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Abstract— Recently, an extremum-seeking control (ESC)
approach has been developed for optimization of generically time-
varying steady-state responses of nonlinear systems. A generic
filter structure was introduced, the so-called dynamic cost func-
tion, which has been instrumental in facilitating the use of ESC
in the more generic, time-varying context. However, the dynamic
cost function must operate sufficiently slow compared to the
time-varying nature of the system responses, thereby compro-
mising the convergence speed of the ESC scheme. In this work,
a modified ESC approach is proposed that incorporates explicit
knowledge about the user-defined dynamic cost function, able to
enhance the convergence speed of the ESC scheme. Moreover,
we provide a stability analysis for this extended approach. The
main contribution of this work is the experimental demonstration
of both ESC approaches for the performance optimal tuning
of a variable-gain control (VGC) strategy employed on a high-
accuracy industrial motion stage setup, exhibiting generically
time-varying steady-state responses. VGC is able to enhance
the system performance by balancing the typical linear control
tradeoff between low-frequency disturbance suppression prop-
erties and sensitivity to high-frequency disturbances in a more
desirable manner. We experimentally show that, for the unknown
disturbance situation at hand, the variable-gain controller can
be automatically tuned using both ESC approaches to achieve
the optimal system performance. In addition, enhanced con-
vergence speed with the modified ESC approach is evidenced
experimentally.

Index Terms— Extremum-seeking control (ESC), industrial
motion systems, performance optimization, time-varying systems.
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I. INTRODUCTION

EXTREMUM-SEEKING control (ESC) is a data-driven
and model-free method for optimizing the steady-state

behavior of a stable or stabilized plant in real time, by auto-
mated adaptation of tunable plant parameters. Often in the
ESC literature, the general requirement for optimizing a
stable or stabilized plant is the existence of a (unknown)
time-invariant parameter-to-steady-state performance map, i.e.,
a static input–output relationship between tunable plant para-
meters and the steady-state plant performance (see [2], [23],
[25], [39]). In those works, the steady-state performance map
characterizes the performance of the dynamical plant to-be
optimized in an equilibria setting. Even in the presence of
(high-frequency) noise, convergence toward a neighborhood
of the optimum can be achieved, the size of which is often
dependent on the noise level (see [11], [35], [37], [42]).

In cases where periodic time-varying steady-state behavior
characterizes system performance, often induced by periodic
disturbances acting on the system dynamics, ESC methods
have been proposed in [10], [12], and [41]. To cope with a
more generic problem setting, recently, an ESC method has
been proposed to optimize generically time-varying steady-
state behavior of a class of nonlinear systems (see [13], [14]).
Considering generically time-varying steady-state plant behav-
ior is essential, especially in practice. Namely, the steady-
state performance of many industrial applications is related to
generically time-varying system responses. For example, time-
varying behavior emerges in reference tracking or disturbance
attenuation problems, which are encountered, for example,
in industrial positioning stages commonly found in pick-
and-place systems, robotics, electron microscopes, and wafer
scanning systems.

Other works, which have studied ESC in the presence of
time-varying system behavior, are, e.g., [31]–[33]. Here, ESC
is utilized directly as feedback control, able to, on the one
hand, control unstable and time-varying input-affine systems
and, on the other hand, optimize steady-state equilibria in
the presence of measurement noise. The methods have been
experimentally demonstrated in, e.g., [29] and [30]. We care to
emphasize that, in the current work, we consider the problem
of optimizing generically time-varying steady-state responses
of stable or stabilized systems, which is a different problem
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setting from the one considered in [31]–[33]. Moreover,
the methods in [31]–[33] typically rely on high dither frequen-
cies relative to the time-varying system dynamics, while the
ESC method proposed in this work can employ small dither
frequencies relative to the time-varying system dynamics, even
in the presence of high-frequency disturbances. In addition,
in the case of ESC for already stable or stabilized systems,
the class of systems considered in our work is more general.

ESC for problems that involve slowly time-varying per-
formance maps are considered in, e.g., [6], [8], [9], and
[28]. Here, optimal plant performance is obtained by tracking
optimal, slowly time-varying, plant parameters. We remark
that this problem setting is different from the one considered
in this work. We consider the problem of optimizing static
performance maps in the spirit of [12], [20], and [41], which,
however, characterize the performance in terms of generically
time-varying steady-state responses (e.g., induced by time-
varying disturbances). We propose an ESC method that seeks
constant plant parameter settings that optimize steady-state
plant performance in terms of time-varying steady-state system
responses.

To facilitate the use of ESC in the more generic, time-
varying context, in [14] (and preliminary results in [13]),
a generic filter structure was introduced, the so-called dynamic
cost function. However, to warrant sufficient time-scale sep-
aration in the ESC scheme, the dynamic cost function must
operate sufficiently slow compared to the time-varying nature
of the system responses, thereby compromising the conver-
gence speed of the ESC scheme. By considering a particular
linear-time-invariant (LTI) filter structure for the user-defined
dynamic cost function design, in this work, a modified ESC
approach is proposed that incorporates this LTI filter structure,
which can enhance the convergence speed of the ESC scheme
compared to the nominal ESC design in [13] and [14].

In this work, we will, in addition, experimentally demon-
strate both ESC approaches by performance optimal tuning of
a variable-gain control (VGC) strategy applied to an industrial
motion control application. VGC can enhance the system
performance by balancing the typical tradeoff between the
use of low-gain and high-gain feedback control in linear
motion control systems and has been the topic of many studies
(see [15]–[17], [21], [36], [40], [43]). Due to the well-known
waterbed effect (see [7], [34]), increasing the bandwidth of
linear motion control systems by applying high-gain control
to improve the ability to suppress low-frequency disturbances
comes at the expense of increased sensitivity to high-frequency
disturbances and noise. Instead, VGC enables a higher gain,
and thus a higher bandwidth, only when necessary. However,
the ability to achieve optimal performance ultimately relies
on the tuning of the variable-gain controller, which can be
far from trivial as system performance highly depends on the
unknown disturbance situation at hand.

Automatic tuning of (nonlinear) control strategies for opti-
mal performance has been studied in many works (see
[3], [5], [18], [19], [21], [22], [24], [26]). We propose to tune
VGC through ESC here as an alternative means to achieve
optimal performance, which does not require knowledge on
the plant model as in, e.g., [21], [22], and [24], specific

Fig. 1. Extended plant �, i.e., series connection of the nonlinear system �p ,
the user-defined cost function Z , and the to-be-designed filter � f .

(linear parameterized) controller structures as in, e.g., [5],
specific experiments as in, e.g., [18] and [19], or disturbance
knowledge as in [26]. In [20], ESC has been applied in the
scope of periodic steady-state system behavior for the adaptive
design of variable-gain controllers.

The main contributions of this article can be summarized
as follows. The first contribution is an extension of the ESC
design employed in [13] and [14]. The extension involves
the incorporation of explicit knowledge of LTI-structured
dynamic cost function designs in the ESC design, which
enables enhanced convergence speed of the ESC scheme
compared to the nominal ESC design. The effectiveness is
shown using a simulation example. The second contribution
is a stability analysis of the closed-loop ESC scheme with the
extended approach. The third contribution is the experimental
demonstration of the optimization of time-varying steady-
state responses of nonlinear systems using both the nominal
ESC approach and the extended ESC approach presented in
this work. In particular, we employ both ESC to optimally
tune a VGC strategy employed on an industrial motion stage
setup, which is subject to unknown and time-varying (external)
disturbances. We show the effect of the design of the dynamic
cost function on the convergence of the closed-loop ESC
scheme. The effectiveness of the modified ESC design in terms
of enhanced convergence speed with respect to the nominal
ESC approach is shown experimentally as well.

This article is organized as follows. Section II presents
the ESC approach for systems with time-varying steady-state
responses, as well as the extended approach and its closed-
loop stability analysis. Section III presents the industrial
motion control application under study. Section IV presents
the experimental results of both ESC strategies. Section V
closes with conclusion.

II. EXTREMUM-SEEKING FOR OPTIMIZING GENERICALLY

TIME-VARYING STEADY-STATE BEHAVIOR

In this section, first, we will briefly discuss the ESC problem
formulation for generically time-varying system responses and
the ESC design as studied in [13] and [14]. Second, we pro-
pose a modified ESC approach based on explicit knowledge
about the dynamic cost function to enhance convergence speed
compared to the initial ESC design. Third, we present a
stability result of the closed-loop ESC scheme with a modified
ESC approach.

A. Extremum-Seeking Control Problem Formulation

In this section, we elaborate on the elements of the so-called
extended plant � as shown in Fig. 1, i.e., the series connection
of a to-be-optimized, nonlinear system �p that may exhibit
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generically time-varying behavior in steady-state conditions,
and a so-called dynamic cost function, consisting of a user-
defined cost function Z and a user-defined filter � f . This
dynamic cost function has proven instrumental to achieve
extremum-seeking in the time-varying steady-state setting.

1) Nonlinear System �p: We consider the following generic
description of a multiple-input–multiple-output nonlinear
system:

�p :
{

ẋ(t) = f(x(t), u(t), w(t))

e(t) = g(x(t), u(t), w(t))
(1)

where x ∈ Rnx denotes the state of the system, u ∈ Rnu

denotes the input of the system, e ∈ Rne denotes the output
of the system, w ∈ R

nw are disturbances, and t ∈ R is
time. In the context of ESC, �p represents the system to
be optimized, where the input u can be regarded as a vector
of tunable system parameters, the output e can be regarded
as a vector of measured performance variables, and w are
piecewise continuous (time-varying and typically unknown)
disturbances, defined and bounded on t ∈ R. We denote this
class of disturbances by PCw and define the following set of
disturbances W = {w ∈ PCw | ‖w(t)‖ ≤ ρw ∀ t ∈ R} with
ρw > 0. To define the class of systems considered in the ESC
problem setting, we give the following definition of so-called
convergent systems, which we have adopted from [27].

Definition 1 ([27, Sec. 2.2.1]): A system of the form ẋ =
F(x, t), where x ∈ Rnx , t ∈ R, and F(x, t) locally Lipschitz in
x and piecewise continuous in t , is said to be: 1) convergent
in a set X ⊂ Rnx if there exists a solution x̄(t), called the
steady-state solution, satisfying the following conditions—x̄(t)
is defined and bounded for all t ∈ R and x̄(t) is asymptotically
stable in X ; 2) uniformly convergent in X if it is convergent
in X and x̄(t) is uniformly asymptotically stable in X ; and
3) exponentially convergent in X if it is convergent in X and
x̄(t) is exponentially stable in X . If the system is convergent
in X = Rnx , then it is called globally convergent.
From Definition 1, we have that if the system is globally
uniformly convergent, then there exists a KL-function β(r, s)
such that any solution x(t) of the system satisfies

‖x(t) − x̄(t)‖ ≤ β(‖x(t0) − x̄(t0)‖, t − t0). (2)

The time-dependence of the right-hand side of the system ẋ =
F(x, t) can often be attributed to some time-varying input, for
example, a disturbance. Therefore, the next definition defines
the convergence property for systems with inputs.

Definition 2 ([27, Sec. 2.2.2]): A system of the form ẋ =
F(x, v(t)), with state x ∈ R

nx , input v ∈ R
nv , and F(x, v)

locally Lipschitz in x and continuous in v, is said to be
(uniformly, exponentially) convergent in X ⊂ Rnx for a
class of inputs V ⊂ PCv if it is (uniformly, exponentially)
convergent in X for every input v(·) ∈ V . In order to
emphasize the dependence of the steady-state solution on the
input v(t), it is denoted by x̄v(t).
We adopt the following assumption on the system in (1)
(see [14]).

Assumption 1: The nonlinear system �p in (1) is globally
uniformly exponentially convergent for a class of disturbances

w(·) ∈ W and for all constant input u ∈ R
nu , uniformly

in u. In addition, given a disturbance w ∈ W , the globally
exponentially stable (GES) steady-state solution, which we
denote by x̄w(t, u), is twice continuously differentiable in u
and satisfies ∥∥∥∥∂ x̄w

∂u
(t, u)

∥∥∥∥ ≤ Lxu (3)

for all t ∈ R, all u ∈ R
nu , and some constant Lxu ∈ R>0.

Given Assumption 1, for constant inputs u ∈ Rnu and a
given w ∈ W , there exists a unique, time-varying steady-state
output of the system �p in (1), denoted by ēw(t, u), which is
given by

ēw(t, u) = g(x̄w(t, u), u, w(t)). (4)

The aim is to find constant inputs u that optimize the steady-
state performance of the system in (1). Common practice
(in the ESC literature) is to define a cost function in terms
of the system responses and inputs that quantify the perfor-
mance of interest for the system under study. For example,
consider the following performance measure, which is adopted
from [12]:

L2(t, e(t)) := 1

T

∫ t

t−T
‖e(τ )‖2dτ ∀t ≥ T (5)

where T ∈ R>0 typically indicates a known performance
relevant time interval. In the case where, for constant inputs u,
the steady-state plant outputs ēw in (4) are constant or periodic
with period time T , the steady-state output of the cost function
in (5) is constant as well. Having a constant steady-state
output of the cost function for constant inputs u is one of the
basis requirements in the ESC literature that studies the data-
based optimization of stable (nonlinear) systems by means
of ESC (see [12], [23], [38]). However, in many (industrial)
applications, this requirement is not met, as the steady-state
plant outputs ēw(t, u) that characterize system performance
are generically time-varying in nature (also for constant u).
In addition, periodicity of the steady-state plant outputs ēw

is not evident due to the fact that system responses can
be induced by complex, time-varying, possibly nonperiodic
disturbances and reference trajectories. In those cases, often
the neighborhood to which the ESC scheme converges can
not be made arbitrarily small, thereby limiting the achievable
performance gain.

2) Dynamic Cost Function Z + � f : To deal with the
time-varying nature of the system responses, Hazeleger et al.
[13], [14] proposed the series connection of the system �p as
in (1), and a so-called dynamic cost function, i.e., the series
connection of a cost function Z of the form

y(t) = Z(e(t), u(t)) (6)

where y ∈ R, and a user-defined filter, denoted by � f , which
has the following general form:

� f :
{

ż(t) = αzh(z(t), y(t))

l(t) = k(z(t))
(7)

where αz ∈ R>0 is a tuning parameter, z ∈ Rnz is the state of
the filter, y ∈ R is the input of the filter defined by (6), and
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l ∈ R is the output of the filter. The function Z : Rne ×
Rnu → R is designed to be twice continuously differentiable
with respect to both arguments. Moreover, we choose Z in
such a way that there exist constants L Ze, L Zu ∈ R>0 such
that ∥∥∥∥ ∂2 Z

∂e∂e	 (e, u)

∥∥∥∥ ≤ L Ze,

∥∥∥∥ ∂2 Z

∂e∂u	 (e, u)

∥∥∥∥ ≤ L Zu (8)

for all e ∈ Rne and all u ∈ Rnu . Given a disturbance w ∈ W ,
for all constant inputs u ∈ Rnu , the steady-state output of Z
is denoted by ȳw(t, u) and reads

ȳw(t, u) = Z(g(x̄w(t, u), u, w(t)), u). (9)

The design of the dynamic cost function should satisfy the
following property.

Property 1: The dynamic cost function consisting of the
cascade of Z and � f , given by (6) and (7), respectively,
is exponentially input-to-state convergent1 for all constant
inputs u ∈ R

nu and all αz ∈ R>0, uniformly in u.
Instead of defining system performance in a time-averaged

sense as in (5) with fixed period time T , the filter � f

is introduced to act as an averaging operator on y(t) in
(6), which quantifies system performance similar to the use
of exponentially weighting filters [1], [41]. By tuning αz

sufficiently small, the solution z(t) will vary “slowly” in time,
i.e., the output of the filter l(t) will be quasi-constant and
determined predominantly by the average of y(t). By properly
designing cost function Z and tuning αz in (7) small, the output
of the dynamic cost function l(t) is quasi-constant and reflects
the performance of the system while being characterized by
the time-varying system response e(t). Hence, by subsequently
minimizing l(t) using ESC, we optimize the time-varying
system response e(t).

3) Extended Plant Dynamics �: The series connection of
the nonlinear plant �p in (1) and the dynamic cost function,
consisting of the cost function Z in (6) and filter � f in (7),
is referred to as the extended plant � and is schematically
shown in Fig. 1. The dynamics of the extended plant is
given by

� :

⎧⎪⎨
⎪⎩

ẋ(t) = f(x(t), u(t), w(t))

ż(t) = αzh(z(t), Z(g(x(t), u(t), w(t)), u(t)))

l(t) = k(z(t)).

(10)

By similar arguments as in [27, Proof of Property 2.27],
we can conclude from Assumption 1 and Property 1 that
the extended plant � is globally uniformly exponentially
convergent for a class of disturbances w(·) ∈ W , for all
constant inputs u ∈ Rnu , uniformly in u. This implies that
there exists a unique steady-state solution of � f , denoted
by z̄w(t, u, αz) and induced by the extended plant, which
is defined and bounded on t ∈ R and GES. We denote
this steady-state solution by z̄w(t, u, αz) to emphasize the
dependence on time-varying disturbances w(t), constant inputs
u, and the tunable parameter αz.

1For details on input-to-state convergent systems, see [27, Sec. 2.2.2.].

4) Parameter-to-Steady-State Performance Map: Next,
we define the objective function Fw in terms of the steady-
state solution z̄w of the extended plant �, for which we adopt
part of [14, Assumption 11].

Assumption 2: Given a disturbance w(t) ∈ W , there exists
a twice continuously differentiable function qw : Rnu → Rnz ,
referred to as the constant performance cost, such that

qw(u) = lim
αz→0

z̄w(t, u, αz) (11)

for all t ∈ R, and all u ∈ Rnu . Moreover, there exist constants
δz1, δz2 ∈ R≥0, related to the disturbance w(t) and the extended
plant �, such that the difference between the steady-state
solution z̄w(t, u, αz) and the function qw(u) satisfies

‖z̄w(t, u, αz) − qw(u)‖ ≤ αz
(
δz1 + δz2‖u − u∗

w‖2) (12)

for all t ∈ R, all u ∈ Rnu , and all 0 < αz ≤ εz for some
constant εz ∈ R>0, where u∗

w denotes the optimal vector of
tunable system parameters.

Hence, by Assumption 2, under steady-state conditions of
the extended plant dynamics in (10), the limit αz → 0, and
for constant inputs u, we have that the parameter-to-steady-
state performance map of the system can be characterized as
follows:

Fw(u) := k(qw(u)) ∀ u ∈ R
nu . (13)

We have adopted the following assumption on Fw in (13)
from [14].

Assumption 3: Given a disturbance w ∈ W , the objective
function Fw : Rnu → R in (13) is twice continuously
differentiable and exhibits a unique minimum in Rnu . Let
the corresponding optimal input u∗

w be defined as u∗
w :=

arg min u∈Rnu Fw(u). There exist constants L F1, L F2 ∈ R>0

such that

d Fw

du
(u − u∗

w) ≥ L F1‖u − u∗
w‖2,

∥∥∥∥ d2 Fw

dudu	

∥∥∥∥ ≤ L F2 (14)

for all u ∈ Rnu .
To optimize the time-varying system behavior ēw, we aim

to find the system parameter values u for which the objective
function in (13) is minimal. Information of the objective
function can only be obtained through measured outputs l of
the extended plant in (10). On the basis of these measured
outputs, we aim to steer the inputs u to their performance-
optimizing values u∗

w by using the measured extended plant
output l(t) as feedback to an extremum-seeking controller that
is introduced next.

B. Extremum-Seeking Controller

The extremum-seeking controller employed in this article
is based on the one in [11, Ch. 2]. A novel ESC design
extension will be presented in Section II-C. We will briefly
elaborate on: 1) the dither signal design; 2) a model of the
input–output behavior of the extended plant to be used as a
basis for gradient estimation; 3) a least-squares observer to
estimate the state of the model (and therewith the gradient of
the objective function Fw); and 4) a normalized optimizer to
steer the system parameters u to the minimizer u∗

w.
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1) Dither Signal: In order to estimate the gradient of the
objective function Fw and use this estimated gradient to drive
u toward u∗

w by an optimizer, we supply the following dither
signal:

u(t) = û(t) + αωω(t) (15)

where αωω is a vector of perturbation signals with amplitude
αω ∈ R>0 and û is referred to as the nominal system
parameter to be generated by the extremum-seeking controller.
The vector ω is defined by ω(t) = [ω1(t), ω2(t), . . . , ωnu(t)]	,
with

ωi (t) =

⎧⎪⎪⎨
⎪⎪⎩

sin

(
i+1

2 ηωt

)
, if i is odd

cos

(
i
2ηωt

)
, if i is even

(16)

for i = {1, 2, . . . , nu}, where ηω ∈ R>0 is a tuning parameter.
2) Model of Input–Output Behavior of the Extended Plant:

To obtain an estimate of the gradient of the objective function
(13), the input-to-output behavior of the extended plant in (10),
that is, from input û to measured output l, is modeled in a
general form. We define the state vector of the model as

m(t) =
[

Fw(û(t))

αω

d Fw

du	 (û(t))

]
. (17)

The measured output of the extended plant l in (10) can be
written as

l(t) = r(t) + Fw(u(t)) + d(t) (18)

with the signals r(t) and d(t) defined as

r(t) := k(z(t)) − k(z̄w(t, u(t), αz))

d(t) := k(z̄w(t, u(t), αz)) − k(qw(u(t))). (19)

Using Taylor’s theorem and (15), the objective function Fw

can be written as

Fw(u(t)) = Fw(û(t)) + αω

d Fw

du
(û(t))ω(t)

+1

2
α2

ωω	(t)H(t, û(t))ω(t) (20)

where H(t, û(t)) reads

H(t, û(t)) = 2
∫ 1

0
(1 − σ)

d2 Fw

dudu	 (û(t) + σαωω(t))dσ. (21)

The dynamics of the state vector in (17) is governed by

ṁ(t) = A(t)m(t) + α2
ωBs(t)

l(t) = C(t)m(t) + α2
ωv(t) + r(t) + d(t) (22)

with the matrices A, B, and C defined as

A(t) = 1

αω

[
0 ˙̂u	(t)

0nu×1 0nu×nu

]
, B =

[
01×nu

Inu×nu

]
C(t) = [

1 ω	(t)
]

(23)

and the signals s(t) and v(t) defined as follows:

s(t) := d2 Fw

dudu	 (û(t))
˙̂u(t)

αω

, v(t) := 1

2
ω	(t)H(t, û(t))ω(t).

(24)

The signals s, v, r , and d can be interpreted as unknown
disturbances to the model in (22). The influences of s, v, r ,
and d on the state and output of the model in (22) are small:
1) if û is slowly time varying, 2) if αω is small; 3) if the states
x of the system in (1) and the states z of the filter in (7) are
close to their steady-state values, respectively, x̄w and z̄w, and
4) if αz is sufficiently small.

3) Controller Design: The state m in (17) contains the
gradient of the objective function, scaled by the perturbation
amplitude αω. Hence, an estimate of the gradient of the
objective function Fw can be obtained from an estimate of the
state m. Here, we present a least-squares observer to estimate
the state m of the model in (22) based on the measured outputs
of the extended plant l(t). The least-squares observer, denoted
by �o, is given by

�o :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂m = (A − ηmσr QD	D
)
m̂ + α2

ωBŝ

+ηmQC	(l − Cm̂ − α2
ω v̂)

Q̇ = ηmQ + AQ + QA	

−ηmQ(C	C + σr D	D)Q

(25)

with initial conditions m̂(0) = m̂0 ∈ Rnu+1 and Q(0) = Q0 ∈
Rnu+1×nu+1, where Q0 is a symmetric and positive definite
matrix, D = [0nu×1 Inu×nu], ηm ∈ R>0 and σr ∈ R≥0 are
tuning parameters related to the observer, referred to as a
forgetting factor and a regularization constant, respectively,
and signals ŝ and v̂ are defined as

ŝ := Ĥ(t, û(t))
˙̂u(t)

αω

, v̂ := 1

2
ω	(t)Ĥ(t, û(t))ω(t) (26)

with a user-defined function Ĥ : R×Rnu → Rnu×nu satisfying
‖Ĥ(t, û)‖ ≤ LH, for all t ∈ R, all û ∈ R

nu , and with
LH ∈ R>0. Note that in order to arrive at the observer design
in (25), we have considered the signals r and d in (22) to
be negligibly small. The optimizer, denoted by �r , uses the
estimated gradient to steer the nominal system inputs û to their
performance optimal values u∗

w. The optimizer �r is given by

�r : ˙̂u(t) = −λu
ηuDm̂(t)

ηu + λu‖Dm̂(t)‖ (27)

with λu, ηu ∈ R>0 being tuning parameters related to the
optimizer.

C. Modified ESC Design for Enhanced Convergence Speed

The least-squares observer presented in Section II-B, used
to obtain a local estimate of the gradient of the objective
function Fw, is constructed based on a general model of the
input–output behavior of the extended plant in (10), that is,
from input û to measured output l. To be able to obtain an
accurate gradient estimate of Fw(û), on the one hand, the user-
defined filter � f must act on a slow enough time scale to
reduce the effect of time-varying behavior in the steady-state
output of the filter l, leading to a quasi-static approximation of
the objective function Fw(û). On the other hand, for this quasi-
static approximation of Fw(û) to hold in case of dithering,
the perturbation of the input û must be even slower. As a
result, convergence of the ESC scheme is generally slow.
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The convergence speed of the ESC scheme can be improved
by increasing the frequency of the perturbation as it allows
for a larger optimizer gain. However, this can lead to a
deterioration of the gradient estimation because the quasi-
static approximation of Fw(û(t)), in the case of high-frequency
perturbations, is distorted by the dynamics of the filter � f .
Instead, by considering the dynamics of the user-defined filter
� f in the observer design, this distortion of quasi-static
approximation can be considered, improving the convergence
speed in cases where the time scales of the perturbation
and filter are similar. We propose an alternative least-squares
observer design that incorporates user-defined filters � f of
the LTI type, which enables enhanced convergence speed
of the resulting ESC scheme. We revisit the model of the
input–output behavior with knowledge on � f and provide
the modified ESC design. In Section II-E, the effectiveness of
the modified ESC design is shown using a simulation example.

1) Model of Input–Output Behavior With Knowledge on � f :
The model presented here extends the model in Section II-B.
Let us focus on LTI designs of the filter � f in (7), given by
the following form:

� f :
{

ż(t) = αz
(
A� f z(t) + B� f y(t)

)
l(t) = C� f z(t)

(28)

with the matrices A� f ∈ Rnz×nz , B� f ∈ Rnz×1, and C� f ∈
R1×nz . Note that if A� f is Hurwitz, then � f is exponentially
stable, and Property 1 is guaranteed. Let us define a state mz

governed by the following dynamics:
ṁz = αz

(
A� f mz(t) + B� f Fw(u(t))

)
(29)

where mz ∈ Rnz . We can reformulate the output l in (28) as
follows:

l(t) = C� f mz(t) + C� f m̃z(t) (30)

where m̃z := z−mz, and generated by the following dynamics:
˙̃mz = αz

(
A� f m̃z(t) + B� f (y(t) − Fw(u(t)))

)
. (31)

We can define a new state vector, which reads

m	
f = [m	

z m	 ]	 ∈ R
nm f (32)

with nm f = nz +nu +1. By using (29), (20), and the dynamics
of the state vector m in (22), the dynamics governing the state
vector in (32) is given as follows:

ṁ f (t) = A f (t)m f (t) + α2
ωB f s(t) + αzα

2
ωE f v(t)

l(t) = C f m f (t) + C� f m̃z(t) (33)

with the matrices A f ∈ R
nm f ×nm f , B f ∈ R

nm f ×nu , C f ∈
R

1×nm f , and E f ∈ R
nm f ×1, which are defined as follows:

A f (t) =

⎡
⎢⎢⎣

αzA� f αzB� f αzB� f ω
	(t)

01×nz 0
˙̂u	

αω

0nu×nz 0nu×1 0nu×nu

⎤
⎥⎥⎦

B	
f = [

0nu×nz 0nu×1 Inu×nu
]

C f = [
C� f 0 01×nu

]
E	

f = [
B	

� f
0 01×nu

]
. (34)

2) Controller Design With Knowledge on � f : Inspired by
the observer in (25), the least-squares observer to estimate m f

of the model in (33), denoted by � f o, is given by

� f o :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂m f = (A f − ηmσr Q f D	
f D f

)
m̂ f + α2

ωB f ŝ

+αzα
2
ωE f v̂ + ηmQ f C	

f (l − C f m̂ f )

Q̇ f = ηmQ f + A f Q f + Q f A	
f

−ηmQ f (C	
f C f + σr D	

f D f )Q f

(35)

with initial conditions m̂ f (0) = m̂ f 0 ∈ R
nm f and Q f (0) =

Q f 0 ∈ R
nm f ×nm f , where Q f 0 is a symmetric and positive

definite matrix, and the matrix D f defined as

D f = [0nu×nz 0nu×1 Inu×nu]. (36)

The signals ŝ and v̂ are defined in (26). To arrive at the
observer design in (35), we have assumed m̃z to be negligibly
small, similar to the signals r and d in the observer design
in (25). Again, this is justified for steady-state conditions of
the extended plant � and sufficiently small αz. The optimizer,
denoted by � f r , reads as follows:

� f r : ˙̂u(t) = −λu
ηuD f m̂ f (t)

ηu + λu
∥∥D f m̂ f (t)

∥∥ . (37)

D. Stability Analysis

Next, we provide a stability result and supporting stability
proof for the closed-loop ESC scheme with the modified
extremum-seeking controller proposed in Section II-C. The
next result states the conditions on tuning parameters under
which the ESC scheme with the modified extremum-seeking
controller guarantees that û converges to an arbitrarily small
set around the optimum u∗

w.
Theorem 1: Consider a (time-varying) disturbance w ∈ W

and Assumptions 1–3 and [14, Assumption 1]. Moreover,
consider arbitrary initial conditions x(0) ∈ Rnx and Q f (0) ∈
R

nm f ×nm f symmetric and positive definite, û(0) ∈ U0, with
U0 ⊂ Rnu an arbitrary large compact subset, z(0) ∈ Rnz ,
and m̂ f (0) ∈ R

nm f . Then, there exist (sufficiently small) con-
stants ε0, . . . , ε5 ∈ R>0, such that, for all tunable parameters
αz, αω, ηu, λu, ηm, ηω ∈ R>0 and σr ∈ R≥0 with αω ≤ ε0,
ηω ≤ αzε1, αz ≤ ηmε2, αωλu ≤ ηmε3, ηu ≤ αωηωε4, and
σr ≤ ε5, the solutions of the closed-loop system consisting of
the extended plant in (10) and the modified extremum-seeking
controller [consisting of the dither signal in (15), the observer
� f o in (35), and the optimizer � f r in (37)] are bounded for
all t ≥ 0. In addition, there exist constants c1, . . . , c5 ∈ R>0

such that the solutions û(t) satisfy

lim sup
t→∞

‖û(t) − u∗
w‖ ≤ max

{
αωη2

ω c1, αzαωδz2c2,

ηωc3,
αz

αω

c4δz1, αωc5

}
. (38)

Proof 1: The proof of Theorem 1 follows similar
arguments as in [11, Proof of Theorem 2.8] and
[14, Proof of Theorem 14]. Different from [14, Th. 14],
the proofs are the bounds on the solutions of the error
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dynamics of the novel least-squares observer in (35). Here,
we will present these bounds. Let us introduce the following
coordinate transformation:

m̃ f (t) = m̂ f (t) − m f (t)

Q̃ f (t) = Q−1
f (t) − �−1

f (39)

with �−1
f = C	

f C f + σr D	
f D f . From the observer in (35),

the coordinate transformation in (39), and the model of the
input–output behavior in (33), we have the following state
equations for Q̃ f and m̃ f :

˙̃Q f = −ηmQ̃ f − �−1
f A f − A	

f �
−1
f − Q̃ f A f − A	

f Q̃ f (40)

˙̃m f = (
A f − ηmQ f (C	

f C f + σr D	
f D f )

)
m̃ f

+α2
ωB f (ŝ − s) − ηmσrαωQ f D	

f

d Fw

du	 (û)

+αzα
2
ωE f (v̂ − v) + ηmQ f C	

f C� f m̃z. (41)

Note that we have omitted most arguments of the variables
in (40) and (41) for notational clarity. First, a bound on the
solutions Q̃ f (t) is presented in Lemma 1.

Lemma 1: For any ε1, ε4 ∈ R>0, sufficiently small ε2, ε5 ∈
R>0, and all tunable parameters αω, ηm ∈ R>0, there exist
constants cQ, βQ ∈ R>0 such that, for all ηω ≤ αzε1, αz ≤
ηmε2, all ηu ≤ αωηωε4, and all σr ≤ ε5, the solutions Q̃ f

satisfy

‖Q̃ f (t)‖ ≤ max

{
cQ‖Q̃ f (0)‖e−ηmβQt ,

1

8

}
(42)

for all t ≥ 0, all Q̃ f (0) ∈ R
nm f ×nm f for which Q f (0)

is symmetric and positive definite, and all time-varying
u(t) ∈ Rnu .

Proof 2: See Appendix A. �
Second, a bound on the solutions m̃ f (t) for time-varying

inputs u(t) is presented in Lemma 2.
Lemma 2: For any ε0, ε1, ε2, ε4 ∈ R>0, sufficiently small

ε5 ∈ R>0, any finite time t1 ≥ 0, and any δz1, δz2 ∈
R≥0, the solutions m̃ f are bounded for all 0 ≤ t ≤ t1,
all ũ(0) ∈ Rnu , all m̃ f (0) ∈ R

nm f , all αω ≤ ε0, ηω ≤
αzε1, αz ≤ ηmε2, ηu ≤ αωηωε4, and all σr ≤ ε5. In addition,
for sufficiently small ε3, ε5 ∈ R>0 and all αωλu ≤ ηmε3, there
exist constants cm1, . . . , cm8(ε0), . . . , cm10(ε2) ∈ R>0 such that
the solutions m̃ f satisfy

sup
t≥t1

‖m̃ f (t)‖ ≤ sup
t≥t1

max
{

cm1‖m̃ f (t1)‖,√σrαωcm2‖ũ(t)‖

αω

αωλu

ηm
cm3‖ũ(t)‖, αzcm4δz2‖ũ(t)‖2, αωηωcm5‖ũ(t)‖

α2
ωη2

ω cm6, αzα
2
ω cm7δz2, αωηωcm8, αzcm9δz1, α

2
ωcm10

}
(43)

lim sup
t→∞

‖m̃ f (t)‖ ≤ lim sup
t→∞

max
{√

σrαωcm2‖ũ(t)‖

αω

αωλu

ηm
cm3‖ũ(t)‖, αzcm4δz2‖ũ(t)‖2, αωηωcm5‖ũ(t)‖

α2
ωη2

ω cm6, αzα
2
ω cm7δz2, αωηωcm8, αzcm9δz1, α

2
ωcm10

}
. (44)

Proof 3: See Appendix B. �

On the basis of [14, Proof of Theorem 14] and the bounds
on the solutions Q̃ f (t) and m̃ f (t) in Lemmas 1 and 2,
respectively, we obtain the bounds on the solutions û(t) − u∗

w
in (38), which completes the proof of Theorem 1. �

Remark 1: (Tuning Guidelines): Under the conditions of
Theorem 1, it follows that if we are dealing with constant
(or no) disturbances w, i.e., δz1, δz2 = 0 (see Assumption 2),
the optimizer state û converges to an arbitrarily small region
of the performance optimal value u∗

w if the dither parameters
αω and ηω are chosen sufficiently small for an arbitrary
bounded αz. Choosing αz large in general allows faster con-
vergence toward the performance optimal value u∗

w. In the
case of time-varying disturbances w(t), i.e., δz1, δz2 > 0,
we subsequently tune αω small to make the fifth term in the
right-hand side of (38) arbitrarily small, tune αz small to make
the second and fourth term arbitrarily small, and finally tune
ηω small to make the first and third terms arbitrarily small.

E. Illustrative Example: Enhanced Convergence Speed

To illustrate the enhanced convergence speed of the mod-
ified extremum-seeking controller, we have adopted the
following exemplary dynamical system from [12]:

�p :

⎧⎪⎨
⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) = −25x1(t) − b(u(t))x2(t) + w(t)

e(t) = x1(t)

(45)

where b(u) = 10+5(u −10)2 is a nonlinear characteristic that
depends on the system input u ∈ R and w(t) = 20 sin(2π10 t)
is an input disturbance. In this example, the aim is to find
the input u that maximizes2 the amplitude of the steady-state
output of the system in (45) given the particular disturbance
w(t). Note that, for each constant input u, the system in (45)
is a GES linear system subject to external inputs w(t), which
implies that it is globally exponentially convergent, thereby
satisfying Assumption 1. We employ the following dynamic
cost function, with cost function Z : y(t) = e(t)2, and
filter � f given by a low-pass filter ż(t) = αz(y(t) − z(t)),
l(t) = z(t), with αz the cutoff frequency. Here, we employ
both ESC strategies given by (25)–(27) and (35)–(37), respec-
tively, to investigate the effect of including information of the
user-designed filter � f in the observer on the convergence
speed. For both extremum-seeking controllers, we employ the
following numerical values: αω = 0.25, ηω = 4, ηm = 2,
λu = 1.5×106, ηu = 0.75, σr = 1×10−3, and Ĥ = −5×10−7.
Moreover, we show the results for both extremum-seeking
controllers with two filter settings: αz = 3 and αz = 10.

Fig. 2 shows the simulation results that show the conver-
gence of the initial input u(0) = 3 to a small neighborhood of
the optimal input u∗

w = 10 for both filter settings αz = 3 and
αz = 10 and both the nominal ESC design, and the modified
ESC design. For all settings, it can seen that the input u

2The extremum-seeking controllers presented in this section are designed
for minimization problems. Without loss of generality, we can employ the
same controllers for maximization problems by changing the sign of the cost
function.
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Fig. 2. Simulation results of both extremum-seeking controllers. By incorpo-
ration knowledge on the filter in the observer, we achieve faster convergence
toward the optimal input u∗

w = 10 (top). The improved convergence of the
modified controller is more significant in cases where the value of αz is
relatively small.

converges toward u∗
w (top), and the amplitude of the output

e increases (third subfigure).
In addition, Fig. 2 shows the improved convergence speed

as a result of incorporating knowledge about � f . For αz = 3,
the modified case (red) shows a significantly faster conver-
gence toward u∗

w than the nominal case (gray). The bottom
subfigure in Fig. 2 shows the state estimation error |m̂2 −
αω(d Fw/du)(u)|, where m̂i denotes, on the one hand, the i th
element of state vector m̂ in the nominal case (gray), and on
the other hand, the (i + 1)th element of state vector m̂ f in
the modified case (red). In the modified case, it can be seen
that, overall, the estimation of the gradient of Fw is improved
compared to the gradient obtained with the nominal ESC
design. The modified ESC design considers the dynamics of
the filter and, thus, the distortion of the filter on the perturba-
tion with ηω = 4 and its effect on the quasi-constant output of
the extended plant, which leads to the improved convergence
speed of the modified extremum-seeking controller. In case
of αz = 10, the convergence speed in the nominal case (blue
plots in the first and second subfigures) is marginally improved
compared to the convergence speed in the modified case
(cyan plots in the first and second subfigures). Concluding,
in the presence of time-varying steady-state plant responses,
in cases where slow filter dynamics are used in combination
with a relatively fast dither signal, the modified extremum-
seeking controller outperforms the nominal case in terms of
convergence speed.

Fig. 3. Industrial motion stage setup. 1© Base frame. 2© Airmounts.
3© Metrology frame. 4© Force frame. 5© Chuck. 6© x-direction actuators.
7© y-direction actuators. 8© z-direction actuators. 9© sensors.

III. INDUSTRIAL MOTION STAGE SETUP AND

PERFORMANCE OPTIMIZATION

PROBLEM FORMULATION

In this section, we will give a brief description of the indus-
trial motion stage setup under study and its nonlinear feedback
control design. The motion stage setup (see Fig. 3) represents
the short-stroke motion of a wafer stage commonly found
in, e.g., complex lithography machinery used to manufacture
integrated circuits (ICs) (for more details, see [4]). Wafer
stages are required to perform fast (re)positioning in three
degrees of freedom with nm-accuracy to achieve the desired
high machine throughput. Achieving nm-accuracy and high
speeds of the wafer stage is in general realized by high-gain
linear feedback controllers. However, due to the well-known
waterbed effect (see [7]), increasing the gain further to improve
the ability to suppress low-frequency disturbances comes at the
expense of increased sensitivity to high-frequency disturbances
and noise. Instead, on the basis of a dead-zone nonlinearity
and the error signal, VGC can schedule an additional gain.

Although VGC is intuitive in nature, performance opti-
mal tuning of a variable-gain controller depends heavily on
the (unknown) disturbance situation at hand. In Section IV,
we will use the motion stage setup with VGC to experimen-
tally demonstrate both the nominal and the modified ESC
approach for the optimization of time-varying steady-state
responses.

A. System Description

The industrial motion stage setup, shown in Fig. 3, consist
of a base frame 1© which is directly connected to the fixed
world, force actuators in x-, y-, and z-directions, respectively,
6©, 7©, and 8©, which are installed in a force frame 4© that

rests on the base frame, encoders in x-, y-, and z-directions 9©
which are connected to a metrology frame 3© that is isolated
from the base frame by means of airmounts 2©, and a chuck 4©,
supported by four passive gravity compensators at the corners
8© to achieve a mid-air equilibrium of the chuck. The chuck,
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Fig. 4. Closed-loop VGC scheme.

being the main component of the setup, can be controlled in
all six DOFs by means of force actuators. The origin of the
reference frame is located at the center of gravity of the chuck.
Lorentz actuators are used to actuate the chuck in the x-, y-,
and φz-directions, and voice coil actuators are used to actuate
the chuck in the φx -, φy-, and z-directions.

B. Nominal and Nonlinear Feedback Control Design

In this section, we focus on controlling the chuck in the
z-direction with the (nonlinear) feedback control loop shown
in Fig. 4. Here, Pz(s) represents the (motion) plant dynamics
of the actuated chuck (in the z-direction), with s ∈ C being
the Laplace variable. The nonlinear control loop consists of
two parts, namely, a nominal linear feedback control part
and a VGC part. For the nominal linear feedback control
part, transfer function Cz(s) represents the nominal (low-gain)
linear controller. The signals rz , ez , and fd denote the setpoint
and tracking error in the z-direction, and (external, time-
varying) disturbances, respectively. Here, we consider rz = 0.

For the so-called VGC part, ϕ(·) denotes a nonlinear control
element, and transfer function Fz(s) is a shaping filter. The
nonlinear control element ϕ(·) studied here is given by a dead-
zone characteristic

ϕ(ez(t), u) =

⎧⎪⎨
⎪⎩

α(ez(t) + u), if ez(t) < −u

0, if |ez(t)| ≤ u

α(ez(t) − u), if ez(t) > u

(46)

where α, u ∈ R≥0 are tunable parameters, referred to as the
additional gain and the dead-zone length, respectively. From
the nonlinearity in (46), we can identify three distinct cases.

1) For u = ∞, the output of the nonlinear element ϕ(·)
is always zero; the VGC part is disabled and only the
nominal, low-gain, linear controller Cz(s) is active. This
case is referred to as the low-gain case.

2) For u = 0, the nonlinear element ϕ(·) acts as a gain α,
and the VGC part has the transfer αFz(s). Effectively,
this case is referred to as the high-gain case; the high-
gain linear controller reads Cz(s)(1 + αFz(s)).

3) For u ∈ (0,∞), we have nonlinear behavior, where the
output of nonlinear element ϕ(·) depends on the ampli-
tude of the tracking error ez(t). This case is referred to
as the variable-gain case.

The closed-loop dynamics of the VGC scheme shown
in Fig. 4 can be written as a Lur’e-type system having the
following state-space form:

�p :

⎧⎪⎨
⎪⎩

ẋ(t) = Apx(t) + Bpuz(t) + Bww(t)

ez(t) = Cpx(t) + Dww(t)

uz(t) = −ϕ(ez(t), u(t))

(47)

Fig. 5. Measured open-loop frequency response function with nominal, low-
gain linear controller Cz(s) (u = ∞, i.e., low-gain case), and the nominal
high-gain linear controller Cz(s)(1 + αFz(s)) (u = 0, i.e., high-gain case)
with the maximum allowable additional gain α = 6.48.

with state x ∈ R
nx , and where w(t) = [rz(t) fd(t)]	 ∈ R

nw

are all (external) disturbances. To conclude on closed-loop
stability of the system in (47), we denote the transfer from
uz to ez , i.e., from the output to the input of the nonlinear
element ϕ(·), by the following transfer function:

Geu(s) = Cp(sI − Ap)
−1Bp = Pz(s)Cz(s)Fz(s)

1 + Pz(s)Cz(s)
. (48)

The following theorem states the conditions under which the
dynamics in (47) exhibit a unique, time-varying steady-state
output that is globally uniformly exponentially stable.

Theorem 2: [40] Consider the dynamics in (47). Suppose
that the following conditions hold.

1) The matrix Ap is Hurwitz.
2) The nonlinear element ϕ(ez, u) satisfies the so-called

incremental sector condition, which reads as follows:
0 ≤ ϕ(e1, u) − ϕ(e2, u)

e1 − e2
≤ α (49)

for all e1, e2 ∈ R, e1 �= e2, and all u ∈ R≥0.
3) The transfer function Geu(s) in (48) satisfies the follow-

ing frequency-domain condition:

Re{Geu( jω)} > − 1

α
∀ ω ∈ R. (50)

Then, for any bounded input w(t), the system in (47)
has a unique, time-varying steady-state output which is
GES.

Based on frequency response measurements of the motion
stage setup, first a stabilizing linear controller Cz(s) is
designed using loop-shaping techniques. The linear controller
Cz(s), referred to as the nominal low-gain linear controller,
consists of a proportional–integral–derivative (PID)-type con-
troller, low-pass filter, and notch filters, achieving a bandwidth
of 80 Hz [see the black plot in Fig. 5 for the open-loop
frequency response function Pz( jω)Cz( jω)].

Having a stabilizing (nominal low-gain) linear controller
Cz(s) implies that the first condition of Theorem 2 is satisfied.
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Fig. 6. Circle-criterion condition based on the measured frequency
response data, verifying the satisfaction of the third condition of Theorem 2;
Re{Geu( jω)} > −(1/α) for all ω ∈ R. With Fz(s) = 1, a maximum allowable
additional gain α = 1.17 can be achieved. With Fz(s) composed of a notch
filter and low-pass filter, a maximum allowable additional gain α = 6.48 can
be achieved.

Moreover, from the definition of the nonlinear element in
(46) follows that the second condition of Theorem 2 is
satisfied. The third condition of Theorem 2 is graphically
shown in Fig. 6 and can be used to design the additional gain α
of the nonlinear element in (46) and shaping filter Fz(s). The
shaping filter used here is given by Fz(s) = Nnotch(s)Nlp(s)
with notch filter Nnotch(s) and the second-order low-pass filter
Nlp(s)

Nnotch(s) = ω2
pN

ω2
zN

s2 + 2βzN ωzN s + ω2
zN

s2 + 2βpNωpN s + ω2
pN

Nlp(s) = ω2
lp

s2 + 2βlpωlps + ω2
lp

(51)

with ωpN = ωzN = 110 · 2π rad/s, βpN = 3.2, βzN = 0.4,
βlp = 1/2

√
2, and ωlp = 350·2π rad/s. If we omit the shaping

filter, i.e., Fz(s) = 1, the maximum allowable additional
gain that guarantees closed-loop stability of VGC scheme
is α = 1.17. With the shaping filter Fz(s) given by (51),
the maximum allowable additional gain that guarantees the
closed-loop stability of the VGC scheme is α = 6.48. Having
a higher additional gain α yields increased suppression of low-
frequency disturbances. In addition, the low-pass filter in (51)
is employed to attenuate high-frequency content of the large
error signal such that the variable-gain controller does not
amplify this. Fig. 5 shows the open-loop frequency response
functions Pz( jω)Cz( jω) for the low-gain case and high-gain
case, i.e., Cz(s) and Cz(s)(1 + αFz(s)), respectively. In the
remainder, we will consider an additional gain α = 6 for
robustness purposes, which renders the closed-loop system
in (47) exponentially convergent. Note that this implies the
satisfaction of Assumption 1, which is a key requirement for
the utilization of the proposed ESC.

C. External Disturbances

Although we consider control in the z-direction only,
in industrial motion stages, the x-, y-, and z-directions are
not fully decoupled. For example, in wafer scanning systems,

Fig. 7. Top: reference trajectory in the y-direction and a scaled acceleration
profile in the y-direction. Middle: tracking error ez(t) and weighting function
sw(t). Bottom: cPSD of the weighted error sw(t)ez(t). Middle and bottom
figure are for the low-, high-, and variable-gain case, with the additional gain
α = 6 and dead-zone length u = 3 nm.

the motion of a typical wafer stage in the x- and y-directions
is usually prescribed by the third- or fourth-order reference
trajectories, denoted by rx(t) and ry(t), respectively. Due to
cross coupling between x-, y-, and z-axes, setpoint accel-
erations in the x- and y-directions, denoted by ax(t) :=
r̈x(t) and ay(t) := r̈y(t), respectively, induce low-frequency
disturbances that affect the positioning accuracy in the z-
direction among others. The industrial motion stage setup we
consider here has a limited stroke in the x- and y-directions.
In order to emulate the effect of crosstalk of these setpoint-
induced disturbances to the z-direction, we inject a scaled
version of the acceleration reference profile in the y-direction
as an input disturbance in the z-control loop at the location
where fd enters the loop in Fig. 4. A scaled version of
this acceleration profile in the y-direction can be seen in
Fig. 7 (top, blue dashed plot). The gray areas denote regions
where the velocity is constant, during which high-accuracy
motion stage positioning in the z-direction is desired.

In addition to low-frequency disturbances induced by set-
point accelerations in the y-direction, other (high-frequency)
effects are disturbing the system as well. These disturbances
can be, e.g., vibrational or acoustic disturbances, measurement
noise, and amplifier disturbances. Fig. 7 (middle, black plot)
shows a measured tracking error in the z-direction for the low-
gain case, resulting from these setpoint-induced low-frequency
disturbances and other high-frequency effects.

D. System Performance Specifications

In view of the stage disturbances as discussed in
Section III-C, VGC is introduced to be able to improve
the ability to suppress the setpoint-induced low-frequency
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disturbances in the z-direction while limiting the increased
sensitivity to high-frequency disturbances under high-gain
feedback. This system performance specification can be quan-
tified by the root mean square (rms) of a weighted tracking
error signal computed over a known performance relevant time
interval T = 0.498 s. Similar to the one in (5), a typical
performance measure used to quantify system performance
reads

L2(t, swez(t)) := 1

T

∫ t

t−T
(sw(τ )ez(τ ))2dτ ∀ t ≥ T (52)

where we have introduced a weighting function sw(t) that is
defined as follows:

sw(t) =
{

0 if ay(t) �= 0

1 if ay(t) = 0.
(53)

A scaled version of the specific weighting function used here is
shown in the middle plot of Fig. 7 (blue dashed plot); basically,
during nonzero accelerations in the y-direction, we do not
penalize the tracking error, as we are only interested in
achieving improved system performance during the constant
velocity phase, i.e., zero acceleration in the y-direction (see
Fig. 7). Fig. 7 shows the tracking error for the low-gain case
(u = ∞), high-gain case (u = 0), and the variable-gain case
with α = 6 and u = 3×10−9 m. In addition, we have depicted
a plot of the cumulative power spectral density (cPSD) of
the weighted tracking error and analyzed over multiple time
intervals T , which shows the different frequency contributions
present in the tracking error. Both plots illustrate the benefit of
the variable-gain controller; we can see that, during sw �= 0,
the tracking error response ez in the VGC case shows “the
best of both worlds” in terms of the error responses in the
low- and high-gain cases, that is, the variable-gain controller
is able to suppress low-frequency disturbances similar to the
high-gain controller, while the amplification of high-frequency
disturbances, especially around 100–200 Hz, is similar to the
low-gain controller.

The results in Fig. 7 show that there exists a variable-
gain controller setting that outperforms the low- and high-gain
cases in terms of the performance measure in (52). However,
we do not know a priori which value for the dead-zone
length u gives the best system performance, as the value of
u that minimizes the performance measure in (52) depends
heavily on the disturbance situation at hand. Since accurate
models of the disturbance situation are difficult to obtain and
the disturbance characteristic may slowly change over time,
finding the optimal dead-zone length u can be difficult in
practice.

In Section IV, we will show that, without explicitly using
knowledge on the plant and disturbance situation at hand,
we can get arbitrarily close to the optimally tuned dead-
zone length u by employing the ESC approaches introduced
in Section II.

IV. EXPERIMENTAL RESULTS

In this section, we will present the experimental results on
the performance optimal tuning of the variable-gain controller
applied to the industrial motion stage setup discussed in

Fig. 8. Top: two measurements of the weighted tracking error with u = 25 nm
and u = 3 nm against time. Middle: zoomed plot of the weighted tracking
error for t ∈ [6, 6.5]. Bottom: response of the dynamic cost function l against
time for different values of αz, and the system performance measure in (52)
for u = 25 nm and u = 3 nm.

Section III using the ESC approaches discussed in Section II.
Section IV-A presents the dynamic cost function design, and
Section IV-B shows the measured objective function Fw of the
industrial motion stage setup given the particular disturbance
situation at hand to help verify the working principles of the
ESC approaches. In Sections IV-C and IV-D, measurement
results are presented in the closed-loop ESC schemes with the
nominal ESC design and the modified ESC design, respec-
tively, and Section IV-E presents dedicated tuning guidelines
to achieve extremum seeking for motion stages.

A. Dynamic Cost Function

In order to mimic the performance measure in (52), the cost
function Z in (6) is chosen as Z : y(t) = (sw(t)ez(t))2, with
the weighting function sw defined in (53), and the filter � f

in (7) is designed as a second-order low-pass filter with the
following state-space formulation:

� f :

⎧⎪⎨
⎪⎩

ż1(t) = αzz2(t)

ż2(t) = αz(y(t) − 2βzz2(t) − z1(t))

l(t) = z1(t)

(54)

with tunable parameters βz, αz ∈ R>0 representing the damp-
ing coefficient and cutoff frequency of the second-order low-
pass filter, respectively. The top of Fig. 8 shows two 10-s
measurements of the weighted tracking error for two variable-
gain cases, respectively, u = 25 nm (red plot) and u = 3 nm
(blue plot). The middle of Fig. 8 shows a zoomed plot for
t ∈ [6, 6.5] s. The bottom of Fig. 8 shows the response of
the dynamic cost function l for different values of αz and
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Fig. 9. Approximation of the objective function Fw(u), averaged over three
measurements (10 s each) with αz = (1/8) ·2π . An average of the last 2 s of
the measured performance cost l (in steady-state) is used to estimate Fw(u).
The gray area indicates an area in which l approximately lies. For smaller
values of αz, this area becomes smaller; however, a longer measurement time
is needed for the transient response to have sufficiently decayed.

the performance measure in (52) for both variable-gain cases.
Clearly, the performance measure in (52) is time-varying
due to the time-varying nature of the measured performance
output, i.e., the weighted tracking error. The output l of the
filter � f approximates the performance measure in real time
and is also time-varying. However, by selecting a sufficiently
small αz, the steady-state output, defined as l̄w, can be made
quasi-constant, that is, the filter � f with tunable parameter
αz provides robustness for the ESC scheme against the effect
of time-varying system behavior on the performance measure,
which can be made arbitrarily small. Note that, for smaller
values of αz, it takes a longer time before transient effects
are sufficiently decayed. For larger αz, the opposite can be
concluded; the effect of time-varying system behavior on the
performance measure is larger, while the transients decay
faster.

B. Objective Function

The parameter-to-steady-state performance map Fw(u)
[see (13)] of the industrial motion stage setup and the
dynamic cost function is experimentally obtained through
multiple measurements and shown in Fig. 9. The objective
function clearly shows that there exists an optimal dead-zone
length (uw ≈ 3 nm) for this particular disturbance situation.
Furthermore, the objective function shows the performance
corresponding to the low-gain case (u > 25 nm) and high-
gain case (u = 0 nm). The variation between the different
measurements for the same dead-zone length can be attributed
to multiple causes. The objective function in (13) is defined on
the limit αz → 0; however, we have used αz = 0.25π to obtain
the result in Fig. 9. As a result, the steady-state output l̄w of
� f is still time-varying. In addition, the external disturbances
and measurement noise present during one experiment can
slightly deviate from the disturbance situation during another
experiment. We would like to emphasize that the objective
function Fw(u) in Fig. 9 is typically unknown in practice, and
only ESC will be used to find the optimum of Fw(u).

Fig. 10. Closed-loop ESC scheme composed of the closed-loop motion
stage with VGC, the dynamic cost function Z + � f , the observer �o
(or � f o), the optimizer �r (or � f r ), and the dither signal αω sin(ηωt).

Fig. 11. Average of measured objective function Fw(u) and a plot of the
measured performance cost l against the dead-zone length u for the real-time
performance optimal tuning of the variable-gain controller using the nominal
extremum-seeking controller and three different values of αz.

TABLE I

NOMINAL EXTREMUM-SEEKING CONTROLLER SETTINGS

C. Performance Optimization Using Nominal ESC

In this section, we analyze the experimental results obtained
using the ESC approaches discussed in Section II. The closed-
loop ESC scheme is schematically shown in Fig. 10. The
nominal settings and initial conditions of the extremum-
seeking controller are shown in Table I. Figs. 11 and 12
show the convergence of the VGC parameter u starting at
u = 20 nm toward the optimal setting u∗

w ≈ 3 nm, and thus
the optimal system performance Fw(u∗

w), in the presence of
time-varying system behavior. Moreover, the figures illustrate
the convergence and the effect on the convergence speed for
different values for the filter parameter αz. The following
observations can be made.
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Fig. 12. Experimental results using the nominal extremum-seeking controller
to illustrate the influence of αz on the convergence of the dead-zone length
u toward the optimal input u∗

w and the corresponding performance cost l
as a function of time. The black dashed lines indicate the optimal dead-
zone length setting u∗

w (top) and the corresponding steady-state performance
Fw(u∗

w) (bottom).

1) Choosing a larger value for the cutoff frequency αz

results in faster decay of the transient response of the
filter � f , which ultimately leads to faster convergence
of u toward u∗

w, compare, e.g., the cases αz = 1/2 · 2π
and αz = 1 · 2π . Choosing αz too high deteriorates
the convergence of u toward u∗

w. For example, see the
“unexpected” slower convergence with αz = 4 ·2π rad/s
(gray plot) compared to the case αz = 1 · 2π rad/s
(cyan plot) in the top of Fig. 12. From the gray plot
in the bottom of Fig. 12, we can see that the time-
varying steady-state response of the extended plant �
is not quasi-constant, which can lead to poor estimation
of the gradient of the objective function by the observer
�o and, hence, a deterioration of the convergence of u
toward u∗

w.
2) Choosing αz too small (much smaller than the dither

frequency parameterized by ηω) may lead to a deterio-
ration of the convergence of u toward u∗

w as well. For
example, see the “convergence” with αz = 1/8 ·2π rad/s
in Fig. 12 (red plot). If we choose αz too low, separation
between the time scales of the filter dynamics and the
extremum-seeking controller is insufficient. Retuning
of the extremum-seeking controller parameters, e.g.,
decreasing the dither frequency ηω, can be necessary
to preserve time-scale separation.

D. Improved Convergence Speed With Modified ESC Design

Fig. 13 shows the convergence of the VGC parameter u
toward the optimal setting u∗

w ≈ 3 nm for the modified
extremum-seeking controller. Moreover, the figure illustrates
the convergence and the effect on the convergence speed
for different values of the filter parameter αz. The following
observations can be made.

1) Similar to the nominal extremum-seeking controller,
choosing a larger value for the cutoff frequency αz

results in faster decay of the transient response of the

Fig. 13. Experimental results using the modified extremum-seeking controller
to illustrate the influence of the tunable parameter αz on the convergence of
the dead-zone length u toward the optimal input u∗

w , and the corresponding
performance cost l as a function of time. The black dashed lines indicate the
optimal dead-zone length setting u∗

w (top) and the corresponding steady-state
performance Fw(u∗

w) (bottom).

filter � f , which ultimately leads to faster convergence
of u toward u∗

w. Moreover, choosing αz too high deterio-
rates the convergence of u toward u∗

w (compare again the
case αz = 4 ·2π rad/s (gray plot) to the case αz = 1 ·2π
rad/s (cyan plot) in the top of Fig. 13).

2) The advantage of the modified extremum-seeking con-
troller over the nominal one is particularly evident in
case of small values of αz. Where the case αz =
1/8 · 2π rad/s led to a deterioration of the convergence
of u toward u∗

w in the nominal case (see the red plot
in Fig. 12), the modified extremum-seeking controller
still achieves convergence to the optimal input (see the
red plot in Fig. 13). In general, the improvement of the
modified ESC design in terms of convergence speed is
more significant in the case of smaller values of αz.

The resulting optimal time-varying steady-state response
ēw(t, u∗

w) can be seen in Fig. 7 (red plot).

E. Dedicated Tuning Guidelines

For the extremum-seeking controller parameters αω, αz, and
ηω, we present some dedicated tuning guidelines when opti-
mizing time-varying system behavior of industrial positioning
stages.

1) The dither amplitude αω should be chosen close to the
desired accuracy of u to the optimal VGC parameter set-
tings u∗

w when converged, e.g., αω = 0.5 nm. Choosing
αω small may deteriorate the convergence speed of u
toward u∗

w (see Fig. 14). Choosing αω large may result
in faster convergence, but the neighborhood of u∗

w to
which u converges is in general larger.

2) The cutoff frequency αz of a low-pass filter design
for � f should typically be chosen smaller than the
lowest significant frequency contribution ωlow in the to-
be-optimized tracking error, e.g., αz = (1/2)ωlow. Small
values of αz motivate the use of the modified extremum-
seeking controller over the nominal one to prevent slow
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Fig. 14. Experimental results using the modified extremum-seeking controller
to illustrate the influence of the dither amplitude αω on the convergence of
the dead-zone length u toward the optimal input u∗

w , and the corresponding
performance cost l as a function of time. The black dashed lines indicate the
optimal dead-zone length setting u∗

w (top) and the corresponding steady-state
performance Fw(u∗

w) (bottom).

convergence. In motion stages, the frequency ωlow is
usually dictated by the setpoint and the performance
relevant time interval T , i.e., ωlow = (2π/T ).

3) The dither frequency ηω should be chosen close to or
less than αz to have sufficient excitation and sufficient
time-scale separation.

V. CONCLUSION

In this article, we have experimentally demonstrated the
working principle and performance of an ESC approach for
the optimization of time-varying responses. The experimental
case study involves optimally tuning parameters of a nonlinear
control strategy for an industrial motion stage setup to achieve
optimal system performance. Moreover, we have proposed a
modified extremum-seeking controller design that incorporates
knowledge about the filter and presented a stability analysis
of the closed-loop ESC scheme with the modified controller.
Both simulations and experiments show that the use of the
modified extremum seeking controller leads to an increased
convergence speed toward the extremum, especially for small
values of the dynamic cost function parameter.

APPENDIX A
PROOF OF LEMMA 1

We define the following Lyapunov function candidate for
the Q̃ f -dynamics:

VQ f (Q̃ f (t)) = tr(Q̃2
f (t)). (55)

For notational clarity, from this point on, we omit the time
argument. Note that Q̃ f is symmetric because Q f and �−1

f are
symmetric. From (40), we can write the the time derivative of
VQ as follows:

V̇Q f (Q̃ f ) = d

dt
tr(Q̃2

f ) = tr( ˙̃Q f Q̃ f + Q̃ f
˙̃Q f )

= −2ηmtr(Q̃2
f ) − tr(A	

f �
−1
f Q̃ f + Q̃ f �

−1
f A f )

−tr(�−1
f A f Q̃ f +Q̃ f A	

f �
−1
f )−4tr(Q̃2

f A f ) (56)

where we have used that tr(X+ Y) = tr(X)+ tr(Y), tr(XY) =
tr(YX), and tr(X) = tr(X	). From the definition of the trace,
we have the following inequalities:

‖Q̃ f ‖2 ≤ VQ f (Q̃ f ) ≤ nm f ‖Q̃ f ‖2

tr(Q̃2
f A f ) ≤ nm f ‖Q̃ f ‖2‖A f ‖

tr(A	
f �

−2
f A f ) ≤ nm f ‖�−1

f ‖2‖A f ‖2. (57)

From (57) and the fact that tr(X	X) ≥ 0, we obtain the
following inequality:
V̇Q f (Q̃ f ) ≤ −ηmVQ f (Q̃ f ) + 4nm f VQ f (Q̃ f )‖A f ‖

+ 4

ηm
nm f ‖�−1

f ‖2‖A f ‖2. (58)

The definition of ω in (16) implies that there exists a constant
Lω2 ∈ R>0 such that ‖ω‖ ≤ Lω2. Moreover, there exist
LA� f

, LB� f
∈ R>0 such that ‖A� f ‖ ≤ LA� f

and ‖B� f ‖ ≤
LB� f

, respectively. From (34), we have that ‖A f ‖ ≤ αz(L� f +
ε1ε4) for all ηω ≤ αzε1, and all ηu ≤ αωηωε4, and with
L� f := LA� f

+LB� f
Lω2. Moreover, without loss of generality,

for sufficiently small ε5 and a particular design of C� f

(e.g., observable canonical form for � f , such that ‖C� f ‖ = 1),
we have ‖�−1

f ‖ ≤ 2 for all σr ≤ ε5. Using this, and without
loss of generality, for sufficiently small ε2 and ε5, we obtain
the following inequality:

V̇Q f (Q̃ f ) ≤ −ηm

2
VQ f (Q̃ f ) + ηm

256
(59)

for all ηω ≤ αzε1, all αz ≤ ηmε2, all ηu ≤ αωηωε4, and all
σr ≤ ε5. Applying the comparison lemma and using the
inequalities in (57), we obtain the bound on Q̃ f as follows:

‖Q̃ f (t)‖ ≤ max

{
e− ηm

4 t
√

2 nm f ‖Q̃ f (0)‖, 1

8

}
(60)

for all t ≥ 0, all Q̃ f (0) ∈ R
nm f ×nm f , and all time-varying

u(t) ∈ Rnu , which completes the proof of Lemma 1. �

APPENDIX B
PROOF OF LEMMA 2

We define the following Lyapunov function candidate for
the m̃ f -dynamics in (41):

Vm f (m̃ f , Q f ) = m̃	
f Q−1

f m̃ f . (61)

For notational clarity, from this point on, we omit the time
argument. We note that

λmin(Q−1
f )‖m̃ f ‖2 ≤ Vm f (m̃ f , Q f ) ≤ λmax(Q−1

f )‖m̃ f ‖2 (62)

where λmin(Q−1
f ) and λmax(Q−1

f ) are the smallest and largest
eigenvalues of Q−1

f , respectively. From the observer in (35)
and (41), we obtain the time derivative of Vm f as follows:

V̇m f = 2m̃	
f Q−1

f
˙̃m f − m̃	

f Q−1
f Q̇ f Q−1

f m̃ f

= −ηmm̃	
f Q−1

f m̃ f − ηmm̃	
f (C

	
f C f + σr D	

f D f )m̃ f

+2α2
ωm̃	

f Q−1
f B f (ŝ − s) − 2ηmσrαωm̃	

f D	
f

d Fw

du	 (û)

+2αzα
2
ωm̃	

f Q−1
f E f (v̂ − v) + 2ηmm̃	

f C	
f C� f m̃z (63)
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where we have used the fact that Q−1
f is real and sym-

metric, i.e., Q−1
f = Q−	

f , and, given A f in (34), that
m̃	

f (Q
−1
f A f − A	

f Q−1
f )m̃ f = 0. Furthermore, given C f and

D f , using the fact that −m̃	
f C	

f C f m̃ f = −‖C f m̃ f ‖2 ≤ 0,
−m̃	

f D	
f D f m̃ f = −‖D f m̃ f ‖2, and ‖m̃	

f D	
f ‖ = ‖D f m̃ f ‖,

(61), and Young’s inequality, we obtain

V̇m f ≤ −ηm

2
Vm f (m̃ f , Q f ) + ηmσrα

2
ω

∥∥∥∥d Fw

du
(û)

∥∥∥∥
2

+4α4
ω

ηm
‖Q−1

f ‖‖B f ‖2‖ŝ − s‖2 + ηm

4
‖C� f m̃z‖2

+4α2
z α

4
ω

ηm
‖Q−1

f ‖‖E f ‖2|v̂ − v|2. (64)

From (24) and (26), the bound ‖Ĥ(t, û(t))‖ ≤ LH, and the
definition of ω in (16), which implies that there exists a
constant Lω2 ∈ R>0 such that ‖ω‖ ≤ Lω2, we obtain

‖ŝ − s‖ ≤ 1

αω

(LH + L F2)‖ ˙̂u‖, |v̂ − v| ≤ 1

2
(LH + L F2)L2

ω2.

(65)

From Assumption 3, we obtain∥∥∥∥d Fw

du
(û)

∥∥∥∥ ≤
∫ 1

0

∥∥∥∥ d2 Fw

dudu	 (σ ũ + u∗
w)

∥∥∥∥dσ‖ũ‖ = L F2‖ũ‖.
(66)

Moreover, from the filter design in (28), there exist
LB� f

, LC� f
∈ R>0 such that ‖B� f ‖ ≤ LB� f

and ‖C� f ‖ ≤
LC� f

, respectively. Then, from (34), it follows that ‖E f ‖ =
‖B� f ‖ = LB� f

and ‖B f ‖ = 1. Substitution of all these
inequalities in (64) yields the following inequality:

V̇m f ≤ −ηm

2
Vm f (m̃ f , Q f ) + ηmσrα

2
ω L2

F2‖ũ‖2

+4α2
ω

ηm
(LH + L F2)

2‖Q−1
f ‖‖ ˙̂u‖2 + ηm

4
L2

C� f
‖m̃z‖2

+α2
z α

4
ω

ηm
L2

B� f
(LH + L F2)

2 L4
ω2‖Q−1

f ‖. (67)

Let us define ỹ := y − ȳw(t, u). From Property 1, we can
derive the general solution for (31) as follows:

m̃z(t) = eαzA� f t m̃z(0) + αz

∫ t

0
eαzA� f (t−τ)B� f ỹ(τ )dτ

+αz

∫ t

0
eαzA� f (t−τ)B� f

(
ȳw(τ, u(τ ))−Fw(u(τ ))

)
dτ (68)

for all t ∈ R≥0. The filter � f is designed such that αzA� f is
Hurwitz, i.e., there exist k, λ ∈ R>0 such that ‖eαzA� f (t−τ)‖ ≤
ke−αzλ(t−τ) for all t ≥ τ . From this fact, we can bound
the second term in (68) by (k/λ)‖B� f ‖ sups∈[0,t] |ỹ(s)|. For
a bound on the third term in (68), we exploit Assumption 2.
By defining ẽ := e − ēw(t, u), using (6), (9), and the bounds
in (8), it follows that:
|ỹ| ≤ L Ze‖ēw(t, u) − ēw(t, u∗

w)‖‖ẽ‖ + L Z∗‖ẽ‖
+ L Ze

2
‖ẽ‖2 + L Zu‖u − u∗

w‖‖ẽ‖ (69)

with L Z∗ = ‖(∂ Z/∂e)(ēw(t, u∗
w), u∗

w)‖ ∈ R>0. Moreover, from
[14, (2) in Assumption 1], we have that

‖ẽ‖ = ‖g(x, u, w) − g(x̄w(t, u), u, w)‖ ≤ Lgx‖x̃‖ (70)

and subsequently, from (3) in Assumption 1, we have that

‖ēw(t, u) − ēw(t, u∗
w)‖ ≤ (Lgu + Lgx Lxu)‖u − u∗

w‖. (71)

From (15), it follows that ‖u − u∗
w‖ ≤ ‖ũ‖ + αωLω2. Using

Young’s inequality it follows that ‖u − u∗
w‖2 ≤ 2‖ũ‖2 +

2α2
ω L2

ω2. Combining (68)–(71), we obtain the following bound
on ‖m̃z‖:

‖m̃z‖ ≤ max
{
2 eαzA� f t‖m̃z(0)‖, cmz1‖x̃‖2

+4αzδz2‖ũ‖2 + (αωcmz2 + cmz3)‖x̃‖
+cmz4‖ũ‖‖x̃‖ + 2αzδz1 + αzα

2
ω cmz5δz2

}
(72)

with cmz1, . . . , cmz5 ∈ R>0 being positive constants. From
[14, Lemmas 17 and 19] we have that, for any finite time
t1 ≥ 0, the solutions x̃ and ũ are bounded for all 0 ≤ t ≤ t1.
Moreover, from Lemma 1, we have that Q−1

f is positive
definite and bounded for all 0 ≤ t ≤ t1. From these facts and
‖ ˙̂u‖ ≤ ηu, which follows from (37), we obtain that the right-
hand side of (67) is bounded for all 0 ≤ t ≤ t1. Therefore,
since Vm f (m̃ f , Q f ) will be bounded for all 0 ≤ t ≤ t1 and
Q−1

f is positive definite and bounded for all 0 ≤ t ≤ t1
as well, it follows from (62) that the solutions m̃ f are bounded
for all 0 ≤ t ≤ t1. Let us define t1 ≥ 0 such that,
from [14, Lemma 17], Lemma 1, and (72), we have that
‖x̃(t)‖ ≤ αωηωcx2 and ‖Q̃ f ‖ ≤ (1/8), for all t ≥ t1. Also,
2 eαz A� f t1‖m̃z(0)‖ in (72) is sufficiently decayed for all t ≥ t1.
In addition, from (39) and sufficiently small ε5, we have that
(1/4)I � Q−1

f � (5/4)I for all t ≥ t1 and all σr ≤ ε5.
From (62), it follows that (1/4)‖m̃ f ‖2 ≤ Vm f (m̃ f , Q f ) ≤
(5/4)‖m̃ f ‖2, for all t ≥ t1, and ‖Q−1

f ‖ ≤ (5/4) for all t ≥ t1.
From (27), (32), (39), ‖D f ‖ = 1, and the bound in (14),
it follows that ‖ ˙̂u‖2 ≤ 8λ2

u Vm f (m̃ f , Q f ) + 2α2
ωλ2

u L2
F2‖ũ‖2,

for all t1 ≥ 0. From this fact, and taking ε3 in Theorem 1
sufficiently small, we obtain

V̇m f ≤ −ηm

4
Vm f (m̃ f , Q f ) + ηmσrα

2
ω L2

F2‖ũ‖2

+10ηmα2
ω

α2
ωλ2

u

η2
m

L2
F2(LH + L F2)

2‖ũ‖2

+6

4
ηmα4

ωη4
ω L2

C� f
c2

mz1 c4
x2 + 24ηmα2

z L2
C� f

δ2
z2‖ũ‖4

+6

4
ηmα2

ωη2
ω L2

C� f
(ε0 cmz2 + cmz3)

2 c2
x2

+6

4
ηmα2

ωη2
ω L2

C� f
c2

mz4 c2
x2‖ũ‖2

+6

4
ηmα2

z α
4
ω L2

C� f
c2

mz5δ
2
z2

+6ηmα2
z L2

C� f
δ2

z1 + 5

4
ηm

α2
z α

4
ω

η2
m

L2
B� f

(LH + L F2)
2 L4

ω2

(73)
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for all t ≥ t1, αz ≤ ηmε2, and all αωλu ≤ ηmε3. From the
comparison lemma and (62), we obtain

sup
t≥t1

‖m̃ f (t)‖ ≤ 2
√

10 sup
t≥t1

max

{√
5

4
‖m̃ f (t1)‖

2
√

σrαωL F2‖ũ(t)‖,
√

40αω

αωλu

ηm
L F2(LH + L F2)‖ũ(t)‖

4
√

6αz LC� f
δz2‖ũ(t)‖2,

√
6αωηω LC� f

cmz4cx2‖ũ(t)‖√
6α2

ωη2
ω LC� f

cmz1c2
x2,

√
6αzα

2
ω LC� f

cmz5δz2√
6αωηω LC� f

(ε0 cmz2 + cmz3)cx2, 2
√

6αz LC� f
δz1

√
5α2

ωε2 LB� f
(LH + L F2)L2

ω2

}
(74)

lim sup
t→∞

‖m̃ f (t)‖ ≤ 2
√

10 lim sup
t→∞

max

{
2
√

σrαωL F2‖ũ(t)‖,√40αω

αωλu

ηm
L F2(LH+L F2)‖ũ(t)‖

4
√

6αz LC� f
δz2‖ũ(t)‖2,

√
6αωηω LC� f

cmz4cx2‖ũ(t)‖√
6α2

ωη2
ω LC� f

cmz1c2
x2,

√
6αzα

2
ω LC� f

cmz5δz2√
6αωηω LC� f

(ε0 cmz2 + cmz3)cx2, 2
√

6αz LC� f
δz1

√
5α2

ωε2 LB� f
(LH + L F2)L2

ω2

}
(75)

for all t ≥ t1, all αω ≤ ε0, all ηω ≤ αzε1, all αz ≤ ηmε2,
all αωλu ≤ ηmε3, all ηu ≤ αωηωε4, and all σr ≤ ε5. This
completes the proof of Lemma 2. �
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