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Abstract—An unexpected failure or outage of one or multiple
system components can cause a new operational situation that
requires remedial actions. An important remedial action to model
correctly is islanding. Finding the transient stability of an island
is computationally heavy, and it may be necessary with a trade-
off between speed and accuracy in the classification of island
stability. This is especially the case if one has to perform a large
number of simulations.

In this paper, a decision tree based ensemble method is used
to predict the stability of islands in the power system during a
contingency event. A comparison study shows that the trained
model can contribute with a large reduction in time spent on
the transient stability assessment, while being substantially more
accurate than a static power flow simulation.

Index Terms—machine learning, power system stability, power
system dynamics, reliability

I. INTRODUCTION

The power system has traditionally been planned and op-
erated according to the N-1 criterion. This principle states
that the system should be able to withstand, at all times,
a credible contingency, i.e. an unexpected failure or outage
of a system component, in such a way that the system
is capable of accommodating the new operational situation
without violating operational security limits [1]. In the recent
European FP7 project GARPUR it was argued that a move
towards probabilistic reliability criteria aiming at minimiz-
ing the socio-economic cost of power system operation and
planning is desirable [2]. According to transmission system
operators (TSOs) one of the barriers preventing usage of
probabilistic criteria is that the fact that remedial actions may
fail is insufficiently accounted for [3]. However, considering
such failures will substantially increase the computational time
needed to perform the analyses necessary for planning and
operating the system.

For some networks, the most important remedial action to
model correctly is islanding [4]. However, analysing whether
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or not an island is stable is more computationally expensive
than performing a power flow analysis. Different stability
problems can occur during an islanding event. For instance
if there is a significant imbalance between produced and con-
sumed power, there may be under or over frequency resulting
in tripping of generation or shedding of load. Another problem
that may occur is that of transient stability, which is the
problem we will treat in this paper. Transient stability may be
analysed using time domain simulation or the extended equal
area criterion [5], [6]. The challenge of long computational
times when analysing large-scale power systems is discussed
in [7] and it is suggested to make use of the potential
that machine learning offers to increase the computational
speed in an security constrained optimal power flow (SCOPF).
Decision trees have also been proposed for determining tran-
sient stability in power systems [8], [9]. A good review of
papers including transient stability as a constraint in SCOPF is
included in [10], which uses a statistical method for including
transient stability.

The aim of this work is not to include transient stability as
a constraint in a SCOPF. It is rather to predict if an island
is stable or not for the purpose of a contingency analysis.
Preferably, the prediction should be faster than running a
computationally expensive simulation, and more accurate than
running a standard power flow. The findings will also be useful
for developing prediction models for other purposes as well,
although our focus is on contingency analyses.

This paper investigates if a decision tree ensemble based
classifier, XGBoost [11], can be used instead of a time
domain simulation to increase the accuracy of the analysis,
while keeping the simulation time low. Although the topic is
similar to that of [8], significant improvements have occurred
within the field of machine learning since then, and our
approach is focused towards the special case of island splitting.

To demonstrate our findings we present a comparison study
which investigates the difference and similarities of using time-
domain simulation, power flow analysis and machine learning
assisted power flow for contingency analysis in the case of
island splitting. The comparison study is based on the test
grid described in [12]. Some preliminary theory is presented
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in Section II. Our method is presented in Section III, the results
in Section IV, and the conclusions in Section V.

II. THEORY
A. Machine learning

Classification is a key problem in machine learning. The
goal is essentially to predict a discrete random variable Y
from another random variable X. More specifically, consider
the data set

D= {(xi,yi)|xi € X CR™,y; € £}.

where ¢ € {0,...,n}, when the data set contains n samples.
The goal is to learn functions ¢ : X — %, known as
classification rules or classifiers, that map their inputs onto a
discrete set of labels, each associated to a certain class. When
observing a new x, y is predicted to be ¢(z). We restrict our
attention in the following to binary classification; where the
set of labels is .¥ = {0,1}, corresponding to an unstable
and stable power system respectively. A regression tree is a
type of decision tree where the function with output associated
to an instance x is given by travelling from the root node
of the regression tree to a leaf, choosing (i.e. deciding) the
successor child at each node of the tree on the basis of a test
done on one of the features of x. Regression trees can be
used for classifying by predicting the probability that x is in a
certain class. For the regression trees we use XGBoost [11]
that implements a decision tree ensemble model consisting of
many regression trees for the probability of each class that
are then combined to one single prediction. In a classification
problem, XGBoost first generates a base classifier which is
subsequently expanded to reduce the variance of the overall
model. This expansion is called the boosting.

B. Transient stability

In this paper we will use machine learning to predict
whether or not synchronous machines remain stable after a
fault has split the system into two areas. This problem is
related to transient stability, and we will therefore give some
preliminaries in transient stability analysis. For more details
the interested reader may for instance refer to [13]. For the
analysis we will consider a single machine infinite bus (SMIB),
which is a generator connected to an infinite bus through a
line with a reactance X. The infinite bus can be viewed as an
aggregated generator that is so large that its voltage, frequency,
and angle will remain constant. For the generator we assume
that it can be modelled as a constant electric field E; behind
its synchronous reactance X,;. If we assume the mechanical
power to be constant P,, = P, we can write the swing
equation for the SMIB as

2H .. . E
0+ K40 = Pg— —+——sinb, 1
o + Ky 0 X+ X sin (L
where H is the inertia constant of the generator, K is the
damping factor, # is the rotor angle relative to the infinite bus,

and Uy is the voltage amplitude of the infinite bus.

A popular criterion for determining transient stability is the
equal area criterion:
Om
(P, — )0 =0, )
0o
where 6 is the relative rotor angle between the generator and
the infinite bus at the start of the disturbance, and 0,,, is the
maximum angle. Let us now consider a sudden increase in
the mechanical power from P,,o to P,;. From (1) we see
that this will accelerate the rotor leading to an increase in the
rotor angle until it reaches 6,,,. If the system is stable we see,
from (2), that at some point the electric power will have to be
larger than the mechanical power. When the electrical power
is larger than the mechanical power we see from (1) that the
rotor will be decelerated. In Fig 1, we have plotted (2) for
this case. In the figure, we see two areas, one representing
the acceleration phase, and one representing the deceleration
phase. The equal area criterion states that these areas should
be equal. The electrical power will typically drop during a
disturbance such as a short circuit and the rotor will be
accelerated. How fast the fault is cleared, so that the rotor
can be decelerated, is therefore important.

- Pe (9)
Aacc

Pe,maz T

Fig. 1. Figure illustrating the equal area criterion. Aacc and Agec refers to the
area under the curve in the accelerating and decelerating phase respectively.

C. Feature selection

To train the machine learning model we need to select
a set of features A’ that are given as input to the machine
learning model. From (1) and (2), we see that the following
power system variables are important for the transient stability:
generator loading, fault clearing time, post-fault reactance,
generator inertia, and generator and power system voltages.
Since we are interested in predicting if individual power
system islands are stable or not we will use the variables from
the equal area criterion aggregated per area. For the area inertia
we will use:

Mi:ZMq:wgozHgSg 3)

g<i
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where g denotes a generator in area %, wg is the synchronous
frequency in rad/s, Hy is the inertia constant, and S, is the
rating of machine g. For the angle of an area we use the centre

of inertia angle.
_ denggg
Egei Mg

where 6; is the angle of the voltage at the generator bus bar.
Preferably, we should have used the difference between the
rotor angle and the voltage angle at the generator bus bar.
However, we want to use variables readily available from a
power flow solution. For the voltages and reactances we use
the following variable

0; “4)

. Un
ur; = min J 5
t ci X/
g d.g

For uz; we also use the variables readily available for a power
flow, except X (’17 @ however, which is not a variable that has to
be calculated, unlike the grid reactance that is dependent on
contingencies and grid configuration.

We also calculate the following powers:

1 1
Pir=g > P Pia=g > Puc (6)
lei gEl
F, L ZF F L onaxF (7)
i,sum — & s L'imax — & X
’ Si o b S; gei 9

where P, ¢ is the power produced by machine g, P, 1, is the
power consumed by load [, F; is a flow between areas, and

S; is defined as
Si=> 5, ®)

gei

The clearing time for faults ¢, is also included as a feature.

III. METHOD

The aim of our method is to be able to compare the
results from a time-domain simulation, a power flow, and
a machine learning assisted power flow for the purpose of
contingency analysis, specifically when a system is split into
islands. To do this we developed a framework capable of
consistently generating training data and comparing methods,
which consists of a power system simulator, a data generation
scheme and the training of a machine learning model.

A. Power system simulator

The developed tool was implemented in Python using the
commercial software PowerFactory for the power flow and
time-domain simulations. It was important to ensure that each
contingency resulted in the same islands for all methods. To do
this, each simulation started with a contingency analysis using
a power flow. This implemented contingency analysis includes
a very simple implementation of remedial actions. It works by
disconnecting overloaded lines and buses that have a voltage
under 0.9p.u.. This is done in an iterative manner until there
are no more overloads in the system. In case some loads are
disconnected in this sequence, they are reported as lost. This

sequence of events are stored, so that the same sequence can
be run in the time-domain simulation. It should be noted that
PowerFactory assumes all islands with sufficient generation to
survive in power flow simulations.

The power system simulator can post process the results
from the power flow contingency analysis using a time-domain
simulation or a machine learning model. The software can also
store the state of the system prior to the contingency for the
sake of generating training data, or collecting features for the
machine learning model.

The time-domain simulation works by running the same se-
quence of events as the power flow contingency analysis after
the power flow contingency has finished, with the addition
of including a clearing time, randomly sampled from U 1
(seconds). If PowerFactory reports that one of the generators
in an island has lost synchronism during the simulation, the
island is considered unstable, and all load in that island is con-
sidered lost. The time-domain simulation is also responsible
for marking islands in the training data as stable or not.

The machine learning model takes the state of each island
from before the contingency happens and predicts whether or
not the island will be stable or not. To generate the features
for the prediction, a power flow is run on the operating state
without any contingencies. After a contingency resulting in
islands, the simulator finds the initial state of the components
prior to the system separation and calculates the features. The
machine learning model predicts a number R € [0, 1] for the
island, and the island is classified as either stable or unstable
based on a threshold value. All load is considered lost if the
island is predicted to be unstable.

B. Generating training data

The training data was generated by running the time-domain
simulation on contingencies resulting in island separation on
several operating states. This procedure will with m operating
states and n contingencies resulting in z islands result in
m X n X z data points. The operating states were generated
by tweaking the base cases presented in [12]. This was done
according to the following procedure, inspired by the method
presented in [8]:

Set base case:
o Select random base case from list of base cases.
Distribute generation:

« Retrieve the total active generation for each machine P

in the base case.

¢ A random number of generators, between 1 and 5, is set

as not in service and with zero generation.

e Choose Py, such that the generation of each machine

Peeni is sampled from N'(PY, ;,0°), truncated between
0 and S; where S; is the machine rating. The variance
o? is chosen such that P(Pye,; < 0) = 0.01.

Distribute load to areas:

o Let Py =0.99 Zz Pyen,i denote the total load level. The

factor of 0.99 is to account for line losses.

o Retrieve the total active load for each area P

base case.

N
gen

N

joad 1N the
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« Randomly set weights ¢ s.t. all (; = 1 except one (; = 5.
« Distribute the load, Pjy,q on the areas, based on ¢ and
P}, according to the following formula

¢ OPR
Pload = 70330[ (9)
¢ Plj(Yad

where the operator ® represents the Hadamard (element-
wise) product.
Distribute load within areas:

o To further distribute the load within each area, choose
new weights A sampled from U[; 1o associated to each
load in the area. Update the loads of the buses in a similar
manner as was done on the areas

= opy e
where Py} is the power distributed on the area, A, to
which the load belongs, in the preceding step. That is,
any one of the components of Pjgq.

By distributing load and generation in this way, one ends
up with not foo extreme deviations from the base case, since
loads and generations that in the base case are large, will have
a tendency to be large also when tweaked. This is useful in the
sense that the analysis is less prone to convergence issues and
numerical instability. Furthermore, choosing the area-specific
weights for loads in this way ensures that one of the areas
will be importing more power than the others, increasing
the chances of large flows between areas and instability. In
addition to this, a random number of generators (at most 5)
is chosen to be taken out of service before the time-domain
simulation. This is done in order to vary the inertia of each
area.

C. Machine learning

We consider binary classification and hence the model is
trained with a binary cross entropy loss function, and the
output is a probability of the island being stable.

There are a number of different hyper-parameters which can
be tuned in an XGBoost model; examples are max_depth,
which regulates the depth of each regression tree, and
learning_rate which scales each regression tree out-
put by a constant [14]. We optimise the different param-
eters associated to our XGBoost model by performing a
Bayesian hyper-parameter tuning combined with K-fold cross-
validation on a subset of the total data set. The Bayesian
hyper-parameter optimisation has recently become a stan-
dard method for hyper-parameter optimization thanks to its
efficiency [15], [16]. The complete hyper-parameter space
is shown in Table I. To prevent overfitting we apply early
stopping, which stops the training before if the previously
added early_stopping_rounds epochs have not lead
to any improvement. We use 5 rounds while doing hyper-
parameter optimization and 20 rounds in the final training.

The training data exhibits a notable degree of imbalance
between the number of stable and unstable cases, despite
efforts in the data generation process to produce sufficient

TABLE I
DESCRIPTION AND DOMAIN OF HYPER-PARAMETERS IN THE SPACE USED
FOR TUNING THE MODEL®.

Hyper-parameter Description Domain

5,20
(fixed)

early_stopping_rounds Number of training epochs
without further model im-
provement after which to
stop training.
Rate with which to reduce
the weight of each new tree
added to the model in order
to prevent overfitting.
The propotion of all samples
randomly selected for con-
struction of each regression
tree, for preventing overfit-
ting.
Maximum depth of tree.
The minimal loss reduction
required before making a
further partition of each leaf
node.
L7 regularisation term on
weights.
Lg regularisation term on
weights.
Subsample ratio of columns
when constructing each tree.
Minimum sum of instance
weight needed in a child.
Number of trees contributing
to the boosted model.
a) We refer to the XGBoost documentation for extensive explanations of
the parameters. All the hyper-parameters are initially drawn from uniform
distributions.

learning_rate (071]

subsample [0.7,1.0]

[2,10]
[3,10]

max_depth
gamma

reg_alpha [0,1]

reg_lambda [0,1]

colsample_bytree [0.5,1]

min_child_weight [1,10]

num_parallel_tree (10, 200]

unstable cases. This has an effect on the choice of evaluation
metric, and the setting of the probability threshold separating
the classes. A model trained on unbalanced data could perform
well according to many metrics, simply by always predicting
the majority class. This leads to poor prediction of the minority
class. One suggestion is to use the area under the precision and
recall curve (AUC PR) as an evaluation metric, which has been
shown to have good properties when evaluating rare events,
rather than the area under the receiver operating characteristic
curve (ROC AUC). In this paper the model is trained using the
AUC PR. Furthermore, in a balanced data set the probability
threshold separating a binary class is usually set to 0.5, but this
threshold is not necessarily ideal for imbalanced data. AUC PR
is a threshold-independent metric, and it has been suggested
to tune the classification threshold value to obtain the best F1
metric (the harmonic mean of precision and recall) based on
the training set [17]-[19], an approach which is adopted in
this paper.

IV. RESULTS

The model was trained, validated and tested with a 50-30-20
percent split, on 63,756 data points generated by simulating
4,000 operating states for the system depicted in Fig. 2
subjected to three contingencies separating the rest of the
grid from area 1, area 2 or area 3 and 4. The simulated
operating states resulted in 7,361 unstable islands, and 56,396
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Fig. 3. Spearman correlation matrix of the generated features based on the
entire dataset. We see that the stability measure is most correlated with the
fault clearing time.

stable islands, a data set with an imbalance ratio of 0.13.
The histogram of the generated features are shown in Fig. 4.
It shows that we have a reasonable spread of the features.
However, as seen from the correlation plot Fig. 3, some of the
features may later be discarded for a simpler model.

The ability of the model to predict is illustrated on the test-
set in Fig. 5, showing that the model is significantly better
than pure guessing, as indicated by the dashed black line. The
performance of the machine learning model can add value to
alternatives only relying on a static method if a large set of
operating states is considered as part of a reliability analysis,
even if it has shortcomings when analysing isolated cases.

The developed simulator was applied to the same test
system and contingencies, on an additional 1000 operating
states which were not used as part of the model training and
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1 1 1
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Fig. 4. Density histogram of features in the training data.
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Fig. 5. Precision-recall curve of the XGBoost model. Red scatter indicates
precision and recall at the selected probability threshold value.

testing procedure. Results were calculated using a power flow,
a time-domain simulation and a power flow together with
the trained machine learning model. The aggregated results
from the comparison are shown in Table II. It shows that the
machine learning model provides accurate results for lost load
for a large sample, with a near identical predicted lost load
compared to the more detailed time-domain simulation. The
time-domain simulation suggest a lost load almost 11 times
that found in a simple static simulation. This means that the
machine learning model is a drastic improvement compared
to the static model. Moreover, the machine learning model
uses less than twice as much time as the static, whereas the
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Fig. 6. Overview of lost load by load point per case (top panel), and ratio
of lost load found by the static and Al method, compared to the dynamic
analysis.

time-domain simulation uses over 13 times more.

TABLE II
RESULTS
. . Average interrupted Time
Simulation ‘ power (MW) (minutes)
Static 12.67 3.10
Time-domain 137.26 41.97
ML 137.24 5.93

Results per load point is depicted in Fig. 6. The figure shows
that the machine learning predictions differ somewhat between
the areas, and that the model may perform differently for the
various islands the test system typically is split into. Loads
LO1 and LO6 never draw any load in the base operating state,
thus the interrupted power at these load points are always zero,
and the result ratio is not reported. Loads 1 to 2 in area 1 has
a ratio of lost load slightly higher than what is found in the
time-domain simulations. Load 3 to 5 in area 2 is slightly
lower, while load 5 to 6 in area 3 and 4 is near the same.
This could indicate that there are some features missing which
differentiate stability based on important topological and/or
electrical differences between the islands.

V. CONCLUDING REMARKS

In this paper we performed a preliminary analysis and
comparison of a purely static, a time-domain and a machine
learning approach for calculating lost load for a system
subjected to islanding. The aim was to achieve better results
than with a purely static approach and faster results than with

a time-domain simulation. Our study demonstrated that this
is indeed possible. Although generating the training data is
time consuming, the speed up may be worth it if one is
performing many simulations or if the simulations have to be
executed relatively fast. Potential further work is suggested to
be on feature selection to more accurately capture important
topological and electrical differences in the islanded systems,
and to verify the results on other power systems.
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