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Abstract:
A main concern for the aquaculture industry is the fish behaviour and welfare. Motion trajectory
analysis of salmon at aquaculture farming sites with respect to certain aquaculture operations
aims to provide information about the behaviour and possibly stress level of the farmed salmon
and may help to generate a general welfare indicator index. Towards this aim we present
an innovative computer vision and machine learning based approach for motion trajectory
estimation of salmon. Video footage was recorded with a stereo camera setup. Deep learning
based object detection was performed to detect particular features. We focused on tracking
the fish eyes and heads as a reliable indicators of the fish’s position. Feature matching and
subsequent 3D reconstruction was performed to calculate the 3D position of the fish from which
trajectories of the fish movement were estimated. Related experiments were conducted at an
aquaculture research facility under natural lighting conditions and extracted trajectories allowed
a qualitative verification. The developed method was verified using synthetic ground truth data
produced with an open source computer graphics software for quantifiable performance metrics.

Keywords: Aquaculture, Underwater localization techniques, Vision, recognition and
reconstruction for underwater applications

1. INTRODUCTION
In this study we aim to demonstrate the validity of using
cameras to monitor salmon in order to automatically
analyse the movement of the fish as part of their behaviour.
This study is based on video recordings of an experiment
where CO2 was injected as a stressor for the fish. Modern
deep learning based object detection is applied to stereo
video footage to identify the head and eye of the individual
fish. When features are detected in both the left and right
stereo image, they are matched and 3D coordinates are
calculated. From this motion trajectories are estimated for
the fish during the time it is visible in frame. An example
of a generated trajectory next to an image with detections
from the experimental data is shown in Figure 1. A
methodology is developed for combining deep learning for
object detection with stereo vision and feature matching,
to estimate 3D motion trajectories of salmon as well as its
swimming speed. To enable a quantitative performance
measure, a simulated data set with a ground truth is used
and the methods are tested on this data set in addition to
the qualitative performance measures on the experimental
data. In this paper, we first do a brief literature review
of Related Works (Section 2) followed by an explanation
⋆ This work has received support from the Norwegian Seafood
Research Fund FHF (OWITOOLS, Project-number: 901594) and
from the Norwegian Research Council (SOUNDWELL, Project-
number: 280512).

of our methods (Section 3), afterwards the simulation and
experimental setup (Section 4) is introduced briefly before
the results are presented (Section 5) and discussed (Section
6) before we conclude (Section 7).

Fig. 1. Trajectory extracted from the eye of a single
fish using the proposed methodology. The estimated
motion trajectory are shown beside an image with
detected features extracted from the recorded video
footage.

2. RELATED WORK
Using artificial intelligence and computer vision for aqua-
culture applications has a long history dating back to 1995
(Newbury et al. (1995), Jovanović et al. (2016), Lien et al.
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(2019), Madshaven et al. (2022)). Recently more work has
been reviewed by Yang et al. (2021). Modern machine
learning techniques for object detection and tracking, such
as Deep Learning which are related to our work are utilized
to generate trajectories in 2D over time. They are utilized
for behavioural analysis while exposed to a stressor (Xu
et al., 2020), for trajectory estimation to evaluate the
behaviour of sea cucumbers in an experimental setting (Li
et al., 2020), and for a generalised tracker of animals in a
group setting (Romero-Ferrero et al., 2019). Related stereo
vision approaches for various aquaculture and fisheries
applications facilitate classical computer vision methods
to segment fish for size estimation (Chuang et al., 2015), or
to monitor rail fishing electronically (Huang et al., 2019),
or to track fork lengths of farmed tuna, by estimating the
3D coordinate positions from a pair of stereo images with
direct linear transform (DLT) (Torisawa et al., 2011).
With regards to previous work, we combine stereo vision
and deep learning based object detection to estimate 3D
motion trajectories suitable for behavioural analysis of the
farmed animals.

3. METHOD
The methodology described in the following section pro-
vide the required steps to extract accurate motion trajec-
tories from recorded stereo video footage of salmon.

3.1 Calibration and rectification
Camera calibration is a crucial step in order to extract ac-
curate metric measurements from the stereo images. Cam-
era calibration was performed according to the proposed
method by Zhang (2000). During camera calibration the
distortion parameters are determined to correct the images
for the present distortion (for more details, see Hartley and
Zisserman (2000)). The intrinsic camera parameters define
the geometry of a pin hole camera model (perspective
projection) and were determined by using a checkerboard
calibration pattern with known geometry.

Each frame in the stereo videos were also rectified using
the calibration data such that the viewing direction would
be parallel and orthogonal to the camera baseline. During
the rectification process the images gets transformed and
warped such that they appear to only have horizontal
displacement (Figure 2). Meaning that the displacement
along the y-axis would ideally be zero. To ensure that
the image planes gets aligned well, it’s important to re-
move optical distortion in the image. The distortion can
be removed by using the distortion coefficients that were
obtained during the calibration.

Fig. 2. After rectification corresponding points in both
images would be located along the same epipolar lines

3.2 Data preparation
The training data for the neural networks was created
by manual annotation of images, both non-rectified and

rectified stereo images were annotated using a computer
vision annotation tool (Sekachev et al. (2020)). Except
for rectification of parts of the training set, no further
data pre-processing is applied, prior to training time
augmentations.

3.3 Object detection
In order to extract trajectories of the fish movement
from the stereo videos, accurate detection and tracking
of the fish is essential. There are several candidates for
the features of the fish that could be detected and traced
such as fins, eyes or head. Considering the accuracy and
stability of the detection, the eyes were selected for stereo
matching as it empirically provided the most consistent
detections (an example of an image with detections can
be seen in Figure 1). The head and the dorsal fin can
be other possible candidates for tracking. The accuracy
measured in mAP (mean average precision) of dorsal fin
detections were significantly lower and the head detection
bounding boxes varied some more in size. Due to fish gills
moving, the bounding box of the head shifts with the
breathing of the fish. The caudal fin is not suitable due
to sideways movement of the tail. Unlike the experimental
data, the head proved to be the most reliable indicator for
the synthetic data as the confidence levels made the eye
detections less suitable, thus the head is used to generate
those trajectories.

For the object detection algorithm, a YOLOv5 architec-
ture is used (Jocher (2021)). The network is trained on
self-annotated data as described above using significant
amounts of data augmentation. The kinds of augmentation
that were used are: Mixup (Zhang et al. (2018)), shearing,
scaling, translation, mosaic (Bochkovskiy et al. (2020)),
translation, flips (right and left) and HSV (Hue Saturation
Value) variation. Training was carried out with up to 500
epochs, with improvements stopping around 300 epochs
in terms of mAP which is used to score performance.
Stochastic gradient descent with momentum of 0.937 and
3 warm up epochs with 0.8 momentum was used to train
the network. Plots of the resulting mAP, training and
validation losses (objective, class and box) losses can be
seen in Figure 3. The resulting model from this training
performed adequately when data quality is high, with a
precision at confidence 0.4 of about 80% with a 75% recall
overall on the validation data.

Fig. 3. Graphs of accuracy, precision, recall as well as
validation/training losses (box, object and class).

3.4 Multi object tracking
Stereo matching is not trivial when multiple salmon are
visible in the stereo images. To simplify the stereo match-
ing, the acquired objected detection data was sorted such
that corresponding features in left and right image from
the same salmon are grouped together. This allows us to
track the same feature in consecutive frames. The tracking
was achieved with Bochinski et al. (2017) high speed multi
object tracker (MOT). Bochinski’s algorithm is sorting the
data based on overlapping bounding boxes in consecutive
frames. A high frame rate would be required to ensure a
high overlap and to minimize the amount of mismatch, as
the method is solely based on the size and position of the
bounding boxes and not utilizing the image information.

3.5 Stereo matching
Stereo matching becomes trivial after having sorted cor-
responding features with Bochinski’s tracking algorithm.
The videos have also been rectified, thus all corresponding
points would be located along the same epipolar line.
After rectification there should ideally be no disparity
along the y-axis and the disparity between the two images
can be obtained by subtracting the horizontal position
of the corresponding image points. However, computing
the disparity from the position without using the image
information, assumes that the object detection have a pixel
perfect accuracy. Incorrect object detection can result in
inaccurate motion estimates. To improve the accuracy a
block matching (BM) approach was implemented. The im-
plemented method defines a local region (often referred to
as a window) containing the position and its neighbouring
pixels in the left image and searches for another window
along the epipolar line until it finds the most suitable
match in the right image. Different cost functions can be
used to measure the similarity between the windows that
are being compared, but based on the results from testing,
the normalized cross-correlation function (NCC) proved
to be the most accurate. The OpenCV implementation of
NCC was used as a similarity measure for block matching
during the experiments (Bradski, 2000):

NCC(x, y) =

∑
x′,y′(W (x′, y′)I(x+ x′, y + y′))√∑

x′,y′ W (x′, y′)2
∑

x′,y′ I(x+ x′, y + y′)2

Here ”W” is the window containing the feature position
and its surrounding pixels that are being evaluated and ”I”
is the reference image that the window is being compared
against. The window with the maximum value would be
the optimal match.

3.6 3D reconstruction
Given the camera parameters and a pair of matched fea-
tures in the two image planes, the coordinates of the 3D
point can be obtained by solving the triangulation prob-
lem. The 3D point X would be located at the intersection
point of the projection rays from the two cameras centers
C and C′. Hence the location of the 3D scene point can be
derived by the geometric relations between the baseline
B, focal length f , depth Z and the horizontal disparity
x− x′ of the image plane (Figure 4). The final trajectory
can then be estimated by computing the 3D scene point
for each corresponding features in consecutive frames.

Fig. 4. Geometric relations: 3D coordinates are derived
directly from the triangle, which is formed between
the two camera centers and the 3D point.

3.7 Sub-pixel accuracy
Sub-pixel estimation is an image registration technique
used to obtain a higher accuracy than the pixel accuracy in
digital images. Sub-pixel estimation is typically applied as
a refinement step after the initial process of finding discrete
correspondences (Szeliski, 2022). In an attempt to improve
the accuracy after block matching, the gradient cross-
correlation (GCC) method of Argyriou and Vlachos (2003)
was implemented as a sub-pixel refinement. T he least
squares method can be used to fit a quadratic function
to the cross-correlation function of the image gradient.
The peak of the fitted function would then represent
the image disparity with sub-pixel accuracy. Additionally,
as convolution becomes multiplication in the frequency
domain, the fast Fourier transform (FFT) can be utilized
to reduce the computational time.

3.8 Post processing
A Savitzky and Golay (1964) filter was applied to smooth
out the estimated trajectory. The Savitzky–Golay (SG)
filter uses convolution and polynomial fitting (e.g. least
squares) to reduce the amount of fluctuations while keep-
ing the signal tendency of the trajectory intact. Smoothing
out the fluctuations while highlighting the overall trend of
the trajectory, can simplify speed and length estimations
where discontinuities can easily lead to incorrect estimates.

3.9 Analyze speed, compute length of trajectory
Having estimated a trajectory for the fish movement, some
additional indicators that can be utilized in behavioural
analysis can be extracted: The length of the trajectory can
be used as a measure of activity over time (i.e how much
does the fish swim) as well as the speed both as an average
for the trajectory and as the gradient (i.e. instantaneous
velocity) of the trajectory. The length and average speeds
will give insights into the overall activity of the fish and
can be calculated by the Euclidean distance between the
3D coordinates from one frame, i, to the next:
ΣN

i=1d = ΣN
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

When the sum of distances between frames is divided by
the amount of frames, it will give speed in units distance
per frame. When this is multiplied by frames per second,
it will give a true metric speed. For the continuous speed
estimates at any given point, the numerical gradient of the
distance can be calculated. For all of these calculations
it is important that the trajectories are not corrupted
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3.4 Multi object tracking
Stereo matching is not trivial when multiple salmon are
visible in the stereo images. To simplify the stereo match-
ing, the acquired objected detection data was sorted such
that corresponding features in left and right image from
the same salmon are grouped together. This allows us to
track the same feature in consecutive frames. The tracking
was achieved with Bochinski et al. (2017) high speed multi
object tracker (MOT). Bochinski’s algorithm is sorting the
data based on overlapping bounding boxes in consecutive
frames. A high frame rate would be required to ensure a
high overlap and to minimize the amount of mismatch, as
the method is solely based on the size and position of the
bounding boxes and not utilizing the image information.

3.5 Stereo matching
Stereo matching becomes trivial after having sorted cor-
responding features with Bochinski’s tracking algorithm.
The videos have also been rectified, thus all corresponding
points would be located along the same epipolar line.
After rectification there should ideally be no disparity
along the y-axis and the disparity between the two images
can be obtained by subtracting the horizontal position
of the corresponding image points. However, computing
the disparity from the position without using the image
information, assumes that the object detection have a pixel
perfect accuracy. Incorrect object detection can result in
inaccurate motion estimates. To improve the accuracy a
block matching (BM) approach was implemented. The im-
plemented method defines a local region (often referred to
as a window) containing the position and its neighbouring
pixels in the left image and searches for another window
along the epipolar line until it finds the most suitable
match in the right image. Different cost functions can be
used to measure the similarity between the windows that
are being compared, but based on the results from testing,
the normalized cross-correlation function (NCC) proved
to be the most accurate. The OpenCV implementation of
NCC was used as a similarity measure for block matching
during the experiments (Bradski, 2000):

NCC(x, y) =

∑
x′,y′(W (x′, y′)I(x+ x′, y + y′))√∑

x′,y′ W (x′, y′)2
∑

x′,y′ I(x+ x′, y + y′)2

Here ”W” is the window containing the feature position
and its surrounding pixels that are being evaluated and ”I”
is the reference image that the window is being compared
against. The window with the maximum value would be
the optimal match.

3.6 3D reconstruction
Given the camera parameters and a pair of matched fea-
tures in the two image planes, the coordinates of the 3D
point can be obtained by solving the triangulation prob-
lem. The 3D point X would be located at the intersection
point of the projection rays from the two cameras centers
C and C′. Hence the location of the 3D scene point can be
derived by the geometric relations between the baseline
B, focal length f , depth Z and the horizontal disparity
x− x′ of the image plane (Figure 4). The final trajectory
can then be estimated by computing the 3D scene point
for each corresponding features in consecutive frames.

Fig. 4. Geometric relations: 3D coordinates are derived
directly from the triangle, which is formed between
the two camera centers and the 3D point.

3.7 Sub-pixel accuracy
Sub-pixel estimation is an image registration technique
used to obtain a higher accuracy than the pixel accuracy in
digital images. Sub-pixel estimation is typically applied as
a refinement step after the initial process of finding discrete
correspondences (Szeliski, 2022). In an attempt to improve
the accuracy after block matching, the gradient cross-
correlation (GCC) method of Argyriou and Vlachos (2003)
was implemented as a sub-pixel refinement. T he least
squares method can be used to fit a quadratic function
to the cross-correlation function of the image gradient.
The peak of the fitted function would then represent
the image disparity with sub-pixel accuracy. Additionally,
as convolution becomes multiplication in the frequency
domain, the fast Fourier transform (FFT) can be utilized
to reduce the computational time.

3.8 Post processing
A Savitzky and Golay (1964) filter was applied to smooth
out the estimated trajectory. The Savitzky–Golay (SG)
filter uses convolution and polynomial fitting (e.g. least
squares) to reduce the amount of fluctuations while keep-
ing the signal tendency of the trajectory intact. Smoothing
out the fluctuations while highlighting the overall trend of
the trajectory, can simplify speed and length estimations
where discontinuities can easily lead to incorrect estimates.

3.9 Analyze speed, compute length of trajectory
Having estimated a trajectory for the fish movement, some
additional indicators that can be utilized in behavioural
analysis can be extracted: The length of the trajectory can
be used as a measure of activity over time (i.e how much
does the fish swim) as well as the speed both as an average
for the trajectory and as the gradient (i.e. instantaneous
velocity) of the trajectory. The length and average speeds
will give insights into the overall activity of the fish and
can be calculated by the Euclidean distance between the
3D coordinates from one frame, i, to the next:
ΣN

i=1d = ΣN
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

When the sum of distances between frames is divided by
the amount of frames, it will give speed in units distance
per frame. When this is multiplied by frames per second,
it will give a true metric speed. For the continuous speed
estimates at any given point, the numerical gradient of the
distance can be calculated. For all of these calculations
it is important that the trajectories are not corrupted
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with noise, as can be seen in Figure 5. Without any post
processing or sub-pixel refinement, there are jumps from
frame to frame of such a magnitude that it obscures the
real movement of the fish.

4. SIMULATION AND EXPERIMENTAL SETUP
In this section, the results from the conduced experiments
using the real video footage (Section 4.1) and the synthetic
data generated in Blender (Section 4.2) are presented.

4.1 Experiments
In the summer of 2021, an experiment aiming to observe
the sound response of fish to various stress factors was
carried out at the NINA (The Norwegian Institute for
Nature Research) research facility. In this work the stereo
video data, specifically videos from 9AM and 10AM, is
used to test our proposed tracking methodology for data
mining fish behaviour information. The data set contains
video of fish every 15 minutes, with each video lasting
5 minutes throughout the day of the experiment with
natural lighting and associated issues.

4.2 Synthetic data with ground truth
In order to objectively evaluate the used approach for tra-
jectory measurements we created a simulated experiment
with the open source graphics software Blender (Commu-
nity, 2018) which allowed us to define a camera and a
scene where a simplified salmon can move on a predefined
ground truth trajectory. For our experiment we placed a
salmon image as texture on a flat rectangular surface and
moved the surface along the trajectory, with a parallel
orientation to the camera. The trajectory represented a
motion along a circle with radius 0.5 m centered at 2 m in
front of the camera (i,e, x,y,z = 0,0,2 ). A full round along
the circle was performed after 100 frames and the exact
trajectory of the salmon-eye was determined considering
also the actual offset of the eye on the rectangular surface.
Intrinsic camera parameters were set to closely represent
the stereo-camera used in the real-world experiment. The
horizontal field of view was set to 50 degrees and the
baseline between the two parallel oriented stereo cameras
was set to 0.15m. The principle point is at the center of
the created camera images with size 1280× 818 pixels.

5. RESULTS
The estimated trajectories using the methodology laid
out in this paper when applied to the experimental data
(Section 4.1), are shown in Figure 5 and 6. Both figures
shows the estimated trajectories where the disparity is
computed with and without block matching in addition to
one that is smoothed out with a Savitzky–Golay filter. The
results presented in Figure 8 and 7 were estimated using
the synthetic data generated in Blender (Section 4.2). In
Section 3.9 the method for calculating the length of a tra-
jectory is given, when combined with the knowledge of the
duration of the trajectories, the speed can be calculated.
For validation of the methodology, these calculations are
carried out on trajectories estimated from the synthetic
data and compared with its ground truth. The results
of this comparison, without block matching, with block
matching and using block matching with gradient cross-
correlation can be seen in Table 1. A plot of the speed
throughout the trajectory (calculated with block matching
and gradient cross-correlation), is shown in Figure 8.

Fig. 5. Trajectory from 9am video recording showing
the accuracy differences between a motion trajectory
without block matching (BM), with BM, and with
BM and a Savitzky–Golay filter.

Fig. 6. Trajectory from 10am video recording showing
the accuracy differences between a motion trajectory
without block matching (BM), with BM, and with
BM and a Savitzky–Golay filter.

Fig. 7. Comparing the synthetically generated ground
truth with the estimated trajectories.

Fig. 8. Filtered instantaneous speed computed from the
estimated trajectories obtained with the synthetic
data.

Method Trajectory Length [m] Speed [m/s]
Ground Truth 7.854 0.7854
Without BM 11.54 1.154

With BM 8.003 0.8003
BM + GCC. 7.853 0.7853

Table 1. Estimated trajectories without and
with block matching (BM), with BM and gra-
dient cross-correlation (GCC) as well as the

corresponding synthetic ground truth.

5.1 Error measures
In order to evaluate the performance, the estimated tra-
jectory and the ground truth were compared with different
error measures. The root-mean-square error (RMSE) em-
phasize large and undesirable errors in the estimated tra-
jectory. On the other hand, the mean-square error (MAE)
is a linear error measure that emphasizes all errors equally.
RMSE and MAE were also selected as the preferred error
measures as the result would have the same unit as the
input data itself. Table 2 show the RMSE and MAE of the
euclidean distances that were computed when comparing
the estimated trajectory with the ground truth.

Method RMSE [m] MAE [m]
Without BM 0.0364 0.0278
With BM 0.009 0.0084
BM + GCC 0.0068 0.0064

Table 2. Resulting RMSE and MAE when com-
pared against the synthetic ground truth of
trajectories estimated without block matching
(BM), with BM and with BM and gradient

cross-correlation (GCC).

6. DISCUSSION
Eye detections of the fish do fail in several cases, primarily
due to poor lighting conditions (either over or underex-
posed regions of the images) as well as the limited field of
view causing the fish to mostly be out of the field of view.
This prevents tracking over long periods of time. Other
issues that adversely affects detections are back scattering
and turbidity (Figure 9).

Data augmentation was also found empirically to increase
the detection accuracy, this could be due to the artifacts,
varying conditions and other data quality issues. The
distortion introduced by stereo-rectification, was probably

also a factor for why augmentation was needed, as a signifi-
cant drop in accuracy from non-rectified to rectified images
was observed prior to the addition of augmentation.

Fig. 9. Challenges: High back-scattering/high turbidity
(top left), fish are not visible (top right), overexposed
(bottom left), and underexposed (bottom right).

6.1 Stereo matching accuracy
The estimated trajectory from the real experiment shown
in Figure 5 and 6, were verified through qualitative com-
parison with the actual motion of the salmon in the video.
Looking at the two figures, one can notice the discontin-
uous noise along the z-axis. The noise is related to the
disparity between the corresponding points that are used
in the triangulation process. The noise can be a result of
incorrect detections or the images being limited to pixel
accuracy, introducing discontinuities in the signal. Sub-
pixel refinement can be a viable solution to improve the ac-
curacy. In an attempt to improve the accuracy, a sub-pixel
refinement method based on gradient cross-correlation
was implemented to estimate the sub-pixel accuracy. A
synthetic ground truth was created to quantitatively test
the accuracy of each matching method. In Figure 7 one
can notice that estimating the disparity directly from the
detected feature position leads to the most inaccurate
trajectory and that the noise increases when the depth
increases. Table 2 shows that there is a difference between
estimated trajectories with and without block matching
of approximately 2.8 cm. Block matching with sub-pixel
refinement yielded the smallest error, but as the same tex-
ture of the salmon was used for both left and right image
in the synthetic camera setup, further testing is required
to evaluate the improvement of sub-pixel refinement. The
overall performance can change depending on the image
quality and lighting conditions in the testing environment.
However, looking at the root-mean-square error in Table 2,
it’s clear that block matching both with and without sub-
pixel refinement can improve the accuracy of the estimated
trajectory.

7. CONCLUSION
The definition of welfare indicators is an ongoing research
question, especially in the aquaculture industry. With this
paper we aim to establish a first step towards this goal, by
extracting motion trajectories of individual salmon and
swimming speed. With the developed methodology we are
able to track the fish while it is within the field of view
to retrieve 3D position, motion trajectory and swimming
speed. This should provide a good starting point for fur-
ther work within automatic analysis of behaviour as a
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Fig. 8. Filtered instantaneous speed computed from the
estimated trajectories obtained with the synthetic
data.

Method Trajectory Length [m] Speed [m/s]
Ground Truth 7.854 0.7854
Without BM 11.54 1.154

With BM 8.003 0.8003
BM + GCC. 7.853 0.7853

Table 1. Estimated trajectories without and
with block matching (BM), with BM and gra-
dient cross-correlation (GCC) as well as the

corresponding synthetic ground truth.

5.1 Error measures
In order to evaluate the performance, the estimated tra-
jectory and the ground truth were compared with different
error measures. The root-mean-square error (RMSE) em-
phasize large and undesirable errors in the estimated tra-
jectory. On the other hand, the mean-square error (MAE)
is a linear error measure that emphasizes all errors equally.
RMSE and MAE were also selected as the preferred error
measures as the result would have the same unit as the
input data itself. Table 2 show the RMSE and MAE of the
euclidean distances that were computed when comparing
the estimated trajectory with the ground truth.

Method RMSE [m] MAE [m]
Without BM 0.0364 0.0278
With BM 0.009 0.0084
BM + GCC 0.0068 0.0064

Table 2. Resulting RMSE and MAE when com-
pared against the synthetic ground truth of
trajectories estimated without block matching
(BM), with BM and with BM and gradient

cross-correlation (GCC).

6. DISCUSSION
Eye detections of the fish do fail in several cases, primarily
due to poor lighting conditions (either over or underex-
posed regions of the images) as well as the limited field of
view causing the fish to mostly be out of the field of view.
This prevents tracking over long periods of time. Other
issues that adversely affects detections are back scattering
and turbidity (Figure 9).

Data augmentation was also found empirically to increase
the detection accuracy, this could be due to the artifacts,
varying conditions and other data quality issues. The
distortion introduced by stereo-rectification, was probably

also a factor for why augmentation was needed, as a signifi-
cant drop in accuracy from non-rectified to rectified images
was observed prior to the addition of augmentation.

Fig. 9. Challenges: High back-scattering/high turbidity
(top left), fish are not visible (top right), overexposed
(bottom left), and underexposed (bottom right).

6.1 Stereo matching accuracy
The estimated trajectory from the real experiment shown
in Figure 5 and 6, were verified through qualitative com-
parison with the actual motion of the salmon in the video.
Looking at the two figures, one can notice the discontin-
uous noise along the z-axis. The noise is related to the
disparity between the corresponding points that are used
in the triangulation process. The noise can be a result of
incorrect detections or the images being limited to pixel
accuracy, introducing discontinuities in the signal. Sub-
pixel refinement can be a viable solution to improve the ac-
curacy. In an attempt to improve the accuracy, a sub-pixel
refinement method based on gradient cross-correlation
was implemented to estimate the sub-pixel accuracy. A
synthetic ground truth was created to quantitatively test
the accuracy of each matching method. In Figure 7 one
can notice that estimating the disparity directly from the
detected feature position leads to the most inaccurate
trajectory and that the noise increases when the depth
increases. Table 2 shows that there is a difference between
estimated trajectories with and without block matching
of approximately 2.8 cm. Block matching with sub-pixel
refinement yielded the smallest error, but as the same tex-
ture of the salmon was used for both left and right image
in the synthetic camera setup, further testing is required
to evaluate the improvement of sub-pixel refinement. The
overall performance can change depending on the image
quality and lighting conditions in the testing environment.
However, looking at the root-mean-square error in Table 2,
it’s clear that block matching both with and without sub-
pixel refinement can improve the accuracy of the estimated
trajectory.

7. CONCLUSION
The definition of welfare indicators is an ongoing research
question, especially in the aquaculture industry. With this
paper we aim to establish a first step towards this goal, by
extracting motion trajectories of individual salmon and
swimming speed. With the developed methodology we are
able to track the fish while it is within the field of view
to retrieve 3D position, motion trajectory and swimming
speed. This should provide a good starting point for fur-
ther work within automatic analysis of behaviour as a



368 Trym Anthonsen Nygård  et al. / IFAC PapersOnLine 55-31 (2022) 363–368

welfare indicator, behaviour remains one of the most influ-
ential indicators of animal welfare (Noble et al. (2018)) but
also a very challenging indicator to objectively measure.
We are aware of that the interpretation of the retrieved
analysis results will require an interdisciplinary approach,
as similar to other application areas (Stahl et al., 2012).
In this work we have taken one step towards objective
measurements but further work is needed, in particular
testing on full scale farm data. Additional avenues to pur-
sue include better tracking of individuals (such as Romero-
Ferrero et al. (2019)) for larger numbers of fish and longer
trajectories, further studies into improving the matching
methods with even higher sub-pixel accuracy as well as
combining multiple features in the tracking, such as head,
dorsal and caudal fins, which could improve accuracy as
well as provide size and orientation estimates.
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