
15

Exploring Decomposition for Solving Pattern
Mining Problems

YOUCEF DJENOURI, Dept. of Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway

JERRY CHUN-WEI LIN, Dept. of Computing, Mathematics, and Physics, HVL, Bergen, Norway

KJETIL NØRVÅG and HERI RAMAMPIARO, Dept. of Computer Science,

NTNU, Trondheim, Norway

PHILIP S. YU, Dept. of Computer Science, University of Illinois, Chicago, IL, United States

This article introduces a highly efficient pattern mining technique called Clustering-based Pattern Mining

(CBPM). This technique discovers relevant patterns by studying the correlation between transactions in

the transaction database based on clustering techniques. The set of transactions is first clustered, such that

highly correlated transactions are grouped together. Next, we derive the relevant patterns by applying a pat-

tern mining algorithm to each cluster. We present two different pattern mining algorithms, one applying

an approximation-based strategy and another based on an exact strategy. The approximation-based strategy

takes into account only the clusters, whereas the exact strategy takes into account both clusters and shared

items between clusters. To boost the performance of the CBPM, a GPU-based implementation is investigated.

To evaluate the CBPM framework, we perform extensive experiments on several pattern mining problems.

The results from the experimental evaluation show that the CBPM provides a reduction in both the runtime

and memory usage. Also, CBPM based on the approximate strategy provides good accuracy, demonstrating

its effectiveness and feasibility. Our GPU implementation achieves significant speedup of up to 552× on a

single GPU using big transaction databases.

CCS Concepts: • Information systems → Information systems applications; Data mining; • Comput-

ing methodologies → Artificial intelligence;

Additional Key Words and Phrases: Pattern mining, decomposition, scalability, GPU

ACM Reference format:

Youcef Djenouri, Jerry Chun-Wei Lin, Kjetil Nørvåg, Heri Ramampiaro, and Philip S. Yu. 2021. Exploring

Decomposition for Solving Pattern Mining Problems. ACM Trans. Manage. Inf. Syst. 12, 2, Article 15 (February

2021), 36 pages.

https://doi.org/10.1145/3439771

This work is supported in part by NSF under Grants No. III-1763325, No. III-1909323, and No. SaTC-1930941.

Authors’ addresses: Y. Djenouri, Dept. of Mathematics and Cybernetics, SINTEF Digital, Gaustadalléen 23 C, 0373 Oslo,

Norway; email: youcef.djenouri@sintef.no; J. C.-W. Lin, Dept. of Computing, Mathematics, and Physics, Inndalsveien 28,

5063 Bergen, Norway; email: jerrylin@ieee.org; K. Nørvåg and H. Ramampiaro, Dept. of Computer Science, NTNU, Høgsko-

leringen 1, 7491 Trondheim, Norway; emails: {noervaag, heri}@ntnu.no; P. S. Yu, Dept. of Computer Science, University of

Illinois, 1200 W Harrison St, Chicago, IL 60607, United States; email: psyu@uic.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2158-656X/2021/02-ART15 $15.00

https://doi.org/10.1145/3439771

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

https://doi.org/10.1145/3439771
mailto:permissions@acm.org
https://doi.org/10.1145/3439771

15:2 Y. Djenouri et al.

1 INTRODUCTION

Pattern Mining (PM) is a data mining technique that finds highly co-occurring items in a data-
base to provide relevant patterns [66, 81]. Currently, various pattern mining techniques have been
proposed, including Frequent Itemset Mining (FIM), Weighted Itemset Mining (WIM), Uncertain
Itemset Mining (UIM), High-utility Itemset Mining (HUIM), and Sequential Pattern Mining (SPM).
PM has largely been applied as a pre-processing step in several practical problem solving appli-
cations, such as market basket analysis [64], where FIM finds the correlation among products
bought by different customers; information retrieval [25], where WIM and UIM mine the corre-
lations among terms of documents; business intelligence [75], where HUIM discovers the process
models in the log of events; and bioinformatics [68], where SPM extracts the knowledge from the
biological sequence data. As an example, considering the information retrieval problem, the collec-
tion of documents is transformed into a transaction database, where each document is considered
as a transaction, each term as an item, and the tf-idf value for each term [91] as the weight or the
probability of a given item. In this context, mining techniques, such as WIM and UIM, allow us to
study the different correlations between pairs of terms in a document. For instance, if the pattern
(Knowledge, Engineering) is relevant, then a high dependency exists between the terms Knowledge

and Engineering. Hence, if a user is looking for documents related to Knowledge, then it would be
useful to also return documents related to Engineering. Unfortunately, pattern mining techniques
for large databases, such as FIM and WIM, suffer from long processing time (runtime). They are
inefficient when solving complex problems, such as UIM, HUIM, and SPM. To reduce the run-
time of pattern mining, several optimization techniques have been proposed [3, 30, 84]. However,
these optimization techniques are incapable of dealing with databases containing a huge number
of items, where only few of the relevant patterns are displayed to the end user. The main reason
these techniques are inefficient is because they consider the whole database in the mining process.

1.1 Motivating Examples

Example I: Trajectory Analysis. Consider the trajectories of five buses illustrated in Figure 1.
Each trajectory is mapped to the road map network of the United States. Trajectory pattern mining
algorithms [39] consider the whole trajectories as sequences and apply the sequential pattern
mining algorithms such as FAST [70], and/or other algorithms to identify the most frequent points
(states in this case) shared by all the trajectories in the set. This allows to provide good guidance
to users or decision makers in applications such as hot spot and crime detection [35], snapshot
detection [55], and so on. Considering the trajectories in Figure 1, the trajectories represented by
the dashed lines cover four states (Minnesota, South Dakota, Wyoming, and Colorado), and the
trajectories represented by the solid lines cover four other states (Illinois, Iowa, Nebraska, and
Colorado). In addition, trajectories of the dashed lines only cover one state with the trajectories
of the solid lines (Colorado). At a first glance, it is judicious to process the trajectories of dashed
lines separately to the trajectories of the solid lines. Existing trajectory clustering algorithms deal
with this problem by dividing the whole trajectories into similar clusters [6]. In our work, we
attempt to follow this methodology by proposing a general framework to split the database into
similar clusters and reduce the processing cost of the existing pattern mining algorithms. Existing
pattern mining approaches [50, 72] consider naive partitions of the transaction database among
the sites for distributed processing. These algorithms ignore the correlation between the different
transactions. For instance, with these algorithms, the trajectories of Figure 1 may be handled on
the same site, with nine different states (items in this context) as problem size. This generates 29 − 1
potential solutions. However, it could process the trajectories of the dashed lines on the same site
with only four items, and the trajectories of the solid lines with only four items as problem size.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:3

Fig. 1. Motivating Example I: Trajectory Analysis.

Table 1. Motivating Example II:
Business Intelligence

Traces Activities
trace1 A, B, D, E, F, G, I
trace2 A, B, C, D, G, I
trace3 A, B, D, E, F, G, I
trace4 A, C, B, D, H, I
trace5 A, C, B, D, E, G, I
trace6 A, B, D, H, I

This only generates 24 − 1 potential solutions for trajectories of dashed lines and 24 − 1 potential
solutions for trajectories of solid lines.

Example II: Business Intelligence. To automate the analysis of business processes and exploit
the huge amount of data collected about business processes, process mining has become crucial
for many organizations. It consists of applying techniques to extract information about business
processes from the logs of information systems supporting their execution. These logs are com-
posed of traces and activities (as sketched in Table 1). This event log is composed of six traces
(trace1 to trace6), and nine activities (A: Reception, B: Check the item, C: Check the warranty, D:
Notification, E: Reparation, F: Test, G: Payment, H: Send the cancellation letter, I: Return the item).
This event log may be easily to the transaction database by considering each trace as a transaction,
and each activity as an item. Pattern mining algorithms [26, 58] attempt to extract hidden patterns
to deduce new process models relevant to the different stakeholders. Trace clustering [19, 21, 71]
is an excited topic in process mining, where the aim is to find several homogeneous subgroups
in the event log. Classical process mining such as α-algorithm [78] use this approach, which the
goal is to determine more accurate models. For instance, the work of Song et al. [71] divided this
event log into three groups. The first group consists of cases where a navigation system needs to
be repaired (i.e., cases 1 and 3), i.e., the cases where the “Check the warranty” task is missing but
with the “Test” task. The second group corresponds to the reparation process process (i.e., cases 2
and 5). These cases do not have the “Test” task but have the “Check the warranty” task. The third
group corresponds to cases where a repair is canceled, i.e., cases 4 and 6 belong to this group. The

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:4 Y. Djenouri et al.

pattern mining approaches [26, 58] for process mining unfortunately are in infant age and do not
consider trace clustering. One of the motivation of this work is to decomposes transactions (traces)
into several groups and instead of exploring the whole event log, only the similar groups of traces
are used to find the process models.

1.2 Contributions

In this article, we propose a divide-and-conquer approach based on splitting the problem into
several small sub-problems, but as independent as possible, and then study and explore the cor-
relation between them. The first challenge is to make the sub-tasks independent, i.e., to create
highly correlated clusters with little overlapped on transaction contents, i.e., common items. The
second challenge is how to address the missing patterns due to the overlap on transaction con-
tents across clusters. To deal with such challenging issues, we introduce a new framework called
the clustering-based pattern mining (CBPM), which is a comprehensive extension of our previous
work [34]. We developed two approaches, the approximate approach only addresses the first chal-
lenge, while the exact one addresses both. With this in mind, the main contributions of this work
are as follows.

(1) We evaluate the use of different clustering algorithms to decompose the transaction data-
base into highly correlated clusters, aiming at minimizing the number of the shared items
between clusters: Naïve, HAC, k-means, bisecting k-means, and DBSCAN.

(2) We propose two novel strategies that use the clusters for pattern mining: an exact strategy
that takes into account any shared items between clusters, and an approximate one that
does not need to take into account the shared items.

(3) We investigate the impacts of applying both the exact and the approximate strategy on
the mining effectiveness, as well as efficiency.

(4) We present a GPU-based implementation, and provide intelligent mapping between the
GPU blocks and the clusters of transactions.

(5) We evaluate our approach by extensively studying the time complexity and comparing
our approach with ten existing algorithms, applied on five different mining problems: FIM,
WIM, UIM, HUIM, and SPM. This evaluation shows that our approach advances the state-
of-the-art in terms of runtime, memory performance, as well as effectiveness. Moreover,
our GPU implementation achieves significant speedup of up to 552× on a single GPU using
big data.

1.3 Outline

The remainder of the article is organized as follows. Section 2 depicts the principles of pattern
mining. Section 3 gives an overview of related work on the most important FPM variants. Sec-
tion 4 provides a detailed explanation of our CBPM framework. Section 5 describes the GPU im-
plementation of the CBPM framework. Section 6 presents the performance evaluation. Section 7
discusses the main findings, from the application of the decomposition techniques to the pattern
mining problems, and draws some future perspectives of using the proposed framework. Finally,
Section 8 concludes the article, and outlines the future work.

2 PRINCIPLES OF PATTERN MINING

In this section, we first present a general formulation of pattern mining, and then present a few
pattern mining problems according to the general formulation.

Definition 2.1 (Pattern). Let us consider I = {1, 2 . . .n} as a set of items, and T = {t1, t2 . . . tm }
as a set of transactions, where n is the number of items and m is the number of transactions. We

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:5

define the function σ , where for the item i in the transaction tj , the corresponding pattern reads
p = σ (i, j).

Definition 2.2 (Pattern Mining). Let us consider I = {1, 2 . . .n} as a set of n items, and T =
{t1, t2 . . . tm } as a set of m transactions. A pattern mining problem finds the set of all relevant
patterns L, such as

L = {p |Interestinдness (T , I ,p) ≥ γ }. (1)

Note that the Interestingness (T, I, p) is the measure to evaluate a pattern p among the set of
transactions T , and the set of items I , and where γ is the mining threshold.

Any pattern mining problem could be written from the two previous definitions. For instance:

(1) Frequent Itemset Mining (FIM) [2]: It is defined by considering T as a Boolean database,
and Interestingness as

Interestinдness (T , I ,p) =
|p |T , I

|T | . (2)

(2) Weighted Itemset Mining (WIM) [88]: It is defined by considering T as a weighted data-
base, and Interestingness as

Interestinдness (T , I ,p) =
|T |∑

j=1

W (tj , I ,p). (3)

W (tj , I ,p) is the minimum or the maximum weight of the items of the pattern p in the
transaction tj .

(3) Uncertain Itemset Mining (UIM) [17]: It is defined by consideringT as uncertain database,
and Interestingness as

Interestinдness (T , I ,p) =
|T |∑

j=1

∏

i ∈p
Probi j . (4)

Probi j is the probability of the item i in the transaction tj .
(4) High-utility Itemset Mining (HUIM) [13]: It is defined by consideringT as utility database,

and Interestingness as

Interestinдness (T , I ,p) =
|T |∑

j=1

∑

i ∈p
iui j × eu (i). (5)

iui j is the internal utility value of i in the transaction tj , and eu (i) is the external utility of
each item i .

(5) Sequential Pattern Mining (SPM) [70]: It is defined by consideringT as sequence database,
and Interestingness as

Interestinдness (T , I ,p) =
|p |T , I

|T | . (6)

Figure 2 shows an illustrative example of the pattern mining problems by considering the mining
threshold as 40% for FIM, WIM, UIM, and SPM. For HUIM, we consider the mining threshold as
12, and the external utility values as {a : 2,b : 1, c : 3,d : 1}. For instance, if we assume the Apriori
algorithm [2] on the FIM database, then the process starts by generating the first candidate patterns
of size 1, {a, b, c, d}. Then, the support of each candidate pattern is calculated. As an example, the
support of the pattern a is equal to the number of occurrences of a over all numbers of transactions,
which is equal to 60%. Its support is greater than the minimum support (40%), hence a is considered
as frequent patterns. This process is repeated for all candidate patterns for size 1. The frequent

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:6 Y. Djenouri et al.

Fig. 2. Pattern mining problems.

patterns of this step is {a, b}. The next step aims to generate the candidate patterns of size 2 from
the frequent patterns of size 1. The same process is repeated for all candidate patterns of size 2,
this recursive process must be repeated until we get only an empty set of candidate patterns. The
final result will be {a, b, ab}.

3 RELATED WORK

This work is surrounded into two main topics, serial and parallel pattern mining algorithms, in
the following, reviews on both topics are presented.

3.1 Serial Pattern Mining Algorithms

Pattern mining problem has been largely studied over the past three decades [1, 4, 12, 40]. Various
pattern mining techniques have been reported, including the FIM, WIM, HUIM, UIM, and SPM.

The FIM is the first pattern mining problem that extracts all itemsets that exceed the minimum
support threshold. Apriori [2] and FP-Growth [44] are the most used FIM algorithms. Apriori ap-
plies a generate and test strategy to explore the itemset space. The candidate itemsets are generated
incrementally. To generate k-sized itemsets as candidates, the algorithm calculates and combines
the frequent (k − 1)-sized itemsets. This process is repeated until no candidate itemsets are ob-
tained in an iteration. However, FP-Growth adopts a divide-and-conquer strategy, and compresses
the transactional database into an efficient main-memory-based tree structure. It then applies re-
cursively the mining process to find the frequent itemsets. The main limitation of the conventional
FIM algorithms is the database format, where only binary cases could be mined. A typical appli-
cation of this problem is the market basket analysis, where for a given transaction (customer), a
given item (product) may be present or absent.

To address this limitation, the WIM [88] was defined, where a weight is associated to each item
to indicate its relative importance in the given transaction. The goal of WIM is to extract itemsets
exceeding the minimum weight threshold. Yun [86] proposed weighted interesting pattern (WIP).
It introduces an infinity measure that determines the correlation between the items of the same
pattern.

The HUIM is an extension of the WIM where both internal and external utilities of the items are
involved. The aim is to find all high-utility patterns from the transaction database that exceeds the
minimum utility threshold. The utility of a pattern is the sum of the utility of all its items, where
the utility of an item is defined by the product by its internal and external utility values. Chan
et al. [13] proposed the first HUIM algorithm. It applies the Apriori-based algorithm to discover
top k high-utility patterns. This algorithm suffers from the runtime performance, as the search
space is not well pruned using the closure downward property. Thus, the utility measure is neither
monotone nor anti-monotone. To address this limitation the transaction weighted utility (TWU)
property is defined to prune the high-utility pattern space [56, 59]. It is an upper-bound monotone
measure to reduce the search space. More efficient HUIM algorithms based on TWU have recently
been proposed, such as EFficient high-utility Itemset Mining (EFIM) [92], and d2HUP [57]. The

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:7

particularity of such approaches is that they used more efficient data structures to determine the
TWU and the utility values.

The pattern mining has been applied to other applications, including UIM [17, 51] and SPM [70].
UIM explores uncertain transaction databases, in which two models (expected-support and prob-
abilistic itemsets) have been defined to mine uncertain patterns. Li et al. [53] proposed the prob-
abilistic frequent itemset mining over streams. It derives the probabilistic frequent itemsets in an
incremental way by determining the upper and the lower bounds of the mining threshold. SPM
discovers a set of ordered patterns in a sequence database. Salvemini et al. [70] proposed the FAST
algorithm. It finds the complete set of the sequence patterns by reducing the candidates gener-
ation runtime and employing an efficient lexicographic tree structure. Van et al. [77] introduced
the pattern-growth algorithm in solving the sequential pattern mining problem with itemset con-
straints. It proposed an incremental strategy to prune the enumeration search tree, allows to reduce
the number of visited nodes.

3.2 Parallel Pattern Mining Algorithms

Regarding high-performance computing, many algorithms have been developed for boosting the
FIM runtime performance. Some algorithms are based on shared memory multiprocessors [47,
49, 67] where they addressed the data locality issues. Other algorithms are based on distributed
platforms [15, 43, 84] where they the communication mechanism in moving data among the pro-
cessors. Interesting surveys on parallel FIM are given in References [11, 82, 89]. However, few
algorithms have been proposed for the other pattern mining problems, WIM [8], UIM [52], HUIM
[14], SPM [62], and graph pattern mining [9, 23].

In Reference [90], GPApriori is developed by designed a “static bitset” memory structure to rep-
resent the transaction database on GPU architecture. In Reference [48], CU-Apriori is proposed,
which develops two strategies for paralyzing both candidate itemsets generation and support
counting on a GPU. In the candidate generation, each thread is assigned two frequent (k − 1)-
sized itemsets, it compares them to make sure that they share the common (k − 2) prefix and then
generates a k-sized candidate itemset. In the evaluation, each thread is assigned one candidate
itemset and counts its support by scanning the transactions simultaneously. The evaluation of fre-
quent itemsets is improved in Reference [29] by proposing mapping and sum reduction techniques
to merge all counts of the given itemsets. It is also improved in Reference [28] by developing three
strategies for minimizing the impact of the GPU thread divergence. In Reference [54], a multilevel
layer data structure is proposed to enhance the support counting of the frequent itemsets. It di-
vides vertical data into several layers, where each layer is an index table of the next layer. This
strategy can completely represent the original vertical structure. In a vertical structure, each item
corresponds to a fixed-length binary vector. However, in this strategy, the length of each vector
varies, which depends on the number of transactions included in the corresponding item.

Several approaches have been proposed for solving the pattern mining problems using the
MapReduce framework. In Reference [63], the BigFIM algorithm is presented, which combines
principles from both Apriori and Eclat. BigFIM is implemented using the MapReduce paradigm.
The mappers are determined using Eclat algorithm, whereas, the reducers are computed using the
Apriori algorithm. Hill et al. [45] apply the MapReduce framework for mining frequent biological
sub-graphs. It first constructs the size-k subgraphs from the size-(k-1) subgraphs by the mappers,
while the reducers will check whether or not the candidate subgraph meets the user-defined sup-
port. Riondato et al. [69] present a parallel randomized algorithm for approximate pattern mining
in the MapReduce framework. It starts by creating random samples from the whole set of trans-
actions. Each mapper is assigned to one sample to generate the potential candidate patterns. The
reducers then perform an aggregation function to determine the set of all approximate relevant

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:8 Y. Djenouri et al.

patterns, which highly depend to the random samples created in the first stage. However, the au-
thors only provide analytical guarantees regarding the quality of the approximate relevant patterns
derived by this algorithm. Leung et al. [52] proposed a tree-based approach for mining uncertain
data. It integrates the folk join framework by splitting the computationally intensive tasks into
multiples pieces, which can be solved in parallel. It also use a sampling method to transform the
tree structure in a more compact one. This approach only finds a small number of relevant pat-
terns due to the sampling process. Ibrahim et al. [46] applied sequential pattern mining on large
time series data, using the MapReduce framework. The time series data is transformed into several
segments using statistical properties, such as mean and variance. Each segment is assigned to one
mapper, to generate the suffix trees, and then extract the final times series patterns by the reducers.

In Reference [83], a Hadoop implementation based on MapReduce programming (FiDoop) was
proposed for frequent itemset mining problem. It incorporates the concept of FIU-tree rather than
the traditional FP-tree of used in the FP-Growth algorithm, for the purpose of improving the stor-
age of the candidate itemsets. An improved version called FiDoop-DP was proposed in Refer-
ence [84]. The authors proposed an efficient strategy to partition data sets among the mappers
for minimizing data transfer cost between the different nodes. Voronoi diagram was used to min-
imize unnecessary redundant transactions transmission. kmeans was only used for selecting the
Voronoi pivots. To the best of our knowledge, FiDoop-DP is the only work that explores data
partitioning for performing pattern mining using the MapReduce. However, this approach uses
partitioning during the map stage to re-organize the transactions among mappers for better ex-
ploration of cluster hardware architecture, and thus avoiding jobs redundancy. This task requires
costly computational resources and it is not useful during the mining stage.

3.3 Discussion

The existing pattern mining algorithms consider the whole transaction databases to find the rel-
evant patterns. They ignore the different dependencies and correlation between the transactions.
Exploring the whole pattern mining problem require a huge time and memory consuming. To
improve the performance of the pattern mining approaches, several techniques have been pro-
posed, such as metaheuristics, which operate based on evolutionary and/or swarm intelligence ap-
proaches [30]. However, these techniques are incapable of dealing with large transaction databases,
where only few interesting patterns may be discovered. To deal with this challenging issue, we
will in this article present a new framework for pattern mining algorithms. This new framework
explores decomposition techniques to find out the relevant patterns. Similar ideas have been in-
vestigated in the database community, in particular, in the areas of record linkage and entity reso-
lution [5, 20, 41, 61]. The aim is to apply blocking-based techniques such as canopy clustering [61],
suffix-blocking [5, 20], and Q-gram-based indexing [41], to derive the different records that rep-
resent the same real-world object in a given database, and check if such a real-world object may
be determined by a single record. These methods need domain-specific knowledge and require
complete redesign for pattern mining applications. In addition, these approaches suffer from the
accuracy problem, where the approximate heuristics are used on each block. In this article, we
attempt to follow these concepts by proposing a new framework for pattern mining problems,
which can be used and guarantee the performance in terms of accuracy, memory, and runtime. To
boost the performance of our framework, a GPU-based approach is also investigated in this work.

4 CLUSTERING-BASED PATTERN MINING (CBPM)

This section presents the principle of the CBPM framework and describes its components in de-
tails, separately. We finish this section by computing the theoretical complexity and showing an
illustrative example of the CBPM framework.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:9

Fig. 3. The CBPM framework.

4.1 Overview

Here, we provide a general framework for the pattern mining for finding different dependencies
between the transactions, which will be used for efficient improvement of the mining process. This
framework illustrated in Figure 3 is composed of two main steps, i.e., the clustering and mining
process, as follows.

(1) Clustering. In this step, a transaction database is divided into a set of homogeneous clus-
ters using clustering techniques, where a cluster may be viewed as a subset of transactions
of the whole set of transactions. We take advantage of the clustering technique to extract
the relevant knowledge, which will be used by the pattern mining algorithms. The pat-
terns shared by two clusters constitute a shared set. An interesting clustering approach
is to minimize the size of the shared sets, while having in the same cluster transactions
that are highly correlated, that is, transactions that share the maximum number of items.
In this work, we will show different ways to decompose the transactions by investigating
naïve, partitioning, hierarchical, density, and hybrid clustering. This allows to provide a
clear picture of the decomposition step, and helps to make a fair conclusion about the
most effective clustering algorithm for minimizing the number of shared items among the
clusters of transactions.

(2) Mining process. The mining process is applied on the clusters found in the previous step.
In this context, two main approaches have been investigated, i.e., the approximation-based
and the exact approaches: (i) In the approximate one, the clusters are used to derive partial
solutions, which are then merged into a global solution, and (ii) in the exact approach, the
mining process is applied on both the clusters and the shared sets, by aggregating these
patterns on all clusters. It should be noted that, both approaches are applicable for all
pattern mining algorithms.

4.2 Clustering

The set of transactions T is partitioned into k disjoint clusters C = {C1,C2 . . .Ck }, where each
cluster Ci is the subset of transactions in T such as Ci ∩Cj = ∅. Here, I (Ci) is the set items of the
cluster Ci and I (Ci) = {⋃ I (tj)/tj ∈ Ci }

Proposition 4.1. We define C as the set of clusters of the transaction database T. Suppose that the

clusters in C do not share any items, which means

∀(i, j) ∈ [1 . . .k]2I (Ci) ∩ I (Cj) = ∅,L =
⎧⎪⎨⎪⎩

k⋃

i=1

Li

⎫⎪⎬⎪⎭
. (7)

Note that Li is the set of the relevant patterns of the cluster Ci .

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:10 Y. Djenouri et al.

Proof. Consider ∀(i, j) ∈ [1 . . .k]2 I (Ci) ∩ I (Cj) = ∅. We have ∀i ∈ [1 . . .k]: Li =

{p |Interestinдness (T , I ,p) ≥ γ }. The interestingness of the pattern p is based on its existence/absence

in the whole transactions, so we have to compare p with all transactions in T, and return the

transactions containing p for further processing. Now, consider a pattern p exists in I (Ci), i,e

p ⊆ I (Ci) ⇒ ∀e ∈ p, e ∈ I (Ci) ⇒ ∀e ∈ p, e � I (Cj), (∀j ∈ [1 . . .k],∨j � i) ⇒ p � I (Cj) ⇒
Li = {p |Interestinдness (Ci , I (Ci),p) ≥ γ } ⇒ L = {⋃k

i=1 Li }. �

From the above proposition, one may argue that if the whole transactions are decomposed in
such a way, the independent clusters will be derived. It means that, any cluster of transactions
share no items with any other cluster, and therefore, the clusters could be mined separately. Un-
fortunately, such case is difficult to realize, as many dependencies may be observed between trans-
actions. The aim of clustering transactions is to minimize the shared items between the clusters,
where these shared items are called Shared Items. In this section, we adopt different clustering
algorithms [18, 36, 60, 73] to minimize the number of Shared Items. Before this, we propose the
following concepts:

(1) Similarity computation. The transactions are represented as sets of items, in the literature
several similarity measures have been proposed to determine the similarity between two
sets. Jaccard [42] is one of the most used measure, which is defined by the ratio between the
intersection and the union of the elements of these subsets. In our context, the similarity is
used to group the transactions while minimizing the number of shared items. The shared
items is computed by intersection operator, intuitively, the union operator is ignored. The
first measure, which we consider, for transaction decomposition is |I (ti) ∩ I (tj) |, where
I (ti), I (tj) denote the set of items of the transactions ti , and tj , respectively. The issue of
this similarity is that the variation in terms of items among transactions is ignored. For
instance, if we consider three transactions t1 = {a,b, c}, t2 = {a,d }, and t3 = {a,d, e}, then
the similarity between t1, and t2 is the same as the similarity between t1, and t3, which is
equal to 1. However, it is obvious that t1, and t2 are more similar compared to t3. To deal
with this issue, we propose a distance measure that takes both the intersection and the
variation of items among transactions, and it is defined as

D (ti , tj) = max(|I (ti) |, |I (tj) |) − (|I (ti) ∩ I (tj) |). (8)

(2) Centroids updating. Let us consider the set of transactions of the cluster Ci =

{t (i)
1 , t

(i)
2 , . . . , t

(i)
|Ci | }. The aim is to find a gravity center of this set that is also a transaction.

Inspired by the centroid formula developed in Reference [32], we compute the centroid
μi . The frequency of each item is calculated for all the transactions of the cluster Ci . The
length of the transaction center is denoted by li , and corresponds to the average number
of items of all transactions in Ci as

li =

∑ |Ci |
j=1 |I (t

(i)
j) |

|Ci |
. (9)

Afterwards, the items of transactions in Ci are sorted according to their frequency, and
only the li frequent items are assigned to μi , as

μi = {j |j ∈ Fli
}. (10)

Note that Fli
denotes the set of the li frequent items of the cluster Ci .

(3) Transaction neighborhoods. We define the neighborhoods of a transaction ti for a given
threshold ϵ , noted Nti

by

Nti
= {tj |D (ti , tj) ≤ ϵ ∨ j � i}. (11)

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:11

(4) Core transaction. A transaction ti is called core transaction if there is at least the minimum
number of transactions σT such as |Nti

| ≥ σT .
(5) Shared items determination. After constructing the clusters of transactions, we have to

determine the shared set of items between the clusters. We define the shared set of items,
denoted by S , as

S =
k⋃

i=1, j>i

I (Ci) ∩ I (Cj). (12)

Moreover, we denote S i, j as the shared set between the clusters Ci and Cj .

4.2.1 Naive Grouping for Transaction Decomposition. The naive grouping aims to group trans-
actions into k disjoint clusters without processing. Given m transactions, {t1, t2 . . . tm }, the first m

k

transactions are assigned toC1, the second m
k

transactions are assigned toC2, and so until the last
m
k

transactions are assigned to Ck .

4.2.2 Hierarchical Agglomerative Clustering for Transaction Decomposition. Hierarchical Ag-
glomerative Clustering (HAC) [18] for transaction decomposition aims to create a tree-like nested
structure partitionH = {H1,H2 . . .Hh } of the data, such that

∀(i, j) ∈ [1..k]2,∀(m, l) ∈ [1 . . .h]2,Ci ∈ Hm ,Cj ∈ Hl ,m ≥ l ⇒ Ci ∈ Cj ∧Ci ∩Cj = ∅. (13)

It starts with all transactions in a separate cluster and then repeatedly joins the two clusters that
are most similar until there is only one cluster. The similarity between two clusters Ci , and Cj is
determined by the number of shared items between them, as |I (Ci) ∩ I (Cj) |.

4.2.3 K-means for Transaction Decomposition. K-means [60] for transaction decomposition
aims to optimize the following function:

J =
k∑

j=1

∑

t ∈Cj

|t − μ j |2, (14)

where μ j is the centroid of transactions inCj . First, the transactions are assigned randomly to the
k clusters and a centroid is computed for each cluster. Then, every transaction is assigned to a
cluster whose centroid is the closest to that transaction. These two steps are repeated until there
is no further assignment of the transactions to the clusters. In this work, we attempt to adapt the
k-means algorithm for clustering of the transactional database.

4.2.4 Bisecting k-means for Transaction Decomposition. The bisecting k-means [73] for trans-
action decomposition uses a hybrid partitioning and divisive hierarchical approach. It starts with
one cluster and at each step splits one of the clusters into two using the standard k-means algo-
rithm. The process of bisecting a cluster is repeated several times, where the split that produces a
higher similarity is selected.

4.2.5 DBSCAN for Transaction Decomposition. The DBSCAN algorithm [36] for transaction de-
composition aims to search for clusters by checking the ϵ-neighborhood of each transaction. After
the core transactions are determined, DBSCAN then collects the density-reachable transactions
from these core transactions directly, which may involve merging a few density-reachable clus-
ters. The process terminates when no new transactions can be added to any cluster.

At the end of this step, a set of clustersC , and a set of shared items S are stored. S i, j is the subset
shared items between the clusters Ci , and Cj . In implementation level, it is represented by a list,
the first element is the index of Ci , the second element is the index of Cj , and the third element is
a list of shared items between Ci , and Cj .

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:12 Y. Djenouri et al.

4.3 Mining Process

This step benefits from the knowledge extracted in the previous step. Instead of mining the whole
transaction database with the full set of items, each cluster of transactions with its items is handled
separately. In this context, the two following strategies are proposed.

4.3.1 Approximation-based Strategy. In this strategy, the clusters are handled separately with-
out considering the shared items. The local relevant patterns are first extracted by applying the
mining process on each cluster. The merging function is then used to derive the global relevant
patterns. This function is constituted of the concatenation of all local relevant patterns. Such an
approach returns partial relevant patterns from the whole transaction database. This is due to the
fact that the shared items were not taken into account in the mining process. Algorithm 1 presents
the pseudo-code of the approximation-based strategy.

ALGORITHM 1: Approximation-based strategy

1: Input:

C = {C1,C2 . . . ,Ck }: The set of k clusters

γ : The mining threshold

2: Output:

A: The set of the relevant patterns discovered

3: A ←∅.
4: for i = 1 to k do

5: Ai ←MininдProcess (Ci , I (Ci),γ).
6: A ←A ∪Ai

7: end for

8: return A

Proposition 4.2. An upper bound, respectively, the lower bound, of the number of the relevant

patters discovered by the approximation-based strategy, are |L|, and |L| − (
∑k

i=1

∑k
j=(i+1) (2

|Si j | − 1)),

and we note,

|L| − 	

�

k∑

i=1

k∑

j=(i+1)

(2 |Si j | − 1)�

�
≤ |A| ≤ |L|. (15)

Proof. In the worst case, the number of missing patterns of the approximation-based strategy is
equal to the number of candidate patterns from the shared items between all clusters. This may be
realized, where the interestingness value of all the candidate patterns exceeds the mining threshold
γ . In this case, the number of relevant patterns of the approximation-based strategy is equal to |L|
minus all the number of candidate patterns derived from the shared items of all clusters, equal to∑k

i=1

∑k
j=(i+1) (2

|Si j | − 1). In the case of the candidate patterns derived from the shared items of all

clusters are not relevant, the number of relevant patterns of the approximation-based strategy is
|L|. �

From the above proposition, one may argue that the quality of the approximation-based strategy
highly depends on the number of shared items of all clusters. If the number of the shared items is
minimized, then the approximation-based strategy is able to find all relevant patterns. This will be
fixed by choosing well the number of clusters of the k-means algorithm or the ϵ value for DBSCAN
algorithm.

4.3.2 Exact Strategy. The goal of this strategy is to capture the missing patterns not covered
by mining the local clusters. It considers the shared items as well as the clusters in the mining
process. This allows to discover all relevant patterns from the whole transactions.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:13

The mining process is first applied on each cluster of transactions to extract the local relevant
patterns. The possible candidate patterns are then generated from the shared items of each two
clusters Ci , and Cj in C . In other words, for each pair (Ci ,Cj), only the shared items S i, j will be
explored to generate the patterns related to (Ci ,Cj). For instance, if S = {a,b, c,d }, and S1,2 = {a},
S1,3 = {b} S2,3 = {c,d }, then only the candidate pattern {a} is generated for the pair (C1,C2), the
candidate pattern {b} is generated for the pair (C1,C3), and the candidate patterns {c,d, cd } are
generated for the pair (C2,C3), which results in 5 patterns instead of 15 patterns.

For each generated pattern, the postprocessing function (see Definition 4.1) is then used to de-
termine the interestingness of this pattern in the whole transaction database. Note that, the in-
terestingness depends on the problem. For instance, if we are interested to deal with a frequent
itemset mining problem, then the interestingness function should be the support measure. The
relevant patterns of the shared items are then concatenated with the local relevant patterns of
the clusters to derive the global relevant patterns of the whole transaction database. Algorithm 2
presents the pseudo-code of the exact strategy.

ALGORITHM 2: Exact strategy

1: Input:

C = {C1,C2 . . . ,Ck }: The set of k clusters

S : The set of shared items

γ : The mining threshold

2: Output:

L: The set of all relevant patterns

3: L←∅.
4: for i = 1 to k do

5: Li ←MininдProcess (Ci , I (Ci),γ).
6: L←L ∪ Li

7: end for

8: P← ∅.
9: for each Si, j ∈ S do

10: P ← P ∪GenerateAllPatterns (Si, j).
11: end for

12: for each p ∈ P do

13: if F (p) ≥ γ then

14: L←L ∪ {p}
15: end if

16: end for

17: return L

Definition 4.1. We define a postprocessing function of the pattern p in the clusters of the trans-
actions C by

F (p) =
k∑

i=1

Interestinдness (Ci , I (Ci),p). (16)

Interestinдness (Ci , I (Ci),p) is the measure to evaluate the pattern p among the set of transactions
inCi , and the set of items I (Ci). Note that the same interestingness measures defined in Section 2
are used to determine the value of the postprocessing function of each generated candidate pattern.

4.4 Complexity

The time complexity of the CBPM framework depends on the clustering and the pattern mining al-
gorithms used in the overall process. We assume that the complexity of the k-means algorithm [60],

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:14 Y. Djenouri et al.

Table 2. Complexity of the Existing Pattern Mining Algorithms Using the CBPM Framework

Problem Algorithm Cost(A, m, n) CBPM (Exact) CBPM (Approximate)

FIM Apriori [2] mn2 mn2+nk+k4

k2
mn2

k2

FP-Growth [44] n2 nm + kn2 + k2 nm + kn2

PrePost+ [22] nloд(n)
nm+nloд (n)

k
+ k2 nm+nloд (n)

k

SSFIM [31] m2n m2n/k + nk + k2 n2n/k

WIM WFIM [87] mnloд(n)
mnloд (n/k)

k
+ nk + k2 mnloд (n/k)

k

WIP [86] mn2 mn2+nk+k4

k2
mn2

k2

UIM U-Apriori [17] mn2loд(n)
mn2loд (n/k)

k
+ nk + k2 mn2loд (n/k)

k

HUIM d2HUP [57] n4loд(n) n4

k3 loд(n/k) + nm + nk + k2 n4

k3 loд(n/k) + nm

EFIM [92] n3 + loд(n2) n3

k2 +
loд (n2/k2)

k
+ nm n3

k2 +
loд (n2/k2)

k
+ nm + nk + k2

SPM FAST [70] n4 n4

k3 + nm + nk + k
2 n4

k3 + nm

or the complexity of DBSCAN algorithm [36] requires O (m × n). Considering the mining process,
We define the complexity of any pattern mining algorithm A by O(Cost(A,n,m)). Note thatm and
n are the number of transactions and the number of items, respectively. Two possible cases are as
follows.

4.4.1 Approximation-based Strategy. In this strategy, the mining is applied on each cluster with-
out considering the shared items. The complexity of the CBPM using this strategy is O ((n ×m) +∑k

i=1Cost (A, |Ci |, |I (Ci) |)).

4.4.2 Exact Strategy. In this strategy, the mining is applied on each cluster where the shared
items are taken into account. The cost of constructing the shared items readsO (k2). Here, the post-
processing function is performed for each shared itemset, so that the complexity of this function
is O (k × |S |), where S is the set of the shared items. Thus, the complexity of the CBPM using this

strategy is O ((n ×m) + (k2) + (
∑k

i=1Cost (A, |Ci |, |I (Ci) |)) + (k × |S |)).
Table 2 compares the complexity of some of the existing pattern mining algorithms using the

CBPM framework by varying the function Cost (A,m,n). Note that, the worst complexity is com-
puted by considering the maximum number of transactions, the average number of transactions,
and the size of the shared items as n. For simplicity, we assume the same number of transactions
and items on each cluster (i,e ∀i ∈ [1 . . .k], |Ci | =m/k ∧ |I (Ci) = n/k). From this table, we may
conclude that by using the CBPM framework, the complexity of all algorithms is reduced k orders
of the magnitude. In addition, the Pre-Post+, WFIM, U-Apriori, EFIM, and FAST are the best algo-
rithms of the pattern mining problems (FIM, WIM, UIM, HUIM, and SPM). Thus, these algorithms
are considered as baselines in the experimentation section.

4.5 Example

Figure 4 presents an illustrative example of the CBPM framework for solving the frequent itemset
mining problem. In this case, a pattern is viewed as an itemset (set of items), with a Boolean value
(present or absent) in the given transaction. The transaction database is first partitioned using
any clustering algorithm, without loss of generality, in this example, we used the k-means algo-
rithm (with k = 3). Three clusters are found, i.e., C1 = {t1, t2} with I (C1) = {a,b,d, e}, C2 = {t3, t4}
with I (C2) = {a,b, c}, and C3 = {t5, t6} with I (C3) = {c,d, e}. The shared items between C1 and

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:15

Fig. 4. Illustrative example.

C2 are {a,b}, the shared items between C1 and C3 are {d, e}, and the shared items between C2

and C3 are {c}. For instance, if the minimum support is set to 33%, then the approximate strat-
egy is competitive compared to the exact strategy, where it returns L = {a,b, c,d,ab,bc} against
L = {a,b, c,d, e,ab,bc} for the exact strategy: (i) In the approximate strategy, the mining process
is applied on the C1, C2, and C3, we find L1 = {a,b,ab}, L2 = {c,bc}, and L3 = {d }, the concatena-
tion will be L = {a,b, c,d,ab,bc}. (ii) In the exact strategy, the same process is applied for C1, C2,
and C3, followed by the generation of all possible itemsets from the shared items, which results
in L1 ∪ L2 ∪ L3 ∪ {a,b,ab,d, e, c} = {a,b, c,d, e,ab,bc}. Now, if we consider the minimum support
set to 50%, then different results are found for the approximate and the exact strategies as follows.
(i) The approximate strategy could not find any frequent itemsets, since each cluster contains only
two transactions, whereas the minimum support is 50%. That means we have to find itemsets that
appear at least three times, and the result will be empty set. (ii) This issue will be solved by the exact
strategy, where the shared items are explored. The possible candidate itemsets from the shared set
is {a,b,ab,d, e,de, c}, the support of each itemset in this set is the postprocessing of supports of the
clusters C1, C2, and C3. For example, A ({a}) = support (C1, I (C1), {a}) + support (C2, I (C2), {a}) =
2/6 + 1/6 = 3/6. The same process is applied for all candidate itemsets, and the result will be
{a,b, c,ab}, which is exactly the same result reported by the Apriori algorithm, if we consider
the whole transaction database.

5 PARALLEL IMPLEMENTATION

In this section, we first propose a generic approach to implement CBPM on parallel architectures.
A particular instantiation on GPU architecture of this generic approach is then presented.

5.1 Generic Parallel-based CBPM Approach

To run CBPM on any parallel architecture, the following sequential steps have to be performed:

(1) Partition the database: In this step, the transaction database is divided into partitions,
whereby each partition contains a set of transactions. Any partitioning algorithm could
be used here. In this work, we adopt the five decomposition algorithms (naive grouping,
HAC, k-means, bisecting k-means, and DBSCAN). This step is performed in the CPU.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:16 Y. Djenouri et al.

Fig. 5. GPU-CBPM framework.

(2) Computing and storing the local results: In this step, each parallel node apply a serial
pattern mining algorithm on each cluster, generate all relevant patterns from the cluster
of transactions that is assigned to it and stores them in the set of all relevant patterns. The
latter is built following the same logic of building the list of the relevant patterns in the
serial implementation of CBPM. As for the serial implementation, we have two variants,
(i) a parallel approximation-based strategy that does not consider the shared items, and
(ii) a parallel exact strategy, which considers the shared items. Once the local relevant
patterns are calculated, they will be send it to CPU for further processing.

(3) Merging the local results: The local relevant patterns are merged into a global one on
the CPU side. This can be done using a simple concatenation as is the case of parallel
approximation-based strategy, or an postprocessing as the case of parallel exact strategy.

The instantiation of the three steps defined above must be carefully designed to fit the hardware
in use. In the remainder of this section, an instantiation of this generic approach is presented using
GPU hardware.

5.2 GPU-CBPM

Graphic Processing Units (GPUs) are graphical cards initially developed for efficient generation
of images intended for a display device, but their use as a powerful computing tool has gained
popularity in many domains during the last decade [76, 79, 80]. The hardware is composed of two
hosts, (i) the CPU and, (ii) the GPU hosts. The former contains processor(S) and main memory.
The latter is a multi-threading system that consists of multiple computing cores, where each
core executes a block of threads. Threads of a block in the same core communicate with one
another using a shared memory, whereas the communication between blocks relies on a global
memory. The CPU/GPU communication is made possible by hardware buses. In the following, the
adaptation of CBPM for deployment on GPU architectures is denoted GPU-CBPM. In GPU-CBPM
(see Figure 5), the transaction database is first partitioned on k clusters {C1,C2 . . .Ck } using the

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:17

decomposition methods. The set of designed clusters are then sent to GPU. Each block of threads
is mapped onto one cluster, where the same mining process is applied on each block in parallel.
If we consider the size of the shared memory of each block is r , then the first r transactions of
the cluster Ci are allocated to the shared memory of the block, and the remaining transactions of
the clusterCi is allocated to the global memory of the GPU host. GPU-CBPM defines a local table,
tablei , for storing the relevant patterns of the cluster Ci . The local table of each cluster is sent to
CPU for further processing. In this context, CPU host performs merging step to find the global
relevant patterns. Two merging operators are defined: (i) simple concatenation is applied for
paralyzing the approximation-based strategy, it defines by the union of all sets of relevant patterns
in the local tables, and (ii) postprocessing is applied for paralyzing the exact strategy, it defines
by applying the postprocessing function (see Definition 4.1) on the shared items S and the local
tables. Algorithm 3 presents the pseudo-code of GPU-CBPM using standard CUDA operations.

From a theoretical standpoint, GPU-CBPM improves the serial implementation of CBPM by
exploiting the massively threaded computing of GPUs while mining the clusters of transac-
tions. GPU-CBPM also minimizes the CPU/GPU communication, by defining only two points of
CPU/GPU communication. The first one takes place when the transaction database is loaded into
the GPU host, and the second one when the local tables are returned to the CPU. GPU-CBPM
also provides an efficient memory management by using different levels of memories including
global and shared memories. However, GPU-CBPM may suffer from the synchronization between
the GPU blocks. This takes place when the GPU blocks process clusters with different number of
transactions. This issue degrades the performance of the GPU-based implementation of the CBPM
framework. In real scenarios, different number of transactions per cluster may be obtained, this
depends on the way of the clustering used in the decomposition step, as the size of the clusters
are different, as the synchronization cost of the GPU-based implementation will be high. All these
statements will be clearly explained in the performance evaluation section (See Section 6 for more
details).

6 PERFORMANCE EVALUATION

Intensive experiments have been carried out to evaluate the CBPM framework. First, the FIM,
WIM, UIM, HUIM, and SPM problems have been investigated using standard datasets, by inte-
grating the CBPM on the SPMF data mining library.1 The CBPM java source code is integrated
on the five best pattern mining algorithms in terms of the time complexity (See Section 4.4):
(i) frequent itemset mining: PrePost+ [22], (ii) weighted itemset mining: WFIM [87], (iii) uncer-
tain itemset mining: U-Apriori [17], (iv) high-utility itemset mining: EFIM [92], and (v) sequential
pattern mining: FAST [70]. Second, the results of CBPM framework on real taxi trajectory dataset
has been shown and compared with the first phase of the RegMiner algorithm [16]. All serial imple-
mentations are done on a computer with 64 bit core i7 processor running Windows 10 and 16 GB
of RAM. Finally, the GPU-based implementation is illustrated using sparse transaction databases.

6.1 Description of Standard Datasets

We perform the experiments using well-known pattern mining datasets.2 Table 3 presents the
characteristics of the standard datasets used in our experiments. Six datasets, i.e., Accident, Chess,
Connect, Mushroom, Pumsb, and Korasak, Foodmart, and Chainstore, are used for evaluating the
FIM algorithms. The first four datasets are used to evaluate the FIM algorithms. Further to the

1https://www.philippe-fournier-viger.com/spmf/.
2http://www.philippe-fournier-viger.com/spmf/.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

https://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/

15:18 Y. Djenouri et al.

ALGORITHM 3: GPU-CBPM: CPU and GPU hosts

1: /**************************CPU Host**/

2: Input:

T = {t1, t2 . . . , tm }: The set ofm transactions

I = {1, 2 . . . ,n}: The set of n items

C = {C1,C2 . . . ,Ck }: The set of k clusters

S : The set of shared items

γ : The mining threshold

Alдo: The pattern mining algorithm

3: Output:

L: The set of all relevant patterns

4: C← Decomposition(T, I)

5: S← SharedItems(C)

6: cudaMemcpy(C ′, C, n × m, cudaMemcpyHostToDevice)Mining«<k, 1024 »>(L, C ′, γ , Algo)

7: if Approximation then

8: return L

9: else

10: P← ∅
11: for each Si, j ∈ S do

12: P ← P ∪GenerateAllPatterns (Si, j).
13: end for

14: for each p ∈ P do

15: if F (p) ≥ γ then

16: L← L ∪ {p}
17: end if

18: end for

19: return L

20: end if

21: /**************************GPU Host**/

22: Kernel Mining(L, C ′, γ , Algo)

23: input

Shared T []: Array of transactions allocated in shared memories

24: Output:

L′: The set of all relevant patterns of all blocks

25: idx← blockIdx.x × blockDim.x + threadIdx.x

26: T[idx]← C ′
blockIdx .x

[idx]

27: L′[blockIdx.x]=Algo(T, γ)

28: cudaMemcpy(L′, L, |L′|, cudaMemcpyDeviceToHost)

FIM datasets, the last two datasets have been considered for evaluating the WIM, HUIM, and UIM
algorithms. For evaluating the three latter problems, we consider the following.

(1) WIM: Foodmart and Chainstore containing real weights. For FIM datasets, a genera-
tor function is used to generate the weights of the items as carried out in the previous
work [87].

(2) UIM: The probabilities are generated using the normal distribution with a mean of 90%
for high probability value, and 10% for low probability value with standard deviation of
5% for high probability value and 6% for the low probability value. This is done as in the
previous work [17].

(3) HUIM: Foodmart and Chainstore are customer transaction databases containing the real
external/internal utility values. For the FIM datasets, external/internal utility values have

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:19

Table 3. Description of Standard Datasets

Problem
Dataset Trans.Size/

Item Size
Aver. Size/

Name Sequence Count Avg. Seq. Size

FIM WIM

HUIM

Accident 340,183 468 33.8
Chess 3,196 75 37.0
Connect 67,557 129 43.0
Mushroom 8,124 119 23.0
Pumsb 49,046 2,113 74.0
Korasak 990,000 41,270 8.1
Foodmart 4,141 1,559 4.4
Chainstore 1,112,949 46,086 7.2

SPM

Leviathan 5,834 9,025 33.81
Sign 730 267 51.99
Snack 163 20 60
FIFA 20,450 2,990 34.74

been, respectively, generated in the [1, 1,000] and [1, 5] intervals using a log normal dis-
tribution as done in the previous works [57, 92].

The last four datasets, that is, Leviathan, Sign, Snake, and FIFA, are used to evaluate the SPM
algorithms. In addition, an IBM Synthetic Data Generator for Itemsets and Sequences3 is used to
generate synthetic datasets of different number of items and transactions.

6.2 Clustering Performance

Figure 6 presents the quality of decomposition of different clustering algorithms, naive grouping,
HAC, k-means, bisecting k-means, and DBSCAN, on different transaction databases. The quality
of decomposition is determined by the percentage of the shared items between the clusters. As
this percentage goes up, as the quality is reduced. We varied the number of clusters from 1 to 50
for naive grouping, k-means, and bisecting k-means algorithms, and the ϵ value from 1 to 10, and
MinPts from 1 to 10 for the DBSCAN algorithm. The best parameter values for each clustering
algorithm are used on this experiment. Note that the number of clusters is 5 for naive grouping,
7 for k-means, 6 for bisecting k-means, the ϵ value is set to 4 MinPts is set to 5 for DBSCAN.
The percentage of shared items with the best parameter values for each transaction database is
illustrated in Figure 6. Regarding to this figure, the results reveal that k-means gives better de-
composition comparing to the other algorithms whatever the transaction database used as input.
These results are explained by the fact that k-means is a pure partitioning, where it is inspired by
the centroids representing the transactions of the same cluster. However, the DBSCAN is inspired
by neighborhood computation representing the dense regions. So, it is possible to have two similar
transactions belonging to the two closer clusters. In the remaining experiments of the sequential
version, we used k-means as decomposition algorithm in our framework.

6.3 Performance of the Sequential Version

Runtime. Figures 7, 8, 9, 10, and 11 present the runtime performance of the pattern mining algo-
rithms with and without the CBPM framework for both approximate and exact strategies using
different datasets and with different mining threshold. The results reveal that by reducing the

3https://github.com/zakimjz/IBMGenerator.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

https://github.com/zakimjz/IBMGenerator

15:20 Y. Djenouri et al.

Fig. 6. Percentage (%) of the shared items of the clustering step for the CBPM framework.

Fig. 7. Runtime of the PrePost+ with and without the CBPM framework.

mining threshold, and with increasing the complexity of the problem solved, the pattern mining
algorithms benefit from the CBPM framework. Thus, for a low mining threshold, and for a more
complex problem like UIM, HUIM, or SPM, the approximation-based and exact strategies outper-
form the original pattern mining algorithms. For instance, for the minimum utility threshold of
1,600K , the runtime of the original EFIM and EFIM using the CBPM framework is 1 s in the Con-
nect dataset. However, by setting the minimum utility to 1,000K , the runtime of the original EFIM
exceeds 8,000 s, and the runtime of the EFIM with CBPM framework does not reach 1,500 s. The

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:21

Fig. 8. Runtime of the WFIM with and without the CBPM framework.

Fig. 9. Runtime of the U-Apriori with and without the CBPM framework.

Fig. 10. Runtime of the EFIM with and without the CBPM framework.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:22 Y. Djenouri et al.

Fig. 11. Runtime of the FAST with and without the CBPM framework.

results also reveal in two scenarios for mushroom, and korasak, our algorithms need more time
than the baseline solutions. These are explained by the fact that the number of shared features
in these two scenarios are important, which reduces the performance of the proposed solutions.
In overall, the obtained results are achieved thanks to the following factors: (i) the decomposition
method applied to the CBPM framework by minimizing the number of the shared items; (ii) solv-
ing the sub-problems with small number of transactions and small number of items, instead of
dealing the whole transaction database with the whole distinct items; and (iii) the integrability of
the pattern mining algorithms and the CBPM framework.

Memory consumption. In this experiment, the memory usage of the pattern mining algorithms
with and without the CBPM framework is recorded. The results are measured using the Java API.
Table 4 lists the maximum memory usage for a varying dataset used and the problem solved. From
this table, we may observe that both exact, and approximate strategies outperform the previously
reported pattern mining algorithms, for all datasets. Moreover, the pattern mining algorithms con-
sume less of memory when using the CBPM framework. For instance, by running the EFIM algo-
rithm on the chainstore dataset, the approximate strategy consumes 411 MB, while the original
EFIM consumes 698 MB in average. The reason for efficient memory usage of the CBPM frame-
work is because it deals only with small datasets at a time rather than other algorithms, while the
conventional algorithms deal with the whole dataset. The CBPM explores small sub-trees, while
conventional algorithms explore the whole tree for finding the relevant patterns. In addition to
these results, the approximate strategy outperforms the exact strategy for all cases. This may be
explained by the fact that the approximate strategy does not take into account the shared items in
the search space, where a less memory is required for the overall mining process of such strategy.

Number of visited nodes. Another experiment has been carried out to investigate the pruning of
the search space of the CBPM framework by comparing the maximum number of the visited nodes
(patterns) of the search-enumeration tree by the pattern mining algorithms with and without the
CBPM framework, and by exploiting both approximation-based and exact strategies. According
to Table 4, the results reveal that by using the CBPM framework, the pattern mining algorithms
efficiently prune the search space, while only sub-trees are explored against the whole tree for the
original pattern mining algorithms. The results also show that the approximation-based strategy
outperforms the exact one, for all cases. This is due to the fact that the approximate strategy
ignores the shared items between the clusters, where the exact one generates all possible candidate
patterns from the shared items.

Ratio of the satisfied patterns. This experiment evaluates the approximation-based strategy
proposed in this work. Note that in the pattern mining literature, there are many approximation-
based algorithms by exploiting the metaheuristics [30]. However, these approaches are out of the
scope of this article, where the main goal of this work is to show the effect of the decomposi-
tion on the pattern mining algorithms. Figure 12 presents the ratio of the satisfied patterns (i.e.,

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:23

Table 4. Comparison of the Maximum Memory Usage (MB) and the Maximum Number of Visited Nodes
of the Pattern Mining Algorithms with and without the CBPM Framework

memory consumption #visited nodes

Problem: Dataset Without CBPM: CBPM: Without CBPM: CBPM:

Algorithm CBPM Exact Approximate CBPM Exact Approximate

FIM:

PrePost+

pumsb 10 8 7 18,112 12,119 5,127

mushroom 2 2 2 745,129 512,131 598,748

connect 108 96 64 996,008 518,576 296,748

chess 75 69 51 1,517,339 1,318,152 800,563

accident 637 439 332 10,458 9,289 6,780

korasak 143 99 68 1,851 1,847 856

WIM:

WFIM

pumsb 732 661 492 35,845 31,785 23,175

mushroom 51 42 30 1,874,457 1,798,214 1,312,147

connect 308 278 178 1,524,333 912,127 759,659

chess 179 152 64 2,685,417 2,000,110 1,598,667

accident 879 821 663 26,556 22,996 18,845

korasak 371 300 253 2,125 2,001 1,002

foodmart 89 81 47 198,007 177,223 135,168

chainstore 302 291 200 2,001 1,782 1,096

UIM:

U-Apriori

pumsb 748 684 527 55,111 50,119 42,219

mushroom 65 54 41 2,415,002 2,117,107 1,658,127

connect 396 299 201 1,711,418 1,174,718 817,147

chess 195 164 88 2,845,457 1,400,107 1,000,748

accident 912 861 719 42,128 39,027 35,187

korasak 401 328 284 2,517 2,314 1,802

foodmart 101 91 62 221,127 197,117 174,331

chainstore 419 379 218 2,927 2,241 1,685

HUIM:

EFIM

pumsb 1075 912 715 59,597 51,578 45,748

mushroom 112 106 91 3,179,165 2,743,258 2,089,153

connect 567 478 285 1,952,111 1,112,553 928,216

chess 218 153 101 3,334,258 2,957,514 2,147,214

accident 1230 1112 701 55,211 40,128 32,198

korasak 608 427 217 3,142 2,546 2,336

foodmart 112 98 75 326,158 300,258 257,845

chainstore 698 601 411 3,748 3,147 2,415

SPM:

FAST

leviathan 245 211 145 5,298 4,958 2,685

sign 375 351 168 6,510 5,882 4,005

snack 417 412 214 8,222 7,984 4,847

FIFA 749 695 459 10,214 9,002 6,123

patterns that exceed the mining threshold value). Note that, the last four databases are used for
sequential pattern mining, and thus only one bar is obtained for these datasets. By varying the
dataset used, and the pattern mining problem solved in the experiment, we show that the ratio of
the satisfied patterns reach up to 90% for all cases. However, the ratio is different for each prob-
lem. Thus, there are problems, while the ratio of the satisfied patterns is up to 98% such as the
FIM and WIM, whereas, there are other more complex problems, while the ratio of the satisfied

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:24 Y. Djenouri et al.

Fig. 12. Ratio of the satisfied patterns using the approximate strategy with the CBPM framework.

patterns is between 98% and 90% such as the UIM, HUIM, and SPM. These results are achieved
thanks to the decomposition method employed in the CBPM framework by minimizing the num-
ber of the shared items, and the postprocessing function used in the approximation-based strategy.
Figure 13 presents the ratio of the satisfied patterns, and the runtime using IBM Synthetic Data
Generator for Itemsets and Sequences.4 By varying with the number of shared items from 1 to
1,000, the ratio of the satisfied patterns is reduced from 100% to 88% for the approximate-based
strategy, and the runtime of the exact strategy is increased from 200 to 1,500. Thus, the number
of shared items resulting from the decomposition method has a high impact of the accuracy of
the approximate-based strategy, and also in terms of the runtime of the exact approaches. In fact,
the approximate-based strategy only explores the clusters of transactions and ignores the shared
items. Hence, it might be some relevant patterns in the set of shared items among the clusters.
However, as the exact strategy considers both the clusters of transactions and the shared items
among the clusters, this may increase the processing time compared to the approximate-based
strategy. We can conclude that there is a trade-off between quality and runtime of our framework
depending on the number of shared items. In general, if there is a high correlation among different
transactions of a given database, the decomposition method may derive considerable number of
shared items between different clusters. For this, we can say that if the ratio between the similar-
ity of the transactions in the given database, and the similarity between the different transactions
within the cluster is high, then our framework may fail, and give a bad result. Otherwise, our
framework returns good results in terms of both runtime and accuracy.

Sensitivity to number of clusters. The aim of this experiment is to show the sensitivity of the
number of clusters on the CBPM framework. To do this study, we explored the k-means algo-
rithm on the FIM problem. We varied the number of clusters from 1 to 25 on the FIM transaction
databases, and we computed the accuracy and the runtime for the approximate strategy (after
25 clusters, no changes in accuracy is observed). Figure 14 show the runtime and the accuracy,
computed by the percentage of the satisfied patterns, of the CBPM framework using the approx-
imation strategy and for different FIM and SPM transaction databases. By varying the number of

4https://github.com/zakimjz/IBMGenerator.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

https://github.com/zakimjz/IBMGenerator

Exploring Decomposition for Solving Pattern Mining Problems 15:25

Fig. 13. Accuracy and runtime of approximate and exact-based strategies for different number of shared
items.

clusters from 1 to 25, the accuracy of our approach exceeds 88% for all cases. However, the results
vary from database to database. With smaller number of clusters, fewer separator items are ob-
served, and then high accuracy is obtained. By increasing the number of clusters until a specified
value, a higher number of separator items are observed. As a result, the accuracy is reduced. By
increasing further the number of clusters, more independent clusters are derived, and then the
accuracy is increased up to a certain point. Moreover, we can categorize the transaction databases
into two categories, sparse and non sparse data. We can say that the accuracy with non sparse
data is better than the accuracy with sparse data. Specifically, the accuracy of Korasak and Mush-
room, which are considered as non sparse data, exceeds 94% whatever the case used. However, the
accuracy of the sparse data, as the case for the remaining transaction databases, can goes under
90%. This is explained by the fact that with non-sparse data, fewer number of items per trans-
action is observed. Consequently fewer number of separator items among clusters as compared
to the sparse data, which contain higher number of items per transaction, and as a result, high
correlation between clusters are derived. In terms of the runtime, while varying the number of
clusters from 1 to 25, we can see that the runtime significantly changes with number of clusters,
in particular for the Accident transaction database that contains high number of items and trans-
actions. We can explain this as follows. There is an trade off between mining and clustering steps.
If we consider few number of clusters, then we obtain high number of transactions per cluster.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:26 Y. Djenouri et al.

Fig. 14. Runtime (seconds) and percentage (%) of the frequent and sequential patterns of the CBPM frame-
work with different number of clusters.

As a result, the clustering step consumes less time than the mining step, and if we consider high
number of clusters, we obtain few number of transactions per cluster. Thus, the clustering step
consumes more time than the mining step. From these results, we can conclude that our approach
is very sensitive to the number of clusters. Choosing the best number of clusters value is a critical
issue of our approach. It depends to several factors, including the number of items, the number
of transactions, and the density of each transaction database. Moreover, when choosing few num-
ber of clusters, we obtain a high accuracy, but this is not useful for the parallel approach, where
we need more independent clusters. Studying the meta-features of each transaction database and
fixing the number of clusters automatically are still open research questions. A possible solution
is to first design a training data for presenting the historical meta-features of each transaction
database such as the number of items, the number of transactions, and the sparsity value of each
transaction. The different correlation between the meta-features of the transaction databases are
then analyzed to estimate the number of clusters of the new transaction database.

Comparison with Approximate-based solutions. This experiment aims to compare the
performance of our solution compared to the recent pattern mining-based solutions, which
combine both exact solutions and metaheuristics in exploring the enumeration search space of
the relevant patterns. Two recent based algorithms have been used, the first one is GA-Apriori

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:27

Fig. 15. Ratio of the satisfied patterns using the approximate strategy with the CBPM framework, and the
approximate-based solutions.

[30], which combines the Apriori with the genetic algorithm, and the second one is PSO-SSFIM
[33], which combines SSFIM [31] and the particle swarm optimization. Figures 15 present both
the percentage of satisfied patterns, and the runtime of the CBPM framework, and the baseline
solutions GA-Apriori, and PSO-SSFIM. Whatever, the database used in the experiment, the results
reveal that our solution outperforms the baseline solutions in terms of both accuracy and runtime
performances. These results are achieved thanks to the decomposition-based algorithm, and the
approximation-based strategy used in this research work.

Case study: Trajectory analysis. This experiment aims to show the performance of the pro-
posed framework on real trajectory database called T-Drive [85]. It provides trajectories of 10,357
different taxis for several days. Each of which is saved in one file. All taxi trajectories are merged
to one file providing 68,872 trajectories. A preprocessing step is performed by transforming each
trajectory to one transaction, where all points visited by such trajectory is considered as items
in the corresponding transaction. We integrated the CBPM framework with the first phase (Min-
ing Compact Sequential Patterns) of RegMiner algorithm [16]. Figures 16 present the runtime and

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:28 Y. Djenouri et al.

Fig. 16. Runtime (seconds) and percentage (%) of the frequent patterns of the RegMiner algorithm on T-Drive
trajectory database with and without using the CBPM framework.

Fig. 17. Runtime (seconds) and percentage (%) of the frequent patterns of the AllMining algorithm on hos-
pital event log with and without using the CBPM framework.

the percentage of frequent patterns of the original RegMiner with and without using exact and
approximate strategy of CBPM framework. The results reveal the stability of RegMiner in terms
of runtime performance, when using CPBM framework, this is without losing on the percentage
of satisfied patterns (up to 89% for all cases). This is explained by the fact only highly correlated
trajectories are mined together, instead of exploring the whole T-Drive trajectory database.

Case study: Business intelligence. This experiment aims to show the performance of the pro-
posed framework on real data called Hospital, was created by van Dongen, B.F on 2011. It is a
real life event log of a Dutch academic hospital, originally intended for use in the first Business
Process Intelligence Contest (BPIC 2011). It contains 150.291 events and 1.143 of traces. This in-
stance is modelled as a Spaghetti process. It is difficult to analyze and extract information from the
activity graph of that instance, because traces are dense and contain a high number of events per
trace. Both instances are published by the Eindhoven University of Technology and can be down-
loaded from https//data.4tu.nl/repository/collection:events_logs_real. We integrated the CBPM
framework with the AllMining algorithm [26]. Figures 17 present the runtime and the percent-
age of frequent patterns of the original AllMining with and without using exact and approximate

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

https//data.4tu.nl/repository/collection:events_logs_real

Exploring Decomposition for Solving Pattern Mining Problems 15:29

Fig. 18. Speedup of the GPU-CBPM framework.

strategy of CBPM framework. The results reveal the stability of AllMining in terms of runtime
performance, when using CPBM framework, this is without losing on the percentage of satisfied
patterns (up to 92% for all cases). This is explained by the fact only highly correlated traces are
mined together, instead of exploring the whole event log. In addition, our algorithm is able to
discover relevant patterns with semantic interpretation. For instance,

(1) The pattern (Complete Fourth Quarter, support=25%), which indicates that 25% of the
activities have been completed during the fourth quarter of the year.

(2) The pattern (General Lab Clinical Chemistry First Quarter, support=33%), which indicates
that 33% of the operations have been performed during the first quarter of the year by
General Lab Clinical Chemistry.

(3) The pattern (First Quarter, support=39), which indicates 39% of activities have started
during the first quarter of the year.

6.4 Performance of the Parallel Version

The GPU-CBPM has been implemented using the CUDA package. Experiments have been carried
out on a CPU host coupled with a GPU device. The CPU host is a 64-bit quad-core Intel Xeon E5520
with a clock speed of 2.27 GHz. The GPU device is an Nvidia Tesla C2075 with 448 CUDA cores (14
multiprocessors with 32 cores each) and a clock speed of 1.15 GHz. It has 2.8 GB of global mem-
ory, 49.15 KB of shared memory, and a warp size of 32. Both the CPU and GPU are used in single
precision. The parallel version GPU-CBPM is evaluated using the speed up, which is determined
by the ratio on runtime of parallel algorithm and the runtime of the serial version. We used the
parallel implementation of Zhang’s work [90] in the mining process for finding the relevant pat-
terns on each cluster. Figure 16 present the speedup of our GPU implementation compared to the
serial implementation using IBM Synthetic Data Generator for Itemsets and Sequences to gener-
ate 1 million of transactions and 10,000 different items. The use of IBM Synthetic Data Generator
allows to generate sparse transactions (transactions with high number of items), very common
way to validate parallel approaches on GPU. We also used different ways to decompose the trans-
actions using k-means and DBSCAN algorithms. By varying with the minimum support values
from 90% to 1%, the speedup of our GPU implementation increases and reaches 332 for sequence
transactions database using k-means algorithm. The results reveal that the speedup on sequence
database, and with low minimum support values is more interested than speedup on itemset data-
base, and with high minimum support values. This could be explained by the fact that the parallel

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:30 Y. Djenouri et al.

Table 5. Percentage of Amount of Time of the Three Steps of GPU-CBPM Framework

GPU-CBPM(Exact) GPU-CBPM(Approximate)

Dataset #Cluster Decomposition Mining Postprocessing Decomposition Mining Postprocessing

Frequent Itemset

Generator

2 15 71 14 21 79 0

5 18 70 12 26 74 0

10 23 65 12 29 71 0

Sequence

Generator

2 12 77 11 20 80 0

5 15 76 9 27 73 0

10 19 73 8 29 71 0

Fig. 19. Performance of the GPU-CBPM framework on big data.

implementation performs well on complex pattern mining problem, and with huge search space.
Indeed, sequential pattern mining is more complex than frequent itemset mining problem, and
setting low minimum support values engenders more number of candidate patterns compared to
those generated by setting high number of minimum support values. The results also reveal that
the way of decomposing transactions influences on the performance of our GPU implementation.
Thus, parallel implementation with k-means highly outperforms DBSCAN scenario in all cases,
and whatever the minimum support value. Indeed, with k-means, our GPU implementation reaches
speedup of 332, but with DBSCAN, our GPU implementation does not exceed 170. These results
are explained by the fact that k-means generates clusters with approximately the same number of
transactions, whereas DBSCAN generates clusters with different number of transactions. As re-
sult, the load balancing between the GPU blocks using DBSCAN is minimized, and consequently
the synchronization cost will be high. This reduces the overall performance of our GPU imple-
mentation. Thinking about efficient strategies to reduce the synchronization cost of GPU-CBPM
is an open research issue of this work. Another experiment has been carried out to calculate the
percentage of amount of time of the three steps included in GPU-CBPM framework by using k-
means algorithm in the decomposition step. The results are reported in Table 5, regarding to this
table, we can say that the GPU-CBPM spent more time in the mining step for all cases. In addition,
when increasing with the number of clusters from 2 to 10, GPU-CBPM consumes much time in the
decomposition step, and less time in the mining step. This is due to distributed computing, where
high number of clusters have been processed in parallel by the GPU blocks.

The last experiments aim to test the scalability of the proposed framework on big data. Several
tests have been carried out by varying the number of GPU blocks, and data size in GB. Figure 19

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:31

presents the runtime in seconds, and the speedup of GPU-CBPM, and the baseline algorithms
(FiDoop-DP [84] and BigFIM [63]) using 40 GB of duplicate Korasak data. FiDoop-DP, and BigFIM
are both implemented on Spark, we adopt these algorithms to GPU archtiecture. Note that each
result is the standard deviation of 10 samples. With varying the number of GPU blocks from 64
to 1.024, the scalability of our approach is better than the two approaches. Thus, the runtime of
GPU-CBPM is decreased from more than 112.000 s, to less than 33.000 s, and the speedup of GPU-
CBPM is increased from less than 340 to more than 550. However, the two baseline approaches
exceed 150.000 for runtime, and do not reach 490 for speedup. All these results confirm the us-
ability of the proposed framework to deal with big data, which is a challenging issue in pattern
mining community. In addition, the use of the efficient mapping strategy between the clusters of
transactions and the GPU blocks considerably improves the mining process.

7 DISCUSSION AND FUTURE PERSPECTIVES

This section discusses the main findings from the application of the decomposition techniques to
the pattern mining problems.

• The first finding of this study is that the proposed framework can deal with big transaction
database. This is different from previous pattern mining approaches, which have long
execution times, while the whole transaction database is considered in the mining process.
The proposed framework is able to not only derive the relevant patterns from the trans-
actions but also study the different correlation and similarities between the transactions
and find out disjoint groups among them. In the context of pattern mining, we argue that
considering the decomposition techniques in the preprocessing step allows to quickly
derive the relevant patterns.

• From a data mining research standpoint, CBPM is an example of combining data mining
techniques. In our specific context, decomposition meets pattern mining for dealing with
big transaction databases and boost the mining process. This adaptation is implemented in
different phases, such as decomposition, and mining process.

• Another finding of this study is that high-performance computing tools benefits from the
data preprocessing by using decomposition. Thus, each node (GPU block in our case) deals
with similar transactions, which accelerates the mining process.

• The last observation is that the framework is generic and can be applied in any pattern
mining problem, contrary to the other algorithms, which can deal only a particular pattern
mining problem. The five pattern mining problems illustrated in this article are just an
example of applications of our framework. Other pattern mining problems such as erasable
patterns [65], occupancy patterns [38], and others may be solved by our framework.

Motivated by the promising results shown in this article, different directions may be investi-
gated:

(1) Improving the decomposition step. HAC, k-means, bisecting k-means, and DBSCAN
have been used as decomposition techniques. Additional techniques can possibly be used
for reducing the number of shared items. Thus, an interesting topics for future work is to
integrate other decomposition techniques into the CBPM framework, such as intelligent
hierarchical [10], overlapping [7], or methods from other fields such as entity resolution
and/or record linkage [5, 20, 41, 61]. Another thing that can be done is to find an appro-
priate mechanism to automatically fix the number of clusters. Using several runs to find
the best value of the number of clusters is not very efficient in practice, even for the GPU-
based parallel implementation. One way to address this issue is to create a knowledge

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:32 Y. Djenouri et al.

base containing each training transaction database, with the best value of the number
of clusters, and then study the correlation between the meta-features of the transaction
databases (number of items, number of transactions, sparsity value, etc.), and the best val-
ues of the number of clusters. This can help to automatically predict the best value of the
number of the clusters of the new transaction database.

(2) Improving the mining step. We plan to boost the performance of the CBPM and apply
it to big data mining applications by exploiting other high-performance computing tools
such as cluster computing [82]. In this context, strategies to deal with load balancing are
important. One way to address this issue is to develop decomposition strategies allowing
to find out equitable clusters in terms of number of transactions per cluster. Another way
is to develop new strategies for repairing clusters to find clusters with approximately
the same number of transactions. Applying CBPM on MapReduce is also an alternative
approach for improving the mining step. Performing the partitioning of transactions as
pre-processing, and not in the mapping stage, may address the drawbacks of FiDoop-DP
algorithm [84].

(3) Case studies. We already show in this article two case studies of an application of CBPM
in the trajectory analysis, and business intelligence. Motivated by the promising results
shown in these two first case studies, we plan to extend CBPM for solving domain-specific
complex problems requiring the mining of big data. This can be found, for instance, in the
context of other business intelligence applications [37] or in the context of mining finan-
cial data [74]. In particular, runtime performance can be particularly critical in automated
trading applications where profits are often made exploiting volatility of share values or
currency rates in extremely short time intervals. In these cases, pattern mining algorithms
able to discover relevant patterns extremely quickly is likely to open up new opportuni-
ties for more intelligent trading. Other potential use is the mining of sensor data, notably
for realtime applications related to internet of things and cyber-physical systems such as
road traffic management and related services [27], energy management in smart buildings
and smart grids [24], where the mining process is required to be performed within a very
short latency.

8 CONCLUSION

We have introduced a new intelligent pattern mining framework, called clustering-based pattern
mining (CBPM). It is shown that CBPM discovers relevant patterns by studying the correlation
between the transaction database. The set of transactions are first partitioned using clustering al-
gorithms, where the high correlated transactions are grouped together. From each cluster of trans-
actions, the pattern mining algorithm is launched to discover the relevant patterns, where two,
approximate and exact, strategies have been investigated. The CBPM framework has been stud-
ied theoretically and experimentally. From the theoretical perspective, the complexity of CBPM is
determined for the most common and recent pattern mining algorithms. The results showed that
CBPM reduces the complexity of the pattern mining algorithms in terms of the number of clus-
ters. From the experimental evaluation, the CBPM framework has been integrated in the SPMF
tool, where five case studies have been provided, i.e., the FIM, WIM, UIM, HUIM, and SPM. The
results reveal that by using the CBPM, both the runtime and memory usage have been reduced
for all tested algorithms, and for both approximate and exact strategies. Moreover, with the exact
strategy, the scalability performance is improved without losing the quality of the returned pat-
terns. However, for the approximate strategy, the scalability is largely improved, but with a small
loss in the quality and the number of the returned patterns. Thus, the number of the satisfied pat-
terns is up to 89% for all cases, including two real case studies of T-Drive trajectory database and

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:33

hospital process mining analytic. To boost the performance of the CPBM, a GPU-based version of
CBPM is investigated. It provides efficient mapping between the GPU-blocks and the clusters of
transactions, where each cluster of transactions is handled by one GPU block. The results reveal
that our GPU implementation achieves significant speedup of up to 552× on a single GPU using
big transaction databases.

REFERENCES

[1] Charu C. Aggarwal and Jiawei Han. 2014. Frequent Pattern Mining. Springer.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items in large

databases. In ACM SIGMOD Record, Vol. 22. 207–216.

[3] Usman Ahmed, Jerry Chun-Wei Lin, Gautam Srivastava, Rizwan Yasin, and Youcef Djenouri. 2020. An evolutionary

model to mine high expected utility patterns from uncertain databases. IEEE Trans. Emerg. Top. Comput. Intell. (2020).

In Press.

[4] Usman Ahmed, Jerry Chun-Wei Lin, Jimmy Ming-Tai Wu, Youcef Djenouri, Gautam Srivastava, and Suresh Kumar

Mukhiya. 2020. Efficient mining of pareto-front high expected utility patterns. In Proceedings of the International

Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Springer, 872–883.

[5] Amin Allam, Spiros Skiadopoulos, and Panos Kalnis. 2018. Improved suffix blocking for record linkage and entity

resolution. Data Knowl. Eng. 117 (2018), 98–113.

[6] Gennady Andrienko, Natalia Andrienko, Georg Fuchs, and Jose Manuel Cordero Garcia. 2018. Clustering trajectories

by relevant parts for air traffic analysis. IEEE Trans. Visual. Comput. Graph. 24, 1 (2018), 34–44.

[7] Andrea Baraldi and Palma Blonda. 1999. A survey of fuzzy clustering algorithms for pattern recognition. I. IEEE Trans.

Syst. Man. Cybernet. Part B (Cybernet.) 29, 6 (1999), 778–785.

[8] Elena Baralis, Luca Cagliero, Paolo Garza, and Luigi Grimaudo. 2015. PaWI: Parallel weighted itemset mining by

means of MapReduce. In Proceedings of the IEEE International Congress on Big Data 2015. 25–32.

[9] Mansurul A. Bhuiyan and Mohammad Al Hasan. 2014. An iterative MapReduce-based frequent subgraph mining

algorithm. EEE Trans. Knowl. Data Eng. 27, 3 (2014), 608–620.

[10] Athman Bouguettaya, Qi Yu, Xumin Liu, Xiangmin Zhou, and Andy Song. 2015. Efficient agglomerative hierarchical

clustering. Expert Syst. Appl. 42, 5 (2015), 2785–2797.

[11] Peter Braun, Alfredo Cuzzocrea, Carson K. Leung, Adam G. M. Pazdor, Joglas Souza, and Syed K. Tanbeer. 2019.

Pattern mining from big IoT data with fog computing: Models, issues, and research perspectives. In Proceedings of

the IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid’19). 854–891.

[12] Huong Bui, Bay Vo, Ham Nguyen, Tu-Anh Nguyen-Hoang, and Tzung-Pei Hong. 2018. A weighted N-list-based

method for mining frequent weighted itemsets. Expert Syst. Appl. 96 (2018), 388–405.

[13] Raymond Chan, Qiang Yang, and Yi-Dong Shen. 2003. Mining high-utility itemsets. In Proceedings of the 3rd IEEE

International Conference on Data Mining (ICDM’03) 2003. 19–26.

[14] Yan Chen and Aijun An. 2016. Approximate parallel high-utility itemset mining. Big Data Res. 6 (2016), 26–42.

[15] David W. Cheung, Vincent T. Ng, Ada W. Fu, and Yongjian Fu. 1996. Efficient mining of association rules in distributed

databases. IEEE Trans. Knowl. Data Eng. 8, 6 (1996), 911–922.

[16] Dong-Wan Choi, Jian Pei, and Thomas Heinis. 2017. Efficient mining of regional movement patterns in semantic

trajectories. Proc. VLDB Endow. 10, 13 (2017), 2073–2084.

[17] Chun-Kit Chui, Ben Kao, and Edward Hung. 2007. Mining frequent itemsets from uncertain data. In Proceedings of

the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 47–58.

[18] William H. E. Day and Herbert Edelsbrunner. 1984. Efficient algorithms for agglomerative hierarchical clustering

methods. J. Class. 1, 1 (1984), 7–24.

[19] Hugo De Oliveira, Vincent Augusto, Baptiste Jouaneton, Ludovic Lamarsalle, Martin Prodel, and Xiaolan Xie. 2020.

Optimal process mining of timed event logs. Info. Sci. 528 (2020), 58–78.

[20] Timothy De Vries, Hui Ke, Sanjay Chawla, and Peter Christen. 2011. Robust record linkage blocking using suffix

arrays and Bloom filters. ACM Trans. Knowl. Discov. Data 5, 2 (2011), 9.

[21] Jochen De Weerdt, Seppe Vanden Broucke, Jan Vanthienen, and Bart Baesens. 2013. Active trace clustering for im-

proved process discovery. IEEE Trans. Knowl. Data Eng. 25, 12 (2013), 2708–2720.

[22] Zhi-Hong Deng and Sheng-Long Lv. 2015. PrePost+: An efficient N-lists-based algorithm for mining frequent itemsets

via Children–Parent equivalence pruning. Expert Syst. Appl. 42, 13 (2015), 5424–5432.

[23] Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes, Wagner Meira, and Srinivasan Parthasarathy. 2019. Fractal: A

general-purpose graph pattern mining system. In Proceedings of the International Conference on Management of Data.

1357–1374.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:34 Y. Djenouri et al.

[24] Djamel Djenouri, Roufaida Laidi, Youcef Djenouri, and Ilangko Balasingham. 2019. Machine learning for smart build-

ing applications: Review and taxonomy. ACM Comput. Surveys 52, 2 (2019), 24.

[25] Youcef Djenouri, Asma Belhadi, and Riadh Belkebir. 2018. Bees swarm optimization guided by data mining techniques

for document information retrieval. Expert Syst. Appl. 94 (2018), 126–136.

[26] Youcef Djenouri, Asma Belhadi, and Philippe Fournier-Viger. 2018. Extracting useful knowledge from event logs: A

frequent itemset mining approach. Knowl.-Based Syst. 139 (2018), 132–148.

[27] Youcef Djenouri, Asma Belhadi, Jerry Chun-Wei Lin, Djamel Djenouri, and Alberto Cano. 2019. A survey on urban

traffic anomalies detection algorithms. IEEE Access (2019).

[28] Youcef Djenouri, Ahcene Bendjoudi, Zineb Habbas, Malika Mehdi, and Djamel Djenouri. 2017. Reducing thread di-

vergence in GPU-based bees swarm optimization applied to association rule mining. Concurr. Comput.: Pract. Exper.

29, 9 (2017).

[29] Youcef Djenouri, Ahcene Bendjoudi, Malika Mehdi, Nadia Nouali-Taboudjemat, and Zineb Habbas. 2015. GPU-based

bees swarm optimization for association rules mining. J. Supercomput. 71, 4 (2015), 1318–1344.

[30] Youcef Djenouri and Marco Comuzzi. 2017. Combining Apriori heuristic and bio-inspired algorithms for solving the

frequent itemsets mining problem. Info. Sci. 420 (2017), 1–15.

[31] Youcef Djenouri, Marco Comuzzi, and Djamel Djenouri. 2017. SS-FIM: Single scan for frequent itemsets mining

in transactional databases. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Springer, 644–654.

[32] Yocuef Djenouri, Djenouri Djamel, and Zineb Djenoouri. 2017. Data-mining-based decomposition for solving

MAXSAT problem: Towards a new approach. IEEE Intell. Syst. 32, 4 (2017), 48–58.

[33] Youcef Djenouri, Djamel Djenouri, Jerry Chun-Wei Lin, and Asma Belhadi. 2019. Single scan polynomial algo-

rithms for frequent itemset mining in big databases. In Proceedings of the IEEE Congress on Evolutionary Computation

(CEC’19). IEEE, 1453–1460.

[34] Youcef Djenouri, Chun-Wei Lin Jerry, Nørvåg Kjetil, and Heri Ramampiaro. 2019. Highly efficient pattern mining

based on transaction decomposition. In Proceedings of the IEEE International Conference on Data Engineering. In press.

[35] Emre Eftelioglu, Shashi Shekhar, Dev Oliver, Xun Zhou, Michael R. Evans, Yiqun Xie, James M. Kang, Renee

Laubscher, and Christopher Farah. 2014. Ring-shaped hotspot detection: A summary of results. In Proceedings of

the IEEE International Conference on Data Mining (ICDM’14). IEEE, 815–820.

[36] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-based algorithm for discovering clus-

ters in large spatial databases with noise. In Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (KDD’96). 226–231.

[37] Shaokun Fan, Raymond Y. K. Lau, and J. Leon Zhao. 2015. Demystifying big data analytics for business intelligence

through the lens of marketing mix. Big Data Res. 2, 1 (2015), 28–32.

[38] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, and S. Yu Philip. 2019. HUOPM:

High-utility occupancy pattern mining. IEEE Trans. Cybernet. 50, 3 (2019), 1195–1208.

[39] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. 2007. Trajectory pattern mining. In Proceedings of

the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 330–339.

[40] Bart Goethals. 2003. Survey on frequent pattern mining. Univ. Helsinki 19 (2003), 840–852.

[41] Marios Hadjieleftheriou, Nick Koudas, and Divesh Srivastava. 2009. Incremental maintenance of length normalized

indexes for approximate string matching. In Proceedings of the ACM SIGMOD International Conference on Management

of Data. ACM, 429–440.

[42] Lieve Hamers et al. 1989. Similarity measures in scientometric research: The Jaccard index versus Salton’s cosine

formula. Info. Process. Manage. 25, 3 (1989), 315–18.

[43] Eui-Hong Han, George Karypis, and Vipin Kumar. 2000. Scalable parallel data mining for association rules. IEEE

Trans. Knowl. Data Eng. 12, 3 (2000), 337–352.

[44] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate generation. In ACM SIGMOD

Record, Vol. 29. 1–12.

[45] Steven Hill, Bismita Srichandan, and Rajshekhar Sunderraman. 2012. An iterative mapreduce approach to frequent

subgraph mining in biological datasets. In Proceedings of the ACM Conference on Bioinformatics, Computational Biology

and Biomedicine. ACM, 661–666.

[46] Rami Ibrahim and M. Omair Shafiq. 2018. Towards a new approach to empower periodic pattern mining for massive

data using map-reduce. In Proceedings of the IEEE International Conference on Big Data (Big Data). IEEE, 2206–2215.

[47] Asif Javed and Ashfaq Khokhar. 2004. Frequent pattern mining on message passing multiprocessor systems. Distrib.

Parallel Databases 16, 3 (2004), 321–334.

[48] Liheng Jian, Cheng Wang, Ying Liu, Shenshen Liang, Weidong Yi, and Yong Shi. 2013. Parallel data mining techniques

on graphics processing unit with compute unified device architecture (CUDA). J. Supercomput. 64, 3 (2013), 942–967.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

Exploring Decomposition for Solving Pattern Mining Problems 15:35

[49] Ruoming Jin, Ge Yang, and Gagan Agrawal. 2005. Shared memory parallelization of data mining algorithms: Tech-

niques, programming interface, and performance. IEEE Trans. Knowl. Data Eng. 17, 1 (2005), 71–89.

[50] Murat Kantarcioglu and Chris Clifton. 2004. Privacy-preserving distributed mining of association rules on horizon-

tally partitioned data. IEEE Trans. Knowl. Data Eng. 16, 9 (2004), 1026–1037.

[51] Tuong Le, Bay Vo, Van-Nam Huynh, Ngoc Thanh Nguyen, and Sung Wook Baik. 2020. Mining top-k frequent patterns

from uncertain databases. Appl. Intell. 50, 5 (2020), 1487–1497.

[52] Carson Kai-Sang Leung and Yaroslav Hayduk. 2013. Mining frequent patterns from uncertain data with MapReduce

for big data analytics. In Proceedings of the International Conference on Database Systems for Advanced Applications.

Springer, 440–455.

[53] Haifeng Li, Ning Zhang, Jianming Zhu, Yue Wang, and Huaihu Cao. 2018. Probabilistic frequent itemset mining over

uncertain data streams. Expert Syst. Appl. 112 (2018), 274–287.

[54] Yun Li, Jie Xu, Yun-Hao Yuan, and Ling Chen. 2017. A new closed frequent itemset mining algorithm based on GPU

and improved vertical structure. Concurr. Comput.: Pract. Exper. 29, 6 (2017).

[55] Zhenhui Li, Bolin Ding, Jiawei Han, and Roland Kays. 2010. Swarm: Mining relaxed temporal moving object clusters.

Proc. VLDB Endow. 3, 1–2 (2010), 723–734.

[56] Chun-Wei Lin, Tzung-Pei Hong, and Wen-Hsiang Lu. 2011. An effective tree structure for mining high-utility itemsets.

Expert Syst. Appl. 38, 6 (2011), 7419–7424.

[57] Junqiang Liu, Ke Wang, and Benjamin C. M. Fung. 2012. Direct discovery of high-utility itemsets without candidate

generation. In Proceedings of the IEEE International Conference on Data Mining. IEEE, 984–989.

[58] Tingyu Liu, Yalong Cheng, and Zhonghua Ni. 2012. Mining event logs to support workflow resource allocation.

Knowl.-Based Syst. 35 (2012), 320–331.

[59] Ying Liu, Wei-keng Liao, and Alok Choudhary. 2005. A two-phase algorithm for fast discovery of high-utility itemsets.

In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 689–695.

[60] James MacQueen et al. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings

of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1. 281–297.

[61] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. 2000. Efficient clustering of high-dimensional data sets with

application to reference matching. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 169–178.

[62] Iris Miliaraki, Klaus Berberich, Rainer Gemulla, and Spyros Zoupanos. 2013. Mind the gap: Large-scale frequent

sequence mining. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 797–808.

[63] Sandy Moens, Emin Aksehirli, and Bart Goethals. 2013. Frequent itemset mining for big data. In Proceedings of the

IEEE International Conference on Big Data. 111–118.

[64] Ariel Monteserin and Marcelo G. Armentano. 2018. Influence-based approach to market basket analysis. Info. Syst.

78 (2018), 214–224.

[65] Linh Nguyen, Giang Nguyen, and Bac Le. 2019. Fast algorithms for mining maximal erasable patterns. Expert Syst.

Appl. 124 (2019), 50–66.

[66] Loan T. T. Nguyen, Phuc Nguyen, Trinh D. D. Nguyen, Bay Vo, Philippe Fournier-Viger, and Vincent S. Tseng. 2019.

Mining high-utility itemsets in dynamic profit databases. Knowl.-Based Syst. 175 (2019), 130–144.

[67] Srinivasan Parthasarathy, Mohammed Javeed Zaki, Mitsunori Ogihara, and Wei Li. 2001. Parallel data mining for

association rules on shared-memory systems. Knowl. Info. Syst. 3, 1 (2001), 1–29.

[68] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming Chen, Umeshwar Dayal, and

Mei-Chun Hsu. 2004. Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Trans. Knowl.

Data Eng.11 (2004), 1424–1440.

[69] Matteo Riondato, Justin A DeBrabant, Rodrigo Fonseca, and Eli Upfal. 2012. PARMA: A parallel randomized algorithm

for approximate association rules mining in MapReduce. In Proceedings of the 21st ACM International Conference on

Information and Knowledge Management. 85–94.

[70] Eliana Salvemini, Fabio Fumarola, Donato Malerba, and Jiawei Han. 2011. Fast sequence mining based on sparse

id-lists. In Proceedings of the International Symposium on Methodologies for Intelligent Systems. 316–325.

[71] Minseok Song, Christian W Günther, and Wil M. P. Van der Aalst. 2008. Trace clustering in process mining. In

Proceedings of the International Conference on Business Process Management. Springer, 109–120.

[72] Gautam Srivastava, Jerry Chun-Wei Lin, Alireza Jolfaei, Yuanfa Li, and Youcef Djenouri. 2020. Uncertain-driven an-

alytics of sequence data in IoCV environments. IEEE Trans. Intell. Transport. Syst. In Press.

[73] Michael Steinbach, George Karypis, Vipin Kumar, et al. 2000. A comparison of document clustering techniques. In

Proceedings of the KDD Workshop on Text Mining, Vol. 400. Boston, 525–526.

[74] Jie Sun and Hui Li. 2008. Data mining method for listed companies’ financial distress prediction. Knowl.-Based Syst.

21, 1 (2008), 1–5.

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

15:36 Y. Djenouri et al.

[75] Niek Tax, Benjamin Dalmas, Natalia Sidorova, Wil M. P. van der Aalst, and Sylvie Norre. 2018. Interest-driven dis-

covery of local process models. Info. Syst. 77 (2018), 105–117.

[76] Md Zia Uddin. 2019. A wearable sensor-based activity prediction system to facilitate edge computing in smart health-

care system. J. Parallel Distrib. Comput. 123 (2019), 46–53.

[77] Trang Van, Bay Vo, and Bac Le. 2018. Mining sequential patterns with itemset constraints. Knowl. Info. Syst. (2018),

1–20.

[78] Wil Van der Aalst, Ton Weijters, and Laura Maruster. 2004. Workflow mining: Discovering process models from event

logs. IEEE Trans. Knowl. Data Eng. 16, 9 (2004), 1128–1142.

[79] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. 2013. GPU computing for parallel local search metaheuristic

algorithms. IEEE Trans. Comput. 62, 1 (2013), 173–185.

[80] José R. Vázquez-Canteli, Stepan Ulyanin, Jérôme Kämpf, and Zoltán Nagy. 2019. Fusing TensorFlow with building

energy simulation for intelligent energy management in smart cities. Sustain. Cities Soc. 45 (2019), 243–257.

[81] Bay Vo, Tuong Le, Frans Coenen, and Tzung-Pei Hong. 2016. Mining frequent itemsets using the N-list and subsume

concepts. Int. J. Mach. Learn. Cybernet. 7, 2 (2016), 253–265.

[82] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. 2014. Data mining with big data. EEE Trans. Knowl. Data

Eng. 26, 1 (2014), 97–107.

[83] Yaling Xun, Jifu Zhang, and Xiao Qin. 2016. FIDoop: Parallel mining of frequent itemsets using MapReduce. IEEE

Trans. Syst. Man Cybernet.: Syst. 46, 3 (2016), 313–325.

[84] Yaling Xun, Jifu Zhang, Xiao Qin, and Xujun Zhao. 2017. FiDoop-DP: Data partitioning in frequent itemset mining

on Hadoop clusters. IEEE Trans. Parallel Distrib. Syst. 28, 1 (2017), 101–114.

[85] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with knowledge from the physical world. In

Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 316–324.

[86] Unil Yun. 2007. Efficient mining of weighted interesting patterns with a strong weight and/or support affinity. Info.

Sci. 177, 17 (2007), 3477–3499.

[87] Unil Yun. 2009. On pushing weight constraints deeply into frequent itemset mining. Intell. Data Anal. 13, 2 (2009),

359–383.

[88] Unil Yun and John J. Leggett. 2005. WFIM: Weighted frequent itemset mining with a weight range and a minimum

weight. In Proceedings of the SIAM International Conference on Data Mining. 636–640.

[89] Mohammed J. Zaki. 1999. Parallel and distributed association mining: A survey. IEEE Concurr. 7, 4 (1999), 14–25.

[90] Fan Zhang, Yan Zhang, and Jason Bakos. 2011. GPApriori: Gpu-accelerated frequent itemset mining. In Proceedings

of the IEEE International Conference on Cluster Computing. 590–594.

[91] Liang Zheng, Yi Yang, and Qi Tian. 2018. SIFT meets CNN: A decade survey of instance retrieval. IEEE Trans. Pattern

Anal. Mach. Intell. 40, 5 (2018), 1224–1244.

[92] Souleymane Zida, Philippe Fournier-Viger, Jerry Chun-Wei Lin, Cheng-Wei Wu, and Vincent S. Tseng. 2017. EFIM:

A fast and memory efficient algorithm for high-utility itemset mining. Knowl. Info. Syst. 51, 2 (2017), 595–625.

Received April 2020; revised October 2020; accepted November 2020

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 15. Publication date: February 2021.

