
Solar energy digitalization at high
latitudes: A model chain
combining solar irradiation
models, a LiDAR scanner, and
high-detail 3D building model

Mattia Manni1*, Alessandro Nocente2, Gefei Kong1,
Kristian Skeie3, Hongchao Fan1 and Gabriele Lobaccaro1

1Department of Civil and Environmental Engineer, Faculty of Engineering, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway, 2SINTEF AS, Trondheim, Norway, 3Department
of Architecture and Technology, Faculty of Architecture, Norwegian University of Science and
Technology (NTNU), Trondheim, Norway

Solar mapping can contribute to exploiting more efficiently the solar energy

potential in cities. Solar maps and 3D solar cadasters consist of visualization

tools for solar irradiation analysis on urban surfaces (i.e., orography, roofs, and

façades). Recent advancements in solar decomposition and transposition

modeling and Light Detection and Ranging (LiDAR) scanning enable high

levels of detail in 3D solar cadasters, in which the façade domain is

considered beside the roof. In this study, a model chain to estimate solar

irradiation impinging on surfaces with different orientations at high latitudes is

developed and validated against experimental data. The case study is the Zero

Emission Building Laboratory in Trondheim (Norway). The main stages of the

workflow concern (1) data acquisition, (2) geometry detection, (3) solar radiation

modeling, (4) data quality check, and (5) experimental validation. Data are

recorded from seven pyranometers installed on the façades (4), roof (2), and

pergola (1) and used to validate the Radiance-based numerical model over the

period between June 21st and September 21st. This study investigates to which

extent high-resolution data sources for both solar radiation and geometry are

suitable to estimate global tilted irradiation at high latitudes. In general, the

Radiance-based model is found to overestimate solar irradiation. Nonetheless,

the hourly solar irradiation modeled for the two pyranometers installed on the

roof has been experimentally validated in accordance with ASHRAE Guideline

14. When monthly outcomes are considered for validation, the east and the

south pyranometers are validated as well. The achieved results build the ground

for the further development of the 3D solar cadaster of Trondheim.
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1 Introduction

Solar mapping represents a commonly used visualization

technique to support urban planners, authorities, and architects

in addressing onsite energy generation while enhancing daylight

and sunlight accessibility in buildings (Good et al., 2014;

Lobaccaro et al., 2017). The solar potential of urban surfaces

(i.e., orography, roofs, and façades) permits providing inputs to

the predesign of solar installations in order to develop optimal

exploitation of solar energy through generalized planning

recommendations, guidelines, and best practices. The efficacy

of these models varies considerably due to the following

modeling strategy: the accuracy depends on the spatial

information available and generated (e.g., satellite data and

data from a Light Detection and Ranging (LiDAR) scanner)

and the associated level of detail (LoD) of three-dimensional

(3D)models (Behar et al., 2015). A popular modeling assumption

is that building façades are vertical and that 3D building models

can be extruded from 2D roof planes (i.e., 2.5D building models).

Current developments in these research fields aim to create more

precise information layers to estimate solar system integration

not only on roofs (Brito et al., 2012; Desthieux et al., 2018), which

are mostly devoid of building infrastructure (e.g., chimneys,

elevator lift engines, technical installations, terraces, and

balconies) that are common constraints for optimal solar

system installation, but also on the non-negligible vertical

surfaces (i.e., façades) (Carneiro et al., 2010). In fact, the total

surface of the building’s envelope is usually strongly reduced by

the shading of architectural elements and obstructions and by the

presence of glazed surfaces, which can only be partially replaced

with PV systems. In Lobaccaro et al. (2019), a reduction factor,

which is related to architectural and geometrical building

features, is applied to account for transparent surfaces and

obstructions, reducing the solar energy potential of roofs and

façades. Although limited to the roof spatial domain, an

advanced approach for detecting buildings’ superstructures,

which is based on deep learning for the semantic 3D city

model, is proposed by Krapf et al. (2022). Estimating solar

irradiation on façades including transparent surfaces and

obstructions is therefore challenging, and it represents a

significant limitation when it comes to high latitude locations

where the façades are characterized by a solar potential similar to

the roofs in the intermediate seasons (Manni et al., 2018).

In a reliable solar map, an accurate solar radiation model is

coupled to a 3D urban geometry with a high LoD. Numerous

solar radiation models have been implemented to enable

assessing solar energy accessibility at multiple scales, ranging

from building components to neighborhoods and cities

(Peronato et al., 2018; Boccalatte et al., 2022; De Luca et al.,

2022). The solar potential of buildings is analyzed by considering

dynamic shadowing, solar inter-building reflections, and other

related complex urban phenomena (e.g., high surface

temperature and air flow) (Jakica, 2018; Manni et al., 2020).

Moreover, high-resolution solar data can be exploited to evaluate

instantaneous events, e.g., cloud and albedo enhancement effects

(Gueymard, 2017). Advanced solar radiation models allow to

identify the most irradiated building surfaces for solar system

installations or to evaluate the integration of solar systems in a

heritage-constrained environment. Nonetheless, the application

of such accurate numerical models to solar mapping at the city

scale is still challenging due to the significant computational time.

Several studies have presented procedures to evaluate the

solar energy potential in urban areas based on different

techniques that have been developed in the last few decades

together with the advancement of digital technologies and

innovative approaches, methods, and tools. In Brito et al.

(2012), the LiDAR technique was coupled to the Solar

Analyst tool to estimate the photovoltaic (PV) potential of

the Lisbon urban region. Thebault et al. (2022) proposed a

multicriteria approach based on a geographic information

system (GIS) to evaluate the suitability of a building to be

equipped with PV systems. Similarly, a statistical model based

on 2D-GIS and multiple linear regression has been developed

by Nouvel et al. (2015) to predict heat demand and energy

saving potential of building stock at several scales within the

city of Rotterdam.

With the development of remote sensing technology and the

increase of the available computational capacity, many new

methods and technologies were proposed to enable the

automatic collection of 3D information about buildings and

other target objects (e.g., urban infrastructures and terrain

morphology) (Bonczak and Kontokosta, 2019). Geometrical

models characterized by a high LoD can be generated through

an unmanned aerial vehicle (UAV) and terrestrial laser scanning

(TLS) for data collection. The LiDAR technology integrates a

laser scanner, the Global Positioning System (GPS), and inertial

navigation systems (INS) to produce point clouds for buildings

(Zhou and Gong, 2018; Yastikli and Cetin, 2021). The point

clouds can provide high-resolution and accurate geometry

information for the whole building, including windows,

balconies, and other façade architectural elements. Laser

scanning can bring 3D point clouds with very high density

(with ca. < 1 cm point distance) that are usually post-

processed to reduce noise and outliers applying probabilistic

approaches such as the one proposed by Min and Meng (2019).

The point clouds can significantly contribute to the

reconstruction of high-LoD 3D models at multiple scales.

Several studies investigate methods to build the 3D model

from LiDAR’s outputs, proposing reliable automatic or semi-

automatic workflows, even if limited to LoD1 and LoD2 3D

models (Sajadian and Arefi, 2014; Yastikli and Cetin, 2017;

Jayaraj and Anandakumar, 2018). In fact, automatic

reconstruction methods for models with LoD3 or LoD4,

including windows and other façade semantic information, are

still in the preliminary development phase (Wen et al., 2019; Cao

and Scaioni, 2021).
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2 Motivation and goals

Within this framework, the present study aims at

investigating the application of advanced solar mapping

techniques to high latitude locations. The research core

concerns both 3D geometry construction workflows and

approaches to solar radiation modeling, with a specific focus

on input solar datasets. In fact, the study allows one to determine

whether satellite-based solar irradiance data and the LiDAR scan

technique are suitable to estimate the global tilted irradiation

(GTI) for different orientations of solar sensors

(i.e., pyranometers) at high latitudes. The results from the

numerical model will be validated against measurement data

from the Zero Emission Building (ZEB) Laboratory (Nocente

et al., 2021) in Trondheim, Norway, presented in section 3.2.

The motivation of this work states the fact that solar maps

that have been implemented for low latitudes (e.g., southern

Europe and continental Europe) need to be further developed

before being efficiently exploited at high latitudes. For instance,

the proper spatial domain of solar maps which is usually limited

to rooftop surfaces must be extended to façade surfaces as well. In

that regard, the sun geometry in the Nordics (i.e., low sun

elevation angles) is favorable for such vertical surfaces, which

have higher solar potential than roofs (Manni et al., 2018). To

model the solar energy potential of building façades in an

articulated urban environment, it is necessary to accurately

simulate inter-building optical interactions (i.e., mutual

reflections and complex shading phenomena) by increasing

the LoD of the 3D model and defining the optical properties

of the materials applied to urban surfaces.

The novelty of the hereby presented study is grounded

around the exploitation of a LoD3 3D model as a geometry

base layer for solar irradiation mapping and the validation of the

numerical model for multiple orientations at high latitudes. The

vertical scanning of the building envelope enables a more precise

construction of both the footprint and the façade’s morphology.

On the other hand, the extensive monitoring apparatus of solar

irradiation that is installed in the ZEB Laboratory permits to

perform an experimental validation of the numerical model for

the main orientations of the building surfaces. A similar

availability of observation data is not present in similar

studies carried out for high latitude locations.

The present study is structured as follows: the Introduction

(Section 1) outlines a theoretical framework for solar mapping

techniques; the Motivation and goals section identifies the

reasons for conducting such a study (Section 2); the

Methodology section (Section 3) defines the research

workflow, the tools for solar analysis and their settings, the

information about the case study, the solar data sources, the

quality check scheme, the geometry definition process, and the

statistical indicators and validation criteria; the Results and

Discussion section (Section 4) provides an overview of the

capability of the numerical model to simulate the GTI for

various orientations, followed by the validation test and the

limitations of the study. The article concludes by considering

future developments and summarizing themost relevant findings

and the implications for future advancements in the

implementation of solar maps at high latitudes (Section 5).

3 Methodology

3.1 Workflow

The workflow (Figure 1) proposed and followed in this study

is built around five main stages, which are 1) data acquisition, 2)

geometry detection, 3) solar radiation modeling, 4) data quality

check, and 5) experimental validation (Figure 1). The first stage

(stage 1) concerns the acquisition of data about urban geometry,

solar irradiation, and weather variables from different online

databases, e.g., the Trondheim municipality’s database, solar

radiation service from the Copernicus Atmosphere

Monitoring Service (CAMS), and climate.onebuilding.org

database1. The user-defined inputs of this stage are the case

study’s location and the time interval to investigate. The 3D

model of Trondheim contains information about both buildings

and terrain. Rhinoceros and Grasshopper tools are used,

respectively, to edit the geometry model and select the spatial

domain for the solar analysis. A circular area of radius 100 m

with the center located in the ZEB Laboratory is selected.

Regarding the solar irradiance and weather variables, a Python

script is implemented to retrieve such data from the respective

databases and combine them into a new EnergyPlus weather file

(.epw). In particular, the new .epw file combines solar irradiation

values, e.g., direct normal irradiation (DNI), diffuse horizontal

irradiation (DHI), and Global Horizontal Irradiation (GHI),

from CAMS solar radiation, with the weather variables, e.g.,

dew point temperature, relative humidity, and cloud cover, from

the typical meteorological year (TMY) of Trondheim. The TMY

of Trondheim is defined according to the measurements taken at

the weather station in Voll (Trondheim) over the

2007–2021 period. The solar irradiation values from CAMS

solar radiation are preferred to the values from the TMY since

they are based on satellite observations performed during the

specific time interval and for the exact location of the case study.

The geometry detection stage (stage 2) moves from the

LiDAR scanning campaign of the ZEB Laboratory. Point

cloud data are generated as output of the scanning activity,

and it is regarded as the reference to detect and reconstruct

the geometry of the building and its components (e.g., windows,

doors, pergola, and the pattern of building-integrated PV (BIPV)

panels). The 3Dmodel is then re-meshed to provide more refined

1 climate.onebuilding.org
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bases for the simulation sensors’ grid. Sensors’ position is also

determined according to the location of the pyranometers, whose

measurements are used in the experimental validation of the

numerical model.

The urban geometry, the 3D model of the ZEB Laboratory,

the sensors’ grid, and the morphed .epw file are among the inputs

of the numerical model for solar analyses (stage 3). In addition to

these, the optical properties of each surface and the Radiance

parameters (e.g., ambient accuracy (aa), ambient bounces (ab),

ambient division (ad), and ambient resolution (ar)) must be

defined. The output from the solar irradiation modeling consists

of a time series of simulated GTI values for each sensor

(i.e., pyranometer).

In stage 4, the solar irradiation data from measurements in

the ZEB Laboratory are classified according to the quality check

scheme described in section 3.5. A quality flag is associated with

each datapoint and then used to filter the observed GTI quantities

to exclude the erroneous measurements from the validation

process.

Finally, the simulated GTI was validated against observations

(stage 5). The two datasets are visually compared in scatter plots;

one graph is created for each pyranometer. Moreover, three

statistical indicators, namely, the normalized mean bias error

(NMBE), the coefficient of variation of the root mean square

error CV(RMSE), and the coefficient of determination (R2), are

calculated to evaluate the model’s accuracy.

3.2 Case study

The ZEB Laboratory2 is used as a case study for this research.

Located in Trondheim, Norway (63.41 N, 10.4 E), the ZEB

Laboratory is a four-story high office building (Nocente et al.,

2021), designed and realized as a pilot building to facilitate the

diffusion of innovative components, solutions, and energy

strategies in the building industry. The load-bearing structure

consists of glued laminated timber (gluelam) columns, cross-

laminated timber (CLT) floors, some stiffening inner walls, and

FIGURE 1
Overview of the workflow followed in this study. The main domains (e.g., solar irradiation domain, geometry domain, monitoring domain, and
validation domain) are highlighted with different colors, while in the left corner, the four block typologies (e.g., stage, user-defined input, activity/
process, and output/input) are reported.

2 www.zeblab.no
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traditional insulated wooden framework in the outer walls. The

whole building is constructed according to the ZEB-COM

ambition (Lobaccaro et al., 2018), which means that the local

production of renewable energy must compensate, in terms of

equivalent CO2, the materials, the construction process, and the

operation for 60 years, which is the programmed life of the

building. To achieve this ambition, most of the building

envelope is covered in BIPV, PV being the main source of

renewable energy. A total of 701 mono-Si BIPV panels are

installed for a rated power of 184 kWp. According to

simulations, the system can deliver over 150 MWh/y of

renewable energy, partly used on the spot, while the rest is

delivered to the grid.

The presence of such an extensive installation, together with

the advanced monitoring and control system, allows the building

to produce a high quantity of data, making the ZEB Laboratory a

valuable source for studying BIPV operation in a Nordic climate

and over a long period of time (i.e., the life of the PV installation).

To have a reference for the outdoor weather and the available

solar radiation, the laboratory is equipped with many outdoor

sensors. A weather station is installed on the roof, continuously

registering the main meteorological parameters. Another

weather station is installed on the ground toward the south.

Themeasurement of the available solar resources is performed by

second-class pyranometers. One pyranometer registers the

radiation on the horizontal plane, while five others evaluate

the radiation on the planes of each façade and the roof. As

shown in Figure 2, a pergola is mounted outside of the building,

and it is entirely constituted by PV panels in a chessboard

distribution of opaque and semi-transparent modules. Both

surfaces of the pergola, the external and the internal ones, are

equipped with pyranometers. The panels of the whole building

(i.e., BIPV and the pergola’s PV) are connected in strings, and the

solar power production can be monitored and registered at

any time.

3.3 Tools and settings

Solar analyses are performed within the Grasshopper

environment. The Honeybee (HB) environmental plugin is

exploited to connect Grasshopper to the Radiance-based engine,

coupling the features of such a daylighting and solar simulation tool

to the parametric modeling principles implemented in Grasshopper.

The “HB annual irradiance” component enables computing

broadband solar irradiance considering multiple and mutual

inter-building reflections. Input parameters are the weather data,

the geometry and optical properties of the model’s surfaces, the grid

of sensors, and the Radiance parameters. The weather data are

retrieved for the Trondheim location (see section 3.4 for the weather

input data).

When it comes to geometry modeling, the 3D model of the

ZEB Laboratory is implemented starting from the data provided

by the LiDAR scanner. The geometry configuration of the

surrounding area is provided by the 3D model from the

municipality of Trondheim3. All the materials applied to the

urban surfaces are considered opaque and clustered into four

groups; each group is characterized by a unique combination of

reflection and specularity coefficients. A reflection coefficient of

0.10 and a specularity coefficient of 0.6 are associated with the

BIPV and installed on the pergola (see section 3.2) and the glazed

surfaces. The charred timber coating covering the other part of

the building’s façade is defined as completely diffusive, with a

reflection coefficient of 0.25. The same reflection coefficient is

defined for the building surrounding the ZEB Laboratory.

Finally, the ground is fully diffusive, and it is characterized by

a reflection coefficient of 0.10.

The grid of sensors is applied to the geometry moving from the

triangular and quadrangularmeshes composing the 3Dmodel of the

ZEB Laboratory. The centers and the normal vectors of the meshes

are considered inputs for the locations and directions

(i.e., orientations) of the sensors. The density of the resulting

virtual sensors’ point cloud is averagely equal to two points per

square meter, but higher density values are observed in complex

building areas (i.e., windows and frames). Once the solar analysis is

performed, only the points of the grid that are near to the location of

the pyranometers are considered for the validation.

Radiance parameters are determined according to the best

practices identified in the literature to achieve a high quality of

outcomes. An overview of the selected Radiance parameters is

reported in Table 1.

The outputs are average and peak global irradiation and the

cumulative radiation in the year. These data are processed with

the “HB annual results to data” and “LB deconstruct data”

components to extract hourly amounts of global irradiance,

which will be later validated against experimental data.

FIGURE 2
ZEB Laboratory: southern and western façade (© Photo: M.
Herzog).

3 www.trondheim.kommune.no
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3.4 Solar data sources

Weather datasets used in this work refer to Trondheim,

Norway (lat. 63°25′49.76″N). The climate of Trondheim is

classified as continental subarctic climate (Dfc) in the Köppen

Geiger classification (Figure 3), and it is moderately continental,

with cold winters and mild summers (Beck et al., 2018). The

analyses are carried out for the period between June 21st and

September 21st. The datasets are characterized by a time

resolution of 1 hour. This period of the year was selected to

validate the model’s outputs in summer conditions, during days

characterized by clear or overcast sky conditions.

The EnergyPlus weather file of Trondheim, created considering

monitored values over the years between 2007 and 2021, was

retrieved from the repository of free climate data for building

performance simulation (<u>climate.onebuilding.org)</u>. Then,
the irradiation parameters (GHI, DNI, and DHI) are replaced with

values retrieved from the CAMS. The CAMS solar radiation service

combines output from the CAMS global forecast system on aerosol

and ozone with detailed cloud information directly from

geostationary satellites. The CAMS solar radiation service

provides, among others, historical values (from 2004 to present)

of GHI, DHI, andDNI (both overcast and clear sky conditions) with

a time resolution of 1 min. Such irradiance parameters are retrieved

for the time interval investigated in this study and resampled hourly.

The GTI is measured by sensors that are either integrated in

the building envelope of the ZEB Laboratory or installed on a

mast on the roof at a short distance from the surfaces and with

accurately measured angles. Installed sensors are second-class

pyranometers. The orientation is described in Figure 4 and

Table 2. The tilt is reported in degrees from the horizontal

surface. Quantities of GTI are recorded with 1-min time

resolution and then resampled to calculate average hourly values.

3.5 Quality check scheme for monitored
data

The outcomes from the numerical analyses are

experimentally validated against quantities measured in the

ZEB Laboratory. In order to ensure a good data quality, the

quality control scheme described in Lorenz et al. (2022) is

applied. Lorenz et al. (2022) implemented a quality control

scheme for sensors with different orientations. Their

measurement stations consist of a pyranometer for measuring

GHI and three silicon cells oriented east, south, and west with tilt

angles of 25 for measuring GTI. Such a configuration is similar to

the sensors’ layout in the ZEB Laboratory, except that there are

pyranometers instead of silicon cells and different orientations

are considered (see Table 2). Therefore, only the quality checks

for irradiation measurements are considered. Temperature

monitoring can in fact be neglected when using pyranometers

instead of silicon cells.

Different quality tests are performed for each variable in

order to associate a quality flag (QF) to each measure. QFs are

later used to filter erroneous measurements. The executed tests

consist of the comparison to range limits and the evaluation of

sensor consistency. The thresholds identified by Lorenz et al.

(2022) are specifically adjusted for our location and sensors, that

is, high latitude location and vertically mounted sensors.

A single QF is associated with each value measured; a high

number corresponds to a low quality. QFs range between 0 (the

test is passed) and 3 (the measurement is most likely erroneous).

A value of 1 (QF = 1) indicates that the test cannot be performed,

while a value of 2 (QF = 2) stands for a measurement that is likely

to be erroneous. The range and consistency limits for all

measurement variables are reported in Table 3.

For GHI upper limits, the upper envelope function

proposed by Espinar et al. (2011) is applied to determine

rare (QF = 2) and extreme (QF = 3) values. The function to

define QF = 3 for GTI in the range limit test is adapted from the

one proposed for GHI by using angle of incidence instead of

solar zenith angle as an input parameter. In regards to

consistency check, the GTI is compared to the modeled GTI

(GTImod): monitored hourly values that differ from the

modeled quantity by more than 200 W/m2 are classified as

QF = 3. The modeled GTI for each pyranometer is calculated

from the measured GHI which is considered as input in the

model chain described in the following lines. The

Engerer2 model (Bright and Engerer, 2019) is applied to

decompose the measured GHI into direct and diffuse

fractions, and then, the Perez model (Perez et al., 1990) is

exploited to transpose them according to the surface azimuth

and tilt angle. The model chain applied in the consistency test

differs from the one that is validated in this study (e.g., based

on HB), although the output parameters are the same.

Consistency quality flags for GHI values are determined by

the QFs of GTI data. A detailed description of how the range

and the consistency limits are determined can be found in

Lorenz et al. (2022).

TABLE 1 Radiance parameters defined in this study.

ab ad as c dc dp dr ds dt lr lw ss st

6 25,000 4,096 1 0.75 512 3 0.05 0.15 8 4e-07 1.0 0.15

ab, number of ambient bounces; ad, number of ambient divisions; as, number of ambient super-samples; c, sampling; dc, direct certainty; dp, direct pretest density; dr, direct relays; ds,

source substructuring; dt, direct thresholding; lr, limit reflection; lw, limit weight; ss, specular sampling; st, specular threshold.
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3.6 Geometry detection

Existing fully automatic methods for geometry detection cannot

fit the requirements in terms of LoD that are necessary for the 3D

model to be implemented in this study, e.g., the depth of windows, the

layout of solar panels, material patterns, architecture element

detection/recognition, and reconstruction. Hence, the high-LoD 3D

model of the ZEB Laboratory is detected and reconstructed based on

point cloud data, with the support of a vertical survey of façades

conducted with LiDAR laser scanning techniques. The reconstruction

of the high-LoD 3D building model and the further geometry

detection need the support of accurate geometry information. To

obtain the related geometry and geographic information, the high-

density 3D scan data were collected by the Trimble SX10 3D scanning

device on June 17, 2022. A total of six scan stations are set up to

position the scanning device (Figure 5).

The set point spacing is 2–3 mm, while the average

distance between the station points and the building is

around 15 m. The multi-station scan data are registered by

using Trimble Business Center (TBC) software to generate the

3D point cloud information describing the geometry

configuration of the ZEB Laboratory. Following this, the

point cloud data are converted into the high-LoD 3D

model of the building case study in the SketchUp

environment. At the same time, the geometry information

for façade elements, e.g., windows, doors, and photovoltaic

panels, is also identified.

3.7 Measuring uncertainty and validation
criteria

The American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) Guideline 14 is (ASHRAE,

2002) considered here as the reference source in the

determination of the uncertainty associated with the

numerical model (Ruiz and Bandera, 2017). The

recommended uncertainty indices are the NMBE, the

CV(RMSE), and R2.

The NMBE is expressed as a percentage and consists of a

normalization of the mean bias error (MBE) index, which is, in

turn, the average of the errors in a sample space. Normalizing the

MBE enables comparing different outcomes. The general

formula to calculate the NMBE is (Eq. 1).

NMBE � 1
�o

∑n
i�1 oi − si( )
n − 1

· 100%, (1)

where �o is themean of the observed values, oi is the ith observed value,

si is the ith simulated value, and n is the number of measured data

points. Positive valuesmean that the numerical model tends to under-

predict the measured parameter. On the contrary, negative values

indicate an overestimation of the measured parameter. However, the

NMBE is also subject to cancellation errors; consequently, the use of

this index alone is not recommended.

The CV(RMSE) measures the variability of the errors

between observed and simulated values, and it is determined

according to (Eq. 2).

CV RMSE( ) � 1
�o

�����������∑n
i�1 oi − si( )2
n − 1

√
· 100% (2)

It is not subject to cancellation errors; thus, the ASHRAE

Guidelines couple it with the NMBE index to verify the models’

accuracy.

The R2 index provides information on how close the simulated

values are to the regression line of the observed values. It ranges from

0 to 1, where the former indicates a complete mismatch between

observed and simulated values and the latter means a perfect match

between them. It is calculated as follows:

R2 � n∑n
i�1oisi −∑n

i�1oi∑n
i�1si������������������

n∑n
i�1o

2
i − ∑n

i�1oi( )2( )√
n∑n

i�1s
2
i − ∑n

i�1si( )2( )⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠2

. (3)

When it comes to the calibration of the numerical model, the

criteria provided by the ASHRAEGuideline 14 are adopted (Table 4).

The document presents different thresholds depending on the time

resolution of the outcomes, ranging from hourly to monthly

quantities. On the one hand, the NMBE index should be within

FIGURE 3
Köppen climate classification. Modified from “Köppen
climate types of Norway” by Adam Peterson.
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the interval from -5% to 5% for monthly outcomes and within the

interval from -10% to 10% for hourly outcomes. On the other hand,

an upper limit of 15 is associated with the CV(RMSE) when monthly

analyses are performed. This upper limit is doubled (up to 30) if

hourly analyses are carried out. Finally, although the R2 is not a

prescriptive value for calibrated models, the ASHRAE Handbook

recommends that the value be higher than 0.75 for calibrated models.

4 Results and discussion

4.1 Geometry detection

The output point cloud data of the ZEB Laboratory and the

corresponding high-LoD 3D model are shown in Figure 6 and

Figure 7. Data points collected by the scanner during the

campaign are later post-processed by filtering noise and

elements from the background and surrounding environment.

In total, around 18,600,000 data points are used to build the 3D

model.

In general, the LoD3 is preferred to the lower levels (e.g.,

LoD1 and LoD2) because it allows including all architectural

features on the façades (e.g., balconies, frames, doors,

windows, and other façade details). In the case of the ZEB

Laboratory, the PV pergola and other façades’ elements (e.g.,

windows and frames) are modeled in high detail. Such

elements influence the solar irradiation collected by the

south pyranometer and the pyranometer installed on the

pergola. In addition to this, the implementation of a

LoD3 model in the ZEB Laboratory lays the groundwork

for advanced solar energy analyses, where the details of

architectural elements are relevant to have more accurate

TABLE 3 Upper a) and lower limits b), acceptable max step amount c), and consistency check d) for the measurement of GHI and GTI (Lorenz et al., 2022).

GHI GTI

(a) QFrange � 2: 1.2 I0 cos(SZA) + 50W/m2 QFrange � 3: 0.9 I0 cos (AOI)1.2 + 300W/m2

QFrange � 3: min
1.2 I0
, 1.5 I0 cos SZA( )1.2 + 100W/m2{

(b)
QFrange � 3:

0.01 I0 cos SZA( ) for SZA< 75°
0 for SZA> 75°{

(c) 1, 000W/m2

(d) - QFrange � 3: |GTI − GTImod |> 200W/m2

TABLE 2 Orientation of the pyranometers installed in the ZEB Laboratory.

East South West North Roof Pergola Horizontal

Surface tilt 90 90 90 90 40 60 0

Surface azimuth 90 180 240 0 180 180 -

FIGURE 4
Location of the pyranometer in the ZEB Laboratory.
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results and for the development of high-LoD solar cadaster.

The latter can be coupled to other numerical models to

perform energy analyses, visual and thermal comfort

assessments, and PV energy simulations.

4.2 Solar analysis

The outcomes from solar analyses performed through the HB

plugin and Radiance simulation engine are reported in this

section. The solar irradiation impinging on the seven sensors

extracted from the grid and representative of the seven

pyranometers installed in the ZEB Laboratory is reported in

Table 5 and Figure 8.

The three pyranometers facing south with different tilt angles

together with the horizontal pyranometer are the most irradiated

throughout the year. The pyranometers integrated in the roof, the

pergola, and the south façade collect up to 934.57 kWh/m2 per year,

836.70 kWh/m2 per year, and 659.53 kWh/m2 per year, respectively.

The solar irradiation impinging on the one horizontally mounted

achieves 745.33 kWh/m2 per year. Conversely, the pyranometer

facing the north is the least irradiated (261.82 kWh/m2 per year).

Although the west façade is partially shaded by the nearby building,

it is still reached and receives almost the same amount of irradiance

TABLE 4 Validation criteria provided by the ASHRAE Guideline 14.

Data type Index ASHRAE Guideline 14

Calibration criteria

Monthly criteria NMBE ±5%

CV(RMSE) 15%

Hourly criteria NMBE ±10%

CV(RMSE) 30%

Model recommendation

R2 >0.75

FIGURE 5
From the top: (A) scanning operations, (B) view of the point cloud during the scanning operations, and (C) positions of scanning stations around
the ZEB Laboratory.
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as the east façade, which is mostly unobstructed (around 500 kWh/

m2 per year). This is mostly due to the fact that the west façade is not

perfectly facing west, that is, the azimuth angle is 240. The

irradiation patterns of the west and east façades (Figure 8)

highlight this aspect.

4.3 Data quality check

The quality check of the solar irradiation data recorded by the

pyranometers integrated in the ZEB Laboratory between June

21st and September 21st is performed by assigning a quality flag

FIGURE 6
Different levels of detail associated with the 3D model of the ZEB Laboratory. The LoD3 is the one achieved in this study.

FIGURE 7
Changes in the geometry model from the point cloud data to the high-LoD 3Dmodel of the ZEB Laboratory and to the solar potential analysis.

TABLE 5 Hourly mean ad yearly global irradiation over the year for each pyranometer.

Pyranometer Hourly mean global irradiation [W/m2] Yearly global irradiation [kW/m2]

East 57.94 507.52

South 75.29 659.53

West 56.79 497.47

North 29.89 261.82

Roof 106.69 934.57

Pergola 95.52 836.70

Horizontal 85.08 745.33
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to each observation. An overview of these quality flags is

presented in Figure 9. The visual inspection of the diagrams

suggests that a low level of reliability (QF = 3) is mostly associated

either with low solar irradiation amounts or with those values

that have been measured during particularly overcast sky

conditions.

Following this, the datapoints that are suitable to be used

in the validation process (QF = 0) are filtered out for each

pyranometer. The applied quality check scheme allowed

excluding more than 10,000 data points including, among

the others, values measured during the night. The resulting

datasets differ for the number of values; the dataset affected

the most by this reduction is the one from the north-facing

pyranometer, which is reduced to around one-tenth (from

2,208 to 212 data points). Among the others, the horizontally

mounted pyranometer is the sensor collecting the most

reliable data since it shows the highest amount of data with

QF = 0 (1,018 data points). This is probably due to the fact that

the sensor is exposed to direct sunlight for most of the time

during the investigated period, and solar irradiation is usually

measured with high accuracy by the pyranometer in this

condition. A complete overview of the filtered data for each

pyranometer is provided in Figure 9.

4.4 Experimental validation

The solar irradiation outcomes from the numerical model

are reported against the experimental observations in the

scatter plots in Figure 10. It is worth highlighting that only

the values satisfying the requirements of the quality check

scheme are included in these graphs. Hence, the length of the

datasets changes depending on the considered pyranometer

(Table 6).

The visual comparison of the observed and calculated values

shows that the numerical model can calculate in a more accurate

way the solar irradiation impinging on the horizontal pyranometer

and on the roof surface compared to the others. However, the

general tendency of the numerical model to overestimate the solar

irradiation amounts is clear, as shown by the significant presence of

data points above the red line.

The experimental validation is performed according to the

ASHRAE Guideline 14 (section 3.7). The statistical indicators

and their respective thresholds are considered on both an hourly

and monthly basis. When it comes to the hourly solar irradiation

amounts, the statistical indicators, e.g., NMBE, CV(RMSE), and R2,

are estimated for the seven pyranometers (Table 7). The NMBE

values are always lower than the threshold identified by the

ASHRAE Guideline 14 (i.e., NMBE < ±10%). The negative

NMBE values indicate that the numerical model tends to

FIGURE 8
Hourly distribution of solar irradiation over the year for each
pyranometer.
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overestimate the solar irradiation quantities, confirming the

deductions from the graphs’ observations. The R2 amounts

always fit ASHRAE’s requirements (i.e., R2 > 0.75). However, it

is just a recommendation and not a calibration criterion. On the

contrary, only the CV(RMSE) values calculated for the roof and

horizontal pyranometers are acceptable (i.e., CV(RMSE) < ±30%);

therefore, these are the only hourly outcomes from the numerical

model that can be validated.

The east, south, west, and pergola sensors showed CV(RMSE)

values that are slightly above the upper limit (30%). In this regard,

the exploitation of groundmeasurements of DNI and DHI as model

input in place of the solar radiation data from satellite observation

can enhance the result’s accuracy. Finally, the sensor installed in the

north façade is the one characterized by the lowest level of accuracy

probably because it is the sensor that receives the least radiation, and

themain irradiation contribution is usually from the diffuse fraction.

When the statistical indicators are calculated for data

aggregated on a monthly basis, the simulated amounts for the

east- and south-oriented pyranometers, in addition to the roof

and horizontal pyranometers, are labeled as validated (Table 7).

In fact, both the NMBE and the CV(RMSE) indicators of these

two sensors are within the thresholds from the ASHRAE

Guideline 14 (i.e., NMBE < ±5% and CV(RMSE) < ±15%).

In this case, the sensor that is farthest to be validated is the

one installed on the pergola. In fact, the pergola is located

near the ground; therefore, it is the one mostly affected by

human activities happening around the buildings, e.g., the

presence of vehicles, and by the optical properties of the

ground, e.g., changes in ground reflectivity due to weather

conditions.

4.5 Limitations of the study

The main limitations of this study are presented and

discussed in the following section. First, data on solar

radiation from satellite observations may contain an incorrect

estimation of direct and diffuse fractions and systematic errors

within the evaluation of the GTI. Ground measurements of solar

radiation are more reliable and can overcome this issue.

However, satellite observations are available for every location

FIGURE 9
Overview of the quality flags associated with the datapoints.

TABLE 6 Datapoints after the application of the quality check scheme.

Pyranometer Quality-checked datapoints

East 467

South 806

West 712

North 212

Roof 939

Pergola 888

Horizontal 1,018
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FIGURE 10
Scatter plots with solar irradiation outcomes from the numerical model against the experimental observations.
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within the spatial domain of CAMS solar radiation, providing

up-to-date information. This aspect, together with the possibility

of retrieving direct and diffuse solar irradiation data that are not

calculated by decomposition models, makes CAMS solar

radiation one of the most used and most accepted sources of

solar radiation data inputs in solar mapping.

Concerning the 3Dmodel, the optical properties of thematerials

applied to the urban surfaces are not experimentally determined but

retrieved from the literature. This might lead to an incorrect

assessment of mutual reflections between the building case study

and either the surrounding buildings or the ground surface.

Nonetheless, none of the sensors except the ones installed on the

pergola and the one facing east have nearby surfaces that can reflect

solar radiation toward them, that is, these sensors are installed far

from the ground and other buildings.

Finally, the experimental validation is carried out only in

summer conditions and for a limited time interval

(i.e., 3 months). However, this is the period of the year when

the solar irradiation is maximum at high latitudes; hence, it is the

one determining the most the solar energy potential of a building.

However, further validation studies are planned to be performed

to validate the numerical model during intermediate seasons

(i.e., spring and fall) when the solar energy potential of façades is

significant at high latitudes.

5 Conclusion and future outlooks

Aworkflow integrating the geometry definition of high-LoD 3D

models and the mapping of the solar irradiation is proposed for

application at high latitudes. The 3D model of the building case

study is reconstructed with the help of laser scanning techniques.

The outcomes from the solar radiation model are experimentally

validated against data collected from seven pyranometers installed in

the ZEB Laboratory in Trondheim. A quality check scheme is

applied to reduce the influence of potentially erroneous

observations on the statistical indicators.

The findings of this study can be summarized in the following

points:

1) The applied quality check scheme allowed excluding more

than 10,000 data points that would have decreased the

reliability of the experimental validation process.

2) The Radiance-based numerical model tends to overestimate

the solar irradiation quantities for all the sensors compared to

real measured data recorded with pyranometers.

3) The hourly solar irradiation outcomes of the roof and the

horizontal pyranometers are experimentally validated in

accordance with the ASHRAE Guideline 14.

4) The monthly solar irradiation outcomes of the east, the south,

the roof, and the horizontal pyranometers are validated in

accordance with the ASHRAE Guideline 14.

Such results represent a first and significant step toward the

implementation of a solar cadaster in Trondheim that will help to

enhance the predesign of solar systems and estimation of their solar

potential and the social acceptability of solar energy and promote the

involvement of stakeholders through the visualization of energy

production data and accurate performance predictions. The solar

irradiation collected by the façades, which is neglected in the existing

2D solar maps, is experimentally validated against data collected by

vertically mounted pyranometers with multiple orientations.

Including building façade in solar cadaster is challenging since it

requires to accurately model inter-building effects (e.g., mutual

shading and reflections). Also, high-detail 3D models like the one

implemented in this study are necessary to trace the path covered by

sunrays within the investigated spatial domain.

The future developments of this work will be focused on

1) Performing the experimental validation of the numerical

model over a longer period, e.g., 1 year.

2) Experimentally validate the south, east, west, and north

sensors and the one installed on the pergola by

considering ground measurements of direct and diffuse

irradiation and integrating decomposition and

transposition modeling into the workflow.

3) Enhance the numerical model to perform 1-min solar

analyses that enable simulating instantaneous phenomena,

e.g., cloud enhancement events.

TABLE 7 Statistical indicators estimated for the observed and calculated hourly solar irradiation amounts for each pyranometer.

East South West North Roof Pergola Horizontal

Hourly NMBE [%] −0.78 −5.73 −5.38 −7.95 −2.65 −9.42 −4.06

CV(RMSE) [%] 33.14 33.35 34.09 51.68 27.98 34.89 25.76

R2 [0–1] 0.81 0.85 0.87 0.64 0.85 0.83 0.82

Monthly NMBE [%] 0.13 −5.17 −5.20 −6.37 −1.81 −9.50 −4.14

CV(RMSE) [%] 3.00 6.16 7.47 10.11 3.99 11.49 5.53

R2 [0–1] 0.98 0.89 0.88 0.96 0.93 0.59 0.81
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4) Implement the algorithm to fully automatically detect

building geometry and materials applied to surfaces.
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Glossary

3D three dimensional

aa ambient accuracy

ab ambient bounces

ad ambient division

ar ambient resolution

ASHRAE American Society of Heating, Refrigerating and

Air-Conditioning Engineers

BIPV building-integrated photovoltaic

CAMS Copernicus Atmosphere Monitoring Service

CLT cross laminated timber

CV(RMSE) coefficient of variation of the root mean

square error

Dfc continental subarctic climate

DHI diffuse horizontal irradiation

DNI direct normal irradiation

GHI Global Horizontal Irradiation

GIS geographic information system

GPS Global Positioning System

GTI global tilted irradiation

HB Honeybee

INS inertial navigation system

LiDAR Light Detection and Ranging

LoD level of detail

MBE mean bias error

NMBE normalized mean bias error

PV photovoltaic

QF quality flag

R2 coefficient of determination

TBC Trimble Business Center

TLS terrestrial laser scanning

TMY typical meteorological year

UAV unmanned aerial vehicle

ZEB zero emission building.
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