAR Joint Undertaking. Pj.03 integrated surface management.

http://https:www.sesarju.eu/projects/sumo. "Last visited 17.04.2020".

[28] SESAR Joint Undertaking. SESAR Solutions Catalogue 2019. Publication Office of

the European Union, 2019.

[29] Mario Vanhoucke, Erik Demeulemeester, and Willy Herroelen. An exact procedure

for the resource-constrained weighted earliness–tardiness project scheduling problem.

Annals of Operations Research, 102(1-4):179–196, 2001.

[30] Adan E Vela, Erwan Salaun, Senay Solak, Eric Feron, William Singhose, and J-P

Clarke. A two-stage stochastic optimization model for air traffic conflict resolution

under wind uncertainty. In 2009 IEEE/AIAA 28th Digital Avionics Systems Con-

ference, pages 2–E. IEEE, 2009.

33



Appendices

A Constructing conflict regions

In this section, we describe an algorithm for constructing conflict diagrams for practical

applications. Consider a pair of vehicles a and b with trajectories Ra and Rb. We assume

that Ra and Rb are given as polyline paths, and the shapes and dimensions of a and b

are given as polygons. Furthermore, we assume that a rule is given for computing the

position and orientation of a’s shape polygon for any position xa ∈ [0, La]. For example, a

simple rule could specify that the shape polygon be placed with its center on Ra(xa) (the

point at distance xa along Ra), oriented so that the shape’s tail points toward Ra(xa− l),

for some fixed distance l. (The definition of Ra(xa) is extended to negative xa along the

line that the first segment of Ra is part of.) More advanced rules can be given that model

the vehicle movement in a physically more realistic way. For any such rule, we require

that the point Ra(xa) is contained in the polygon computed for position xa.

So, we have a function Sa : [0, La] → (polygons in IR2), which maps a position xa to

the polygon occupied by a, and similarly, Sb maps xb to b’s polygon. Define the function

d : B → IR as follows: If the polygons Sa(xa) and Sb(xb) overlap, then d(xa, xb) = −
√
A,

where A is the area of overlap, and we describe this situation as a conflict. Otherwise,

d(xa, xb) is the distance between the closest points in Sa(xa) and Sb(xb). The function

d is straightforward to compute, and we have that (xa, xb) ∈ C iff d(xa, xb) < 0. If the

application requires a safety margin, this rule would be amended to say that (xa, xb) ∈ C

iff d(xa, xb) < dmin, for some threshold dmin.

With these preliminaries, we can describe the algorithm for constructing a convex

polygonal approximation to C. The major tool used in the construction is sampling the

function d. Besides indicating whether a point is in C or not, d gives an indication of the

distance to the boundary of C, which improves the behaviour of the algorithm. Note that

while the algorithm creates good approximations in practice, it does not provide specific

guarantees. The steps in the algorithm are:

34



1. Identify conflict seeds

2. Construct initial polygons

3. Refine the polygons

1. Identifying conflict seeds. The first step is, for each conflict, to identify some

point in the conflict region. We find these points, which are called conflict seeds, in two

ways.

The first way is to look for actual intersections between Ra and Rb. If Ra(xa) = Rb(xb)

for some xa ∈ [0, La], xb ∈ [0, Lb], then Sa(xa) and Sb(xb) necessarily overlap, so we can

add any point (xa, xb) where this holds as a conflict seed. Computing the intersection

points between two piecewise linear curves is straightforward.

The second way is to look for points where Ra and Rb come close but do not actually

intersect. To this end, we find the points (xa, xb) ∈ B where the distance between Ra(xa)

and Rb(xb) has a local minimum whose value is positive, but smaller than the sum of

the shape diameters of a and b. This is also a straightforward computation for polylines.

A point (xa, xb) found in this way is not necessarily part of a conflict, so we add it as a

conflict seed only if d(xa, xb) < 0.

2. Constructing initial polygons For each conflict seed, we construct an initial

polygon by finding four points on the boundary of the conflict region C, one in each

cardinal direction.

Observe that for any point p on the boundary of C, either d(p) = 0, or p is on

the boundary of B. This is the basis for the following algorithm for finding a point on

the conflict region boundary, which is used both in this step and in step 3 below. The

algorithm samples d along a line, at successive points with offset o, until either the line

leaves the domain B, or d changes sign. In the former case, the result is the intersection

point between the line and the boundary of B. In the latter case, the result is a point on

the conflict region boundary.

Let p ∈ B be a point and o a vector offset:

35



Algorithm A.1: FindBoundaryPoint(p, o)

k ← 0

repeat

k ← k + 1

if (p+ ko) /∈ B

then return (Intersection(p, p+ ko, δB))

until d(p+ ko) ∗ d(p) ≤ 0

α← ZeroArgument(d(p+ (k − α)o), α ∈ [0, 1])

return (p+ (k − α)o)

In the above, Intersection(p1, p2, P ) finds the intersection point between the line

segment from p1 to p2 and the (closed) polyline P , while ZeroArgument(f(α), α ∈ [a, b])

computes a zero of f in the interval [a, b] numerically using the secant method.

The four points of the initial polygon are found by the above algorithm, taking p as

the conflict seed and o as (1, 0), (0, 1), (−1, 0) and (0,−1).

3. Refining the polygon

The initial approximation to C is a convex polygon, where each vertex lies on the

boundary of C. We now create a succession of better approximations to C, while pre-

serving these properties. The following operations are performed in each iteration:

• Examine each edge of the polygon and determine any new vertices related to that

edge.

• If no new vertices were found, terminate.

• Take the union of the existing polygon’s vertices and the new vertices. The convex

hull of this vertex set is the new approximation polygon.

The determination of new vertices related to an edge proceeds as follows:

1. Let p and q be the ends of the edge (thus also vertices of the polygon), in counter-

clockwise order around the polygon, and let c be its midpoint.

36



C

q

p

c c c
q'

p

q

n

p

q

d(c) = 0 d(c) < 0 d(c) > 0

Figure 12: The cases considered in steps 3 to 5 of the refinement algorithm

2. If the distance between p and q is below a set tolerance, the polygon is considered

detailed enough and no new vertex is created.

3. Evaluate d(c). If d(c) = 0, c is on the boundary of C. The edge is considered

straight, and no new vertex is created.

4. If d(c) < 0, c is inside C. A new vertex is created at FindBoundaryPoint(c, n),

where n is the right unit normal to the line from p to q.

5. If d(c) > 0, c is outside C, but there might be other points along the edge that

are inside. To check for this, we compute q′ =FindBoundaryPoint(c, u), where u

is a unit vector in the direction from c to p. If q′ 6= p, we add any new ver-

tices that result from considering (p, q′) an edge of the polygon. Similarly, we find

p′ =FindBoundaryPoint(c,−u) and if p′ 6= q, add any new vertices resulting from

the edge (p′, q).

B Extending conflict regions

We show how to extend a conflict region to include points which are not strictly conflict

points but still cannot belong to any feasible concurrent trajectory. Informally, these are

points from where it would not be possible to reach the destination without intercepting

the conflict region or points which are only reachable going through the conflict region.

37



By adding all such points to the conflict region we can define what we will call an extended

conflict region.

To this end, we consider again the concurrent space B associated with the concurrent

positions of two vehicles a and b, and let q ∈ B (Fig. 13). Point q = (qa, qb) identifies four

regions of B: South-West quadrant SW (q) = {(xa, xb) ∈ IR2
+ : 0 ≤ xa ≤ qa, 0 ≤ xb ≤ qb},

North-West quadrant NW (q) = {(xa, xb) ∈ IR2
+ : 0 ≤ xa ≤ qa, qb ≤ xb ≤ Lb}, North-East

quadrant NE(q) = {(xa, xb) ∈ IR2
+ : qa ≤ xa ≤ La, qb ≤ xb ≤ Lb}, South-East quadrant

SE(q) = {(xa, xb) ∈ IR2
+ : qa ≤ xa ≤ La, 0 ≤ xb ≤ qb}.

y

x

q 

La

(La , Lb)

(0 ,0)

Lb NW NE

SW SE

Tp

Tf

Figure 13: The four regions of B identified by a point q. Preceding and following trajectory
through point q ∈ T .

Consider a feasible concurrent trajectory T going through q. By Property 2.1, each

point in T belongs either to the preceding trajectory Tp(q) = {(xa, xb) ∈ T : xa ≤ qa, xb ≤

qb} or to the following trajectory Tf (q) = {(xa, xb) ∈ T : xa ≥ qa, xb ≥ qb}. Tp and Tf

share only point q. By definition, the preceding trajectory Tp(q) is contained in SW (q)

whereas the following trajectory Tf (q) is contained in NE(q), as depicted in Fig. 13.

Lemma B.1 Let C ⊂ B be a conflict region, and let q ∈ B \ C◦ be a non-conflict point

of B. Suppose there is no continuous line in NE(q) \ C◦ connecting q to (La, Lb). Then

there is no feasible concurrent trajectory through q. Similarly, if there is no continuous

line in SW (q) \ C◦ connecting (0, 0) to q, then there is no feasible concurrent trajectory

through q.

38



Lb

x

y

C

q

T

y

C

x
La

q

(La , Lb) (La , Lb)

NE(q)

y

C

x

q

(La , Lb)

(0 ,0)(0 ,0) (0 ,0)

SW(q)

Figure 14: No feasible forward trajectory can pass through point q.

We define as the extended conflict region the union of all points satisfying the condi-

tions of Lemma B.1 and the original conflict region C.

39


