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As large wind farms are now often operating far from the shore, remote

condition monitoring and condition prognostics become necessary to avoid

excessive operation and maintenance costs while ensuring reliable operation.

Corrosion, and in particular uniform corrosion, is a leading cause of failure for

Offshore Wind Turbine (OWT) structures due to the harsh and highly corrosive

environmental conditions in which they operate. This paper reviews the state-

of-the-art in corrosion mechanism and models, corrosion monitoring and

corrosion prognostics with a view on the applicability to OWT structures.

Moreover, we discuss research challenges and open issues as well strategic

directions for future research and development of cost-effective solutions for

corrosion monitoring and prognostics for OWT structures. In particular, we

point out the suitability of non-destructive autonomous corrosion monitoring

systems based on ultrasoundmeasurements, combined with hybrid prognosis

methods based on Bayesian Filtering and corrosion empirical models.
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1 Introduction

Offshore wind farm installations are becoming ever more popular. In the last decade,
we havewitnessed a steady increase in capacity of offshorewind farms andmany countries
(notably China and USA) have pledged to increase their capacity substantially in the
future. In 2021, the newly installed capacity worldwide of offshore wind farms increased
threefold with respect to 2020 (Lee and Zhao, 2022).

As a fast-growing renewable energy source, OffshoreWind Turbines (OWTs) benefit
from twomain advantages with respect to onshorewind turbines, namely: 1) highermean
wind speeds (modest increases in wind speed can result in doubling the generated power)
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and 2) steadier wind supply, which makes power generation
more reliable. These two factors combined dramatically
improve the return on investment (ROI) of such wind farms
(Windpower Learning Centre, 2019).

While wind farms were initially installed mainly in coastal
areas with shallow waters, nowadays offshore wind farms are
increasingly deployed in deepwaters (∼200 mdepth) and further
away from the shore (∼60 km) (Walsh, 2019; Keene, 2021). This
leads to higher Capital Expenditure (CAPEX) and Operational
& Maintenance (O&M) costs/Operational Expenditure (OPEX)
(Castellà, 2020). In fact, O&Mcosts/OPEXmay account for up to
30% of the Levelised Cost of Energy (LCoE) (May et al., 2015).

To reduce O&M costs/OPEX, advanced maintenance
strategies like Condition-Based Maintenance (CBM) or
Predictive Maintenance (PdM) need to be adopted to minimise
the downtime (i.e., maximise the availability) of OWTs while
performing all necessary maintenance actions. These advanced
maintenance strategies require technologies such as sensing and
monitoring systems, algorithms and software tools to process
measured data for faults detection and remaining useful life
(RUL) prediction, and software tools for decision making.
Since the last decade, the development and deployment of
such technologies to support the implementation of CBM/PdM
strategy for onshore and offshore wind farms have been mainly
focused on critical rotating components such as gearboxes,
generators, blades, etc. (Crabtree, 2011; Kandukuri et al., 2016;
Turnbull and Carroll, 2021). Different from the critical rotating
components mentioned above, the current maintenance strategy
typically employed for corrosion of wind turbine structures is
time-based maintenance, where manual, on-site inspections by
a maintenance team are carried out periodically (e.g., yearly),
which significantly contributes towards the total O&M cost.

Since OWTs are exposed to harsh and corrosive
environmental conditions, corrosion is a main root cause for
offshore structure failure (Martinez-Luengo et al., 2016; Price
and Figueira, 2017). Improper or degraded corrosion protection
and inadequatemanagement can result in structural degradation
and even catastrophic failure. Therefore, it is vital for the
implementation of CBM and PdM strategies to (also) cover
corrosion of OWT structures.

In the literature, reviews can be found regarding diagnostics
and prognostics of low-speed bearings and planetary gearboxes
in wind turbines (Kandukuri et al., 2016) and regarding
corrosion fatigue in OWT structures (Adedipe et al., 2016).
In this paper we provide a review of the relatively new
and increasingly important research area of diagnostics and
prognostics of corrosion of OWT structures. While this topic is
also considered in Abbas and Shafiee (2020), in this paper we
mainly focus on evaluating and comparing various monitoring
and prognosis techniques. To this end, we present an integral
way the state-of-the-art of corrosion monitoring and prognosis
solutions: from the understanding of the corrosion phenomenon

and its modeling, to corrosion monitoring techniques and the
use of the acquired data for corrosion prognosis, analysing the
most suitable and cost-effective sensors and techniques for the
application of OWT structures.

This paper is organised as follows. In Section 2 we give
an overview of the corrosion mechanisms, corrosion protection
techniques, and empirical models that describe corrosion loss
over time. In Section 3 we consider corrosion monitoring
techniques and systems, and their suitability forOWT structures.
Then, in Section 4, we consider corrosion prognosis methods
for the estimation of Remaining Useful Life (RUL) in the
context of OWT structures. Moreover, we relate corrosion
prognosis with maintenance strategies for O&M cost reduction.
In Section 5, we analyse the most-suitable corrosion prognosis
strategy intended for OWT structures. Finally, we provide a
conclusion in Section 6.

2 Corrosion mechanisms and
models

In this section, we first recall corrosion mechanisms and
common corrosion protection systems. Later, we review a
number of empirical corrosion models.

2.1 Corrosion mechanisms

One of the limiting states for the serviceability of Offshore
Wind Turbines (OWTs), is corrosion that reduces structural
integrity and durability of structural and non-structural
components. The harshness of the offshore environment does
not come as a surprise. Atmospheric corrosion in general
accounts for more than half of the annual cost of global Gross
domestic product (GDP)—which is estimated at approximately
3.8%—according to recent analysis of all types of corrosion
(Chico et al., 2017; Hou et al., 2017; Koch, 2017). And as gas
and oil installations have performed under such conditions
for decades, much knowledge has been accumulated about
the strict measures needed to be taken to mitigate corrosion
before leading to catastrophic failures (Momber, 2011). In fact,
the protection philosophy adopted for OWTs copies mostly the
strategies implemented for gas and oil installations.

Today, the corrosion protection for OWT structures, and
for the design basis, is well described in the design codes
and semi-empirical correlations developed by certification
authorities such as DNV and American Petroleum Institute
(API). DNV is involved in 90% of all offshore wind
farms worldwide as a certification provider. The relevant
DNV Standards and Recommended practice documents
that address the corrosion protection needed for OWTs
regarding their structural integrity, can be found in
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DNV (DNV, 2014; DNV, 2021a; DNV, 2021b; DNV, 2021c;
DNV, 2021d; DNV, 2021e; DNV, 2021f; DNV, 2021g).

The chosen corrosion protection system shall be applicable
for the specified design and operating and survival temperatures
of the support structures, according to DNV-RP-0363
(DNV, 2021a). Corrosion control includes, according to
DNV-RP-0416 (DNV, 2021b), the following:

• Corrosion allowance (CA).
• Cathodic protection (CP).
• Corrosion protective coatings.

Corrosion protective coatings aremade ofmetallic, inorganic
or organic materials, applied to a metal’s surface, in this context
is steel, to prevent corrosion. The coating systems employed for
wind farm corrosion control have been developed during the
last decades through valuable experience from the offshore oil
and gas industry (Weinell et al., 2017). Although these coating
systems may have passed qualification tests, many other factors
are decisive on the performance and durability of the coatings.
Erroneous application of the coating or the production of defects
during the installation and servicing of the wind turbine, result
in defects, failures or scratches, exposing the metal to sea water
which causes corrosion. In addition, coatings also experience
ageing and degradation with time, hence in areas where the bare
steel is exposed, corrosion will commence. This is in particular a
realistic scenario in the splash zone.

Indeed, experience indicates a shorter lifetime of coatings
than the recommended 20 years of designed life for OWTs.
According to DNV-RP-0416 (DNV, 2021b), the coating lifetime
in the splash zone can be expected to be only 10 years for the
NORSOK M-501 Coating system no. 7A intended for splash
zone protection, although longer lifetimes have been achieved
(Momber, 2011).

In the splash zone, the structure is intermittently exposed to
seawater due to tide or waves, and thus the corrosivity of this
zone is seen to be particularly harsh on the metals, even though
coated. In addition, maintenance is not practical and in many
cases omitted. Also, Cathodic Protection (CP) is not effective
at all times for parts of this splash zone. CP is a technique to
prevent corrosion of steel immersed in seawater by applying a
protective cathodic current, either by sacrificial anodes or by
an Impressed Current CP (ICCP). Today’s cathodic protection
is well established through DNV-RP-B401 (DNV, 2021c) and
estimated values for protection are chosen based on tabulated
standard values. However, according to experiences gained in
Norway and Denmark, several CP failures have been identified,
resulting in corrosion allowance being consumed faster than
expected (Osvoll, 2011; Weinell et al., 2017; Nøhr-Nielsen and
Mathiesen, 2018).

Hence, Corrosion Allowance (CA) is an important corrosion
control method together with applied current for cathodic
protection. CA is an extra wall thickness that is added when

designing the structure, to compensate for any reduction of the
thickness by corrosion. For primary steel structures (structures
where failure has significant consequences, such as a tower or
flanges) the CA can be calculated from the specified corrosion
rates in DNV-RP-0416 (DNV, 2021b, Section 7). The equation
states:

CA = Vcorr (TD −TC) (1)

where Vcorr is the maximum expected corrosion rate, TC is
the expected useful design lifetime of the coating and TD is the
design lifetime of the structure.

Both the corrosion rate and the useful coating lifetime are
heavily affected by the corrosivity of the environment, and it
is acknowledged that it is critical to both understand what to
expect, but also to document the actual corrosivity. Fatigue
calculations for design of wind turbine support structures, are
based on a steel wall thickness—defined as the critical wall
thickness—equal to the nominal wall thickness of which half
of the corrosion allowance is completely lost over the full
service life without decommissioning phase, see DNV-ST-0126
(DNV, 2021f). A wall thickness smaller than the critical wall
thickness can consequently lead to the appearance of catastrophic
structural failures, depending on the design philosophy chosen,
i.e., on the safety factors used for the fatigue design, see
information in DNV-ST-0126 (DNV, 2021f). Therefore, for
diagnosis and prognosis of wind turbine structural defects
caused by corrosion, both the historical and the actual wall
thickness are required, e.g., by in-situ thicknessmeasurement and
monitoring.

The corrosivity of the environment is defined in several
standards. In ISO 9223 (ISO, 2012a), the atmospheric
environments are classified into six atmospheric-corrosivity
categories, C1 to C6, representing an increasing harshness of
the environment when moving from dry salinity-free onshore
conditions, to wet and salt-influenced offshore conditions.
According to the standard, three environmental parameters
are responsible for driving the corrosion process, namely:
1) the effect of time of wetness (TOW), 2) the sulphur
dioxide concentration or deposition rate, and 3) the sodium
chloride deposition rate. In addition, the standard ISO 12944–9
(ISO, 2018), also addresses various immersed conditions in the
classes Im1 to Im4, and the extreme atmospheric conditions
offshore, given as the CX corrosivity class.

For OWTs, two corrosivity classes—CX-offshore and
Im2/Im4—must be taken in account when planning the
corrosion protection strategy, according to ISO 12944–2
(ISO, 2017). CX includes offshore areas with high salinity
for tidal, splash and atmospheric zones. Im2 is for the
zones permanently submerged in seawater without cathodic
protection, while Im4 are with cathodic protection (ISO, 2017;
Masi et al., 2019). However, in the splash zone, these two
conditions meet in a synergistic way. While below sea level the
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TABLE 1 Corrosion zones and form of corrosion in OWT. Adapted from (Price and Figueira, 2017).

Corrosion zones Main form of corrosion

Atmospheric zone
 External and internal areas of steel structure Uniform and erosion-corrosion, Stress corrosion cracking (SCC)
 Internal surfaces without control of humidity Uniform and pitting corrosion, SCC
 Internal surfaces of structural parts Uniform and pitting corrosion, SCC

Splash and tidal zone
 External and internal areas of steel structure Uniform, crevice, pitting corrosion, microbial corrosion (MIC)
 Internal surfaces of critical structures Uniform, crevice, pitting corrosion
 Components below mean water level (MWL) Uniform, crevice, pitting corrosion
 Components below 1.0 m of the MWL Uniform corrosion, MIC
 External surfaces in the splash zone below MWL Uniform corrosion, MIC

Submerged zone
 External and internal areas of steel structure Uniform corrosion, erosion-corrosion, MIC
 Internal surfaces of steel structure Uniform, crevice, pitting corrosion, MIC
 Critical structures and components Uniform, and/or pitting corrosion, MIC, SCC

average corrosion rate is measured at 0.2 mm per year, in the
splash zone and tidal zone, corrosion rates may be from 0.4 to
1.2 mm per year (Higgins and Foley, 2014).

Based on empirical and experimental data from
literature reviews, it becomes clear that the most important
environmental factors affecting the corrosion process of
carbon steels under marine immersion conditions are sea
water temperature, dissolved oxygen concentration and flow
velocity (Guedes Soares et al., 2011). The variation in salinity
in open-ocean surface is typically between 32 and 37.6 ppt.
In this range, the corrosion of steel alloys that typically
corrode uniformly—as carbon steels—is not seen to be
significantly affected (Melchers, 2006; 2009), whereas changes
in oxygen concentration and temperature are seen to be more
critical. Indeed, temperature affects corrosion kinetics, oxygen
concentration and diffusion (Sørensen et al., 2009). It has been
observed that at a temperature of 25°C, the corrosion of
carbon steel in sea water was nearly doubled when compared
with the corrosion at 10°C (Guedes Soares et al., 2011). The
concentration of the carbon content is not regarded as a factor in
corrosion of steels immersed in seawater. In general it is therefore
believed that whether thematerial is a high or low carbon steel, or
similarly a low alloy steel, cast iron, or cold rolled mild steel, the
measured corrosion rates are essentially the same—at a specific
site—for all carbon steels immersed in seawater (Melchers, 2006;
Guedes Soares et al., 2011).

In contrast, in offshore marine atmospheric conditions,
the corrosion mechanism is initiated with the metallic surface
becoming wet, and corrosion then propagates—under certain
conditions at even higher rates—during the drying of the
water layer before halting upon complete drying. The wet
phase is ascribed either to a condensation process due to
changes in temperatures, or due to the hygroscopic effect of
surface contaminants like dust and salts (Koushik et al., 2021).
However, also fog, rain and melting snow, contribute to the

wetness. Eventually, the formation of droplets and a thin
layer of electrolyte will take place (Simillion et al., 2014). The
corrosion process will hence take place each time the metallic
surface is wet, and the rate will be strongly influenced by
several variables. An abundant literature has been published
for prediction of corrosion rates from meteorological and
pollution parameters (atmospheric conditions) (ISO, 2012a; b;
Klinesmith et al., 2007).

In both atmospheric and immersed conditions, carbon steels
mainly corrode uniformly, with a homogeneously distributed
metal loss over the surface. However, localized corrosion
may also develop on a surface initially corroding uniformly
(Khodabux et al., 2020), explained due to effects from biological
organisms in the sea water and the built-up of corrosion
products. Non-uniform corrosion mechanisms happen when
the electrochemical cell is distributed in an abnormal way over
the surface of the metal, such that anodic and cathodic sites
differ in size, resulting in an accelerated localized loss of metal
and the formation of cavities and holes. Local differences with
respect to oxygen access will cause differences in potential and
pH and result in the initiation of localized accelerated cells,
consistent with the theory of differential aeration corrosion
(Melchers, 2013). Hence surfaces initially corroding uniformly,
may develop non-uniform corrosion. Nonetheless, in order for
crack growth to pose a threat to the structural integrity, the crack
growth rate has to surpass the general corrosion rate. Otherwise,
the crack geometry will be exfoliated and no fatigue crack growth
will occur (Moghaddam et al., 2019). SeeTable 1 for information
about the types of corrosion that are expected in the different
corrosion zones.

To add to the complexity of predicting corrosion rates,
bacteria life at the offshore site may cause marine growth on
immersed structural components, while the highest is actually
seen in the splash zone. This growth can affect not only the
geometry, surface texture and the accessibility of the component,
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but also the corrosion rate when the coating on the steel
structures has completely failed.

2.2 Corrosion models

The lifetime of a material, as described in the previous
section, is highly dependent on its exposure to the environment.
In the current state-of-the-art, lifetime and ageing assessment are
performed by means of experiments, namely by combining 1)
accelerated and 2) field testing. The limitation of the first testing
method is that the conditions of the accelerated corrosion tests
may not necessarily be representative for the real environmental
conditions, or the degradation mechanisms happening in real
life. The limitation of the second testing method is that it takes
many years, about 10–20 years, to complete the test.

To model corrosion, the electrochemical process must be
translated into mathematical equations—which require several
simplifications and assumptions to be made. The major concern
in making the correct assumptions is the multi-scale nature of
corrosion and therefore the need of manymodel parameters that
will limit the validity window of the model. In addition, many
different environmental situations need to be taken into account
by the models. The complexity of the model will thus be defined
by the amount of parameters chosen to be included. For long
time and length scales, empirical modelling may be suited as it
is not computational expensive and presents valid solutions as
long as changes in the corrosion mechanism can be excluded
(Melchers, 2006; 2018).

Extensive overviews of the advances in atmospheric
corrosion modeling can be found in Klinesmith et al. (2007);
Morcillo et al. (2013); Simillion et al. (2014). In this section we
review various empirical models for corrosion degradation
highlighted in the literature.Themajority of corrosionmodels for
both immersed and atmospheric conditions, have been expressed
as power-law models in the form of (Klinesmith et al., 2007;
Simillion et al., 2014):

M = Ktn (2)

where M is the total accumulated corrosion at time t, t
is the exposure time, K is the corrosion value of year one,
while n is a mass loss component - usually less than unity. The
latter represents the effects of all other factors that affect the
corrosion process, including environmental conditions, and is
usually estimated using a log-linear regression analysis of the
measured data (Klinesmith et al., 2007).

Although these models incorporate the effect of exposure
conditions, the corrosion loss is predicted as a function
of time only. As a consequence, the variation related to
environmental conditions, will only appear as error variations
in these time-dependent models. A model for long-term
exposure in atmospheric conditions that incorporates multiple

environmental adjustment factors in addition to the time factor,
is proposed in Klinesmith et al. (2007).

y = c1tc2(
TOW

c3
)

c4
(1+ Cl

c5
)

c6
(1+

SO2

c8
)

c9
ec7(T−T0), (3)

where y is the wall-thickness loss, t is the time duration,
TOW is the fraction of time that the humidity is above a certain
threshold value—which according to ISO 9223 is defined as
the annual fraction of number of hours/year in which RH >
80% and T > 0°C, SO2 is the sulfur dioxide concentration, Cl
is the chloride deposition rate, T the temperature in Kelvin,
and c1,…,c9 are empirical constants. This formula represents
the fact that while sulfur dioxide and chloride are catalysts for
corrosion, humidity is required for corrosion. In the case of
OWTs, the concentration of sulfur dioxide can be assumed to be
zero, simplifying the equation above.

However, these most common approaches of modelling the
loss of ametallic surface due to corrosion, have been significantly
criticized in later years since the corrosion process is over-
simplified taking into account only the oxidation of the steel
produced by the arrival of oxygen to the corroding surface
(Melchers, 2009). In general, data have been found to deviate
from the relation described by Eqs. 2, 3, as it was observed that
actual high initial corrosion rates would decrease gradually with
increasing exposure time t, but later again would increase.

In Melchers (2018) the bi-modal model is proposed. This
contains two modes, each described by a power law relationship.
The first mode starts with a linear phase progressing to become a
power lawmodel, while the secondmode starts with a power law
model (with different parameters from in the firstmode) tomove
towards a linear phase (with constant corrosion rate). In both
modes, the power law is adapted by adding a phase with constant
corrosion rate.Themodel explains the corrosion behaviour trend
not only for atmospheric and submerged exposures, but also
for tidal conditions. The model, although originally considered
as “phenomenological”, attempts to explain the controlling
processes at each stage of the corrosive mechanism as it develops
with time. It addresses not only the oxygen reduction rate on
steel, but also the effects on the corrosion rates by bio-films and
corrosion products.

Figure 1 provides an overview of the bi-modal model. The
two modes are distinguished by the parameter ta. The first mode
represents a short phase during which corrosion initiates, until
the surface is covered by a rust layer at ta, which retards the
oxygen diffusion to the surface and decelerates the corrosion rate.
The rate eventually stabilizes on a steady-state in the long-term.

The parameters ta and cs, along with other parameters in
the model, have been estimated based on real-world data for
coastal unpolluted sea-waters collected from various controlled
experimental sources—showing that most corrosion damages
occur within the first few years of exposure (Melchers, 2018).

However, existing models are to be regarded as incomplete,
as they have been built based on quite simplified assumptions,
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FIGURE 1
Melcher’s bi-modal model shown to be relevant for mild and
low alloy steels as well as for chromium steels under various
exposure conditions. Adapted from Melchers (2018).

without considering the dynamic change of the electrode
geometry and effect of the consequent changes in the
local environment—which are critical for locally accelerated
corrosion. Some attempts have however been done the
last years to model dynamic film variations, as well as the
effect of corrosion products (Simillion et al., 2014; 2016;
Gießgen et al., 2019).

2.3 Corrosion in offshore wind turbine
structures

From the discussion in previous subsections, we found out
that:

• Experiences from existing OWT farms suggest that coating
lifetime is highly dependable both on the workmanship
during the application of the coating and installation of the
turbines, but as well on the corrosivity of the environment,
acknowledged to be a critical factor also for the subsequent
corrosion of the steel.
• Although carbon steels corrode mainly uniformly, and
CP is applied on OWTs from the splash zone and down
into immersed conditions, CP failures (due to unforeseen
factors not covered by standards together with unfavourable
conditions resulting in high localized corrosion rates) may
lead to faster consumption rates of employed corrosion
allowances.
• Corrosion models are necessary, together with input from
real service corrosion rates, in order to mitigate risks for
fatigue failures. We presented some well-known empirical
corrosion models employed for uniform corrosion, and
discussed how corrosion mechanisms may affect the
expected corrosion rates. These models are essential for
corrosion prognosis, discussed in Sections 4 and 5. In

particular, the bi-modal model seems to describe well the
corrosion behaviour in OWT structures.

3 Corrosion monitoring

As previously discussed in Section 2.1, inadequate corrosion
management in offshore can lead to significant maintenance
costs or even catastrophic corrosion failures. Therefore, a
methodical and frequent corrosion inspection or continuous
corrosion monitoring method has to be applied. Corrosion
monitoring requires frequent unattended inspections, whereas
corrosion inspection is carried out much less frequently with
one inspection during a time period. For a corrosion prominent
environment as offshore and possible situations where corrosion
may not be detected before leakage, crack, or fatigue of
the structure, it is important to have a systematic corrosion
monitoring approach to detect the very slow progress of
corrosion rather than an inspection routine.

This section is organised as follows. Section 3.1 presents
sensors and techniques used for corrosion detection. In
Section 3.2 Non-Destructive Testing (NDT) based corrosion
monitoring and works found in literature for possible corrosion
monitoring solutions are presented. Focusing on corrosion
monitoring in Offshore Wind Turbines (OWTs), appropriate
design parameters for a corrosion monitoring system, and
challenges to be encountered are discussed in Sections 3.3 and
3.4 respectively.

3.1 Structural health monitoring sensors
and techniques: Corrosion detection

Offshore O&M is a key discipline in structural health
monitoring (Yang et al., 2018). In O&M tasks, it is important
to detect material degradation due to corrosion phenomena
which can be done by employing various types of sensors and
techniques. Corrosion is detected by sensing different physical
parameters based on their operating principle such as mass
loss, corrosion currents, wall thickness changes, leak vibrations,
surface discontinuities, cracks, or strain changes of the test
material.

Corrosion measurements can be performed in several
modes:

• Offline: a sample is taken for the testing process,
• In-line: install testing equipment with direct contact to the
fluid of the corrosion process and retrieve the sensor probe
for the analysis,
• Online: installation of testing probes in the field for
continuous measurements of mass loss or corrosion rate
directly from the system and no need to remove the test
equipment to access the data,
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• Online and real time: data from the online corrosion
monitoring system can be accessed remotely. Literature
distinguishes non-destructive and destructive methods
for corrosion evaluation. Non-destructive testing (NDT)
methods are evaluating the condition of thematerial without
destroying thematerial or its properties, while in destructive
testing, the tested item undergoes stress that eventually
deforms or destroys the material.

The corrosion progress is observed by comparing
the difference between measurements over some time
duration (National Association of Corrosion Engineers, 1999;
Kane, 2007). When the interval between consecutive
measurements is large (e.g., months), the possibility of
early detection of any corrosion becomes less probable.
Therefore, continuous and frequent corrosion measurements
give important information useful for early prevention and
corrosion control actions.

3.1.1 Corrosion detection techniques and
sensors

Corrosion sensors and corrosion detection techniques are
key elements in corrosion management. Available types of
sensors and related techniques for corrosion assessment are
discussed next.

• Coupons for mass loss technique Corrosion can be
monitored with the use of “probes” inserted and exposed
to the corrosive environment for a specific time period.
These corrosion probes can be either mechanical,
electrical, or electrochemical. The conventional method
for corrosion detection evaluates any weight loss based on
the changes that happened to the test specimen geometry
(Wright et al., 2019). The corrosion coupons are the probes
used in this type of testing and have been widely used in
the industry for many years. Coupons are made of the same
material as the object being tested, with suitable weight and
shape, and are exposed to the corrosion environment for a
specific time period. The weight loss and data processing
must be completed offline after withdrawing the coupons
by trained staff (Kansara et al., 2018). Corrosion rate given
in this method is an average value for specific exposed time
duration and no real-time information is provided. The
electrical version of the corrosion coupons are Electrical
Resistance (ER) probes and they monitor corrosion in
real-time using the electrical resistance parameter. The
principle of this method is measuring the mass loss that
happens in metallic probe/wire exposed to a corrosive
environment based on the changes in electrical resistance
due to corrosion products (Soh et al., 2016). The ER probes

can provide online corrosion rate information using
embedded devices with communication capabilities but the
main drawbacks of ER probes are that they need exposure
to the same environmental conditions of interest (e.g., same
temperature, chemistry, flow regime), the probes have to be
replaced frequently due to the weight loss they experience
while immersed in the corrosive environment, and the
sensitivity level depends on the probe design.
• Electrochemical sensors and techniques The corrosion
process is mostly a natural electrochemical phenomenon.
Hence, electrochemical sensors are used in corrosion
detection by evaluating the electrochemical characteristics
of the corroding material. The five most used
electrochemical methods in corrosion detection are Open
circuit potential (OCP), Linear polarized resistance (LPR),
Galvanostatic pulse method, Resistivity method, and
Electrochemical noise (EN). Electrochemical techniques
(Holcomb et al., 2001) generally rely on measuring
potentials and current densities with special electrodes
introduced in the environment where corrosion monitoring
is needed. The actual structure metal is not usually a part
of the measurement circuit/setup. Their main advantage
is that they can directly measure the corrosion rate and
therefore continuous monitoring is possible. But these
methods can alter the corrosion process and are considered
an intrusive technique (Perkins, 2005). Furthermore, the
type of electrodes compatible with the process must be
carefully selected for each application to have enough
sensitivity for corrosion measurements. Normally these
solutions can not be left unattended for long periods of time
in contact with the fluids that are producing the corrosion
(National Association of Corrosion Engineers, 1999; Xia
et al., 2021).
• Magnetic sensors and techniques If the test material
shows some conductive properties, electromagnetic sensors
can be used to detect corrosion by employing them in
electromagnetic testing methods such as Magnetic Flux
Leakage (MFL), Eddy Current (EC) method, Pulse eddy
current method, and Magnetic Particle Inspection.
Magnetic sensors measure magnetic flux or magnetic flux

density changes. The oldest and most common magnetic
sensors are known as detector coils or pickup coils which
are a combination of excitation and receiver coils and used
to detect corrosion based onmagnetic flux changes across its
coil. Their operation is based on Faraday’s law of induction.
The sensitivity of these sensors depends on number of turns,
permeability and section diameter (Watson, 2021). The
transmitter coil of the sensor is excited with an alternating
current to produce an alternating magnetic field which
induces eddy currents in the surface of test material. The
presence of defects or discontinuities in the surface/near-
surface that are caused by corrosion can be inspected via
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the combined effect of the primary electromagnetic field
with the secondary magnetic field from the eddy current.
The changes that occur due to corrosion will induce a phase
shift, magnitude changes in electrical conductivity, and
magnetic permeability of the combined effect.This is known
as the Eddy Current (EC) technique in non-destructive
testing (García-Martín et al., 2011). In EC, the excitation
signal is applied as a single frequency or sequence of signals
with multi frequencies. Improving EC technique further,
the pulsed eddy-current (PEC) technique has introduced
with use of an excitation signal with a pulse of selected
frequency and pulse width. PEC has potential to apply
combination of multi-frequencies in the excitation pulse
which have then the potential to inspect multiple depths
simultaneously reducing the inspection time compared to
EC (He et al., 2012; Sophian et al., 2017).

In Roach and Nelson (2007) a novel electromagnetic
sensor called Magnetic carpet probe (MCP) is presented.
It is based on Remote Field Eddy Current (RFEC) and
it is designed to be mounted as an in-situ application
sensor. These sensors are made of flexible PCBs (Printed
Circuit Boards) with highly dense printed coil. Corrosion
is detected using the remote field eddy current technique.
It has been observed that they are capable to generate
a stronger magnetic field compared to conventional eddy
current excitation. However, there is no evidence that the
solution has been tested in a relevant environment. The aim
of these tests was to evaluate the sensor performance during
the development stage.

SQUID (Superconducting quantum interference device)
is another type of electromagnetic sensors designed to detect
very low magnetic induction levels during eddy current
testing. Though these sensors have very good sensitivity,
their use is limited in many corrosion detection applications
as they need highly controlled conditions to operate (e.g.,
temperature) (Bellingham et al., 1987).

Hall effect sensors are widely used types of
electromagnetic sensors to detect the presence and
magnitude of a magnetic field. These sensors are operating
based on the hall effect produced by sensing the magnetic
flux. Based on its operating principle, these sensors are used
to detect the flux leakage of Magnetic Flux Leakage (MFL)
NDT method. In the MFL method, the testing conductive
material is magnetized by applying a magnetic field, and the
leaked magnetic field lines out of the material surface due
to the presence of any defect is detected and converted into
an electrical signal by hall effect sensors (Shi Y. et al., 2015;
Shams et al., 2018). Magneto-resistive sensors are another
type of electromagnetic sensor used to detect flux leakage in
MFL technique. Their operation is based on the magneto-
resistance property which exhibits a linear change in the
resistance of its material under an external magnetic field

(Jander et al., 2005). These sensors are capable of detecting
low-frequency and multi-frequency eddy currents during
electromagnetic material testing. While these sensors are
highly sensitive and accurate, they have a high-temperature
coefficient (García-Martín et al., 2011).

The advantages of these electromagnetic sensors and
techniques (EC and MFL) are the tests can be performed
without contact, can measure through coatings and
insulating materials, and is suitable for outdoor operations.
Limitations with magnetic sensors and techniques are that
test material needs to be conductive, depth of penetration is
limited (inspection is limited to surface or near-surface), the
results depend on the electromagnetic properties of the test
material, the sensibility and resolution of the measurements
are very dependent on the distance between the excitation
coils, and the test material (Hernandez-Valle et al., 2014;
Shi Y. et al., 2015; Sophian et al., 2017) and the results can
be affected by other electromagnetic fields.
• Acoustic sensors and techniques One of the most popular
non-destructive types of corrosion detection sensors is
acoustic sensors, which are capable of evaluating the
material’s mass and changes in geometry.Themost common
type of acoustic sensor is a piezoelectric sensor/transducer.
Piezoelectric sensors are capable of measuring vibrations
in the form of force, stress/strain, pressure, temperature, or
acoustic emission, and converting them into a measurable
electric signal. The most significant characteristic of
these sensors is that they can convert mechanical energy
into electrical energy and, conversely, electrical energy
into mechanical energy (Taheri, 2019). They are capable
of generating high-frequency acoustic waves using an
excitation electric pulse/pulses and evaluating a material
through its mechanical vibrations (Wright et al., 2019). In
ultrasound (US) corrosion detection technique, a high-
frequency sound wave is generated using a piezoelectric
sensor and transmitted through the test material to evaluate
any discontinuities or thickness loss. The time difference
between the reference signal and the transmitted or reflected
part of the signal (based on different acoustic impedance) is
converted into a defect/thickness loss (Kansara et al., 2018;
Herraiz et al., 2019; Thibbotuwa et al., 2022). The advan-
tages of the US technique are that tests can be performed
fast and accurately, and inspection is possible for higher
thicknesses in both conductive and non-conductive objects.
The major limitation is that small or thin materials are
difficult to test, and it is very sensitive to the quality of
the contact between the piezoelectric sensor and the test
material.

In US method, contact is needed between the test piece
and sensor. To overcome this constraint, there are few
methods based on non-contact acoustic wave generation in
a test material, such as electromagnetic acoustic transducers
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EMATs (Electromagnetic Acoustic Testing), air (gas)
coupled systems, and optical interferometric detection
(Green Jr, 2004). Among them, use of EMAT transducers
are a quite popular method that generates acoustic waves
with no contact using electromagnetic induction. They
consist of two major components: a magnet to generate
a low frequency or static magnetic field and an electric
coil with alternating current to generate a relatively high-
frequency field. Interaction of these two magnetic fields will
generate a Lorentz force and obtain a mechanical vibration
in the solid lattice creating an ultrasound wave. However,
in comparison with piezoelectric transducers, the EMAT
transducers have lower efficiency during energy conversion,
and the size of the transducer is relatively large because it
consists of bulky and powerful magnets or electromagnets
(Green Jr, 2004; Hernandez-Valle et al., 2014).

Acoustic Emission (AE) is a non-destructive material
testing method based on detecting the transient elastic
waves in a sudden redistribution of stress in a material
(Faisal et al., 2017; Yue et al., 2021). Energy released by
AE localized sources (e.g., crack, slip or dislocation
movements, or phase transformations in metals) propagates
through test material which is received by the AE sensor.
The conventional AE sensors are made of piezoelectric
material that are generally sensitive to exciting frequencies
between 20 and 400 kHz (Vallen Systeme GmbH, 2017).
With the aim of improving the signal-to-noise ratio
of conventional piezoelectric AE sensors, Micro-Electro
Mechanical Systems (MEMS) acoustic emission sensors
have been developed. Moreover, they have significant
reduced size and weight compared to conventional AE
sensors (Ozevin, 2020). The AE technique has potential
to quantify cracks and leaks, but have limitations in the
response depending on the source intensity/energy released.
Moreover, it offers limited repeatability of measurements,
only detects active/growing defects, and the presence of
noise limits the sensitivity considerably.
• Thermography Thermal cameras are sensing devices used
to measure the rate of heat emission of surfaces emitted by
objects. Imaging with a wavelength in the infrared range
(0.7–300 microns wavelength) is known as Infrared (IR)
Thermography (TH). IR cameras sense the IR radiation
emitting from a test object (Jönsson et al., 2010). Both
thermal and IR cameras are employed to detect corrosion
in two possible ways: passive and active. In the passive
method, thermal energy or IR radiation emitted by the
inspecting surface/object is monitored, and in the active
method, additionally an external source is used to stimulate
the heat flow inside the object (Theodorakeas et al., 2015).
As heat diffuses through the structure, the measured
temperature distribution gives information about defects
or thickness (Grinzato and Vavilov, 1998). Recent literature

shows that based on the way of heat stimulation, this can be
categorized as optical thermography (Jönsson et al., 2010;
Doshvarpassand et al., 2019), induction thermography
(Cadelano et al., 2016; Tian et al., 2016), vibration
thermography (Doshvarpassand et al., 2019), microwave
thermography (Foudazi et al., 2015), and laser
thermography (Hwang et al., 2019).
• Radio frequency identification sensors (RFID sensors)
Radio-Frequency Identification (RFID) sensors are another
sensor type which have been used for structural health
monitoring and can be used for corrosion detection.
Typical way of corrosion detection based on RFID
sensors consists of shielding RFID tags (transponders)
with corrosion sensitive element and evaluates how the
communication response characteristics sensed between
RFID tags and receiver is affected when the corrosion takes
place (He et al., 2014; Zhang et al., 2016). However, even
though this technology can provide cost effective solutions
for corrosion detection, it can only be used for atmospheric
corrosion, not to evaluate the corrosion condition of the
structure itself.
• Radiography (RT) is a type of volumetric inspection
technique based on the effects of X-Ray passing through
the specimen and producing a radiograph. This technique
most commonly has been used for pipe inspection
(Zscherpel et al., 2006). X-ray generators producing the
beam (Hanke et al., 2008), display devices and collimators
to direct radiation beam to the place of inspection (Jensen
and Gray, 1992) are the devices that are occupied during the
inspection process.
• Visual Inspection Visual inspection is a common and
widely used corrosion inspection method in many
applications. Assessment of corrosion condition of the
structure is done by visual appearance and this can be
executed without any complex tools and equipment when
there is physical access to the object. This method has
been enhanced using cameras to capture the structure
with images or video during the inspection followed by
various advanced image processing techniques enhancing
the feature classification and segmentation process for better
efficiency. However, visual inspection is challenging and
ineffective when it is difficult to access the target structure.
As well, not appropriate when a quantitative assessment of
corrosion is required.

Additionally, integrating corrosion detection sensors/
methodologies to Unmanned Aerial Vehicles (UAVs) or
remotely piloted aircraft have become a very promising approach
for providing remote access during structural health inspection
activities. This is important because integrating UAVs with an
inspection system of NDT sensors can facilitate to perform
measurements in different locations of the structure using the
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same sensor. Mainly, UAVs have been used in visual inspection
methods with embedded high resolution cameras allowing
remote visual inspection of the structures Shafiee et al. (2021).

To summarize, corrosion detection sensors and technologies
are available based on different sensing principles evaluating
different physical variables. Each of these technologies has its
own advantages and technical limitations making their use
beneficial or limited in certain applications.

3.2 Corrosion monitoring based on
non-destructive testing

The degree of complexity of a corrosion monitoring system
is illustrated in Figure 2 based on the technical capacity of each
corrosion sensor/detectionmethod, anddifferent levels of system
implementations. When the level of implementation increases,
the capabilities of the corrosionmonitoring system also increase.

NDT methods are more appropriate for corrosion
monitoring systems, as they are expected to operate with
minimum human interventions for long time in the field.
Among the methods discussed in Section 3.1, all the magnetic
techniques, acoustic techniques, thermography, and RFID are
considered as non-destructive and non-intrusive techniques
(Forsyth, 2011; Khan et al., 2020; Márquez and Chacón, 2020).
On the other hand, electrochemical techniques (e.g., OPC, LPR,
and EN) provide direct measurements of the corrosion process
and can be used to determine real-time corrosion rates. However,
electrochemical techniques are considered to be intrusive, which
can alter the corrosion process itself. And sensor has to be in
direct contact with the corroded area making them not very
attractive if one plans to cover large areas for monitoring. In
the case of RFID technique, the precision that can be obtained
based on the degradation of the RFID signal is very poor. As
in the case of electrochemical techniques, the RFID technique
is not measuring the structure itself. In applications such as
concrete structures, the RFID tag must be embedded in the
target structure making the systemmore complicated during the
installation and impossible to repair after deployment.

The chosen corrosion monitoring technique shall be non
destructive, non-intrusive, and able to produce corrosion related
quantitative measures. In addition, the application to be used,
type of corrosion intend to detect, relevant environmental
conditions, cost, properties of the material to be tested, coating
types, and frequency of testing to be performed also have to be
considered.

3.2.1 Corrosion monitoring systems and
designs

As presented in Figure 2, the corrosionmonitoring solutions
can be in different testing levels. This is because, some are
focused on methodologies to optimize the sensor characteristics

and its performance but they are not ready as a complete
deployed system. And some works present final solutions yet
they are under or have not been in validation phase in relevant
environments. In each of these cases, the works found in the
literature with possible corrosion monitoring solutions/designs
are discussed below.

In Zhang et al. (2017), a magnetic-based corrosion detection
system has been developed to investigate the relation between
corrosion rate and magnetic induction in steel reinforcement.
In the system, a magnetic field is created using series-wound
permanentmagnets and the changes that happen in themagnetic
induction due to substantial permeability difference between
rust and steel is detected with a hall effect sensor. The results
show that the mass loss in reinforced steel due to corrosion and
the voltage increment of the hall effect sensor are linear and
therefore it is concluded that the proposed magnetic corrosion
device is capable of quantitative analysis of corrosion rate. In
Wasif et al. (2022), authors proposemagnetic eddy current based
sensor for corrosion monitoring of pipelines. The sensor design
optimization, sensitivity and power consumption have been
studied. Moreover, the sensor was tested using as accelerated
corrosion test on mild steel.

In Jiang et al. (2017), a stress wave based active sensing
corrosion monitoring approach is presented using embedded
piezo ceramic transducers for prestressed concrete structures.
The proposed system would give corrosion information about
two stages such as free expansion of the corrosion products
and corrosion induced cracks occurrence quantifying the energy
of the received signal based on Wavelet packet-based energy
analysis. The proposed sensor dimensions are (25 mm × 25 mm
× 25 mm) and it has been tested on two concrete beams
(prestress and without prestress) under accelerated corrosion
environment.

Although the solutions based on electrochemical sensors
seem not to be the most suitable ones for corrosion monitoring,
some approaches have been found in the literature. In
Pei et al. (2021) authors propose galvanic cell type sensors
able to achieve a quantitative corrosion evaluation when
atmospheric corrosion occurs. However, these sensors are
measuring the corrosivity of the atmosphere and it can only relate
to the corrosion condition of a structure exposed in the same
environment, but not evaluating the structure itself directly. In
Figueira (2017), it is concluded that if electrochemical sensors are
correctly employed for the corrosion monitoring of reinforced
concrete, fast, reliable, and quantitative corrosion information
can be obtained. In Leon-Salas and Halmen (2015) authors
rely on electrochemical techniques as well. In this case, they
proposed linear polarization and open circuit potential for the
proposed corrosion monitoring system in reinforced concrete.
The authors use RFID communications to send the data to a
RFID reader acting as a datalogger. Although the provided results
were obtained by placing the sensor on the steel bar, actually the
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sensor is supposed to be installed in structures before concrete is
poured. This can be a constraint for a long term operation of the
sensor because if any fault occur, there is no way of repairing or
replacing these sensors. On top of that, long term performance
testing of the proposed sensor in a real environment must be
done in the future.

Project iWindCr (Ahuir-Torres et al., 2019) is an effort to
find benchmarking parameters that can show early signs of
corrosion in offshore. This approach is based on several
types of electrochemical sensors providing data about the
advancement of corrosion in specific locations of the wind
turbine. Although the data obtained are mainly based on a pilot
of the system and no conclusions can be drawn from the results
given, the iWindCr system shows an interesting and relevant
methodological approach to the problem of remotelymonitoring
corrosion of OWT structures.

In view of any breakdown in the applied coating will lead to
the onset of corrosion, visual detection of such situations can
be identified as critical corrosion points in a structure. These
systems can serve as warning systems to detect the locations with
possible risks, and could use with other complementary NDT
methods to evaluate the structure condition quantitatively if
needed. Such system has been proposed in Momber et al. (2022)
as a condition monitoring approach based on automatic

image acquisition and image processing for monitoring and
maintenance planning of surface protection systems in onshore
wind turbines.

Several interesting works have been presented related to
integrating/thermal/IR cameras, sensors, and other required
electronics circuitry with UAVs for corrosion detection. In
particular, Liu et al. (2018) proposes a micro aerial vehicle
(MAV) facilitated coating assessment system based on infrared
active thermography with artificial intelligence (AI). However,
the system work as an inspection system operated semi-
autonomously. Working towards autonomous inspection,
Andersen et al. (2020) investigate several deep learning
architectures to find out the best suited for an autonomous
inspection system. These architectures were investigated for
marine corrosion classification where the inspection activities
are proposed to perform by an UAV. However, the performance
of the algorithms has not been evaluated in real-time and the
results do not provide enough information about the location
where corrosion is present and any quantitative measurement of
corrosion.

A low power, low cost corrosion monitoring system based
on ultrasound time of flight technology is implemented for
OWTs (Thibbotuwa et al., 2022).The proposed systemmeasures
corrosion in the wind turbine tower (splash and atmospheric

FIGURE 2
Levels of complexity in corrosion monitoring systems.

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2022.991343
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Brijder et al. 10.3389/fenrg.2022.991343

zones) and has the advantage of operating from clean side of
the wind turbine, making it more appropriate for operation in
marine environment.The system successfully provides thickness
measurements in both bare steel and coated samples, and
the precision of these measurements (around 1 μm) allows to
achieve an intra-day estimation of the corrosion rate in real-
time.

3.3 Corrosion monitoring in offshore
wind turbine

Our definition for corrosion monitoring system is a
reliable system which operates successfully unattended and is
able to produce quantitative corrosion measures. In general,
implementing a corrosion monitoring system with these
requirements is challenging for any application field.

Based on the literature, we could not find any
commercialized or automated system beyond the testing phase
(in development stage) which is currently applied in real-time
for corrosion monitoring in offshore wind farms in the way we
defined above.

Considering the performance expectations of a corrosion
monitoring system, the important factors for offshore are:

• The corrosion monitoring solution has to be able to operate
long-term in the marine harsh environment (high level of
salinity, humidity and in the presence ofmetallic objects and
Electromagnetic Fields) successfully and provide reliable
results with minimum interventions.
• Most essentially, corrosion monitoring technique, sensor,
and sensor placements have to be decided according to
the zone (splash zone, atmospheric zone, and submerged
zone) or the part (nacelle, blades or tower) of interest to be
monitored in the turbine and compatible with coating type
or corrosion protection methods applied.
• Intended monitoring parameters: physical variable for
corrosion detection and other parameters such as humidity,
temperature, etc.
• How the selected technology is reflecting the actual
corrosion condition and able to produce quantitative
corrosion values.
• Accuracy and reliability of the measures.
• Sampling frequency.
• Able to develop as a real-time and cost-effective monitoring
system which can provide data/information faster, better
and user friendly.
• Easy to deploy and operate low power and unattended.
• The properties and characteristics of the corrosion sensor
need to be assessed according to working temperature

capacity, cost, power consumption, and accuracy level
(Leon-Salas et al., 2011; Taheri, 2019).

In Table 2, the potential techniques to be used for corrosion
monitoring in offshore, considering the above discussed factors,
are evaluated. The performance indicators presented in the table
for the evaluation of each technique are further clarified in below.

• Producing quantitative corrosionmeasurements implies the
possibility of producing quantitative measures of corrosion
involving simple/complex signal processing or either a
few/more computational steps.
• Measurements rate indicates how frequently consecutive
measures can be performed.
• Easy to deploy indicates that all the required components
to perform the measurements can be deployed easily in the
target field of operation.
• Contact need indicates that the sensor needs to be in contact
with the surface.
• Through coating corrosion detection means that the
technique can be used for corrosion monitoring in
structures protected by coating.
• Depth of inspection is related to the possible depth of
inspection that could be measured perpendicular to the
sensor placement.
• Precise corrosion measures get better repeatability of the
measurements and consequently, permit to predict the
corrosion rate more precisely.
• Affected by electromagnetic fields implies that the obtained
corrosion measurements can be affected/distorted by the
presence of other electromagnetic fields.
• Measuring from clean side means that the sensor can be
placed on the clean side of the structure to perform the
measurements avoiding the side where corrosion progresses
faster.

Taking all the requirements and the OWT use case into
account, the ultrasound (US) technique seems a very promising
candidate for the design of a corrosion monitoring solution as is
shown in Table 2:

• It permits frequent and accurate measurements to increase
the accuracy of corrosion prognosis estimates.
• It is easy to deploy, thereby reducing installation costs and
risks.
• It is not affected by electromagnetic fields, which are present
in the wind turbines.
• It is possible to measure from the clean side of the structure,
which is key for a continuous monitoring system with the
aim of protecting the electronics from harsh environments.
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3.4 Challenges in corrosion monitoring
in offshore

Research and development of corrosion monitoring systems
in offshore have to encounter a number of challenges.

Almost every structure in any kind of application is corrosion
protected by various types of coating layers. Early marine
corrosion under coating is difficult to detect and determine
the size of the defect with visual testing methods and it could
be also challenging for other NDT techniques as well depending
on type and thickness of the protective coating applied. From
the corrosion detection and monitoring perspective, each layer
of coating introduces a challenge. Another major challenge
is obtaining accurate and reliable quantitative measurements
of corrosion for long term (Martinez-Luengo et al., 2016). As
discussed in Subsection 3.1.1 and Table 2, each corrosion
detection technique has operational limitations. In particular,
temperaturemay influence sensor readings and accuracy ofmost
of the corrosion monitoring methods (Rommetveit et al., 2010).
Therefore, corrosion measurements may need calibration
based on temperature to obtain a better corrosion
estimate.

Moreover, working on corrosion monitoring systems to
optimize their performances and operate fully unattended could
possibly add challenges such as incorporating themwith wireless
communication technologies for sending sensor data to a base
station wirelessly, size and weight optimization of the overall
solution, low power operation and maintain corrosion system
production at low cost.

4 Corrosion prognostics

In the previous section we considered corrosion monitoring
to determine the current state of corrosion. For scheduling
maintenance or decommissioning, it is important to estimate
the future corrosive state and in particular the Remaining
Useful Life (RUL) of the Offshore Wind Turbine (OWT)
structure. A (lifetime) prognosis method for a system estimates

its RUL, or, more generally, the future trajectory of states of
a system over time from the current state to its End Of Life
(EOL). We can distinguish three types of prognosis methods:
data-driven, model-based, and hybrid methods (An et al., 2015;
Vachtsevanos, 2020), and below we give a brief overview of these
types of prognosis methods.The types of prognosis methods that
are most appropriate for a given problem are highly dependent
on the type and the amount of data available and on the
existence of accurate degradation models. We also discuss the
applicability of the various prognosis method types for corrosion
prognosis in OWT structures. For other failure modes of wind
turbine structures we refer to Jardine et al. (2006) for a review on
diagnosis and prognosis of mechanical systems.

4.1 Data-driven prognosis methods

A prognosis method is called data-driven if it uses only
measurement data of the system under consideration and
historical measurement data (measurement data with the
corresponding RUL) of other similar systems. In particular,
no model of the physical state of the system is used.
Various data-driven prognosis methods exist, of which neural
networks and Gaussian process regression are most often used
(An et al., 2015).

4.1.1 Neural networks
An artificial neural network (simply called neural network)

needs to be trained in order to learn a certain function f (i.e., a set
of input-output pairs) up to some small error. A weight between
every two connected neurons is used to linearly transform the
output signal of a neuron before it is received by the next neuron,
and training is used to alter the weights of the neural network to
minimize the discrepancy with f. Activation functions associated
to neurons are in turn a source of non-linearity to extend the
expressivity of neural networks outside of the domain of linear
functions. The chosen network topology and the amount of
training data are crucial to learn f up to a small error. For a
more detailed account of neural networks, we refer to the many

TABLE 2 Comparative study of feasible NDTmethods for corrosionmonitoring in offshore wind.

Performance indicators Techniquesa
EC MFL US RT TH AE

Produce quantitative corrosion measures Yes Yes Yes Yes Yes Yes
Measurements rate 333 33 333 33 33 3

Easy to deploy 33 3 33 33 3 33

Contact is needed No No Yes No No Yes
Through coating corrosion detection 333 333 33 333 33 33

Depth of inspection 3 3 333 333 3 333

Precise corrosion measures 33 33 333 33 33 33

Affected by electromagnetic fields Yes Yes No Yes No No
Measuring from clean side No No Yes No No Yes

aEC-Eddy Current, US-Ultrasound, RT-Radiography, TH-Thermography, AE-Acoustic Emission.
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standard treatments of this vast research area (Hagan et al., 2014;
Aggarwal, 2018).

Neural networks have been used for corrosion prediction
in various ways. For example, they have been used to predict
corrosion polarization curves and corrosion rates based on both
impedance measurements and historical data, respectively, see
Kamrunnahar and Urquidi-Macdonald (2010). Also, corrosion
rates have been predicted using neural networks based on
meteorological data as input (Kenny et al., 2009). Moreover,
corrosion depth has been estimated by neural networks using
a database of published corrosion measurements as input
(Cai et al., 1999). Neural networks have also been trained to
estimate the pitting potential of stainless steel as a function
of temperature and concentrations of salt, sulphate, carbonate,
nitrate, and hydroxide (Cottis et al., 1999).

4.1.2 Gaussian process regression
Gaussian process regression is another data-driven method

that can be used for prognosis. Recall that a Gaussian stochastic
process is a natural generalization of the notion multivariate
normal distribution to function spaces on a possibly infinite
domain T. Now, Gaussian process regression (GPR) is a
method to determine an optimal Gaussian stochastic process
given a dataset and a covariance matrix kt,t′ for t, t′ ∈ T that
represents the similarity between elements of T (Rasmussen and
Williams, 2006). For example, if T is a time domain, then the
closer the points t and t′ are in time (i.e., the smaller |t− t′|),
the larger their covariance. The output of Gaussian process
regression is a Gaussian stochastic process for which functions
f:T→ D that aremore likely to represent the ground truth, obtain
a higher probability. In this way, a Gaussian stochastic process
does not only give the most likely value for every t ∈ T (i.e., the
mean of the random variable X(t)), but also its variance.

There are various papers in the literature that use GPR to
estimate corrosion growth. GPR can be used to filter noisy
measurements or to filter other outside influences. For example,
GPR is used in Woo et al. (2020) to remove temperature effects
on the estimation of corrosion potential. Also, GPR is used to
predict a spatial map of wall thicknesses based onmeasurements
of a number of spatial locations (Shi L. et al., 2015).

While applying GPR on corrosion process parameters for
the sample under consideration is suitable for interpolation
of the ground truth, this is less suitable for prognosis (i.e.,
extrapolation) as the uncertainty increases too quickly for many
real-world applications. Therefore, in order to obtain reliable
long term extrapolation, GPR needs to be applied to both the
measurements of the current sample and historical measurement
data of similar samples. Alternatively, GPR can be augmented
with a physics-based degradation model (see Section 4.2) to
obtain a hybrid solution, where GPR is used to estimate the
parameters of the degradation model (for example, to estimate
the corrosion rate (Liu et al., 2017)).

A natural generalization of Gaussian process regression is
to consider stochastic process regression where the random
variables X(t) satisfy possibly non-Gaussian probability
distributions. Indeed, since corrosion depth cannot be negative
it is natural to consider probability distributions for which
negative values have probability zero. For example, the inverse
Gaussian probability distribution satisfies this property while
being similar to a normal distribution for non-negative values. In
Zhang et al. (2013) inverseGaussian process regression is used to
estimate the wall thickness loss due to corrosion of underground
energy pipelines. The parameters of this model were estimated
by using measurement data from inspections.

For a (purely) data-driven prognosis method to be accurate,
a large amount of both 1) measurements of the current corrosion
sample and 2) historical measurement data of similar samples
are needed. Therefore, the measurement data is typically sensor
data that is acquired in an automated way. Moreover, the
historical measurement data should be representative for the
current measurements to give accurate estimates. Indeed, if the
current measurement campaign is very different from any of the
historical measurement campaigns, then the RUL estimate that
is inferred by the prognosis method is likely too inaccurate.

Currently, there is very little historical corrosion
measurement data available of walls of OWTs. Moreover, only
very few OWTs have reached their EOL, so there is virtually no
measurement data available of OWTs that are near their EOL.
Consequently, given the above constraints on the applicability of
data-driven prognostics, data-driven methods are currently not
applicable for estimating the RUL of OWTs.

4.2 Model-based prognosis methods

A prognosis method is calledmodel-based if themethod uses
an explicit model of the state of the system. The model may
be based on first principles or based on empirical evidence. In
case the model describes the degradation process of an asset,
the model is called a degradation model. An example of a
degradationmodel is a corrosionmodel.Wemay distinguish two
types of model-based prognosis methods.

A first-principle prognosis method is a model-based
prognosis method where the model of the state of the system
is based on established laws of physics and empirical prognosis
methods. An example of a first-principle prognosis method is
the Paris’ law (Paris et al., 1961), which is a degradation model
describing the growth of a crack in a material due to fatigue.

An empirical prognosis method is a model-based prognosis
method where the model of the state of the system over time
is based on observed trends in historical measurement data.
By historical measurement data we mean here measurement
data that was acquired from systems other than the system
under consideration (i.e., from the system of which you
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would like to predict the RUL). We refer to Section 4.3 for
prognosis methods that also use measurement data of the
system under consideration. While the empirically obtained
model gives a general trend, it typically has empirical constants.
Regression methods like least squares are able to estimate
unknown empirical constants based on historical measurement
data of systems close to the system under consideration
(An et al., 2015; Vachtsevanos, 2020). In Galea et al. (2009),
corrosion prognostics for aircraft is considered where model
fitting is historical data is followed by model extrapolation.

Model-based prognosis methods are accurate if the model,
including the values of the empirical constants, accurately reflects
reality. This implies that the physical degradation process is
highly deterministic. Indeed, the (deterministic) degradation
model cannot accurately reflect reality if there are several
significantly different degradation trajectories possible. Even if
the physical degradation process is highly deterministic and
there is a well understood degradation model in place, it might
be difficult to estimate the empirical constants of the model,
in particular when there is little historical data available from
systems similar to the one under consideration.

In the case of prognosis of wall thickness reduction due
to corrosion in OWT structures, the physical degradation
process is rather non-deterministic. Indeed, unexpected weak
spots (that are not accounted for in the model) or accidental
scratches in the coating surface can lead to a much earlier than
expected onset of corrosion of the steel. Also, non-deterministic
environmental influences, like weather and waves, are able to
influence the corrosion process significantly. Finally, due to the
lack of historical measurement data, the empirical constants can
be only roughly estimated.

4.3 Hybrid prognosis methods

An hybrid prognosis method is a model-based prognosis
method where measurement data of the system under
consideration is used to improve the estimation of the current
state of the system. The degradation model is then used to
extrapolate future states based on the estimation of the current
state. Consequently, a better estimation of the current state results
in improved prognosis accuracy.

Essentially, a hybrid prognosis method provides a solution to
the Bayesian filtering problem, which we discuss in Section 5.1,
by estimating the most likely current state given the current
measurement and the prediction of the model given previous
measurements. See Figure 3 for an illustration of this approach.
If certain empirical constants of the model are not precisely
known, then a hybrid prognosis method is able to use the
incoming measurement data to provide a better estimate of
these constants. In this way, regression methods like least
squares (mentioned in Section 4.2) that estimate unknown
empirical constants can be used in hybrid prognosis methods to

FIGURE 3
High-level overview of hybrid prognosis methods applied to the
problem of corrosion prognosis using ultrasound.

provide initial estimates of these constants, that are subsequently
iteratively refined by filtering methods based on incoming
measurements.

An example of such a hybrid prognosis method applied for
corrosion prognostics is given in Chookah et al. (2011). There,
historical data is used to accurately estimate the two constants
of an empirical model for corrosion-fatigue crack growth, and
incoming measurement data is used to continuously improve
this estimate through an approach similar to particle filtering
(particle filtering is discussed in Section 5.3).

Using a hybrid prognosis method, a degradation model
can adapt to incoming measurement data and “choose” the
appropriate trajectory of a degradation model to deal with non-
deterministic behaviour. Moreover, it can deal with initial rough
estimates of empirical constants by iteratively adapting these
constants to incoming measurement data.

4.4 Applicability of prognosis methods in
offshore wind turbine structures

Regarding corrosion prognosis in OWT structures:

• Data-driven methods are currently not applicable for
estimating the RUL of OWT structures due to the lack of
sufficient amounts of historical corrosionmeasurement data
(specially from OWT that have already reached their EOL).
• Model-based methods require model parameters that
accurately reflect reality, which in the case of corrosion is
difficult due to its rather non-deterministic nature. Besides,
in OWT structures, the estimation of such parameters is
difficult due to the lack of historical corrosion measurement
data.
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• In Hybrid methods, the degradation model can adapt to
incoming measurement data, allowing to deal with the
non-deterministic nature of corrosion. Besides, the iterative
adaptation of model parameters allows for initial rough
estimates which may be obtained with a limited amount of
historical corrosion measurements.

Due to the above-described limitations of the data-driven
andmodel-based approaches, themost suitable type of prognosis
method for corrosion prognosis in OWTs seems to be hybrid
prognosis methods. Consequently, an approach to corrosion
prognosis using this type of method will be detailed in the
remainder of the paper.

5 Prognosis method for corrosion of
offshore wind turbines

Based on the types of prognosis methods discussed in
Section 4, we detail below an approach for hybrid prognosis
methods for corrosion of Offshore Wind Turbines (OWTs). For
relating corrosion diagnostics and corrosion prognosis estimates
to decision making and maintenance strategies, we refer to
Huynh et al. (2017).

5.1 The Bayesian filtering problem

The Bayesian filtering problem is the problem of finding a
good estimate of the current state xt of a system given 1) noisy
measurement values zt’ at various points in time t′ ≤ t, 2) a
general model F of the system, called the state transition function,
that assigns, given a state x, the state that follows x, and 3) a
model H, called the measurement function, that assigns to each
possible system state x a corresponding measurement value z.
The state of a system encodes the values of the general model that
are unknown.

Methods for the Bayesian filtering problem consist of two
steps, a prediction step and an update step, that occur for each
time step. In the prediction step, the estimation of the previous
state xt−1 together with the model F of the system is used to
predict the current state, denoted by x′t . In the update step, this
a-priori estimate x′t is compared with the newmeasurement zt to
obtain the estimate xt of the current state, called the a-posteriori
state estimate. To properly compute xt from x′t and zt in the
update step, some additional information is kept and updated
along with the state that describes the confidence we have in the
a-priori predicted state x′t−1 compared to the measurement zt .

In order to apply the Bayesian filtering to a corrosion model,
the model needs to be transformed to a state transition function
F. In the case of the power-law corrosion model given by Eq. 2
(described in Section 2.2), the system state x is equal to (K,n, t).
So, for small time step sizes d, wemay define the F as the function

sending a state (K,n, t) to the next state (K,n, t+ d). Assuming
direct measurement of the wall thickness, the measurement
functionH sends (K,n, t) toW0 −M =W0 −Ktn, whereW0 is the
initial wall thickness.

Often, a model y(t) is not explicitly described, but described
as an ordinary differential equation

dy
dt
= f (t,y,c) ,

for some given function f on t, y, and some constant
(or sequence of constants) c. For small steps d, the value
y(t+ d) is approximated by y(t) + f(t,y,c) ⋅ d, the first-order Taylor
expansion of y at t. So, for small d, we may define the state
transition function as the function sending a state (t,y,c) to the
next state (t+ d,y+ f(t,y,c) ⋅ d,c). In the case where f does not
depend on t, a state can be concisely defined as (y,c) and the state
transition function sends this state to (y+ f(t,y,c) ⋅ d,c).

There are several techniques to solve the Bayesian filtering
problem for particular special cases. Depending on the system
model F and measurement model H used, the most appropriate
techniques to solve the Bayesian filtering problem for a slow
processes like corrosion are Kalman filtering, extended Kalman
filtering, unscented Kalman filtering, and particle filtering.

5.2 Kalman, extended kalman, and
unscented kalman filtering

In the case of Kalman filtering (Kalman, 1960) and related
filtering methods like extended Kalman filtering and unscented
Kalman filtering (Wan and Van Der Merwe, 2000), the above-
mentioned information describing the confidence in the a-priori
predicted state compared to the measurement is represented by
an estimate covariance matrix Pt−1 for each time step. An a-
priori prediction of the estimate covariance matrix P′t is used to
compute xt from x′t and zt .

Kalman filtering assumes that both F and H are linear
transformations and is designed to handle two sources of noise:
Gaussian process noise wt and Gaussian measurement noise vt .
The system model F is assumed to be perfect up to process
noise, while the measurement model H is assumed to be perfect
up to measurement noise. If, moreover, the covariances of the
process andmeasurement noises are given, then Kalman filtering
is known to provide the optimal state estimate.

Recall that in Section 5.1, we defined F andH corresponding
to the corrosion model of Eq. 2. We observe that while F is a
linear transformation,H(K,n, t) =W0 −Ktn is not and soKalman
filtering cannot be applied.Oneway to performBayesian filtering
for this corrosion model is to consider an extension of Kalman
filtering. In the special case where we know that n = 1, H is a
linear transformation and Kalman filtering is appropriate to use
(assuming Gaussian process and measurement noise). In fact, in
this case, the system state can be defined as (K,W), where W is
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the (estimated) wall thickness. If we denote the wall thickness
at time step t by Wt , then according to the corrosion model, we
haveWt+1 =Wt −Kd, where d is the time step size. Hence F sends
(K,W) to (K,W−Kd) and H simply sends (K,W) to W.

Extended and unscented Kalman filtering are both adaptions
of Kalman filtering designed to handle the case where F or H (or
both) are not necessarily linear (as is the case in Section 5.1). In
the case of extended Kalman filtering, because Kalman filtering
cannot be applied of F andH directly, Kalman filtering is applied
on a linear approximation of F and a linear approximation of
H at state xt−1. These linear approximations are represented by
matrices containing the first-order partial derivatives (i.e., the
Jacobians) of F and H.

In the case of unscented Kalman filtering, the (possibly
nonlinear) behavior near the previous state xt−1 is estimated by
evaluating a small number of possible states around xt−1, called
sigma points. The predict and updates steps take into account the
behavior of the sigma points to find appropriate estimates xt and
Pt . Various algorithms exist for selecting sigma points.

Extended and unscented Kalman filtering do not guarantee
optimal solutions. Indeed, it is known to not perform well in
settings where F orH are very nonlinear, or in settings where the
process noise or measurement noise are very non-Gaussian. An
advantage of extended Kalman filtering compared to unscented
Kalman filtering that the former is computationally more
efficient to compute. Conversely, unscented Kalman filtering
can be applied in cases where the Jacobians of F and H
are difficult (or impossible) to deduce. Moreover, unscented
Kalman filtering is known to be more accurate compared to
extended Kalman filtering. Since corrosion is a slow process, the
computational efficiency is likely less important for corrosion
prognosis compared to the advantages unscented Kalman
filtering provides. For a more extensive treatise we refer to the
literature, see, e.g., Chui and Chen (2017).

5.3 Particle filtering

Particle filtering (Del Moral, 1996) is a Bayesian filtering
method able to work with (very) nonlinear models F and
(very) non-Gaussian noise sources, at the cost of being much
more computationally intensive compared to unscented Kalman
filtering. In Li et al. (2017) particle filtering is used for corrosion
diagnosis and prognosis. In particle filtering, a collection Xt−1 of
possible states xi,t−1, called particles, is kept along with weights
wi,t−1 representing the relative likelihood of state xi,t−1 compared
to the other particles. The estimation of the previous state xt−1
is then defined as the weighted average ∑n

i=1wi,t−1 ⋅ xi,t−1 of the
particles of Xt−1.

In the predict step, for each particle xi,t−1 the corresponding
a-priori estimate x′i,t is computed. Next, process noise chosen
from some (joint) probability distribution (not necessarily
Gaussian) is added to x′i,t to obtain xi,t .

In the update step, the difference between the prediction xi,t
of each particle and the new measurement zt is used to update
the weight to obtain wi,t . The estimation of the current state xt is
again the weighted average of the particles xi,t .

To avoid many particles with low weight (i.e., many particles
that are unlikely to represent the true state of the system),
resampling methods have been developed (Li et al., 2015), where
the low-probability particles are discarded in favour of multiple
copies of particles with high weight (identical particles will have
different trajectories during the remaining run of the particle
filtering algorithm due to the added random process noise).

Particle filtering requires that at least some particles among
the initial set of particles are near the true initial state of
the system. To have a high probability that some particles are
indeed near the true state, one should have many particles or a
reasonable estimate of the initial state (or both).

To give an example, in case we know that the process noise
using the corrosion model of Eq. 2 is (very) non-Gaussian or
if we know that the measurement noise of some corrosion
measuring device is (very) non-Gaussian, then particle filtering
is an appropriate Bayesian filtering method. As another example,
the bi-modalmodel recalled in Section 2.2 is complex, consisting
of two modes and together consisting of four quite different
phases. Therefore in case the accuracy of unscented Kalman
filtering is unsatisfactory (e.g., due to the significantly nonlinear
behavior near the time where a phase-transition occurs), one
might turn to particle filtering. In this case, speed is traded for
accuracy assuming a sufficiently large amount of particles are
used.

5.4 Bayesian filtering applied to
corrosion prognosis in offshore wind
turbine structures

As mentioned in Section 2.2, corrosion is best described by
non-linear empirical models such as the power-law and bi-modal
models. For a hybrid prognosis method intended for corrosion
in OWT structures, we discussed in this section the applicability
of Bayesian filters and found out that.

• Kalman filtering is not a suitable choice, as it addresses linear
models.
• Extended and Unscented Kalman filtering may be a suitable
choice as they allow for non-linear degradation models.
Extended Kalman filtering is computationally more efficient
compared to Unscented Kalman filtering, though, this last
one is known to be more accurate and does not require the
computation of the Jacobians. Besides, the slow nature of
corrosion makes computational efficiency a less important
requirement.
• Particle Filtering allows for non-linear degradation models
and, contrary to the Kalman Filtering methods, it handles
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better the case of (very) non-Gaussian process and
measuring noise. The computational efficiency of this
method may be overlooked given the slow nature of
corrosion.

6 Conclusion

In this paper we reviewed various possible techniques for
corrosionmonitoring and prognostics of OffshoreWind Turbine
(OWT) structures and, based on an analysis of the various
failure modes and monitoring systems, we described feasible
approaches in more detail.

In particular, we have looked at the various types of corrosion
mechanisms taking place in OWT structures, and we have seen
that uniform corrosion is one of the dominating corrosion
mechanisms. We have considered various empirical models for
uniform corrosion and observed that the bi-modal model is
specifically suitable for the operating environments typical for
OWT structures (see Section 2.3).

Next, we have evaluated ways of monitoring uniform
corrosion and determined that non-destructive and autonomous
monitoring systems based on ultrasound measurements provide
high accuracy at a relatively low cost, while being suitable for
deployment in the challenging environments underwhichOWTs
operate (see Section 3.3).

Several general paradigms exist to perform prognostics of
a system. In the case of OWT structures, a hybrid prognosis
method, combining a corrosion degradation model with online
measurement data, likely provides a higher accuracy than
methods based on only a degradation model (model-based
prognosis methods) or only measurement data (data-driven
prognosis methods) (see Section 4.4). Finally, we have outlined
a hybrid prognosis method for corrosion prognosis in OWTs
structures based on Bayesian Filtering, and current and historical
measurements of wall thickness (see Section 5.4).
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Nomenclature

AE Acoustic Emission

AI Artificial Intelligence

CA Corrosion Allowance

CAPEX Capital Expenditure

CP Cathodic Protection

EC Eddy Current

EMAT Electromagnetic Acoustic Testing

EN Electrochemical Noise

ER Electrical Resistance

EOL End of Life

GPR Gaussian Process Regression

IR Infrared

LCoE Levelised Cost of Energy

LPR Linear Polarized Resistance

MAV Micro Aerial Vehicle

MCP Magnetic carpet probe

MEMS Micro-Electro Mechanical Systems

MFL Magnetic Flux Leakage

MIC Microbial Corrosion

MWL MeanWater Level

NDT Non-destructive testing

O&M Operation and Maintenance

OCP Open circuit potentia

OPEX Operational Expenditure

OWT Offshore Wind Turbine

PCB Printed Circuit Boards

PdM Predictive Maintenance

PEC Pulse Eddy Current

RFEC Remote Field Eddy Current

RFID Radio-Frequency Identification

ROI Return of Investment

RT Radiography

RUL Remaining Useful Life

SCC Stress corrosion cracking

TH Thermography

TOW Time of Wetness

UAV Unmanned Aerial Vehicle

US Ultrasound
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