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ABSTRACT

This paper investigates the use of different room impulse re-
sponse (RIR) simulation methods for synthesizing training
data for deep neural network-based direction of arrival (DOA)
estimation of speech in reverberant rooms.

Different sets of synthetic RIRs are obtained using the im-
age source method (ISM) and more advanced methods includ-
ing diffuse reflections and/or source directivity. Multi-layer
perceptron (MLP) deep neural network (DNN) models are
trained on generalized cross correlation (GCC) features ex-
tracted for each set. Finally, models are tested on features
obtained from measured RIRs.

This study shows the importance of training with RIRs
from directive sources, as resultant DOA models achieved
up to 51% error reduction compared to the steered response
power with phase transform (SRP-PHAT) baseline (signifi-
cant with p << .01), while models trained with RIRs from
omnidirectional sources did worse than the baseline. The per-
formance difference was specifically present when estimating
the azimuth of speakers not facing the array directly.

Index Terms— synthetic data, speech source localiza-
tion, direction of arrival estimation, room impulse response,
deep neural network, generalized cross correlation features

1. INTRODUCTION

DNN-based methods are nowadays successfully applied to
many different tasks in the field of speech processing. For
training such methods, there are large datasets available,
containing annotated single microphone recordings of clean
speech. These datasets can be converted into multichannel
datasets for microphone array processing by convolving the
clean speech with recorded room impulse responses (RIRs)
specific for each array element and acoustic setting.

However, learning-based methods can only be expected
to be widely applicable in realistic settings if they are trained
for exactly that. This issue is two-fold: first of all, to ensure
results apply to a wide range of rooms of varying acoustical
characteristics, the training set needs to contain a similar vari-
ety [1], and secondly, the training data must approach reality
as much as possible.

While recorded RIRs are a direct reflection of reality, it
quickly becomes too difficult or expensive to record a suf-

ficient number of RIRs from many different environments.
Instead models can be trained on single channel recordings
augmented with synthetic RIR data.

Here it is common to rely on the relatively simple image
source method (ISM) room impulse response (RIR) simula-
tion technique [2], where scattering effects that cause the late
reflections of the diffuse field are ignored for simplicity. Ad-
ditionally, all sources are assumed to behave in an omnidirec-
tional manner, while a speaking person is a directive source.

This paper therefore investigates how more advanced RIR
simulation methods can affect final model performance on
real data. We have chosen to do this through the DOA estima-
tion task, because of its central role in multi-channel speech
processing. The ability to discriminate on where speech
originates from is crucial for applications like multi-channel
speech enhancement, speaker identification and automatic
speech recognition.

Classic approaches to DOA estimation include multi-
ple signal classification (MUSIC) [3], the least squares (LS)
method [4], multi-channel cross correlation (MCCC) [5],
and the steered response power with phase transform (SRP-
PHAT) [6]. A main challenge is the multipath propaga-
tion effect where microphone sensors not only receive the
direct-path signal, but also attenuated signals due to both the
specular and diffuse reflections.

Inspired by the success of DNNs in many fields, several
such approaches have been proposed for sound/speech source
localisation (SSL) [7, 8, 9, 10, 11, 12, 13, 14].

Research based on training data generated from measured
RIRs is automatically constricted to a severely limited num-
ber of rooms [7, 8]. Others rely on the simulation of just one
or two acoustical environments [9, 10]. Xiao et al. and Per-
otin et al. simulated more varied data for DOA estimation of
speech [11, 12, 13], but they, as is common practise, relied on
ISM with omnidirectional sources for RIR simulation.

Only recently have researchers attempted to improve deep
learning model performance in speech processing tasks, by
improving the quality of the RIRs used for synthesizing data.
Tang et al. found significant performance increases on an au-
tomatic speech recognition and keyword spotting task in [15]
by using an acoustic simulation method that includes diffuse
reflections. Using the same method, Tang et al. also observed
improved performance at a DOA estimation task [14].

In this study we further investigate the effect of RIR sim-



ulation methods on final DOA model performance. Our study
is unique in that we are, as far as we know, the first to inves-
tigate the effect of simulating speakers as directive sources.
Like Tang et al. we also study the effect of diffuse reflections,
but we rely on the GCC speech features and the MLP archi-
tecture proposed in [11], instead of ambisonic features and
CRNN architecture. We focus only on reverberance (no noise
added), and use our own dataset, which includes two test
sets that allow us to differentiate between results for speak-
ers looking directly at the array, and the more challenging
situation where speakers face the array at a 90◦ angle.

2. DATA ACQUISITION

2.1. Synthetic RIRs for training

We simulated RIRs with four different simulation methods
using the MATLAB package MCRoomSim [16]:

• ISM-omni: the basic RIR generated by ISM where
sources are modelled as omnidirectional. No scattering
and no diffuse field.

• ISM-dir: Like ISM-omni, but now sources are mod-
elled as directive speakers, with either an average male
or female directivity. No scattering and no diffuse field.

• WithDiffuse-omni: An advanced RIR with not just
specular reflections, but also a diffuse field due to scat-
tering, where sources are modelled as omnidirectional.

• WithDiffuse-dir: Like WithDiffuse-omni, but sources
are again modelled as directive speakers.

For each method, 18 000 training and 6000 validation
RIRs were simulated from three random source positions in
6000 and 2000 virtual rooms. Each room was randomly con-
figured with parameters drawn from the uniform distributions
specified in Table 1, ensuring evenly distributed target DOAs
in all directions. The average absorption of a room was deter-
mined from the drawn reverberation time with Eyring’s [17]
algorithm with air absorption taken into account.

Table 1. Details of random virtual room configuration
Item Parameter Min. Max.

Room width 3 m 8 m
size length 3 m 10 m

height 2.5 m 6 m
RT60 0.2 s 1 s
scattering coefficient 0 1

Array from walls 1 m -
position from floor 0.6 m 0.9 m
Speaker from walls 0.5 m -
position from floor 1 m 1.8 m

from array 0.5 m -
yaw (directive speakers only) -180◦ 180◦

2.2. Measured RIRs for testing

To create realistic test data, RIRs were measured manually
with a 9-channel circular array (planar) with 4 cm radius, po-
sitioned on a table approximately in the middle of a typical
rectangular meeting room with dimensions 4.5 x 3.8 x 2.6
m, and RT601kHz of 0.3. An NTi TalkBox was used to pro-
duce the sinusoidal sweeps required for RIR measurements.
This loudspeaker has human head-size like dimensions and is
specifically designed for human speech measurements.

Of the measured RIRs, 47 where obtained with the
speaker facing towards the array (the ‘Easy’ set), and 107
with the speaker rotated at 90◦ (the ‘Challenging’ set). The
true DOAs were measured with an uncertainty of ± 1◦ at
random angles uniformly distributed around the array, at a
distance varying between 1 and 2 m (above critical distance).

2.3. Obtaining Speech Features

Our preprocessing steps are inspired by [11], but the specifics
differ. We used ‘NB Tale’, a Norwegian speech database.
This database contains circa 19 hours of training data and
circa 5 hours of validation data from a total of 380 speakers.

First the speech files were passed through the open source
voice activity detector from WebRTC with a hop length of
30 ms, zero minimum silence length and strength 3. They
were then convolved with (simulated or measured) RIRs to
create a reverberant multichannel speech sample, which was
resampled from 48 kHz to 16 kHz. We then selected a random
1 s long segment.

Lastly, GCC vectors with PHAT weighting were obtained
for each pair of microphone channels. For our array, the max-
imum distance between a pair of microphones is 8 cm, which
represents a maximum delay of 4 (0.08 m / 340 m/s × 16 000
Hz) time samples of each GCC vector. Hence, the GCC vec-
tor was truncated to the 9 centre time samples for each micro-
phone pair. From the 9 channels, we have 36 possible micro-
phone pairs, giving us 36 GCC vectors. Each of the vectors
was scaled so that its max value became 1, and then stacked
to obtain a single model input sample.

Due to the random selection of the speech segment, dif-
fuse reflections of earlier speech affect the model input sam-
ple, even if vector truncation removes later reflections. This
can be seen in Figure 1, which shows examples of the syn-
thetic input training samples for each simulation method,
given the same room size, source and array location. Less ag-
gressive truncation did not improve final model performance.

Using the above procedure, we created synthetic train-
ing and validation sets for each of the RIR simulation meth-
ods, with 18 000 training and 6000 validation samples per set.
The same procedure was also applied using the two types of
recorded RIRs to create two measured test sets called ‘Easy’
(speaker facing directly towards the array) and ‘Challenging’
(speaker at a 90◦ angle away from the array). The final test
sets had 517 ’Easy’ and 1177 ’Challenging’ input samples.
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Fig. 1. Examples of the GCC input feature for each method

3. DOA ESTIMATION MODEL

The DOA estimation task is most intuitively formulated as
a regression task where the continuous azimuth variable is
directly predicted from the input features. However, others
have noted advantages from converting the task into classi-
fication, where possible azimuths are separated into discrete
bins [11, 14]. In this paper, we include both.

For the regression formulation, we investigated two loss
functions, which we call the angular mean square error:

MSE] =
1

N

N∑
n=1

(
atan2

(
sin
(
ŷ − y

)
, cos (ŷ − y)

))2
,

(1)
and the angular mean absolute error:

MAE] =
1

N

N∑
n=1

∣∣∣ atan2 ( sin (ŷ − y) , cos (ŷ − y)
)∣∣∣, (2)

where ŷ and y are the true and estimated DOA respec-
tively, and the atan2 operator computes the arctangent of
the element-wise division of its first and second argument,
respecting signs of the arguments.

These are based on the general mean squared error (MSE)
and mean absolute error (MAE) loss functions, but ensure the
calculation is always based on the minimal error between two
angles, be it clockwise or anticlockwise. Output layers of
both regression formulations were given linear activation.

For the classification formulation, we used the standard
categorical crossentropy loss with either 72 (5◦ per bin) or
360 (1◦ per bin) classes. Both classification models were
given an output layer with softmax activation.

As model we chose the MLP neural network. First a wide
hyperparameter search was conducted for all datasets using

the tree-structured parzen estimator (TPE) approach [18], to
determine a single model topology that worked well for all
datasets. This search included varying the number of hid-
den layers, number of nodes per layer, type of activation, rate
of dropout, `1 or `2 regularization, batch normalization and
learning rate for the Adam optimizer.

From this, a general model with 3 hidden layers, each with
3072 hidden nodes and relu activation, was chosen for all
datasets and problem formulations. No batch normalisation
was applied. A new optimisation process was then started for
each combination of the 4 datasets and 4 loss functions. Now
only the learning rate and level of dropout was varied to find
the best model for each set, to ensure that results would be di-
rectly comparable. Classification models converged best with
high levels of dropout (circa 0.8), while regression models did
best without dropout.

Table 2 shows the MAE results for all model types and
all simulation methods, obtained for a validation test set spe-
cific for each simulation method. These errors do not reflect
real-life performance, but performance on synthetic valida-
tion set that was created in the same way as the training set
used to train each model. Therefore, the consistently lower
MAE for methods with omnidirectional sources merely shows
that these tasks are easier to learn, but it is not an indication
of how the resulting MLPs will deal with real data.

Table 2. MAE for each method’s synthetic validation set
Regression Classification

MSE] MAE] 1◦ bins 5◦ bins

ISM-omni 2.4◦ 1.8◦ 1.6◦ 2.3◦

ISM-dir 5.5◦ 5.0◦ 4.6◦ 4.7◦

WithDiffuse-omni 2.0◦ 1.4◦ 1.1◦ 2.0◦

WithDiffuse-dir 6.3◦ 4.3◦ 4.0◦ 4.4◦

4. RESULTS

All final models were tested with the exact same two mea-
sured test sets (‘Easy’ and ‘Challenging’), and performance
was evaluated with MAE for all models (independent of the
training loss function used!), to allow for direct comparison.
For Table 3, test samples are based on RIRs where the speaker
was facing directly towards the array. Table 4 shows the re-
sults for RIRs where the speaker faced past the array at a 90◦

angle. Testing with MSE or accuracy within 5◦ or 10◦ in-
stead of MAE resulted in the same trends, and are therefore
not included in this paper.

In our application, the variance of the error from the true
direction indicates system performance (assuming zero mean
error). We therefore apply the Brown-Forsythe statistical test
[19], which tests the variance of the distributions without a
strong assumption of normality. We report the test’s probabil-
ity results p, for relevant pairs of systems, in Section 5.



Table 3. MAE for the ‘Easy’ test set, where speakers face
directly towards the array

Regression Classification
MSE] MAE] 1◦ bins 5◦ bins

SRP-Phat 1.5◦

ISM-omni 2.2◦ 2.1◦ 1.4◦ 1.3◦

ISM-dir 3.0◦ 2.1◦ 1.5◦ 1.5◦

WithDiffuse-omni 2.8◦ 1.1◦ 1.3◦ 1.4◦

WithDiffuse-dir 3.8◦ 1.4◦ 1.1◦ 0.9◦

Table 4. MAE for the ‘Challenging’ test set, where speakers
face 90◦ away from the array

Regression Classification
MSE] MAE] 1◦ bins 5◦ bins

SRP-Phat 16.5◦

ISM-omni 18.2◦ 18.2◦ 19.1◦ 18.8◦

ISM-dir 12.7◦ 11.5◦ 8.9◦ 8.1◦
WithDiffuse-omni 19.7◦ 19.6◦ 18.6◦ 17.9◦

WithDiffuse-dir 13.0◦ 10.5◦ 9.9◦ 10.1◦

5. DISCUSSION

From Table 3 we observe that for the relatively easy task of
finding the correct azimuth of a speaker facing the array, all
models are able to estimate the DOA with high accuracy.

The training data simulation method starts to matter when
testing with samples where speakers looked past the ar-
ray, giving increased confounding reflections. In this case
(see Table 4) all directional data based MLPs outperformed
their omnidirectional equivalents and the SRP-Phat baseline
method significantly (p << .01). Simulating with directional
sources also increased the difficulty of the task given to the
SSL method as evident from the increase in validation error
(see Table 2). As such, results show that the MLPs were able
to learn relevant information from the directional simulations
that turned out to be applicable on measured data.

This is crucial given that we found no studies that simu-
lated directive sources to train learning-based SSL models.
Also, given the importance of localisation for many other
speech processing tasks like speech recognition and speech
enhancement, the conclusion may be valid for many other
multichannel speech applications.

We observe that for each DNN topology, either the sim-
ulation methods ISM-dir or WithDiff-dir leads to the highest
performance, and overall the performance difference between
the two was insignificant (p > .01). Adding a diffuse field
when simulating sources as omnidirectional also did not have
a significant effect (p > .01).

As such, in contrast with [14], we do not find benefit
(nor deterioration) from adding the diffuse field. However,
this may simply be because the chosen preprocessing steps to

generate speech features may have stopped the models from
learning relevant information from the diffuse field. We also
have to be careful to draw conclusions based on measure-
ments taken in a single meeting room, as its diffuse field is
not representative for all meeting rooms.

Observed trends are independent of the choice of loss
function and whether the problem is formulated as a regres-
sion or classification task. This provides evidence that the
obtained differences are indeed due to the different datasets
used for training, and not due to effects of biased hyperpa-
rameter tuning.

Like others [11, 14], we note that defining the DOA esti-
mation task as a classification task is advantageous as this for-
mulation resulted in our best performing models. Especially
the directive training sets contain samples that are too chal-
lenging for the network to learn. The regression network with
MSE] loss penalises large errors harshest, and as such the
learning process focuses most on these outliers. The classifi-
cation networks are on the other end of the spectrum - penalis-
ing all predictions outside the target bin equally, and as such,
their training focuses on the more informative samples. Ad-
ditionally, all classification networks required high levels of
dropout, indicating that smaller networks may work equally
well for this task formulation.

The focus of this study was on the effect of using more ad-
vanced RIR simulation techniques for generating better train-
ing data, and not on finding the best DOA estimator.

6. CONCLUSION

We synthesized different training sets to train MLP models
for a DOA estimation task from 4 different RIR simulation
techniques. The model trained on data from RIR simulation
techniques with directive sources, achieved up to a 51% lower
mean absolute error on a measurement-based test set than the
industry standard SRP-PHAT method, while equivalent mod-
els trained on the standard image source method with omni-
directional sources performed worse than this baseline.

Results show that, for improved real-life performance,
sources should be modelled as directive speakers, rather than
omnidirectional sources, especially for the situation where
the speaker is not directly looking at the array. This is an im-
portant conclusion given the widespread use of simple ISM
RIRs, indicating that the complexity of the RIR simulation
technique has been undervalued as a source of performance
gain for learning-based SSL. We further speculate that the
conclusion may hold true for other applications within multi-
channel speech processing.
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van Schaik, “Room acoustics simulation for multichan-
nel microphone arrays,” in International Symposium on
Room Acoustics, Melbourne, Australia, 2010.

[17] Carl F. Eyring, “Reverberation time in “Dead” rooms,”
The Journal of the Acoustical Society of America, vol.
1, no. 2A, pp. 168–168, 1930.

[18] James Bergstra, Rémi Bardenet, Yoshua Bengio, and
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