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A B S T R A C T

A reliability formulation for mooring chain fatigue is developed, including the effects of mean load and
degradation due to corrosion. They are included by starting from a S-N model with parameterized dependence
to the mean load and a customized corrosion condition scale. The paper includes a thorough case study,
based on a realistic case. A global sensitivity analysis is used to justify a reduction of the model dimension.
A reliability analysis is then performed, and the effect on failure probability from variation of a range of
parameters and model assumptions is studied.
1. Introduction

Fatigue assessment of offshore mooring systems is required by
relevant rules and standards (ISO 19901-7, 2013; DNV GL, 2018), to
demonstrate satisfactory resistance towards exposure to cyclic loads.
These fatigue calculations are subject to considerable uncertainties with
respect to both loads and capacity, requiring fatigue safety factors
typically ranging from 5 to 8 (DNV GL, 2018). These fairly large
safety factors aim to satisfy a maximum annual probability of mooring
line failure in the range from 10−3 to 10−5 (DNV GL, 2018; Mathisen
et al., 1999; Mathisen and Hørte, 2005). Nevertheless, mooring lines
tend to fail at a much higher rate (Ma et al., 2013; Kvitrud, 2014;
Fontaine et al., 2014). The root causes are diverse, however; almost
half of the events described in Fontaine et al. (2014) were related to
chain components and almost half of those were caused by fatigue
and corrosion. Likely contributors to these failures are uncertainties
in dynamic loads and a lack of proper models to account for effects
governing the fatigue capacity of mooring chains.

The fatigue capacity curves prescribed by current design codes (ISO
19901-7, 2013; DNV GL, 2018) are based on fatigue tests of new chain
performed at a mean load of 20% of the minimum breaking load
(MBL) (Gabrielsen et al., 2019). In the fatigue calculations, the actual
mean loads of the mooring lines are disregarded, whereas degradation
due to corrosion is accounted for in a simplified manner by reducing
the cross section area of the chains, giving an increase in the effective
stress ranges entering the calculations. However, full scale fatigue tests
performed in recent years for both new and used studless mooring
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chains have revealed that (i) the fatigue capacity of chains is strongly
dependent on the mean load, and (ii) realistic corrosion pits have
a detrimental effect not well represented by the simplified approach
prescribed by the standards (Gabrielsen et al., 2019; Fernández et al.,
2019; Zhang and Smedley, 2019; Ma et al., 2019; Lone et al., 2021).
Hence, proper treatment of mean load effect and degradation due to
corrosion in the calculations seems imperative to enable improved
estimation of mooring line fatigue life.

The effects of mean load and corrosion on fatigue of mooring chain
have been addressed previously. Martinez Perez et al. (2018, 2019)
presented a computational method that accounts for the influence of
mean load on the fatigue lifetime of new mooring chain. Zarandi
and Skallerud (2020) investigated the effect of mean load including
residual stresses on the fatigue crack initiation of corroded chains using
experiments and finite element analysis. Lardier et al. (2008) used a
fracture mechanics approach to address the combined effect of fatigue
cracks and material loss due to corrosion on the fatigue reliability of
mooring chains. Wang et al. (2019) assessed the effect of location and
geometry of corrosion pits on mooring chain fatigue life using finite
element analysis. Mendoza et al. (2022) presented the effect of pitting
corrosion on the fatigue reliability of a chain link. None of these do,
however, consider the combined effect of mean load and corrosion on
the fatigue reliability of mooring chain.

Based on test results for new and used chain, tested at a range of
mean load levels and with various degrees of corrosion, Lone et al.
(2021) established a fatigue capacity model with parameterized depen-
dence to mean load and a customized corrosion measure. This work
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Nomenclature

𝑋𝑖 𝑖th component of random vector 𝑿
E[⋅] Mathematical expectation
P[⋅] Probability measure
Var[⋅] Variance
‖ ⋅ ‖ Vector norm
ln(⋅) Natural logarithm
log(⋅) Common logarithm
∼ distributed as
𝐿𝑁(𝜇, 𝜎) Lognormal distribution with scale parameter exp{𝜇}

and shape parameter 𝜎
𝑁(𝜇, 𝜎2) Normal distribution with mean 𝜇 and variance 𝜎2

𝑈 (𝑎, 𝑏) Uniform distribution with support [𝑎, 𝑏]
R+ Real numbers greater than or equal to zero
𝛼𝑖 FORM importance factor, see (D.3)
𝛽 FORM reliability index
𝜖 Regression error, see (3)
𝜇 Logarithm of scale parameter of lognormal distribu-

tion Mean value
𝜎 Shape parameter of lognormal distribution Standard

deviation
𝜎𝑚 Mean stress [MPa]
𝐴(𝜎𝑚, 𝑐) Mean load and corrosion dependent intercept pa-

rameter of S-N curve, see (2)
𝐵0 Coefficient of S-N curve intercept parameter, see (2)
𝐵1 Coefficient of S-N curve intercept parameter (mean

load effect), see (2)
𝐵2 Coefficient of S-N curve intercept parameter (corro-

sion grade effect), see (2)
𝑐 Corrosion grade, support [1, 7]
𝐶end Corrosion grade at end of service life
𝐷 Fatigue damage (Palmgren–Miner sum)
𝐷𝑊 Fatigue damage of weakest link in a segment, see (9)
𝐷cr Critical fatigue damage, i.e., Miner’s sum at failure
𝑔(𝑿;𝑁𝑦, 𝑁) Limit state function for fatigue failure after 𝑁𝑦 years

for chain segment with 𝑁 links
𝑔1(𝜎𝑚) Mean load function, see (2)
𝐺∗
1 Representative value of mean load function over a

specified period, see (6)
𝑔2(𝑐) Corrosion grade function, see (2)
𝐺∗
2 Representative value of corrosion grade function

over a specified period
𝑘 Index for year, for 𝑘 ∈ {1, 2,… , 𝑁𝑦}
𝑀 Dimension of random vector
𝑚 Slope parameter of S-N curve
𝑁 Number of cycles to failure, see (1), or

Number of links in the chain segment, see (10)
𝑁𝑦 Number of years
𝑝(𝑁)
𝑓 Probability of failure for segment with 𝑁 links, see

(11)

formed the basis for a probabilistic fatigue damage model, presented
in Lone et al. (2022) and briefly summarized in Section 2. In the present
paper, we present a formulation of fatigue reliability for mooring chain
segments that for the first time accounts properly for mean load and
corrosion effects.

The paper is organized as follows. In Section 2, we review the
mean load and corrosion dependent fatigue capacity model and the
probabilistic fatigue damage model. In Section 3, we develop the
2

𝑄𝑠, 𝑄𝑚, 𝑄𝑐 Model uncertainties for stress ranges, mean loads
and corrosion grade, respectively, see Section 3.2

𝑆 Stress range [MPa]
𝑆𝑖 First-order Sobol’ index, see (D.1)
𝑆𝑇 𝑖 Total effect Sobol’ index, see (D.2)
𝑊 Deviation from median fatigue capacity for weakest

link in a segment, see (10)
𝑍 Fatigue load, see (4)
CoV Coefficient of Variation
FORM First Order Reliability Method
i.i.d. independent and identically distributed
IS Importance Sampling
MBL Minimum Breaking Load
MCS Monte Carlo Simulation

reliability formulation for fatigue failure of mooring chain segments
including the effects of mean load and corrosion condition. In Section 4,
some additional aspects of the reliability formulation are discussed. In
Section 5, we apply the reliability formulation to a case study to discuss
relevant assumptions and properties of the fatigue reliability model.
Conclusions are given in Section 6.

2. Background: Probabilistic fatigue model

In this section, we review the mean load and corrosion depen-
dent fatigue capacity model presented in Lone et al. (2021) and the
probabilistic fatigue damage model proposed in Lone et al. (2022) in
the context of the present paper. We apply the usual convention of
describing random variables by capital letters (e.g., 𝑋), small letters to
describe a realization of a random variable (e.g., 𝑥), and bold symbols
to denote vectors or matrices (e.g., 𝑿,𝒙).

2.1. Mean load and corrosion dependent fatigue capacity

The S-N approach to fatigue of mooring chain is considered. Fatigue
capacity is then expressed in terms of a stress-life (S-N) curve, defined
as

𝑁 ⋅ 𝑆𝑚 = 𝐴 (1)

where 𝑁 is the number of cycles to failure at constant stress range 𝑆, 𝑚
is the slope parameter and 𝐴 is referred to as the intercept parameter.
To account for the effect of mean load and corrosion on the fatigue
capacity, Lone et al. (2021) expressed the intercept parameter as
function of these parameters:

log𝐴(𝜎𝑚, 𝑐) = 𝐵0 + 𝐵1 ⋅ 𝑔1(𝜎𝑚) + 𝐵2 ⋅ 𝑔2(𝑐) (2)

where log(⋅) is the common logarithm, (𝐵𝑗 )𝑗∈{0,1,2} are coefficients and
1(𝜎𝑚) and 𝑔2(𝑐) are monotonically increasing functions of the mean
tress 𝜎𝑚 and a corrosion grade 𝑐, respectively. The corrosion grade
pplied here is based on a customized scale ranging from 1 (new chain
r mild corrosion) to 7 (severe corrosion), see Lone et al. (2021) for
etails.

The first term in (2) describes the constant (time-invariant) part of
he fatigue capacity. The second term describes the mean load effect;
negative value of 𝐵1 implies that the fatigue capacity increases when

he mean load is reduced. The last term describes the deteriorating
ffect of corrosion; a negative value of 𝐵2 implies that the fatigue
apacity is reduced when the corrosion grade increases.

The coefficients of the mean load and corrosion dependent S-N
odel were estimated empirically from a database of full scale fatigue

ests, by considering the regression model

og𝑁𝑖 = 𝐵0 + 𝐵1 ⋅ 𝑔1(𝜎𝑚,𝑖) + 𝐵2 ⋅ 𝑔2(𝑐𝑖) − 𝑚 ⋅ log𝑆𝑖 + 𝜖𝑖
2 (3)
𝜖𝑖 ∼ 𝑁(0, 𝜎𝜖 )
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Fig. 1. S-N curve intercept parameter fitted to fatigue tests of used and new chains (Lone et al., 2021), as function of mean load (left) and corrosion grade (right). The horizontal
dotted line is located at a reference value 𝐴 = 1.346 × 1011 (log𝐴 = 11.129) corresponding to 𝜆𝑚 = 20 [% MBL] and 𝑐 = 1.
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Table 1
S-N curve parameters estimated by least-squares regression with 𝑚 = 3, from fatigue
tests of used and new studless chains (Lone et al., 2021).
𝑔1(𝜎𝑚) 𝑔2(𝑐) �̂�0 �̂�1 �̂�2 �̂�𝜖
𝜆𝑚 𝑐 12.249 −0.0507 −0.106 0.17

with the stress range effect fixed at 𝑚 = 3. Here, the subscript 𝑖
is a counter for fatigue test samples and 𝜖 is the regression error
representing the predictive uncertainty of the regression model, see
e.g., Gelman and Hill (2007).

In total the database consisted of 125 samples of studless chain,
tested at various mean loads and for various degrees of corrosion; 77
tests for used chains retrieved after operation in the North Sea, and 48
tests for new chains. The most adequate mean load function was found
to be 𝑔2(𝜎𝑚) = 𝜆𝑚, where 𝜆𝑚 is the mean load expressed in percentage of
the minimum breaking load (MBL). For corrosion grade, the best fit to
data was achieved with 𝑔2(𝑐) = 𝑐. S-N model parameters obtained from
east-squares regression in Lone et al. (2021) are listed in Table 1, and
he corresponding intercept parameter is visualized in Fig. 1 for various
alues of the mean load and corrosion grade.

We will retain the generic notation 𝑔1(⋅) and 𝑔2(⋅) in the subsequent
ection for the sake of generality.

.2. Probabilistic fatigue damage

The following assumptions are made:

• The Palmgren–Miner hypothesis on linear accumulation of the
fatigue effect from each stress cycle is adopted for variable am-
plitude loading.

• The S-N curve slope parameter (stress range effect, 𝑚) is assumed
fixed.

• Time-variant random variables may be considered as piecewise
time-invariant.

We introduce a fatigue load variable as

= 𝑛0 ⋅ E[𝑆𝑚] (4)

here 𝑛0 is the number of stress cycles and E[𝑆𝑚] is the 𝑚th moment of
he stress range distribution for a given time period. By application of
iner’s rule, the fatigue damage after 𝑁𝑦 years may then be expressed

s a summation over annual contributions (Lone et al., 2022):

(𝑿;𝑁𝑦) =
𝑁𝑦
∑

𝑘=1

𝑍𝑘

10
(

𝐵0+𝐵1⋅𝐺∗
1,𝑘+𝐵2⋅𝐺∗

2,𝑘+𝜖
) (5)

where 𝑿 = (𝐵0, 𝐵1, 𝐵2, 𝜖,𝒁,𝑮∗
1 ,𝑮

∗
2) contains the underlying random

ariables, 𝑘 is a counter for years, and 𝐺∗ ∗
3

1,𝑘 and 𝐺2,𝑘 are representative g
values of the mean load and the corrosion grade functions in the 𝑘th
year, respectively. Note that in Lone et al. (2022), the uncertainty
associated with the S-N model error (𝜖) was included in the uncertainty
of 𝐵0. Here, we choose to express this uncertainty explicitly, for reasons
that will become clear in Section 3.

This fatigue damage model in (5) enables accounting for both
prior, known loads and future, uncertain loads. Hence, the vector 𝒁,
containing fatigue loads for each of the 𝑁𝑦 years, may consist of
both deterministic and random quantities. For instance; if the dam-
age is estimated for 𝑁𝑝 prior years and 𝑁𝑓 future years, we have
𝒁 = (𝑧1,… , 𝑧𝑁𝑝

, 𝑍𝑁𝑦−𝑁𝑓+1,… , 𝑍𝑁𝑦
). That is, 𝒁 then consists of 𝑁𝑝

deterministic quantities and 𝑁𝑓 random quantities.
The mean load and corrosion dependent intercept parameter in (2)

introduces a time-dependency to the fatigue capacity, which varies
both over years and during the course of each year due to mean
load variations and the temporal corrosion development. The annual
variations are accounted for by allowing the values of 𝐺∗

1 and 𝐺∗
2 to

vary by year in Eq. (5). By introducing representative values for the
mean load and corrosion grade functions, we ensure that the piecewise
time-invariant summation accounts properly also for the within-year
variations.

The vector of representative mean load values (𝑮∗
𝟏 ) is constructed

in a way similar to that of the fatigue loads. For the 𝑁𝑝 prior years with
known load history, the representative mean load values are calculated
deterministically from the joint, empirical distributions of mean loads
and stress ranges for each year (Lone et al., 2022):

𝑔∗1,𝑘 = − 1
𝑏1

log
⎡

⎢

⎢

⎣

∑

𝑖 𝑛𝑖 ⋅ 𝑠
𝑚
𝑖 ⋅ 10−𝑏1 ⋅ 𝑔1(𝜎𝑚,𝑖)

𝑛0,𝑘 ⋅ E[𝑆𝑚]𝑘

⎤

⎥

⎥

⎦

(6)

where index 𝑖 refers to tuples with (𝑛𝑖, 𝑠𝑖, 𝜎𝑚,𝑖) from a joint histogram of
stress ranges and mean stress: 𝑛𝑖 is the number of joint occurrences of
stress range 𝑠𝑖 and mean stress 𝜎𝑚,𝑖, 𝑛0,𝑘 =

∑

𝑖 𝑛𝑖 is the total number of
stress cycles, E[𝑆𝑚]𝑘 = 1

𝑛0,𝑘

∑

𝑖 𝑛𝑖 ⋅ 𝑠
𝑚
𝑖 is the 𝑚th moment of the stress

range distribution, and all summations are over observations in the
𝑘th year. In this calculation, the mean load coefficient 𝐵1 is assumed
ixed at a given value 𝑏1. Appendix A.1 shows that the representative
ean load calculated from (6) is typically insensitive to variations in

he mean load coefficient.
For the 𝑁𝑓 future years, the representative mean load is generally

epresented by stochastic quantities. A fixed value for future years may
owever be justified if the annual variability is found to be sufficiently
ow, or if the effect of annual variability on the quantity of interest is
hown to be negligible. Note that results presented in Lone et al. (2022)
howed that the representative mean load may be correlated with the
nnual fatigue load. Alternative ways to address this correlation are
iscussed in Section 4.

Unlike the fatigue load and representative mean load, the corrosion
rade may be subject to uncertainty for both prior and future years.
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This may be the case even if inspections are performed, since the
categorization from inspection is subject to some uncertainty, and
inspections yield corrosion grade estimates for those specific times but
not for the intermediate time periods. Hence, in the case of chain
inspections, the construction of 𝑮∗

𝟐 must be based on an assessment of
he quality and uncertainty of the inspections, as well as the uncertainty
f the intermediate and future states. On the other hand, if nothing is
nown about the corrosion state of the chains it may be convenient
o let 𝑮∗

𝟐 be a function of some underlying random variable(s), such
as for instance the corrosion grade at the end of the service life and
some parameter that describes the shape of its temporal development.
An example of such a model is presented in Lone et al. (2022).

In summary, the fatigue damage model in Eq. (5) represents an
adaption of Miner’s rule for damage accumulation that enables account-
ing for (i) the annual fatigue load variability, (ii) the effect on fatigue
capacity from mean load (including time dependent variations) and
degradation due to corrosion, and (iii) possible interactions between
these. This forms the basis for the mooring chain reliability formulation
that is developed in the next section.

3. Reliability formulation

For a deterministic case, fatigue failure is assumed to occur when
the fatigue damage 𝐷 reaches unity. In practice, Miner’s rule is imper-
fect and subject to considerable uncertainty. Wirsching (1984) there-
fore argued that a more appropriate failure criterion is 𝐷 ≥ 𝐷cr , where
𝐷cr ∈ R+ is a random variable denoting the ‘‘critical’’ damage (i.e., the
Miner’s sum at failure). The probability of failure for a single chain link
may then be expressed as

𝑝(1)𝑓 = P
[

𝐷cr ≤ 𝐷(𝑿;𝑁𝑦)
]

(7)

where superscript ⋅(1) indicates that the failure event is for one link.

3.1. Failure of chain segment

A chain segment is here defined as a continuous mooring line
section, composed of identical chain links. It constitutes a series system
where failure of a single component leads to segment failure. Hence,
the segment failure probability may be considerably over- or underes-
timated if partial dependence between the individual links is ignored
or mistreated.1

As done in Larsen and Mathisen (1996), we account for the partial
correlation by distinguishing the variables that are fully correlated
between links from those that may be assumed to be independent.
We assume that the following variables and properties are the same
between links:

• 𝒁 (fatigue loads). This is considered a reasonable and realistic
assumption, as links within a chain segment will indeed be ex-
posed to very similar dynamic loads (hence, similar stress range
distributions). Any deviations in the loads within a segment are
assumed to be of minor importance.

• 𝑮∗
𝟏 (mean loads). Analogously, the mean loads are assumed to be

the same for links within a segment. This is a slightly less accurate
assumption, since the mean load in a catenary line will generally
decrease with increasing distance from the fairlead in direction of
the anchor.2 Nevertheless, the mean loads within a segment will

1 As an example: for a mooring chain segment composed of 𝑁 identical
links, each with the same failure probability, the ratio between the upper
and lower bounds on the probability of segment failure (representing mutually
independent or fully correlated failure events, respectively), is approximately
proportional to 𝑁 (see e.g., Melchers and Beck, 2018, Section 5.4).

2 There are exceptions to this general rule, for instance in the presence of
uoys. However, by definition, chain links on opposite sides of a buoy would
4

e considered as parts of separate chain segments.
be practically fully correlated, and conservatism may be ensured
by using the highest mean load within the segment (link closest
to the fairlead).

• 𝑮∗
𝟐 (corrosion grades). Some variation of the corrosion grade

would be expected along a segment, depending on segment
length, location (position in water column, sea bed contact, etc.)
and due to the inherent variability of the corrosion process. The
need for a model addressing its spatial variation could therefore
be justified. Here, we simplify the problem by assuming that the
same corrosion grade applies to the entire segment. Conservatism
may then be ensured by considering the most severe corrosion
grade along the segment length as representative for all links.
In the case that inspections reveal a systematic variation from
one end of the segment to the other, this could be addressed by
modeling the segment as two or more separate segments with
different values for the corrosion grade.

• 𝐵0, 𝐵1, 𝐵2 (S-N model parameters). This implies that the mean
load and corrosion grade effects are assumed to be the same, and
consequently, that the median fatigue capacity is the same for
each link. This is consistent with the regression model in Eq. (3).

• 𝐷cr (Miner’s sum at failure). According to Lotsberg (2016, p.
115), the accuracy of Miner’s rule is related to the shape of the
fatigue load spectra. Hence, following the above assumption of
similar fatigue loads, it is reasonable to assume the same Miner’s
sum at failure for links within a segment.

On the other hand, we assume that the deviation from the median
fatigue capacity, expressed in terms of the S-N model error (𝜖), is
ndependent and identically distributed (i.i.d.) for each link. Again, this
ssumption is consistent with the regression model in Eq. (3).

The fatigue damage of the 𝑖th component may then be expressed as:

𝑖(𝑿𝑖;𝑁𝑦) =
1
𝑅𝑖

𝑁𝑦
∑

𝑘=1

𝑍𝑘

10
(

𝐵0+𝐵1⋅𝐺∗
1,𝑘+𝐵2⋅𝐺∗

2,𝑘

) (8)

where 𝑅𝑖 = 10𝜖𝑖 denotes the deviation from median fatigue ca-
pacity, given the mean load and corrosion condition. The vector of
random variables 𝑿𝑖 now contains one independent variable (𝑅𝑖),
whereas the remaining variables take on the same value for all links
(𝐵0, 𝐵1, 𝐵2,𝒁,𝑮∗

𝟏 ,𝑮
∗
𝟐 ). We now define the weakest link fatigue damage

as

𝐷𝑊 (𝑿;𝑁𝑦, 𝑁) ∶= 1
𝑊

𝑁𝑦
∑

𝑘=1

𝑍𝑘

10
(

𝐵0+𝐵1⋅𝐺∗
1,𝑘+𝐵2⋅𝐺∗

2,𝑘

) (9)

where

𝑊 ∶= min
{

𝑅1,… , 𝑅𝑁
}

(10)

denotes the deviation from median fatigue capacity for the weakest out
of 𝑁 chain links. The probability of failure for a segment of size 𝑁 may
then be expressed as

𝑝(𝑁)
𝑓 = P

[

𝐷cr ≤ 𝐷𝑊 (𝑿;𝑁𝑦, 𝑁)
]

(11)

which expresses the segment failure probability on the same format as
that describing single link failure in Eq. (7). The derivation of Eq. (11)
from Eqs. (7) and (8) is given in Appendix B.

3.2. Model uncertainties

We now introduce model uncertainties to account for inaccuracies
in stress ranges, mean loads and corrosion grade.
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Stress ranges. Estimated stress ranges normally originate from one
of the following sources: (i) mooring line tension measurements, (ii)
mooring system response calculations or (iii) a combination of these.
In the former case, measurement errors cause inaccuracies that will
depend on for instance sensor type, time since last calibration and
frequency resolution. In the case of response calculations, stress range
errors arise from for instance inaccuracies in the numerical models
(e.g., mooring component properties and environmental load coef-
ficients for the floater), assumptions about operational parameters
(e.g., draft and heading of floater, mooring line pretension) and the
modeling of environmental loads (wind, waves and current). In general,
the magnitude of the respective errors may be reduced by increasing
the estimation effort, for instance by improved sensors or measurement
techniques, by use of model tests for calibration of numerical mod-
els (Aksnes et al., 2015; Sauder, 2021) or by combining measurements
and response calculations in a sensible way. The errors may, however,
never be completely eliminated. For all cases, we assume that the true
stress range may be quantified as 𝑆′ = 𝑄𝑠 ⋅ 𝑆, where 𝑄𝑠 is a random
variable denoting stress range error and 𝑆 is the estimated stress range.
Assuming that 𝑄𝑠 is time-invariant and independent of the estimated
stress range, the true fatigue load may then be expressed as

𝑍′ = 𝑛0 ∫𝑆
(𝑄𝑠 ⋅ 𝑠)𝑚𝑓𝑆 (𝑠)𝑑𝑠 = 𝑄𝑚

𝑠 ⋅𝑍 (12)

where 𝑍 is the estimated fatigue load.

ean loads. The mean load error is of similar nature and origin as
that for the stress ranges, but is likely to be different in magnitude. For
instance, if stress ranges and mean loads are taken from measurements,
signal drift will directly influence the mean loads but not necessar-
ily the dynamic loads (i.e., stress ranges) (Sauder et al., 2022). We
therefore introduce a separate modeling error for the mean loads, and
assume that the true mean stress may be expressed as 𝜎′𝑚 = 𝑄𝑚 ⋅ 𝜎𝑚,
where 𝑄𝑚 is the mean load error and 𝜎𝑚 is the estimated mean stress.

he true representative mean load is then obtained by substituting 𝜎′𝑚
or 𝜎𝑚 in Eq. (6)3:

∗
1,𝑘

′ = − 1
𝑏1

log
⎡

⎢

⎢

⎣

∑

𝑖 𝑛𝑖 ⋅ 𝑠
𝑚
𝑖 ⋅ 10−𝑏1 ⋅ 𝑔1(𝑄𝑚 ⋅ 𝜎𝑚,𝑖)

𝑛0,𝑘 ⋅ E[𝑆𝑚]𝑘

⎤

⎥

⎥

⎦

(13)

where 𝐺∗
1,𝑘

′ denotes the true representative mean load. This is inconve-
nient, since the numerator of the inner expression must be re-evaluated
for each realization of the random variable 𝑄𝑚. However, if the mean
load function is on the form 𝑔1(𝜎𝑚) ∝ 𝜎𝑚, the true representative mean
load may be approximated as

𝐺∗
1
′ ≈ 𝑄𝑚 ⋅ 𝐺∗

1 (14)

where 𝐺∗
1 is the estimated representative mean load. An example

demonstrating that the approximation error introduced by (14) is neg-
ligible for 𝑔1(𝜎𝑚) = 𝜆𝑚 is given in Appendix A.2.

Corrosion grade. A source of corrosion grade error is the categorization
from inspections, in particular for the subjective scale used for the
model described in Section 2. If a more objective scale were used, with
categorization from for instance 3-D scans, the categorization error
could be reduced but not fully eliminated.4 Errors may also arise in
the assumptions about the development of the corrosion grade between
two inspection events. Analogously to the inclusion of stress range and
mean load errors, we assume that the true corrosion grade may be
expressed as 𝐶 ′ = 𝑄𝑐 ⋅𝐶 where 𝑄𝑐 is the corrosion grade categorization

3 Strictly, the true stress range 𝑆′ should also be substituted for the esti-
ated stress range 𝑆 in Eq. (13). However, the stress range error (𝑄𝑠) cancels

ut since it enters the inner fraction in both numerator and denominator.
4 See Gabrielsen et al. (2022) for preliminary results from ongoing work,

iming to develop computer algorithms that may be used to determine the
5

orrosion grade based on 3-D scans of the chain links.
error and 𝐶 is the estimated corrosion grade. The implications for the
true representative value of the corrosion grade function, 𝐺∗

2
′, then

depends on the assumed form of the corrosion grade function, 𝑔2(𝑐).
For the function described in Section 2, 𝑔𝑐 (𝑐) = 𝑐, it is

𝐺∗
2,𝑘

′ = 𝑄𝑐 ⋅ 𝐶𝑘 (15)

where 𝐶𝑘 is the estimated corrosion grade for the 𝑘th year.

Fatigue damage including model uncertainty. An adjusted expression for
the weakest link fatigue damage is now obtained by substituting true
values (𝑍′, 𝐺∗

1
′, 𝐺∗

2
′) for estimated values (𝑍,𝐺∗

1 , 𝐺
∗
2) in Eq. (9):

𝐷𝑊 (𝑿;𝑁𝑦, 𝑁) = 1
𝑊

𝑁𝑦
∑

𝑘=1

𝑄𝑚
𝑠 ⋅𝑍𝑘

10
(

𝐵0+𝐵1⋅𝑄𝑚⋅𝐺∗
1,𝑘+𝐵2⋅𝑄𝑐 ⋅𝐶𝑘

) (16)

where we have assumed that the approximation in (14) holds, and
that the representation in (15) is applicable. Note that we have here
implicitly assumed that the model uncertainties (𝑄𝑠, 𝑄𝑚, 𝑄𝑐) take on
the same value for all components within a segment.

3.3. Limit state function

From the probability of segment failure in Eq. (11), we define the
limit state function for fatigue failure of a chain segment as

𝑔(𝑿;𝑁𝑦, 𝑁) = 𝐷cr −𝐷𝑊 (𝑿;𝑁𝑦, 𝑁) (17)

where 𝐷𝑊 (⋅) is the fatigue damage of the weakest link including model
ncertainties, as defined in Eq. (16). The limit state function for single
ink failure is then obtained as a special case of (17), with 𝑁 = 1 (in
hich case 𝑊 = 𝑅 = 10𝜖).

This concludes the reliability formulation for segment failure, in-
luding the effects of mean load and corrosion condition. In the next
ection we discuss some additional aspects of the reliability model.

. Reliability formulation — additional aspects

In this section, we discuss the need for an extension of the formu-
ation into considering failure of a mooring line, the distribution of the
eakest link capacity, the difference between accumulated and annual

ailure probability and strategies to address the correlation between
atigue loads and mean loads.

.1. Bounds on the failure of a mooring line

A mooring line is normally composed of more than one segment.
he segments may be of the same type (e.g., all studless chains, pos-
ibly with different diameters), or they may be composed of different
omponent types (e.g., chains and steel wire rope). In any case, it is a
eries system for which failure of any one segment leads to line failure.
o formulate this, we first define the event 𝐸𝑗 to denote fatigue failure
or segment 𝑗, and �̄�𝑗 to denote its complement (the event that segment
𝑗 survives):

𝐸𝑗 ∶ 𝑔(𝑿𝑗 ;𝑁𝑦, 𝑁𝑗 ) ≤ 0

�̄�𝑗 ∶ 𝑔(𝑿𝑗 ;𝑁𝑦, 𝑁𝑗 ) > 0
(18)

where 𝑁𝑗 is the number of components in segment 𝑗. Note that to
simplify the notation slightly, we have here assumed that the same limit
state function, 𝑔(⋅), is applicable to all segments. In principle, however,
it may differ for segments of different component types.

The probability of a mooring line fatigue failure may be expressed
either by means of the event that any one segment fails, or by means
of the complement of the event that all segments survive:

𝑝𝑓,line = P
[ 𝐽
⋃

𝐸𝑗

]

= 1 − P
[ 𝐽
⋂

�̄�𝑗

]

(19)

𝑗=1 𝑗=1
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where 𝐽 is the number of segments in the mooring line. To proceed
rom this point we would need to address the partial correlation of
he segment failure events. A natural way forward could be to ad-
ress the dependence or independence between the random variables
ontained in each random vector 𝑿𝑗 , similar to what was done for

the partial dependence for the segment failure formulation. However,
identical assumptions to those made for within-segment dependence
and independence cannot necessarily be justified. Specifically;

• The S-N model coefficients will differ between segments with
different component types.

• The fatigue loads will be highly correlated, but are likely to be
of different magnitude due to for instance different component
dimensions, damping effects along the line or even different stress
range effect (S-N curve slope parameter, 𝑚, cf. Eqs. (1) and (4)).

• Mean loads are also highly correlated, but with magnitudes that
depend on segment positions along the line.

• Corrosion grades may be anywhere between highly correlated
(e.g., for segments that are close to each other and of similar
component types) or completely uncorrelated (e.g., for segments
in different positions along the line, such as fairlead chain vs.
bottom chain, or for chain segments of different material grades).

• Replacement of individual segments, for any reason, leads to
different number of years in service (𝑁𝑦) between segments.

Hence, mooring line failure cannot be formulated in the same
compact form as that for segment failure in the general case.

As an alternative to further developing Eq. (19), crude bounds may
be given as (Melchers and Beck, 2018, Ch. 5):

𝐽
max
𝑗=1

{

P[𝐸𝑗 ]
}

≤ 𝑝𝑓,line ≤ 1 −
𝐽
∏

𝑗=1

(

1 − P
[

𝐸𝑗
])

(20)

where the lower bound is exact for fully dependent failure events 𝐸𝑗
whereas the upper bound is exact for completely independent events.
Note that if the failure events are rare (i.e., P[𝐸𝑗 ] ≪ 1 for all 𝑗),
the upper bound may approximated by 𝑝(upper)𝑓,line ≈

∑𝐽
𝑗=1 P[𝐸𝑗 ]. For the

general series system these bounds may be too wide to be of any
practical value, but not necessarily for a mooring line with a limited
number of segments.

As an example: (i) The narrowest bounds are obtained when the
marginal failure probability for one of the segments is much larger
than for the others. This critical segment will then define the lower
bound, and also dominate the upper bound with minor contributions
from the remaining segments. (ii) The widest bounds are obtained for
the unlikely case that all segments are equally exposed to fatigue, with
identical marginal failure probabilities. The upper bound will then be
larger than the lower bound by a factor approximately equal to the
number of segments, which is not particularly wide considering that
structural reliability calculations are normally concerned with orders
of magnitude rather than exact numbers.

In any case, the starting point for assessment of mooring line
failure probability is to calculate the failure probability for each segment
properly, and this is therefore the focus of the present paper. Note that
an extension of a fatigue reliability formulation into considering failure
of the critical segment in two adjacent mooring lines is presented and
discussed by Mathisen and Hørte (2005).

4.2. Distribution of weakest link capacity

We will now elaborate on the distribution of 𝑊 , defined in (10),
describing the deviation from median fatigue capacity for the weakest
link in a segment and used to define the weakest link fatigue damage

2

6

in Eq. (9). Let 𝜖 be normally distributed with mean 𝜇𝜖 and variance 𝜎𝜖 , t
denoted 𝜖 ∼ 𝑁(𝜇𝜖 , 𝜎2𝜖 ).5 The random variable 𝑅 = 10𝜖 then follows a
lognormal distribution, denoted 𝑅 ∼ 𝐿𝑁(𝜇ln𝑅, 𝜎ln𝑅) and defined by the
cumulative distribution function (CDF)

𝐹𝑅(𝑟 ; 𝜇ln𝑅, 𝜎ln𝑅) = 𝛷
(

ln 𝑟 − 𝜇ln𝑅
𝜎ln𝑅

)

(21)

where 𝛷(⋅) is the standard normal CDF. The distribution parameters
𝜇ln𝑅 and 𝜎ln𝑅 correspond to respectively mean value and standard
deviation of the normal variate ln𝑅, and are thus given by

𝜇ln𝑅 = E[ln𝑅] = ln 10 𝜇𝜖 (22)

𝜎ln𝑅 =
√

Var[ln𝑅] = ln 10 𝜎𝜖 (23)

The exact distribution function for 𝑊 = min
{

𝑅1,… , 𝑅𝑁
}

is ob-
tained from order statistics, see e.g., Bury (1999), as:

𝐹𝑊 (𝑤;𝑁) = 1 −
[

1 − 𝐹𝑅(𝑤)
]𝑁 (24)

Here, 𝐹𝑅(⋅) refers to the underlying (lognormal) single link distribution
in (21), however; Eq. (24) is exact regardless of the underlying distribu-
tion type. Fig. 2 illustrates the effect of segment size on the distribution
of 𝑊 for the S-N model in Table 1, and shows that it is shifted towards
lower capacity and becomes more narrow when the number of links
increases.

Note that when the underlying distribution is lognormal, the distri-
bution of the weakest link asymptotically (as 𝑁 → ∞) approaches the
type III extreme value distribution of minima (Weibull) (Bury, 1999).
Closed-form expressions for the Weibull distribution parameters based
on those of the underlying lognormal distribution are given in Bury
(1975). The Weibull distribution may be easier to work with, and is
commonly available in software for probabilistic analysis. In general,
however, using the exact distribution in (24) for numerical calculations
is straightforward.

4.3. Accumulated vs. annual failure probability

The failure probability considered for the present work is on the
form 𝑝𝑓 = P[𝑔(𝑿; 𝑡) ≤ 0], where 𝑡 denotes time. In general, this
quantity describes the point-in-time failure probability, and neglects
the possibility that failure may have occurred at any point in time
prior to 𝑡 (i.e., that the event 𝑔(𝑿; 𝑡′) ≤ 0 may have occurred for
𝑡′ < 𝑡) (Straub et al., 2020). However; the limit state function for fatigue
based on the S-N approach will decrease monotonically. The point-in-
time probability expressed through the limit state function defined in
(17), 𝑝𝑓 = P[𝑔(𝑿;𝑁𝑦, 𝑁) ≤ 0], therefore represents an accumulated
probability of failure for all years up to and including year 𝑁𝑦.

Design codes such as DNVGL-OS-E301 (DNV GL, 2018) are usu-
ally calibrated towards a target annual probability of failure. Follow-
ing (Mathisen and Hørte, 2005), the annual failure probability may
be expressed as the increase in accumulated probability from the year
before, conditional on survival prior to the year considered. By intro-
ducing the notation 𝑝𝑓 (𝑁𝑦) = P[𝑔(𝑿;𝑁𝑦, 𝑁) ≤ 0] for the accumulated
probability, this annual probability of failure is

𝑝𝑓,annual =
𝑝𝑓 (𝑁𝑦) − 𝑝𝑓 (𝑁𝑦 − 1)

1 − 𝑝𝑓 (𝑁𝑦 − 1)
(25)

Eq. (25) may be viewed as a discrete approximation to the hazard
function (e.g., Straub et al., 2020) with year as the time unit, describing
the annual failure rate conditional on survival up to and including 𝑁𝑦−1
years.

5 Strictly, following the regression model in Eq. (3), we have 𝜇𝜖 ∶= 0.
owever, for the generality of the current subsection, we prefer to maintain

he possibility for a non-zero 𝜇 .
𝜖
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Fig. 2. Example of distribution of 𝑊 for 𝑁 ∈ {20, 100, 500}, for 𝜖 ∼ 𝑁(0, 0.172). Single link distribution included for comparison.
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4.4. On the correlation between 𝑍 and 𝐺∗
1

The fatigue load (𝑍) and the representative mean load (𝐺∗
1) orig-

inate from the same underlying load process, and may therefore be
correlated with each other. Results presented in Lone et al. (2022,
Sec. 3) for a typical production system in the Norwegian Sea showed
that for each mooring line, the sign and magnitude of this correlation
depend on its orientation compared to the dominating directions of
environmental loads. Consequently, if the annual variability of 𝑍 and
𝐺∗
1 is of importance for the problem at hand, the correlation between

them may be important as well. In the following we will present three
alternative ways to address this in the reliability calculations.

The first option it to model 𝑍 and 𝐺∗
1 as dependent random vari-

ables. The practical implications of this approach will depend on the
choice of method for dependence modeling and the calculation method
for the reliability problem.

A second alternative is to introduce the random variable 𝑍∗ =
𝑍 ⋅ 10−𝐵1⋅𝐺∗

1 as an ‘‘effective’’ fatigue load that includes the mean load
effect on the capacity, as proposed in Lone et al. (2022). A probabilistic
model for the variability of 𝑍∗ may then be established from joint
statistics of 𝑍 and 𝐺∗

1 , implicitly accounting for the correlation between
them. Two premises are necessary for this approach to be useful. Firstly,
the mean load coefficient (𝐵1) should be modeled as fixed. Otherwise,
the probabilistic model for 𝑍∗ will depend on the random variable
𝐵1, in which case the introduction of 𝑍∗ offers no convenience over
modeling the correlation between 𝑍 and 𝐺∗

1 as described in the first
alternative. Secondly, inclusion of model uncertainties for stress ranges
and mean loads to obtain the true value of the effective fatigue load
yields 𝑍∗′ = 𝑄𝑚

𝑠 ⋅ 𝑍 ⋅ 10−𝐵1⋅𝑄𝑚⋅𝐺∗
1 (assuming that the approximation

in Eq. (14) is applicable). This implies that the true effective fatigue
load (𝑍∗′) cannot be expressed as an explicit function of the estimated
effective fatigue load (𝑍∗) unless a fixed value is assumed for the mean
load error (𝑄𝑚). A possible remedy could be to set a fixed value for
the mean load error (typically, 𝑄𝑚 = 1), and substitute an alternative
model uncertainty 𝑄𝑠𝑒 for 𝑄𝑠 to represent the total model error for
the effective fatigue load. This new model uncertainty, 𝑄𝑠𝑒, cannot
be determined directly from 𝑄𝑠 and 𝑄𝑚, and would then need to be
estimated separately.

Finally, a third alternative is to neglect the dependence between 𝑍
and 𝐺∗

1 and model them as mutually independent variable. This may be
justified if (i) the correlation between them is weak, or (ii) the annual
variability of 𝑍 and 𝐺∗

1 is shown to be of limited importance for the
quantity of interest, or (iii) the correlation between 𝑍 and 𝐺∗

1 is found
to be negative (if the correlation between them is negative, implying
that a high fatigue load is likely to be combined with a low mean load,
the assumption of independence will be conservative with respect to
fatigue damage). This third approach, assuming independence, will be
applied in the case study in Section 5.
7

v

5. Case study

As a case study, we consider fatigue of a mooring chain segment,
and the case study is divided into three parts: (i) A global sensitivity
analysis, to identify random variables that may be fixed in order to
simplify the fatigue damage model and reduce the dimension of the
problem, and assess the importance of interactions between random
variables in the model. (ii) A reliability analysis, to calculate the proba-
bility of fatigue failure for the base case, validate the selected approach,
and assess the importance of the respective variables. (iii) Additional
findings, from parameter variation and comparison to alternative S-N
models neglecting mean load or corrosion effects.

5.1. Basis

The base case is partly related to the case study presented in Lone
et al. (2022), but with higher fatigue loads. We consider a service life
of 15 years for a segment with 500 chain links. Fatigue capacity is
described by a S-N model with stress range effect 𝑚 = 3, and intercept
parameter according to Eq. (2) with 𝑔1(𝜎𝑚) = 𝜆𝑚 [% MBL] and 𝑔2(𝑐) = 𝑐.
Probability distributions applied for the random variables in the base
case are listed in Table 2, and are defined on the basis described in the
subsequent paragraphs.

Critical damage. Wirsching and Chen (1988) list statistics for the un-
certainty in Miner’s sum at failure from various sources, with median
values ranging from 0.69 to 1.15 and coefficient of variation (CoV)
ranging from 0.19 to 0.67. In their example of tendon fatigue for a
tension-leg platform they modeled it as a lognormal variable with a
median value of 1.0 and a CoV of 0.30. This model has since been
widely used for fatigue reliability of marine structures, including the
DNVGL-OS-E301 design code calibration (Mathisen and Hørte, 2005)
and the JCSS probabilistic code for fatigue (JCSS, 2011), and is also
used for 𝐷cr in the present study.6

eakest link resistance. The weakest link resistance, 𝑊 , is defined
ndirectly by means of the S-N model regression error, 𝜖, representing
eviation from the median fatigue capacity of individual links. The
odel corresponds to the S-N model defined in Table 1. For the

alculations in the present study, the exact distribution of 𝑊 as defined
n Eq. (24) is used.

6 Strictly, JCSS (2011) suggests that the Miner’s sum uncertainty is modeled
s lognormal with mean 1.0, whereas Wirsching and Chen (1988) suggested
median value of 1.0. The latter is adopted here, and corresponds to a mean

alue of 1.04 with a CoV of 0.30.
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Table 2
Random variables for base case. The basis for the probability distributions applied is described in the main text.
Variable Symbol Unit Dimensiona Distributed as Mean St.dev. CoVb

Miner’s sum at failure 𝐷cr – 1 𝐿𝑁(0, 0.29) 1.04 0.31 0.30
Predictive uncertainty of S-N model 𝜖 – 1 𝑁(0, 0.172) 0 0.17 –
Time-invariant term of S-N intercept 𝐵0 – 1 see notec 12.249 0.088 –
Mean load effect 𝐵1 – 1 see notec −0.0507 0.0045 –
Corrosion grade effect 𝐵2 – 1 see notec −0.106 0.0075 –
Annual fatigue loads 𝑍 MPa3 𝑁𝑦 𝐿𝑁(19.96, 0.39) 5×108 2×108 0.40
Annual representative mean loads 𝐺∗

1 % MBL 𝑁𝑦 𝑁(15.0, 0.62) 15.0 0.6 0.04
Corrosion grade at end of service life 𝐶end – 1 𝑈 (1, 7) 4 1.7 –
Model uncertainty (stress ranges) 𝑄𝑠 – 1 𝑁(1.0, 0.102) 1.0 0.10 0.10
Model uncertainty (mean loads) 𝑄𝑚 – 1 𝑁(1.0, 0.102) 1.0 0.10 0.10
Model uncertainty (corrosion grade) 𝑄𝑐 – – Fixed 1.0 – –

Dimension: number of random variables. St.dev.: standard deviation. CoV: coefficient of variation.
aNumber of i.i.d. random variables with this distribution.
bCoV is given when used to define the distribution.
cMultivariate normal with covariance matrix given in Eq. (26). Listed standard deviations correspond to the square roots of the diagonal terms of the covariance matrix.
S-N model intercept coefficients. The uncertainty in the coefficients of
the S-N model intercept parameter, (𝐵𝑗 )𝑗∈{0,1,2}, represents the infer-
ential uncertainty (see e.g., Gelman and Hill, 2007) of the regression
model in Eq. (3). They are jointly distributed according to a multivari-
ate normal distribution, 𝑁(𝝁,𝜮), with mean vector 𝝁 defined from the
least-squares estimates in Table 1 and covariance matrix (Lone et al.,
2022)

𝜮 =
⎡

⎢

⎢

⎣

7.770×10−3 −3.829×10−4 −4.453×10−4

−3.829×10−4 2.046×10−5 1.714×10−5

−4.453×10−4 1.714×10−5 5.612×10−5

⎤

⎥

⎥

⎦

(26)

In Lone et al. (2022), the inferential uncertainty of the 𝐵𝑗 coeffi-
cients was found to be non-influential for the fatigue damage of the
lines considered. This is reassessed in the present study, including the
importance of possible interactions with other random variables.

Fatigue loads. The probability distribution assigned to 𝑍 represents
the annual variability of the fatigue loads. Hence, 𝑁𝑦 i.i.d. random
variables are needed to model the fatigue damage after 𝑁𝑦 years.

he expected value is increased compared to those reported for the
ooring system considered in Lone et al. (2022), and is here set to
[𝑍] = 5×108. This is the maximum annual fatigue load that meets

he design code requirements in DNVGL-OS-E301 (DNV GL, 2018) with
fatigue safety factor of 8 without accounting for corrosion in any
ay.7 The underlying calculations to obtain this value are given in
ppendix C. For the mooring lines considered in Lone et al. (2022),

he CoV of 𝑍 was found to be in the range 0.24–0.38. In the base case
f the present study we set the CoV to 0.40, just above the upper value
f the given range. The annual fatigue loads are assumed to follow a
ognormal distribution, based on the test-of-fit results reported in Lone
t al. (2022).

epresentative mean loads. As for the fatigue loads, the probability
istribution assigned to 𝐺∗

1 represents the annual variability of the
epresentative mean load. For the present study we assume an expected
alue of 15 [% MBL] and a CoV of 0.04. The mean value is slightly
igher than that reported for the mooring lines considered in Lone et al.
2022). However, the mean load is sensitive to parameters such as chain
imension and material grade, operational measures (e.g., pretension),
ype of unit and orientation of line, so any value from 10% to 20%
BL (or even outside this range in certain cases) is of relevance for

he study. The selected CoV is in the high end of the range reported
n Lone et al. (2022) (0.02–0.04). For convenience, the annual mean

7 The relation between the expected annual fatigue load and the design
ode requirements is given for convenience, and should not be interpreted as
n attempt to quantify the safety level inherent in DNVGL-OS-E301 (DNV GL,
018).
8

loads are assumed to follow a normal distribution. Furthermore, they
are assumed to be independent of the annual fatigue loads, which
implies that the possible correlation between them is neglected. This
latter choice will be assessed in connection with the global sensitivity
analysis.

Corrosion grade. We assume that nothing is known about the corrosion
grade of the segment, either because the assessment is performed prior
to operation or because inspections have not been carried out. The only
information available is then that the grade is bounded by its value
at installation (𝑐 = 1) and what is presently considered as the upper
limit of the corrosion grade scale (𝑐 = 7). One could imagine that more
narrow bounds for the most likely corrosion grade development could
be defined based on previous experience for similar chain segments
(e.g., comparable depth and location along line), but this is not ad-
dressed here. Hence, the corrosion grade at the end of the service life,
𝐶end, is modeled as a uniform variable with support [1, 7], in accordance
with the maximum entropy principle (Kapur, 1989). A deterministic
temporal development is assumed, with the corrosion grade evolving
linearly from 𝑐 = 1 in the first year to its value at end of service life.

Model uncertainties. We here apply normal distributions with a mean
of 1.0 and a CoV of 0.10 to model the uncertainty in both stress ranges
and mean loads (𝑄𝑠 and 𝑄𝑚, respectively). As accurate quantification of
the model uncertainties is beyond the scope of the present study, these
should be interpreted as notional values. For corrosion grade, the model
uncertainty is here fixed to 1.0. The rationale is that in the present
study, we have already modeled complete ignorance about the value
of the corrosion grade, 𝐶end.

Model dimension and dependence between variables. In summary, the
base case probabilistic model has a dimension of 8 + 2 ⋅ 𝑁𝑦, that is,
38 random variables are used to evaluate the limit state function at
the end of the service life of 15 years. These random variables are all
assumed to be mutually independent, except for the 𝐵𝑗 coefficients of
the S-N model which are jointly distributed according to a multivariate
normal distribution.

5.2. Method

The primary objective of the global sensitivity analysis for the
present study is to identify variables that may be fixed in order to
reduce the model dimension. A secondary objective is to assess the
amount of non-additive interactions in the model. These are achieved
by employing a set of variance-based sensitivity measures known as the
Sobol’ indices (Sobol’, 1993). A brief description of the Sobol’ indices
is given in Appendix D. For the present study, they are estimated
by Monte Carlo simulation (MCS), applying the sampling scheme and
estimators proposed by Saltelli et al. (2010) with sample size 106. Inter-
dependent variables (𝐵 ,𝐵 , 𝐵 ) are grouped to satisfy the requirement
0 1 2
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of independent variables (Jacques et al., 2006). In addition, the annual
representative mean loads (𝐺∗

1,𝑘) and the annual fatigue loads (𝑍𝑘) are
grouped, respectively. The associated Sobol’ indices then quantify the
effect of each group of components combined.

The objective of the reliability analysis is to calculate the probability
of failure, 𝑝𝑓 , by computing

𝑝𝑓 = P[𝑔(𝑿) ≤ 0] = ∫𝑔(𝑿)≤0
𝑓𝑿 (𝒙) 𝑑𝒙 (27)

where 𝑔(𝑿) is the limit state function given in Eq. (17) and 𝑓𝑿 (⋅) is
the joint PDF of the random vector 𝑿. For the present study, we first
approximate (27) by the first-order reliability method (FORM). The
FORM result is then used as the basis for estimating the integral more
accurately by importance sampling. FORM-based sensitivity measures
applied in the case study – the FORM importance factors and the
omission sensitivity factors – are described in Appendix D.

The FORM analysis is performed by identifying the design point, 𝒖∗,
satisfying

𝒖∗ = arg min
{

‖𝒖‖ ; 𝑔𝑼 (𝒖) ≤ 0
}

(28)

where 𝑼 ∈ R𝑀 represents an isoprobabilistic transformation of the
vector 𝑿 in physical space to an independent vector in standard normal
space, 𝑼 = 𝑇 (𝑿); and 𝑔𝑼 (𝒖) = 𝑔(𝑇 −1(𝒖)) is the limit state function eval-
uated for a point in the transformed 𝑈 -space. The FORM probability of
failure is obtained from

𝑝𝑓,FORM = 𝛷(−𝛽) (29)

where 𝛽 = ‖𝒖∗‖ is the FORM reliability index, defined as the distance
from the origin of the 𝑈 -space to the design point. FORM is exact
only if the limit state surface is linear in 𝑈 -space, and the accuracy
of the approximation depends on its shape at the design point and the
dimension of the problem (Lemaire, 2009, pp. 173 and 214).

The importance sampling estimate of the failure probability, �̂�𝑓,IS,
is obtained from MCS with independent standard normal sampling
distributions centered at the FORM design point in the transformed
𝑈 -space. This ensures efficient low-variance estimates of the failure
probability (Melchers and Beck, 2018). A sample size of 104 is used
in the present study. For further details on FORM and importance
sampling, see e.g., Lemaire (2009), Melchers and Beck (2018).

5.3. Results and discussion

5.3.1. Global sensitivity analysis
Sobol’ indices for weakest link fatigue damage in the final year of

the base case are presented in Fig. 3. Firstly – and most importantly
– the total effect indices are close to zero for 𝐵𝑗 and for 𝐺1. This
means that the inferential uncertainty of the S-N curve coefficients
and the annual variability of the representative mean loads are practi-
cally non-influential. Further implications are that (i) the simplification
introduced by neglecting possible correlation between annual fatigue
loads (𝑍) and mean loads (𝐺∗

1) is justified, and (ii) (𝐵0, 𝐵1, 𝐵2) and
𝐺∗
1 may be fixed to their respective mean values for the subsequent

reliability analysis with negligible impact on the estimated failure
probability. Secondly, the sum of the first-order indices is ∑𝑖 𝑆𝑖 = 0.927,
meaning that roughly 7% of the fatigue damage uncertainty is caused
by non-additive interaction effects. Judging by the difference between
𝑆𝑇 𝑖 and 𝑆𝑖, the variables with the most interaction are 𝑄𝑠 and 𝐶end
(although, not necessarily just with each other), followed by 𝑄𝑚 and
𝑊 . Thirdly, the importance of modeling the annual variability of the
fatigue loads (𝑍) is seen to be limited but not negligible, contributing
to around 6% of the fatigue damage uncertainty in total.

The influence of the annual fatigue loads is investigated in more de-
tail by assessing sensitivity indices for the fatigue load during each year,
shown in Fig. 4. Both the first-order and the total effect indices for 𝑍𝑘
increase with increasing 𝑘, meaning that the fatigue loads experienced
9

during the last years influence the fatigue damage uncertainty more
Fig. 3. Sobol’ indices for weakest link fatigue damage in final year of base case:
𝐷𝑊 (𝑿;𝑁𝑦=15, 𝑁=500). See Table 2 for a description of the variables. 𝑆𝑖 = first-order
index; 𝑆𝑇 𝑖 = total-effect index.

Fig. 4. Sobol’ indices for effect on 𝐷𝑊 (𝑿;𝑁𝑦 =15, 𝑁 =500) from annual fatigue load
uncertainty. Note the scale of the vertical axis. 𝑆𝑖 = first-order index; 𝑆𝑇 𝑖 = total-effect
index.

than those experienced during early years. The reason is the following.
The expected corrosion grade increases with time, causing a temporal
degradation of the median fatigue capacity. Uncertainty in annual
fatigue load for the last years will therefore yield larger contributions
to fatigue damage variance than uncertainty in fatigue loads for the
first years. This effect causes the increase in the first-order index, 𝑆𝑖.
The relatively larger increase in the total-effect index (𝑆𝑇 𝑖) is because
the corrosion grade uncertainty also increases with time, interacting
with the fatigue load uncertainty in the final years. Nevertheless, the
total-effect index of the annual fatigue loads combined (Fig. 3) suggests
that these interactions are of limited importance.

5.3.2. Reliability analysis for base case
Based on the global sensitivity analysis, the S-N curve coefficients

(𝐵0, 𝐵1, 𝐵2) and the annual mean loads 𝐺∗
1 are now fixed to their

expected values. This reduces the dimension of the model to 𝑀 =
5 + 𝑁𝑦, that is, 𝑀 = 20 random variables to calculate the failure
probability after 𝑁𝑦 = 15 years. Furthermore, the remaining random
variables may be assumed to be mutually independent.

Failure probabilities for the final year of the base case are shown in
Table 3. Accumulated and annual failure probabilities differ by a factor
of around 1.7, with the annual failure probability on the low side. The
temporal development of both quantities is compared in Fig. 5, showing
that the difference occurs mainly towards the end of the service life as
the accumulated failure probability increases less steeply. In any case,
the limited ratio between these quantities suggests that the use of either

one over the other is unlikely to be decisive for the problem at hand.
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Table 3
Results for the failure probabilities. Base case, final year (𝑁𝑦=15).

Accumulated Annual

𝛽 3.63
𝑝𝑓,FORM 1.42 × 10−4 8.55 × 10−5

�̂�𝑓,IS 1.86 × 10−4 1.08 × 10−4

CoV(�̂�𝑓,IS) 0.02

Fig. 5. Probability of failure for the last 10 years of the base case: accumulated vs.
annual failure probabilities.

FORM importance factors are visualized in Fig. 6. The most influen-
tial variables are the critical fatigue damage (𝐷cr) and the stress range
uncertainty (𝑄𝑠). The somewhat limited importance of 𝑊 is due to the
segment size of 𝑁 = 500, resulting in a fairly narrow distribution for the
weakest link capacity (cf. Fig. 2). A smaller segment size would yield
a wider distribution and increase the relative importance of 𝑊 .

A limited importance factor is observed also for the corrosion
grade uncertainty (𝐶end). This may be explained by considering a 2-
dimensional section through the design point and the failure surface
(𝑔𝑼 (𝒖) = 0) in standard normal space, shown in Fig. 7. The distance
from the failure surface to the origin of the 𝑈 -space increases rapidly
with increasing value for 𝑈3 = 𝑇3(𝐶end), meaning that no substantial
contribution to the failure probability is obtained from going further
into the tail of the distribution of 𝐶end. This effect is a consequence of
the corrosion grade scale applied. For the present work it is defined
with an absolute upper limit of 𝑐 = 7, as reflected by the uniform
distribution used to model its uncertainty. Any degradation of the chain
larger than that prescribed by 𝑐 = 7 is thus precluded. Hence, it might
be in its place to consider the need for a probability distribution that
allows the corrosion grade to exceed 7, however small the probability.

Lastly, the importance of annual fatigue load variability is low,
with the sum of the importance factors for 𝑍𝑘 at only 4.3%. The
corresponding omission sensitivity factor is 1.02 if the fatigue load
in each year is fixed to its expected value. For the reliability index
given in Table 3, this implies that the (FORM) failure probability is
underestimated by a factor of 𝛷(−𝛽)∕𝛷(−𝛽 ⋅ 1.02) ≈ 1.3 if the annual
fatigue load variability is neglected, an error that may be considered
negligible in this context. Hence, despite some interaction with the
corrosion grade uncertainty, 𝑍 may be fixed to its expected value with
minor impact on the failure probability in the final year for the present
case.

5.4. Additional findings

5.4.1. Effect of fatigue load and representative mean load
The effect on probability of fatigue failure from expected annual

fatigue load and representative mean load is now assessed. Results for
the last ten years of the service life are presented in Fig. 8, in terms of
annual failure probability obtained from importance sampling.
10
Fig. 6. FORM importance factors, 𝛼2
𝑖 . Importance factor for 𝑍 is the sum of 𝛼2

𝑖 for
(𝑍𝑘)𝑘∈{1,…,𝑁𝑦}.

Fig. 7. FORM design point in standard normal space for 𝐶end and 𝐷cr , along with a
section of the failure surface and 500 points from the importance sampling.

Expected annual fatigue load. In Fig. 8(a), the expected annual fatigue
load is varied by ±20% and ± 40% compared to the base case value.
With stress range effect 𝑚 = 3, this corresponds to adjustments of
the nominal chain diameter ranging from −5% to +10% (for highest
and lowest fatigue loads, respectively) – if one assumes that the ten-
sion range distribution is unaffected by the change in diameter.8 The
expected fatigue damage is directly proportional the to mean annual
fatigue load (cf. Eq. (16)), and thus increases by the same factor as
E[𝑍]. This has a substantial effect on the failure probability. An increase
of E[𝑍] by 40% increases the probability of failure by one order of
magnitude in the final year, whereas a reduction of E[𝑍] by 40%
reduces it by nearly two orders of magnitude.

Representative mean load. The effect of the representative mean load
is shown in Fig. 8(b), for mean loads ranging from 10% to 20%

8 In practice, a change in chain diameter will also affect the mean load
measured in percentage of MBL, and thereby affect the failure probability also
through a reduction or increase in fatigue capacity.
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Fig. 8. Effect of fatigue load and representative mean load on probability of failure. Base case result is shown by solid blue line in both subfigures.
f MBL — all of which are realistic mean load levels for offshore
ooring systems. The mean load effect on the fatigue capacity is seen

o significantly impact the fatigue reliability. Compared to the base case
t 15% MBL, a change in mean load by ±2.5% MBL increases or reduces

the failure probability by approximately one order of magnitude. This
is a slightly larger effect than that obtained for a change in 𝐸[𝑍] by
20% (Fig. 8(a)). For mean load 10% MBL the failure probability is
ore than two orders of magnitude below the base case, whereas for
0% MBL it is higher by a factor of 40.

.4.2. Effect of segment size
In Fig. 9, the segment size is varied between 𝑁 = 1 (single link) and

𝑁 = 500. In terms of probability of failure in the last year, a reduction
of segment size from 𝑁 = 500 to 𝑁 = 20 is comparable to a reduction of
the expected annual fatigue load by a little more than 20% (Fig. 8(a))
or a reduction of the representative mean load by 2.5% MBL (Fig. 8(b)).

These results may also be used as a basis to assess the effect of the
assumptions related to dependence and independence between links.
If we consider a simplified treatment of dependence between links,
the upper bound of the segment failure is 𝑝(𝑁)

𝑓 ≤ 1 − (1 − 𝑝(1)𝑓 )𝑁

(corresponding to independent failure events for each of the links).
From Fig. 9 we obtain 𝑝(1)𝑓 = 4×10−7, which gives the upper bound
(500)
𝑓 ≤ 2×10−4. Compared to the value obtained here, 𝑝(500)𝑓 ≈ 1×10−4,
he upper bound is larger only by a factor of 2 (which is quite modest
n connection with failure probabilities, for which orders of magnitude
re most important). This means that the current reliability formulation
ields results that correspond closely to independent failure events.
n other words, the assumption that 𝜖𝑖 is independent between links
as, in practice, a much stronger effect on the failure probability than
he assumption of variables that are fully dependent between links
i.e., 𝐷cr , 𝑍, 𝐶end, 𝑄𝑠 and 𝑄𝑚 among those that have not been fixed).

.4.3. Treatment of mean load and corrosion effects
Alternative ways of treating mean load and corrosion effects are

ow addressed. Referring to the legend of Fig. 10, the cases considered
re defined as follows:

(1) Excl. mean load effect. Mean load effect on fatigue capacity is
neglected, i.e., fixed values 𝐺∗

1 = 20 [% MBL] and 𝑄𝑚 = 1 are
used.

(2) Excl. corrosion effect. Degradation due to corrosion is neglected,
by fixing 𝐶end = 1.

(3) Excl. mean load and corrosion effects. The first two cases com-
bined.

(4) Excl. mean load, incl. corr. rate. Same as the previous case, but
corrosion is accounted for by a reduction of the cross section
area, expressed though a corrosion rate describing the annual
11
Fig. 9. Effect of segment size (𝑁 links) on probability of failure.

material loss. See Appendix C for related calculations. We have
assumed that the nominal diameter is 120 mm, and a (fixed)
corrosion rate of 0.4 mm/year is applied.

Note that the last case resembles how corrosion is accounted for in
the current design code approach (DNV GL, 2018).

The results in Fig. 10 show that the failure probability is signif-
icantly overestimated if one neglects the mean load effect while at
the same time accounting for degradation due to corrosion (case 1).
Conversely, the failure probability is underestimated by even more if
the beneficial effect of a mean load below 20% is realized without
accounting for corrosion (case 2). When both mean load and degrada-
tion are neglected (case 3), the failure probability increases less steeply
with time. Compared to the base case, it is overestimated for the early
years and underestimated for the final years. A similar development of
the failure probability with time is seen for the case with a simplified
corrosion model (case 4), slightly on the high side of the previous case.
Coincidentally, the failure probability in the final year matches that
obtained for the base case. However; (i) the apparent agreement would
not be seen if a different mean load had been applied for the base case,
and (ii) the failure probability in subsequent years would most likely
be underestimated by the simplified approach, considering the different
slopes of the curves.

6. Conclusions

A reliability formulation for fatigue failure of mooring chain seg-
ments that accounts for the effects on fatigue capacity from mean
load and degradation due to corrosion has been presented. The limit
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Fig. 10. Effect on probability of failure from alternative treatments of mean load and
corrosion effects.

state function is defined from a summation of the fatigue damage
contribution per year of service, which enables accounting for (i) both
known fatigue loads during prior years of service and future, uncertain
loads, and (ii) the temporal development of the corrosion condition of
the chain.

Partial dependence between the failure events of individual links
within a segment is handled by distinguishing between variables that
are either independent between links or fully dependent and take on
the same values. This leads to a weakest link formulation, making it
straightforward to assess the fatigue reliability for arbitrary segment
size.

As part of the case study, a global sensitivity analysis was used to
identify non-influential variables and to assess the amount of interac-
tions in the model. For the applied S-N model and the case defined
for the present study it was found that (i) the S-N curve coefficients
(𝐵0, 𝐵1, 𝐵2) and the annual representative mean load (𝐺∗

1) may be fixed
to their mean values with negligible impact on the fatigue damage
variance, and (ii) the random variables interact moderately within the
model, with interactions contributing around 7% of the uncertainty in
fatigue damage after 15 years for the base case.

A reliability analysis was conducted thereafter, including variation
of model parameters. The main findings were the following:

• The relative importance of uncertainty in corrosion grade is con-
strained by the choice of a uniform distribution to represent it,
thereby restricting the maximum degradation of the chain.

• Annual fatigue load variability has insignificant influence on the
failure probability in the final year, despite temporal degradation
of the fatigue capacity and some degree of interaction with the
corrosion grade uncertainty.

• The formulation for segment failure gives results that are close to
those obtained if independent events with identical probabilities
are assumed for failure of individual links. This indicates that
the assumption of independent S-N model regression errors has
a stronger effect on the reliability than the assumptions that all
the links are exposed to the same loads and degradation, and that
they fail at the same critical level of fatigue damage.

• Mean load and degradation due to corrosion both have a sub-
stantial impact on the failure probability. These effects have, in
practice, opposite consequences for fatigue life. Coincidentally, for
the particular case considered here, including both effects leads
to similar failure probability at end of service life as neglecting
both. This is not true in general.

• Accounting for corrosion in a simplified way, through a corrosion
12

rate describing the annual reduction of the chain diameter (and 𝜆
a corresponding increase in fatigue load), considerably underesti-
mates the corrosion effect on fatigue reliability compared to that
predicted by the S-N model used for the present study.

The case study results support the need for a fatigue reliability for-
mulation that accounts properly for mean load and chain degradation.
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ppendix A. Examples

.1. Representative mean load: insensitive to variations in mean load coef-
icient

We consider the hindcast-based simulations presented in Lone et al.
2022) for the mooring system of a typical semi-submersible production
nit in the Norwegian Sea. The current calculations are performed for
ooring line 1 of the system considered, see Lone et al. (2022, Sec. 3)

or details. Representative mean load is calculated for the years 2001–
010 using Eq. (6) with the mean load function 𝑔1(𝜎𝑚) = 𝜆𝑚 [% MBL]
nd three different values of 𝑏1: the estimated value from regression
nalysis, 𝐵1 = −0.0507 (Table 1), and 𝐵1 ± 2 ⋅ �̂�𝐵1

where �̂�𝐵1
=

.0045 is the estimated standard error of 𝐵1 (Lone et al., 2022, Sec.
). The resulting values for 𝑔∗1 are presented in Fig. A.11, showing
egligible difference for the lower and upper values of the estimated
epresentative mean load for each year. Hence, for the S-N model in
able 1 and the mooring line considered in the current example, a fixed
alue of 𝐵1 may be used for the calculation of representative mean
oad, regardless of whether a fixed or stochastic mean load coefficient
s assumed for the probabilistic analysis.

.2. Approximation to true representative mean load

A comparison of the true representative mean load calculated by
eans of Eqs. (13) (‘‘exact’’) and (14) (‘‘approximation’’) is shown in

ig. A.12 for two realizations 𝑞𝑚 of the mean load error with 𝑔1(𝜎𝑚) =

𝑚 [% MBL].
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Fig. A.11. Example of annual representative mean loads for a semi-submersible in the
Norwegian Sea, calculated for 𝑏1 = 𝐵1 (bars) and 𝑏1 = 𝐵1±2⋅ �̂�𝐵1

(error bars). The limits
of the vertical axis have been narrowed down to make the upper and lower values of
the error bars distinguishable.

Fig. A.12. Comparison of true representative mean loads evaluated by Eqs. (13)
(‘‘exact’’) and (14) (‘‘approximation’’) for 𝑞𝑚 ∈ {0.8, 1.2} with 𝑔1(𝜎𝑚) = 𝜆𝑚 [% MBL],
sing the same joint stress range and mean load distribution as applied for Fig. A.11.
epresentative mean loads for 𝑞𝑚 = 1.0 are included for reference.

ppendix B. Weakest link-based segment failure formulation

Derivation of the segment failure probability in Eq. (11) from the
ingle link failure probability in Eq. (7) and the fatigue damage of the
th component in Eq. (8).

The failure probability of the 𝑖th component is

(𝑖)
𝑓 = P

⎡

⎢

⎢

⎣

𝐷cr ≤
1
𝑅𝑖

𝑁𝑦
∑

𝑘=1

𝑍𝑘

10
(

𝐵0+𝐵1⋅𝐺∗
1,𝑘+𝐵2⋅𝐺∗

2,𝑘

)

⎤

⎥

⎥

⎦

(B.1)

By defining the auxiliary variable

𝑉 (𝑿;𝑁𝑦) ∶=
1
𝐷cr

𝑁𝑦
∑

𝑘=1

𝑍𝑘

10
(

𝐵0+𝐵1⋅𝐺∗
1,𝑘+𝐵2⋅𝐺∗

2,𝑘

) (B.2)

nd utilizing that 𝑅 and 𝐷cr are always positive, Eq. (B.1) may be
eorganized into
(𝑖)
𝑓 = P

[

𝑅𝑖 ≤ 𝑉 (𝑿;𝑁𝑦)
]

(B.3)

he probability of segment failure may now be expressed by means
f the event that any of the 𝑁 links fails or, equivalently, as the
omplement of the event that all the components survive:

(𝑁)
𝑓 = P

[ 𝑁
⋃

𝑖=1
(𝑅𝑖 ≤ 𝑉 (𝑿;𝑁𝑦))

]

= 1 − P
[ 𝑁
⋂

𝑖=1
(𝑅𝑖 > 𝑉 (𝑿;𝑁𝑦))

]

(B.4)

y conditioning on a realization of the variables that are fully corre-
ated between links, 𝑣 = 𝑉 (𝒙), the failure (or survival) events become
tatistically independent. Recalling that the 𝑅𝑖 are i.i.d., the conditional
robability of segment failure is then

(𝑁)
𝑓 |𝑿=𝒙 = 1 −

𝑁
∏

𝑖=1
P
[

𝑅𝑖 > 𝑣
]

= 1 − P [𝑅 > 𝑣]𝑁 = 1 −
[

1 − 𝐹𝑅(𝑣)
]𝑁 (B.5)

where 𝐹𝑅(𝑣) = P [𝑅 ≤ 𝑣] is the CDF of 𝑅 for any single link, evaluated
at 𝑣. From order statistics, the resulting expression is recognized as the
13
exact distribution of the extreme minimum value of 𝑁 i.i.d. variables
𝑅, see e.g., Bury (1999). The conditional probability in (B.5) may thus
be expressed in a more compact form as 𝑝(𝑁)

𝑓 |𝑿=𝒙 = 𝐹𝑊 (𝑣;𝑁), where
𝐹𝑊 (⋅) denotes the CDF of 𝑊 = min

{

𝑅1,… , 𝑅𝑁
}

. The marginal segment
failure probability is then obtained from the total probability theorem
as

𝑝(𝑁)
𝑓 = ∫𝑿

𝐹𝑊 (𝑉 (𝒙);𝑁) 𝑓𝑿 (𝒙) d𝒙 (B.6)

where 𝑓𝑿 (⋅) is the joint probability density function for 𝑿. This result-
ing integral is equivalent to the probability statement (see e.g., Lemaire,
2009, Ch. 3)

𝑝(𝑁)
𝑓 = P [𝑊 ≤ 𝑉 ] (B.7)

Finally, by introducing the weakest link fatigue damage defined in
(9), Eq. (B.7) may be reorganized into the segment failure probability
in Eq. (11).

Appendix C. Design code calculations

C.1. Maximum allowable annual fatigue load

The design equation for the fatigue limit state is (DNV GL, 2018)

𝑑𝑐 ⋅ 𝛾𝐹 ≤ 1 (C.1)

where 𝑑𝑐 is a characteristic fatigue damage and 𝛾𝐹 is the fatigue safety
factor. Let 𝐿 denote the service life in years, and let 𝑑𝑐,yr denote the
average, characteristic fatigue damage per year. The design equation
may then be written

𝐿 ⋅ 𝑑𝑐,yr ⋅ 𝛾𝐹 ≤ 1 (C.2)

ow, the average annual fatigue damage may be expressed as

𝑐,yr =
E[𝑛0 ⋅ 𝑆𝑚]

𝐴𝐷
= 𝑍

𝐴𝐷
(C.3)

where 𝐴𝐷 is the intercept parameter of the S-N design curve and 𝑍 =
E[𝑍] is the expected annual fatigue load. Combining (C.2) and (C.3),
the maximum allowable annual fatigue load becomes

𝑍 ≤
𝐴𝐷

𝐿 ⋅ 𝛾𝐹
(C.4)

ence, with 𝐿 = 15 [years], 𝛾𝐹 = 8 and 𝐴𝐷 = 6×1010 (DNV GL, 2018),
e get �̄� ≤ 5×108 [MPa3].

.2. Correction for material loss

When corrosion is accounted for by means of a corrosion rate,
epresenting the annual material loss, the effective chain diameter after
years is

(crs)
k = d(crs)0 − 𝑐𝑟 ⋅ 𝑘 (C.5)

here d(crs)0 is the nominal diameter and 𝑐𝑟 is the corrosion rate ex-
ressing the reduction in diameter per year. For a given tension range
istribution, the annual fatigue load is inversely proportional to the
ross section area raised to 𝑚 (the S-N curve stress range effect). The
xpected fatigue load in the 𝑘th year is therefore related to the effective
iameter by

𝑍𝑘 ∝

(

1
d(crs)k

)2𝑚

(C.6)

Combining (C.5) and (C.6), a scaling factor for the expected effective
fatigue load may thus be expressed as

𝑍𝑘

𝑍0
=

(

1 −
𝑐𝑟 ⋅ 𝑘

d(crs)0

)−2𝑚

(C.7)

here 𝑍0 is the expected annual fatigue load calculated based on the
nominal diameter.



Ocean Engineering 266 (2022) 112621E.N. Lone et al.

w
i
t
o
t
a

f

𝑆

q
v
v
r

Appendix D. Sensitivity measures

D.1. Sobol’ indices

The Sobol’ indices obtained for the global sensitivity analysis are
briefly presented. Consider the output of a generic model, 𝑌 = 𝑓 (𝑿),

here 𝑿 = (𝑋1, 𝑋2,… , 𝑋𝑀 ) is a random vector of size 𝑀 . The Sobol’
ndices quantify the impact on the uncertainty of 𝑌 from the uncer-
ainty of each of the components, 𝑋𝑖, over the entire range of possible
utcomes. In the context of the present study, the model 𝑓 (⋅) may be
he fatigue damage in Eq. (9) or the limit state function in Eq. (17),
nd 𝑿 contains the random variables in Table 2.

Assuming that the components in 𝑿 are mutually independent, the
irst-order Sobol’ index may be expressed as (Saltelli et al., 2008):

𝑖 =
Var𝑋𝑖

(E𝑿∼𝑖
[𝑌 |𝑋𝑖])

Var(𝑌 ) (D.1)

where Var(⋅) denotes variance and E[.] is the expectation. The subscript
⋅𝑋𝑖

means that the variance (or expectation) is taken over the range
of possible outcomes for component 𝑋𝑖, whereas subscript ⋅𝑿∼𝑖

means
that it is taken over the range of possible outcomes for all components
except 𝑋𝑖. The first-order index quantifies the proportion of the uncer-
tainty in 𝑌 that may be attributed to the uncertainty in 𝑋𝑖 alone, and
is a number between 0 and 1.

Similarly, the total-effect Sobol’ index may be expressed as:

𝑆𝑇 𝑖 = 1 −
Var𝑿∼𝑖

(E𝑋𝑖
[𝑌 |𝑿∼𝑖])

Var(𝑌 ) =
E𝑿∼𝑖

(Var𝑋𝑖
[𝑌 |𝑿∼𝑖])

Var(𝑌 ) (D.2)

and quantifies the total contribution from uncertainty in 𝑋𝑖 to the
variance of 𝑌 , including interactions with other random variables. For
a purely additive model, we have 𝑆𝑇 𝑖 = 𝑆𝑖 and ∑

𝑖 𝑆𝑖 = 1. The
quantity 1 −

∑

𝑖 𝑆𝑖 may therefore be used to quantify the proportion of
the variance that is caused by non-additive interactions in the model.
Furthermore, zero total effect (𝑆𝑇 𝑖 = 0) is a necessary and sufficient
condition for 𝑋𝑖 to be non-influential. Hence; given 𝑆𝑇 𝑖 = 0, the random
variable 𝑋𝑖 may be fixed to any value without affecting the variance of
𝑌 . Further details are found in e.g., Saltelli et al. (2008).

D.2. FORM-based sensitivity measures

The design point may also be expressed as 𝒖∗ = 𝛽𝜶, where 𝜶 =
(𝑢∗1∕𝛽,… , 𝑢∗𝑀∕𝛽) is a vector containing directional cosines. It also rep-
resents the normal vector of the limit state surface at the design point,
and it follows from the definition of the reliability index (𝛽) that
‖𝜶‖ = 𝜶𝑇𝜶 = 1, and 𝛽 = 𝜶𝑇 𝒖∗. Hence:
𝜕𝛽
𝜕𝑢𝑖

|

|

|

|𝒖=𝒖∗
= 𝛼𝑖 (D.3)

which means that 𝛼𝑖 is a local measure of the sensitivity of the reli-
ability index to the uncertainty in 𝑈𝑖, evaluated at the design point.
This sensitivity measure is referred to as the FORM importance factors,
and is commonly presented in terms of the squared value, 𝛼2𝑖 , satisfying
∑

𝑖 𝛼
2
𝑖 = 1. The factor 𝛼2𝑖 describes the proportion of the variance of

the linearized limit state function that is caused by the uncertainty
in 𝑈𝑖 (Madsen, 1988). When the random variables are independent in
physical space, there is a one-to-one relation between 𝑈𝑖 and 𝑋𝑖, and
this interpretation of 𝛼2𝑖 is valid also for the importance of 𝑋𝑖.

The omission sensitivity factors introduced by Madsen (Madsen, 1988)
uantify the relative change in the reliability index if the random
ariable 𝑋𝑖 is replaced by a fixed value. Specifically; for independent
ariables in physical space, the change in reliability index if 𝑋𝑖 is
eplaced by its mean value is (Madsen, 1988):
𝛽(𝑋𝑖=𝜇𝑋𝑖

)
𝛽

= 1
√

2
(D.4)
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