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Towards a particle-flow framework for uncertainty
quantification, with applications in wind plant
system dynamics and control

Karl O. Merz
SINTEF Energy Research, Sem Saelands vei 11, 7034 Trondheim, Norway

E-mail: karl.merz@sintef.no

Abstract. The method of particle flow, originally developed for solving Bayes’ formula, is
extended to provide a general transformation between two probability distributions. It is shown
that this can enable the use of a chaos expansion for uncertain or stochastic dynamic systems.
The approach is demonstrated on a simple example. The method is potentially relevant for the
real-time control of wind plants. For example, it could be used to obtain a probabilistic estimate
of the wind field inside a wind farm using a combination of measurements from the turbines and
modelling. Time lags and wake effects make this problem non-Gaussian, which the particle-flow
method is well-suited to handle. It remains to be seen, however, whether there is a compelling
reason to use a chaos expansion for stochastic dynamic analysis. Functions implementing the
methods have been programmed in the Julia language.

1. Introduction
The dynamics of a wind power plant are stochastic and uncertain. Turbulent winds, including
wakes from upstream turbines, and ocean waves are the dominant stochastic effects, while
significant uncertanties are present in the aerodynamics; yaw sensor measurements; soil,
structural, and hydrodynamic damping; temperature-dependent electrical properties; and other
system parameters. This calls for explicit consideration of probabilities, or uncertainty, when
making decisions regarding the design, analysis, or control of wind power plants.

The difficulty with probabilistic analysis is that it requires a global solution of the system
dynamics. To be explicit, say that we have a discrete-time dynamic system

:I:k = f(l'k_l’uka ak)7 (1)

where the superscript represents the timestep, x is a vector of state variables, including uncertain
parameters; u is a vector of inputs; and « represents the remaining deterministic system
parameters. Then the joint probability density function ¢(2*~1, u*) is required for a complete
characterization.! In principle, this density function spans the entire domain of the combined
state and input variables: it is a global solution of the dynamics, akin to the attractor in the
theory of nonlinear dynamic systems.

1 To the extent that the inputs u are correlated over time, this effect can be represented through an appropriate
definition of the state variables.
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In order to make the probabilistic analysis of (1) tractable, we often take shortcuts. One
common approach is to assume that o(z*~!, 4*) is Gaussian, and so fully described by a
mean vector and covariance matrix. Though often useful, the Gaussian assumption can also
be catastrophically wrong. To pick one relevant example, say that the wind turbine controller
has a speed exclusion zone, where the rotor speed is controlled so as to avoid a frequency band
coinciding with a tower resonant mode. Near this operating regime, many of the important
system response variables will have a bimodal probability distribution, one peak corresponding
to the upper rotor speed and another to the lower rotor speed. This cannot be represented as
Gaussian, and an attempt to obtain a Gaussian maximum likelihood estimate would produce a
result in between the peaks, which was in reality highly improbable.

Monte Carlo methods allow marginal distributions to be constructed, without formulating
(2", uP) explicitly. For instance, one might formulate the distribution o(y*) of a scalar

output
k

Yy = g(wkaukvak) (2)
by repeated sampling of 2¥~! and «* in (1). Random or quasi-random Monte Carlo sampling
is the preferred approach for high-dimensional problems. The technique is used as a building
block in other methods, including Gaussian approaches like the ensemble Kalman filter (Evensen
2009), as well as the non-Gaussian approaches discussed below. Alone, the cloud of particles
(sampled points in the state-input space) obtained by a Monte Carlo approach is not so useful: it
needs to be combined with some other framework for the representation of probability, typically
involving estimates of basis-function coefficients? through integrals over the domain.

We wish to have a framework that can represent general probability density functions of the
type ¢(z), where z = (z,u), in a compact-yet-useful way. This requires that we have a way to
store the probability, and a way to operate on it repeatedly by passing it through functions like
(1), applying Bayes’ formula when new information becomes available. Several options exist.
One may, for instance, apply a smoothing kernel to a cloud of particles (Mack and Rosenblatt
1979) in order to estimate the probability density at any point; but there are better approaches.
The UQLab software (Lataniotis et al. 2021), for instance, decomposes a density function using a
copula. The decomposition consists of independent marginal distributions along each coordinate
axis of the z space, together with a special type of normalized multivariate distribution, the
copula, that contains the dependency information. The key idea is that for many real-world
processes the dependency can be reasonably approximated by a class of distributions that is
easy to manipulate, a multivariate Gaussian being a simple example, and a type of tree data
structure (vine copulas) being a more complicated example. In the general case, it can be
difficult to formulate the copula accurately, given a set of sampled particles as a starting point
(Merz 2021), and we do not apply the decomposition in the present work.

A chaos expansion is a convenient and flexible way of representing a probability density
function. Uncertainty quantification software packages such as UQLab (Marelli et al. 2021),
Dakota (Dalbey et al. 2020), and Chaospy (Feinberg and Langtangen 2015) implement the
chaos expansion framework.? The idea behind a chaos expansion is that the probability is
stored within a normalized reference space £, in a form that is easy to manipulate, such as a
unit Gaussian distribution ¢(§) = N(0,I). Then a function z(&) is established, mapping the
reference space £ to the physical space z, in such a way that ¢(z) is recovered. The hope,
often realized in practice, is that the function z(§) is smooth and simple, such that it can be
represented by a small number of basis functions such as low-order polynomials. Engineering
approaches such as the Kalman filter, with its Gaussian assumption, can be expressed in terms

2 This includes the mean and covariance in the Gaussian case, or more elaborate basis functions in the non-
Gaussian case. Binning is an extremely crude example of a general set of basis functions.
3 A chaos expansion may be combined with a copula decomposition, but this is not a requirement.
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of low-order chaos expansions; turning it around, a chaos expansion can be thought of as an
extendable and adaptable version of the typical, simplified methods of probabilistic analysis.

Adopting the chaos expansion framework, we look in Section 2 at some of its strengths and
shortcomings, when applied to stochastic dynamic systems. We find that the key to success
is a means to quickly find a suitable mapping z(§), given a known density function (&) and
a sampled particle cloud representing (z). The established approach for such operations, the
Rosenblatt transformation (Rosenblatt 1952, Feinberg and Langangen 2015), is shown to have
serious disadvantages as a numerical method. From the recent literature on particle filters
(Daum and Huang 2007), we borrow the concept of particle flow (Section 3). It is shown how
the problem of finding z(£) can be formulated in terms of particle flow, improving upon the
numerical properties of the Rosenblatt transformation. Section 4 then suggests some potential
applications of the method in wind plant system dynamics and control.

2. Chaos expansion
Consider a chaos expansion consisting of a reference space £ containing our choice of distribution
©(&), for instance N (0, ), and a mapping z(§), represented as

2(§) = civi(§). 3)

Here ¢; are coefficients, 1; are basis functions, and we are using Einstein summation notation
for subscripts.* Note that the basis-function expansion (3) is a surrogate model for the process
z(€); this suggests that a variety of techniques for surrogate modelling, like radial basis functions
or other machine-learning methods, are applicable. The method is not limited to polynomials.

A chaos expansion can be used to rapidly generate samples (pointwise probability masses)
p(z) of v(z), by sampling ¢(§) and applying (3); it can also be used to evaluate integrated
quantities, like the pointwise probability density function

o(3) = / 55 — 2(6)} o(€) de (4)

or, more usefully, weighted integrals of ¢(z) over the z domain,

/ 9(2) 9(2) dz = / 9 {=(6)} (&) de (5)

by integrating over the £ domain.

One of the strengths of a chaos expansion is the ability to handle degenerate probability
distributions, like deterministic values or systems with saturation. For instance, a deterministic
value p(2) = 6(Z — z) is represented simply by the constant function z(§) = Z.

On the other hand, chaos expansions have shortcomings when applied to a dynamic system
like (1). There are two major problems. First, as a nonlinear dynamic system convects in time,
the attractor may become chaotic or fractal in nature. The result is a complex, fine geometry
that cannot be represented by low-order basis functions.? The addition of stochastic noise may
smooth out the fine structure in the attractor, but this does not fix the problem: points that
start out nearby in both the z and & spaces remain nearby in £, but move apart over time in z,
such that z(§) becomes spiky.

Stochastic noise also leads to the second problem: a white-noise input at a given timestep
increases the dimension of the probability space by one, so the dimensionality of the problem

4 .. not superscripts, which are used to index the timestep.

5 This is noted in the literature as a lack of convergence when using a finite number of basis-function terms over
long simulations. (Gerritsma 2010)
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grows with time.® This increase in dimension can be avoided by using Monte-Carlo techniques,
but again this causes neighboring z coordinates to depart from each other over time, creating a
spiky z(€).

Can we find a way to fix these problems? Imagine now that we have a nonlinear dynamic
system, and start with a known chaos expansion ¢(n) = N (0, ) and zp(n) at some initial time.
We simulate in Monte-Carlo fashion for some timesteps, until we notice that z(n) is becoming
spiky. We now pause the simulation, generate ¢(z) —say, as a cloud of sampled particles obtained
via ¢(n) and z(n) — and ask: Does there exist a simple, smooth mapping from ¢(z) to a new
reference space z(£), with p(£) = N(0,1)? That is to say, we wish to rejuvinate the mapping
between the z domain and the reference space £, in a way that gets rid of the spikiness that was
present in z(n).” Although ¢(n) and ¢(&) have the same form, there is an infinite number of
mappings that carry one arbitrary probability distribution into another, so z(§) does not have to
resemble z(n). We are therefore free to choose a nice z(£): if we can do so in a computationally
efficient way.

It is seen that the key to success is the ability to quickly find a simple transformation z(§),
given p(z) and ¢(&). The Rosenblatt transformation is an established method for transforming
one arbitrary probability density function to another. The transformation constructs z(&) such
that

P(z1) = P(&1) (6)
P(2|z1) = P(&(61) (7)
P(z3]2120) = P(&3]61&2) (8)

and so on, where

v
P(?|w) :/ o(v|w) dv. (9)
—0o0
The difficulty with (6) and the subsequent lines is immediately evident: a path integral such as
(9) cannot be evaluated easily or accurately from a collection of nonuniformly-spaced particles,
and integrating over the space along such regular paths is particularly troublesome in high

dimensions. An alternate numerical method is needed.

3. Particle flow

Particle flow was introduced by Daum and Huang (2007), and the concept has since been
developed further (Daum et al. 2018), with Crouse and Lewis (2020) providing an excellent
review and derivation of the principal equations. The key insight is that one can frame the
solution for the transformation from one probability field to another in terms of a pseudo-time
differential equation, also called a homotopy. So far, the technique has been applied in the
context of Bayesian state estimation. Consider Bayes’ formula,

p(zly) = W, o(y) z/w(y\x)w(w) dz. (10)

5 The Karhunen-Loeve expansion (Ghanem and Spanos 1991) of a Wiener process may help, but this only delays,
not fixes, the problem.

7 “What is the point,” you may ask, “why not simply use a particle filter?” Although representing the probability
density function as a cloud of particles is indeed akin to a particle filter, which does not require a chaos expansion,
what we gain here is the ability to decouple the particle cloud from the equations of motion. That is, we can
simulate z(n) in an intrusive way, dealing directly with the basis-function coefficients as state variables, or in a
non-intrusive way, where the particles are chosen so as to best represent z(n). Then the particles used to realize
©(z) can be generated by the chaos expansion, and need not all be convected through the equations of motion,
which could be a substantial savings in computational effort.
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We start with the prior ¢(z); encounter some new information y, for which there is a model
©(y|z) describing the likelihood; and wish to find the posterior ¢(z|y). Taking the logarithm of
(10) gives

log p(x|y) = log ¢ (x) + log p(y|z) — log ¢(y). (11)

Next, introduce a pseudo-time parameter A, with 0 < A < 1. Consider the equation, or
homotopy,

log p(z()) = log p(z(0)) + Alog p(y|z(0)) — log ¢ (y, A). (12)

The term ¢(y, A) is defined as a normalization, such that ¢(x(\)) remains a valid probability
density function for all values of A. Then, when A = 0, the right-hand side is equal to the prior;
and when A = 1, it becomes the posterior. If we begin at A = 0 with a collection of particles
representing the prior, and these are convected in a way that satisfies (12), then at A = 1 the
particles will be located so as to represent the posterior.

Now, (12) is a scalar equation, whereas = is generally high-dimensional, containing the
coordinates of a collection of particles in multidimensional space. The problem is therefore
highly underdetermined: as noted previously, there are an infinite number of possible solutions
for the transformation between two probability distributions. At first glance, this seems to be
daunting; yet Daum et al. had the insight that, from a computational perspective, this freedom
is more a blessing than a curse: one can develop a variety of feasible approaches, and choose the
one that best satisfies requirements such as low computational effort and robustness.

To illustrate one possible approach (Daum et al. 2013), we can begin with the natural
observation that the evolution of probability in the pseudo-time parameter \ should obey the
Fokker-Planck-Kolmogorov equation. If we assume that there is an underlying dynamic (in \)
system that evolves according to the stochastic differential equation

dx = f(x,\)d\+ o(z, \) dw, (13)

where f is the drift coefficient, o is the diffusion coefficient, and w is a white-noise process,
then the Fokker-Planck-Kolmogorov equation gives the time evolution of the probability density

function,
dp(x) _ A(p(x) filz, V) | 19*(p(z) Qi) o
o dri 2 omox, o 00T ook (14)
Returning to (12), and taking the derivative with respect to A, noting that
dloga 1da
b adb’ (15)
we obtain 1 0p(x) 5
pr) 9
o) o log p(y|z(0)) = 73 log ¢(y, A). (16)
Expanding the first term on the right-hand side of (14) and using (16),
0 _ Ologp(z) . 0Of; 1 9*(o(x) Q)
log p(ylx(0)) = gylogp(y, A) = ——5 ==fi — 5 - + o) Owiom; (17)

The remaining task is to convert this scalar equation into a vector equation for the components
of f; here this is done by differentiating (17) with respect to each component xy, giving

Ologp(ylz(0))  logy(x) ,  Odlogy(x) 8fi  0°fi L0 1 & (o(x) Qij)
oz, oz 0z, " dx; Ox,  Ox; 0z Oxy 2p(x) Oz 0xj

(18)
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Next a little trick is played: since there is complete freedom in the choice of Q;;, we can take

dlogp(x) 8fi  8fi 9 1 P(p(x) Q)
Or; Oxp Ox;0r,  Oxp2¢(x) Oz, Oz

=0 (19)

as its definition. The drift coefficient vector can then be solved from the remaining terms,

~ (9%logp(x) ~! 9log p(y](0))
fi=— < Ox; Oxy, ) Ozy . <20)

Numerically, the particle flow can be solved with (Daum et al. 2018) or without (Daum and
Huang 2013) the diffusion (19). In the latter case, one simply takes dz;/O\ = f; as the state
equation for the particle flow. This and similar particle-flow algorithms have been found to be
highly effective in real-time Bayesian state estimation: the method is computationally efficient.

Why not apply a particle flow algorithm to transform between two arbitrary probability
density functions, in lieu of the Rosenblatt transformation? Say that we have ¢(z) and (&);

define the homotopy A
o) = ol (2551 ) 2y

p(£)
which satisfies the desired initial and final conditions, and take the logarithm of both sides,
log p(2(A)) = log p(§) + A (log ¢(2(1)) —log ¢()) - (22)

Following the same procedure as (13) through (20), we end up with

210g o(2)\
= (5} T o) — Toge(e). (23)
Convecting a cloud of particles from A = 0 to A = 1, the particles move from an initial set of
coordinates £ to a final set of coordinates z; the initial and final coordinates of each particle
thus define pointwise a function z(§), which is the desired mapping between the two probability
density functions.

It is also possible to implement the transform in the reverse direction, from z to £&. However,
it was found to be advantageous to start with the reference distribution ¢(¢). In the present
implementation, quasi-random samples were drawn from the reference distribution based on a
Poisson disk method (Bridson 2007), which resulted in a nicely-spread initial distribution of
particles.

Note that the second-derivative term in (23) is implemented numerically using the right-hand
side of (22); that is,

2log ¢(z 2
) O 1o pl€) + A (log p((1)) ~ log p(6))} (24)

This allows a smoothed kernel function fit to be computed once upfront, and used throughout
the calculation of the trajectories, rather than fitting new kernel functions to the particles at
each A step. In order to prevent divergence of particles in the tails of the distribution, Gaussian
kernel functions, which decay to zero as |r| — oo, were fit to the difference log p(2(1)) —log ¢(&).
This forces the tail behavior to match that of the reference distribution (), such that the few
particles that start out in the tails remain at or near their initial positions.

Two methods of computing the derivatives were investigated, a k-nearest-neighbors algorithm
(Choi et al. 2011, Meyer et al. 2001), and analytical gradients computed from the kernel function.
The results were similar, and the analytical gradients have been used in the present work.
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Figure 1 shows a simple example in which the technique is used to establish a function z(§)
mapping a bivariate unit normal distribution to a more complicated multimodal distribution.
One hundred particles were used in the calculation. Plot (a) shows the reference distribution
and (c) the target distribution, with (b) the trajectories of the particles. The final positions of
the particles, when fit with a kernel function, produce the distribution (d). This matches well,
although not precisely, with the target (c).

(@) (b)

Figure 1. The reference distribution (a), particle trajectories (b), target distribution (c), and
final distribution (d).

Figure 2 illustrates the function z(£). The particles are plotted over a rendered interpolating
surface, obtained using triangulation. The distribution of the particles is consistent, and could
be fit with a relatively low-order basis function.

4. Potential applications in wind plant dynamics and control
Why might we want to use particle flow for wind plant dynamics and control? First and foremost,
it can be used to implement Bayes’ formula (10) for nonlinear state estimation, with applications
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Figure 2. The functions z1(§) and z2(&).

in real-time control; this is the purpose for which particle flow was originally developed. For
example, one might wish to obtain a reliable estimate of the effective wind speed and direction
over a given wind turbine’s rotor, using a combination of sensors from both the turbine itself
and a cluster of neighboring turbines. Time lags, and especially wake effects, may make this
problem non-Gaussian. Or, say, we might want to estimate the fatigue cycle accumulation rate
at a bolted connection at the blade root, based on rudimentary measurements of the rotor
speed, blade pitch, generator power, and nacelle accelerations, with some uncertainty regarding
the distribution of aerodynamic loading along the blade.

In the context of uncertainty quantification and stochastic dynamics, particle flow in the form
of (22), together with a chaos expansion ¢(§) and z(§), provides a technique for compressed
storage and retrieval (sampling) of a non-Gaussian probability density function. So, where
might it be useful to have knowledge of the joint probability distribution over a collection of
state variables or outputs?

One possible application is in forecasting under uncertainty. For example, one might wish
to use upstream turbines to detect changes in the incoming wind conditions such as gusts or
weather fronts, and react in a coordinated way across the wind plant. Yet there is uncertainty
in the magnitude and timing of the events. Using a simplified model for wind propagation, one
might form joint distributions of the predicted wind speed and direction, rotor speed, and blade
pitch at each wind turbine, in order to judge the likelihood of exceeding safe operating limits and
to take anticipatory action. The control system of a wind turbine includes nonlinear features
such as saturation, dead-band, speed exclusion zones, and control-mode transitions, which make
the response non-Gaussian, especially in the vicinity of the rated wind speed where loading is
highest.

Another possible application is in offline fatigue analysis. Here we are interested in a
component of stress at some critical location in the structure. Given the joint probability
distribution of the stress component’s trough-to-peak amplitude and trough-to-peak time
interval, one can estimate the fatigue cycle accumulation rate. This requires propagating the
system in time, probabilistically, through a half cycle of oscillation. Eiken (2007) developed the
technique for single-degree-of-freedom systems, using cell-to-cell mapping to handle propagation
of probability. Cell-to-cell mapping is flexible, but it involves meshing the entirety of space, and
so does not scale well with dimension. A particle-flow chaos espansion approach, with either
intrusive (basis-function) or particle-based simulations, could be useful in extending such an
analysis to higher-dimensional systems.
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5. Conclusions

The particle-flow framework has been adapted so as to provide a general transformation between
two probability density functions. The method is well-suited for nonuniformly spaced particles,
in contrast with the commonly-used Rosenblatt transformation. The ability to transform
from one probability distribution to another, in a computationally-efficient way, enables one to
generate the mapping z(£) between a general distribution ¢(z) and some easy-to-use reference
distribution ¢(§). This can in turn be applied to uncertain and stochastic dynamic systems, in
essence storing the probability in the reference distribution, and periodically rejuvinating the
mapping z(§) so as to eliminate the emergence of sharp features.

The principle was demonstrated on a simple example. The theory is sound, but the idea
needs to be fleshed out and explored for a variety of real-world problems. As Daum et al. (2007,
2013, 2018) have discussed, the practicality of particle flow methods depends very much on the
details of the implementation. Many research questions remain open. Is the method efficient
and accurate enough, with a reasonably small number of particles, or with an intrusive chaos
expansion? How does it scale with dimension? The present implementation involves a kernel
function fit; can a version be developed that does not rely on a kernel, and so can better handle
singularities like saturation bounds or deterministic values? Is the proposed geodesic flow (23)
the best choice, or do alternative methods give better accuracy? Is there a compelling reason to
use chaos expansions for stochastic dynamic systems, given the ability to rejuvinate the mapping
2(£)?

Some applications were suggested in the domain of wind plant system dynamics and control.
Daum et al.’s original version of particle flow, for solving Bayes’ formula, will undoubtedly be
useful in real-time state estimation, with applications in digital twins and control. A chaos
expansion framework might be applied for forecasting under uncertainty, fatigue analysis, or
myriad other applications, however the utility remains to be demonstrated.

Functions implementing the particle flow and chaos expansion methods have been
programmed in the Julia language.
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