
Array 16 (2022) 100249

A
2

Contents lists available at ScienceDirect

Array

journal homepage: www.elsevier.com/locate/array

Collaborative optimization by shared objective function data
I Gusti Agung Gede Angga a, Mathias Bellout a, Per Eirik Strand Bergmo b, Per Arne Slotte a,
Carl Fredrik Berg a,∗

a Department of Geoscience and Petroleum, Norwegian University of Science and Technology (NTNU), S. P. Andersens veg 15A, 7031, Trondheim, Norway
b Department of Petroleum, SINTEF Industry, S. P. Andersens veg 15B, 7031, Trondheim, Norway

A R T I C L E I N F O

Keywords:
Collaborative optimization algorithms
Multi-task optimization
Simulation-based optimization
Genetic algorithm
Particle swarm optimization
Gradient descent

A B S T R A C T

This article presents a collaborative algorithmic framework that is effective for solving a multi-task optimization
scenario where the evaluation of their objectives consists of two parts: The first part involves a common
computationally heavy function, e.g., a numerical simulation, while the second part further evaluates the
objective by performing additional, significantly less computationally-intensive calculations. The ideas behind
the collaborative framework are (i) to solve all the optimization problems simultaneously and (ii) at each
iteration, to perform a synchronous ‘‘collaborative’’ operation. This distinctive operation entails sharing the
outcome of the heavy part between all search processes. The goal is to improve the performance of each
individual process by taking advantage of the already-computed heavy part of solution candidates from other
searches. Several problem sets are presented. With respect to solution quality, consistency, and convergence
speed, we observe that our collaborative algorithms perform better than traditional optimization techniques.
Information sharing is most actively exploited during early stages of optimization. Though the collaborative
algorithms require additional computing time, the added cost is diminishing with increasing difference between
the computational cost of the expensive and light parts.
1. Introduction

There are two common classes of optimization problem: single-
objective optimization (SOO) and multi-objective optimization (MOO).
SOO aims at determining the best solution for a single objective func-
tion only, while the goal of MOO is to find a set of non-dominated
(Pareto-optimal) solutions for two or more, often contradicting, ob-
jectives. In recent years, a new class of optimization problem called
multi-task optimization (MTO) has emerged and attracted attention
in research society. The goal of MTO is to solve a set optimization
problems, usually referred as ‘‘tasks’’, simultaneously so that the syn-
ergies among the tasks can be utilized (i.e., by means of inter-task
knowledge transfer) to improve the search process of each task [1,2].
An MTO is made up of 𝑁𝑝 different optimization problems, where
each problem has a unique objective function 𝑓𝑖 defined over search
space 𝛺𝑖. Without loss of generality, we herein define that all problems
are maximization problems. For minimization problems, we can turn
them into maximization problems by using negative objective func-
tions. The purpose of MTO is to determine a set of optimal solutions
{�⃗�∗1 , �⃗�

∗
2 ,… , �⃗�∗𝑁𝑝

} where �⃗�∗𝑖 = argmax�⃗�𝑖∈𝛺𝑖
𝑓𝑖(�⃗�𝑖). So the end product of

MTO is different from MOO. Distinctions between MTO and MOO are

∗ Corresponding author.
E-mail addresses: i.g.a.g.angga@ntnu.no (I G.A.G. Angga), mathias.bellout@gmail.com (M. Bellout), per.bergmo@sintef.no (P.E.S. Bergmo),

paslotte@gmail.com (P.A. Slotte), carl.f.berg@ntnu.no (C.F. Berg).

further discussed in [1,3,4]. In spite of the differences, Pareto-optimal
solutions for an MOO could be obtained by reformulating the MOO as
a set of SOO problems (e.g., by methods proposed in [5,6]), and then
solving for this set of problems as an MTO scenario.

A straightforward and traditional way to solve an MTO is by solving
each problem in an independent manner. This approach however may
have limitations as the optimization problems become more complex.
In addition, real-world optimization problems usually have high degree
of similarity (i.e., commonality in their fitness landscapes or optimal
solutions) [1,7,8]. These two aspects have motivated the scientific
community to come up with MTO algorithms which aim to solve all
the optimization problems simultaneously in a single search process
so that the knowledge obtained from the optimization of one problem
can be exploited to help addressing other problems. MTO algorithms
are usually developed using concepts drawn from evolutionary com-
putation (e.g., [3,7,9]), swarm intelligence (e.g., [10–12]), or Bayesian
optimization (e.g., [13]). Some of these MTO algorithms will be briefly
explained in the following paragraphs.

Evolutionary MTO (EMTO) algorithms, which adopt search pro-
cedures and operators of evolutionary computation, can be classified
vailable online 17 September 2022
590-0056/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.array.2022.100249
Received 12 July 2022; Received in revised form 28 August 2022; Accepted 12 Sep
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

tember 2022

http://www.elsevier.com/locate/array
http://www.elsevier.com/locate/array
mailto:i.g.a.g.angga@ntnu.no
mailto:mathias.bellout@gmail.com
mailto:per.bergmo@sintef.no
mailto:paslotte@gmail.com
mailto:carl.f.berg@ntnu.no
https://doi.org/10.1016/j.array.2022.100249
https://doi.org/10.1016/j.array.2022.100249
http://creativecommons.org/licenses/by/4.0/


Array 16 (2022) 100249I G.A.G. Angga et al.
Nomenclature

Acronyms

CO2 Carbon dioxide
C-GA Collaborative genetic algorithm
C-GD Collaborative gradient descent
C-GD-I Collaborative gradient descent version I
C-GD-II Collaborative gradient descent version II
C-PSO Collaborative particle swarm optimization
CCEA Cooperative co-evolutionary algorithm
DEMTO Differential evolutionary multi-task opti-

mization
EMTO Evolutionary multi-task optimization
GA & NC-GA Traditional non-collaborative genetic algo-

rithm
GD & NC-GD Traditional non-collaborative gradient de-

scent
MFEA Multi-factorial evolutionary algorithm
MM Multi-population based multitasking
MOO Multi-objective optimization
MPEF Multi-population evolutionary framework
MTO Multi-task optimization
NSGA-II Non-dominated sorting genetic algorithm

version II
OFV Objective function value
P10 10th percentile
P50 50th percentile or median
P90 90th percentile
PSO & NC-PSO Traditional non-collaborative particle

swarm optimization
SM Single-population based multitasking
SOO Single-objective optimization
USD United States Dollar

Symbols

◦ Function composition
R Set of real numbers
𝛺𝑖 Search space for problem 𝑖
𝛷𝑖 Population assigned for tackling problem 𝑖
𝛹𝑖 Collection of promising solution candidates

from populations 𝛷𝑞 , 𝑞 ≠ 𝑖, to be cloned
and introduced into 𝛷𝑖

𝛽 𝑖 Global best position for problem 𝑖
�⃗�𝑖 Set of coefficients in the objective function

of problem 𝑖
𝑠𝑖 Set of constants in the objective function of

problem 𝑖

into two main families of algorithm; one of them is single-population
based multitasking (SM). One early example of SM is multi-factorial
evolutionary algorithm (MFEA) proposed by Gupta et al. [3]. The
development of MFEA was inspired by the concept of multifactorial
inheritance, which explains that the traits among offspring are influ-
enced by ‘‘many factors’’, such as genetic and cultural factors [14,15].
The search process in MFEA is executed using one population that
contains solutions for all problems. Each individual in the population
has a skill factor indicating the one task on which the individual is
assigned to, and two randomly chosen individuals in the population
can freely execute a crossover operation if they have the same skill
2

�⃗�𝑖 Solution candidate for problem 𝑖
�⃗�∗𝑖 Optimal solution for problem 𝑖
𝑦𝑖 Outputs of a computationally heavy func-

tion, 𝑓ℎ, with respect to �⃗�𝑖
𝐴 Coefficient in the objective function
𝐶(𝑦) Operating cost of hydrocarbon production

with respect to simulation results 𝑦
𝑓ℎ Computationally heavy function
𝑓𝑖 Objective function for problem 𝑖
𝑓𝑙,𝑖 Computationally light function for prob-

lem 𝑖
𝐻(𝑘) Aggregated objective function value with

respect to swap scenario 𝑘
𝑀CO2

(𝑦) Quantity of carbon emissions from hydro-
carbon production with respect to simula-
tion results 𝑦

𝑁𝑑 Dimension of optimization problems
𝑁𝑓,𝑐 Number of objective function evaluations in

collaborative algorithms
𝑁𝑓,𝑛𝑐 Number of objective function evaluations in

traditional non-collaborative algorithms
𝑁𝑚 Size of each population
𝑁𝑝 Number of optimization problems
𝑁𝑟 Number of swap scenarios
𝑁𝑡 Number of iterations
𝑅(𝑦) Revenue from hydrocarbon production with

respect to simulation results 𝑦
𝑟CO2

CO2 tax rate
𝑇𝑐 Run time of collaborative algorithms
𝑇ℎ Computation time of heavy function, 𝑓ℎ
𝑇𝑙 Computation time of light functions, 𝑓𝑙,𝑖
𝑇𝑛𝑐 Run time of traditional non-collaborative

algorithms
𝑧𝑖 Output of a computationally light function

for problem 𝑖, 𝑓𝑙,𝑖

factors. However, if the skill factors are different, the two individuals
can undergo crossover only by a given probability.

Another family of EMTO algorithms is multi-population based mul-
titasking (MM). In contrast with SM, MM algorithms employ several
populations where each population contains all solution candidates for
an optimization problem in the MTO setting. The advantages of MM
are twofold: (i) MM can easily adopt any existing population-based
optimization algorithms, and (ii) the transfer of information among
the populations can be performed effectively [16]. One example of
MM algorithms is multi-population evolutionary framework (MPEF)
initially proposed by Li et al. [16], and later extended in [17,18]. In
MPEF each population has its own probability for exploiting knowledge
of other populations, and this probability is adaptively tuned to prevent
a phenomenon called negative transfer. This phenomenon might occur
in SM due to the crossover of individuals for non-related tasks and
eventually could lead to performance degradation. Another example
of MM algorithms is differential evolutionary multi-task optimization
(DEMTO) by Zheng et al. [7]. There is also an MM algorithm de-
veloped based on the island model by Hashimoto et al. [19]. Both
DEMTO and the island model implement explicit knowledge transfer,
meaning that individuals (complete solutions) are migrated from one
population or task to another. One commonality between DEMTO and
the island model is that individuals being migrated into a population
are randomly chosen from other populations. This can potentially lead
to negative transfer. In contrast, our collaborative algorithms have



Array 16 (2022) 100249I G.A.G. Angga et al.

L
s

m
f
a
o
w
t
s
t
a
i
t
f

different procedures of transferring knowledge among the tasks, i.e., by
only exploiting or migrating individuals (from other populations) that
are most useful for the particular population or task.

Besides evolutionary computation, the idea of transferring knowl-
edge gathered while solving an optimization problem to other problems
has also been incorporated with the Bayesian optimization framework
by Swersky et al. in multitask Bayesian optimization [13]. An important
component of such algorithm is multitask Gaussian Process models
(e.g., [20]) which are employed to progressively capture the degree of
correlation between different tasks in an MTO. Using this correlation,
observations on the other tasks will act as extra observations for the
task of interest without any additional function evaluations [13]. If
the tasks are related, these extra observations could help the surrogate
models (i.e., the Gaussian Process models) to better represent the ob-
jective functions implemented in those tasks, meaning that the models
become more accurate (closer to the true objective functions) and more
precise (having less uncertainties). Response surface of the acquisition
function, which is needed for deciding the next sampling point, is
then affected by the improvements on the surrogate models [21]. As
a result, we might obtain a better sampling point or solution candidate
to evaluate. On the other hand, if the tasks are unrelated, the extra
observations will not be considered and therefore will not ruin the
optimization performance [20].

Herein we present collaborative algorithms that are effective for
solving a special MTO case. Like normal MTO, the special MTO case
consists of several optimization problems or tasks, where each task
employs a unique objective function. The uniqueness of the special
MTO case is that all the objective functions must have the following
characteristics:

– The evaluation of each objective consists of two stages, 𝑓𝑖 =
𝑓𝑙,𝑖◦𝑓ℎ, where ◦ indicates a function composition of the heavy 𝑓ℎ
and light 𝑓𝑙,𝑖 functions.

– In the first stage, the evaluation process involves a computation-
ally heavy function, 𝑓ℎ, such as solving a set of non-linear partial
differential equations in a simulation.
Importantly, all the optimization problems have an identical
heavy function 𝑓ℎ, e.g., a simulation is performed using the exact
same model giving the same type of output.

– In the second stage, a subsequent evaluation of the objective is
based on the simulation results, i.e., the outputs of the heavy func-
tion 𝑓ℎ, and is a comparatively light in terms of the computation.
This light function 𝑓𝑙,𝑖 is problem-specific, meaning that each
optimization problem has its own distinctive light function.

astly, all the tasks optimize the same variable types and have the same
earch space.

One example of such special MTO case in engineering is for opti-
izing airfoil design. The geometry of an airfoil influences lift and drag

orces exerted on the airfoil. Optimization problems include identifying
irfoil shapes that either maximize lift force, minimize drag force,
r maximize lift-to-drag ratio (e.g., [22–24]). Engineers however may
ant to find and compare all optimal airfoil designs corresponding

o these different objective functions. This means that they need to
olve several optimization problems. Again the main interest here is
o find different optimal solutions for different objective functions,
nd not to identify the trade-off between the objective functions as
n MOO. Note that, to evaluate these problem objectives, we need
o perform computational fluid dynamics simulations (i.e., the heavy
unction 𝑓ℎ) to determine spatial distributions of fluid pressure and

velocity around the airfoil. Results from these simulations are then
used to compute the objective function value using the corresponding
light function 𝑓𝑙,𝑖. Clearly, for all these problems, the simulation effort
is the computationally demanding part compared to the subsequent
computation of the objective function value. The two stages of objective
3

function evaluation here reflect the uniqueness of the special MTO case.
Another example of the special MTO case appears in the develop-
ment phase of a hydrocarbon field. Some variables to optimize include
well placement, well completion, and/or well production strategy [25].
The majority of optimization studies in the literature discuss optimiza-
tion problems that either maximize profit, maximize field production,
or minimize energy consumption [26–28]. Like before, one may want
to identify and compare all optimal development scenarios for different
objective functions, meaning that a set of optimization problems must
be solved. There are also interests to investigate how the variations
of market prices, e.g., oil and steel prices, alter the optimal develop-
ment scenario. For such sensitivity analysis, we must solve multiple
optimization problems, with each problem using a different market
price. A commonality of such sets of optimization problems is that
some of the parameters, e.g., market prices or particular choice of
objective function, do not enter into the simulation (i.e., the heavy
function 𝑓ℎ) and require only light calculations using the simulation
outputs (i.e., the light function 𝑓𝑙,𝑖). For example, the final net present
value calculation consists of a single function evaluation. On the other
hand, the full simulation, e.g., for fluid displacement in porous media,
relies on computationally costly solutions to a set of non-linear partial
differential equations.

The easiest approach to deal with the aforementioned special MTO
cases is by solving each optimization problem independently using
traditional optimization algorithms, such as gradient descent (GD) [29],
pattern search [30], genetic algorithm (GA) [31], particle swarm op-
timization (PSO) [32,33], or Bayesian optimization [34,35]. Better
optimal solutions can obtained by employing MTO algorithms discussed
earlier which have the capabilities to transfer and exploit the knowl-
edge gathered while solving the optimization problems simultaneously.
However, the MTO algorithms are sub-optimal for tackling our special
MTO cases because the results of heavy function 𝑓ℎ will be used only
once. For example in EMTO algorithms, an offspring will be evaluated
only for one problem (depending on the skill factor or population
of the offspring). Similarly in multitask Bayesian optimization, the
next data point (that is obtained from the maximization of acquisition
function) will be observed only for the relevant problem. This practice
is inefficient as the results of heavy function 𝑓ℎ can actually be utilized
to compute other light functions 𝑓𝑙,𝑖 and those computed objective
values are potentially helpful for the overall optimization processes.
For instance in multitask Bayesian optimization, additional observed
data points (coming from the reuse of heavy function outputs) can
completely eliminate uncertainties, instead of just reducing them.

Further, MTO algorithms rely heavily on the similarity of optimiza-
tion problems being considered [36–38]. They work by assuming that
the optimization problems have commonality in their fitness landscapes
or optimal solutions which can be utilized to facilitate the overall
search processes [7]. However, if some of the optimization tasks are
unrelated and the transfer of knowledge occurs between these unrelated
tasks (referred as negative transfer in [1]), MTO algorithms could
experience performance downturns [38].

With the above rationale, we herein present collaborative optimiza-
tion algorithms that are effective for solving the special MTO cases,
consisting of a common heavy and an individual light part in their ob-
jective function calculation. In our proposed collaborative algorithms,
all defined problems are solved simultaneously and communicating,
instead of being solved independently without inter-communication.
Additionally, by considering the advantages of MM mentioned earlier,
the proposed collaborative algorithms adopt the multi-population based
framework and implement the explicit knowledge transfer strategy.
The communication is materialized through a ‘‘collaborative’’ opera-
tion in every iteration, thus a differentiating feature of the proposed
algorithms. The ‘‘collaborative’’ operation implies that results of heavy
function 𝑓ℎ are distributed to all problems. By evaluating a correspond-
ing light function 𝑓𝑙,𝑖 on the shared result data, each optimization
problem is able to evaluate additional solution candidates. Therefore,

the presented collaborative algorithms have the potential to (i) produce



Array 16 (2022) 100249I G.A.G. Angga et al.

u

Fig. 1. Calculation for objective function value, 𝑧𝑖, in a set of 𝑁𝑝 optimization
problems, without any collaboration between the different problems. �⃗�𝑖: a solution
candidate for problem 𝑖 to evaluate. 𝑦𝑖: outputs of a computationally heavy function,
𝑓ℎ, with respect to �⃗�𝑖. 𝑧𝑖: output of a computationally light function for problem 𝑖, 𝑓𝑙,𝑖.

better solutions for their corresponding optimization problems and (ii)
have faster convergences. The additional light function calculations
add to the computing time, but when the problems’ heavy function is
computationally much more demanding than the light functions, this
additional cost becomes insignificant. Based upon our literature review,
we cannot identify existing algorithms that take advantage of the
heavy/light-function structural characteristics in the objective function
evaluation of the aforementioned special MTO cases. Also note that our
proposed collaborative algorithms are not multi-fidelity optimization;
the collaborative algorithms exploit the two levels of objective function
calculation, i.e., the heavy and light parts, and do not use or create any
low-fidelity models. These problem characteristics and the features of
the collaborative algorithms will be discussed deeper in this article.

This article is structured as follows. Section 2 defines the optimiza-
tion problems at which the collaborative algorithms are developed
for. Section 3 describes two pivotal and distinctive features in the
collaborative algorithms and presents the adoption of these features in
several traditional optimization techniques. Section 4 provides descrip-
tions of four problem sets that we use for testing out the collaborative
algorithms. Optimization results, including performance comparison
against the traditional optimization methods and the MFEA, are pre-
sented and discussed in Section 5. To avoid confusion with the naming
of some existing algorithms, Section 6 further clarifies the use of the
term ‘‘collaborative’’. Lastly, concluding remarks and future work are
given in Sections 7 and 8, respectively.

2. Characteristics of optimization problems

Our collaborative algorithms target resolving a special MTO case
with attributes as described in Section 1. In this MTO case, we have
a collection of 𝑁𝑝 optimization problems having different objective
functions. Every problem aims at optimizing a set of variables, �⃗�, with
respect to its objective. A crucial characteristic is that the search space
for �⃗� is identical for all the problems under consideration.

Another important problem characteristic is that the objective eval-
uation process for each problem 𝑖 consists of two steps; 𝑓𝑖 = 𝑓𝑙,𝑖◦𝑓ℎ. The
individual evaluation of each objective function is illustrated in Fig. 1.
In this figure, the red box indicates how the objective function value
for the 𝑖th problem, 𝑧𝑖 = 𝑓𝑙,𝑖(𝑦𝑖) = 𝑓𝑙,𝑖(𝑓ℎ(�⃗�𝑖)), is obtained for a solution
candidate �⃗�𝑖. The first step of each objective evaluation process involves
resolving a computationally heavy function, 𝑓ℎ, e.g., the numerical
solutions of a real system. Note that the heavy function in this first step,
𝑓ℎ, is exactly the same for all the optimization problems 𝑖, and thus
that the simulation outputs, 𝑦𝑖 = 𝑓ℎ(�⃗�𝑖), contain the same components.
The second step involves resolving a computationally light function,
𝑓𝑙,𝑖, with input the simulation results, 𝑦𝑖, computed in the first step. A
main distinction is that, unlike the heavy function, the light function is
different for each optimization problem 𝑖. That is, 𝑓𝑙,𝑖 denotes a light
4

function that uniquely defines problem 𝑖.
Fig. 2. Calculation for objective function value, 𝑧𝑖, in our collaborative optimization
algorithms.

3. Collaborative optimization algorithms

3.1. Main concepts

In many traditional optimization techniques, all solution candidates
that have been evaluated in the current or previous iterations pro-
vide information for generating new solution candidates to test. This
information has pivotal influence on how the optimization routine
progresses. For GA, individuals in the current population will pass on
their genes to their offsprings, with the inherited genes determining
the fitness of the new population. For PSO, location of the global best
particle (which is updated from the current population) will affect
the velocities (i.e., magnitudes plus directions) of the other population
members. For GD, search direction or gradient is determined at the
current solution.

The collaborative algorithms presented in this article improve the
search process by enhancing the information available for the develop-
ment of the next solution candidates. The algorithms achieve this goal
using two distinctive features. First, all optimization problems specified
in Section 2 are solved concurrently. Here, the term ‘‘concurrent’’
implies that the search process for each problem (generation and eval-
uation of new solution candidates) advances for every iteration of the
algorithms. This differs from a straightforward (sequential) approach
where each optimization problem is solved completely before moving
onto the next one.

Second, a collaborative operation is carried out in every single
iteration, where all problems share the outputs of the heavy function
evaluations, 𝑦𝑖. When using traditional approaches (see Fig. 1), 𝑦𝑖 is
sed only for quantifying the light function of problem 𝑖, 𝑧𝑖 = 𝑓𝑙,𝑖(𝑦𝑖).

The collaborative operation extends the utilization of 𝑦𝑖, where it is also
used to evaluate the light functions associated with the other problems,
i.e., 𝑧1 = 𝑓𝑙,1(𝑦𝑖);… ; 𝑧𝑖−1 = 𝑓𝑙,𝑖−1(𝑦𝑖); 𝑧𝑖+1 = 𝑓𝑙,𝑖+1(𝑦𝑖);… ; 𝑧𝑁𝑝

= 𝑓𝑙,𝑁𝑝
(𝑦𝑖)

(see Fig. 2). A clear consequence is that any single optimization prob-
lem is able to evaluate many additional solution candidates (in every
iteration), thus enhancing the information available for deciding the
next solution candidates. For example, the next solution candidates of
problem 𝑖 are traditionally determined based upon 𝑧 = 𝑓 (𝑦 ) alone
𝑖 𝑙,𝑖 𝑖



Array 16 (2022) 100249I G.A.G. Angga et al.

d
𝑓

(see the red box in Fig. 2). This contrasts with what occurs in the
collaborative algorithms where we decide the next solution candidates
not only from 𝑧𝑖 = 𝑓𝑙,𝑖(𝑦𝑖) but also from the current solution candi-
ates of the other problems, i.e., 𝑧𝑖 = 𝑓𝑙,𝑖(𝑦1);… ; 𝑧𝑖 = 𝑓𝑙,𝑖(𝑦𝑖−1); 𝑧𝑖 =
𝑙,𝑖(𝑦𝑖+1); 𝑧𝑖 = 𝑓𝑙,𝑖(𝑦𝑁𝑝

) (see the blue boxes in Fig. 2).
In population-based optimization methods like GA or PSO, the

additional information may steer the overall search towards more
promising territories. In local-search methods like GD or PS, the addi-
tional information may prevent us from getting stuck in local optima.
Enhancement on the information thus enables: (i) the improvement of
final solution for any optimization problem, and (ii) the faster conver-
gence. These two aspects are investigated in this article. In the next
three subsections, we present the implementations of the collaborative
notion on three traditional optimization techniques, i.e., GA, PSO, and
GD. Note, however, that the collaborative approach depends solely on
the computational characteristics of the problems, and can thus be
implemented on other search methods.

3.2. Collaborative genetic algorithm (C-GA)
5

Genetic algorithm (GA) is a well known class of search methods
with many implementations reported in the literature [39–41]. This
algorithm was initially developed by Holland [31] back in the 70s,
and is stochastic and population-based. The success of GA may stem
from its simple and lucid concept of mimicking the natural selection
process in biological evolution. To realize this abstraction, GA entails
four fundamental operations, i.e., selection, crossover, mutation, and
replacement:

1. The selection process chooses some quality individuals from a
population.

2. The selected individuals (parents) undergo the crossover (mat-
ing) operation and produce new individuals (offsprings).
These offsprings have genes (traits) inherited from the selected
parents.

3. To prevent the population from having a premature conver-
gence, a mutation procedure is put in place to introduce random
perturbations on the genes.

4. One generation (iteration) will end with the replacement opera-
tion, where the offsprings are compared against their parents.
Individuals having better fitness will survive, while the rests will
vanish.

In this subsection we present a collaborative genetic algorithm (C-
GA), and portray its principal differences from the conventional GA.
As the name reveals, C-GA is constructed on the basis of the genetic
algorithm, meaning that all standard GA operators will still be involved.
There are many variants of GA. In this work we adopt the one suggested
by Chuang et al. [42]. We expect that other versions are equally
suitable for incorporating the collaborative part, and will not alter
findings of this study.

A pseudocode of C-GA is given in Algorithm 1. The algorithm begins
with initializing several populations. Each population is responsible
for finding the optimal solution of one particular problem. For ex-
ample, 𝛷𝑖 reflects a population (a group of solution candidates) that
targets resolving problem 𝑖. After initializing all solution candidates,
we evaluate the computationally heavy function, 𝑓ℎ, for each candidate
(line 4–6 in Algorithm 1). Henceforward a solution candidate, �⃗�, and
its corresponding outputs of 𝑓ℎ, 𝑦, are deemed as an entity (object).
This implies that copying �⃗� from one population to another will also
copy the corresponding 𝑦. A ‘‘while’’ loop in Algorithm 1 (line 7–22)
indicates the optimization iterative process. Referring to this loop, it is
evident that all specified problems are being solved simultaneously in
C-GA, meaning that in one iteration we update the members (solution
candidates) of each population. This is the first distinctive feature of
C-GA.

From the underlying idea of GA, we surmise that a population
having better genetic information will produce more robust offsprings
and eventually improve optimization performances, e.g., quality of the
optimal solution found and convergence speed. With the intention to
improve the quality of all populations, we perform a collaborative
operation (line 9–13 in Algorithm 1) in each iteration. This operation is
another exclusive attribute of G-GA. If one disregards the collaborative
operation, the code becomes equivalent to the conventional GA. The
essence of the operation is to replace some members of a population
with better individuals cloned from other populations. The collabora-
tive operation in C-GA consists of two functions (see Algorithm 2). The
first function will define a set of promising individuals, 𝛹𝑖, to be cloned
and introduced into population 𝛷𝑖. These promising individuals must
originate from any population other than 𝛷𝑖. In addition, the promising
individuals in 𝛹𝑖 are selected based upon the light function of problem 𝑖,
𝑓𝑙,𝑖. The second function in Algorithm 2 will replace some of the worst
members of 𝛷𝑖 with the promising individuals. One condition for the
replacement is that the promising individuals have better fitness than
the individuals being replaced. There could be a case where none of
the promising individuals in 𝛹𝑖 have better fitness than the existing
members of 𝛷𝑖. In this case, none of 𝛷𝑖’s members will be replaced
(no cloning). Finally, note that the collaborative operation keeps the
population size constant.



Array 16 (2022) 100249I G.A.G. Angga et al.

p
p
l
a
n
o
h
i
c
l
r

3.3. Collaborative particle swarm optimization (C-PSO)

Particle swarm optimization (PSO) is another type of stochastic
opulation-based optimization techniques. This algorithm was first
roposed by Kennedy and Eberhart [32] and since then has gained a
ot of attention. A large number of modification proposals [43–45] and
pplications [46–49] of PSO exist in the literature. The search mecha-
ism in PSO is inspired by the social behavior of animals, particularly
nes displaying swarm behavior like birds or fish. The animal swarm
as its own set of operations to locate a food source as a group. Each
ndividual in the swarm (in PSO, individuals are referred to as particles)
ontinuously updates its search direction (velocity) depending on the
earning experiences of its own and other members in the swarm. As
eported in [50], PSO has four basic operations:

1. Determine the best position that a particle has encountered; the
‘‘particle best position’’.

2. Determine the best position that the swarm has found so far; the
‘‘global best position’’.
6

3. Update the velocity of each particle in the swarm.
The new velocity is controlled by three factors, i.e., the current
velocity, the particle best position, and the global best position.

4. Update the position of each particle based on the current posi-
tion and the updated velocity.

One key to swarm behavior in PSO is the global best position,
which is shared among particles. In a multi-swarm context, a natural
extension for a collaborative algorithm is to enhance this global best by
sharing information across swarms. One could also introduce cloning or
swapping of particles between swarms, similar to the C-GA algorithm in
the previous subsection. Here we will introduce a collaborative particle
swarm optimization (C-PSO) where PSO has only been extended by
a shared global best position. A pseudocode of C-PSO is provided in
Algorithm 3. Like C-GA, the algorithm starts with initializing swarms,
where each swarm solves for one particular problem in the problem
set. The algorithm then continues with completing an iterative routine
indicated by the ‘‘while’’ loop statement in Algorithm 3 (line 11–26).
As reflected in this loop, we solve all defined problems concurrently,
i.e., for each iteration we update the position of every individual in all
swarms. C-PSO employs the four standard PSO operations for updating
particle positions. Several velocity update formulas can be found in the
literature [51–55]. In this work we use the velocity update formula
suggested by Shi and Eberhart [33] because it is often deemed as
the standard PSO formula [56], but any other formulas for updating
velocity can be implemented in C-PSO.

The proposed C-PSO algorithm entails a collaborative operation
within the iterative process (line 17–19 in Algorithm 3). This extra
operation aims at enhancing the global best position by sharing the
objective function data. To better understand this operation, let us
concentrate on the improvement of 𝛽 𝑖 which represents the global
best position for problem 𝑖. The collaborative operation is specifically
carried out through a function detailed in Algorithm 4. This function
replaces the swarm global best position with the best position found by
any particle in any swarm. Omitting this collaborative operation will
make the C-PSO code identical to the regular PSO.

3.4. Collaborative gradient descent (C-GD)



Array 16 (2022) 100249I G.A.G. Angga et al.

o
m
f
g
o

b
d
l
o
g
o
m
t
p

a

𝑁

w
p
o
t
e
o
t
a

𝑁

c
s
i

Gradient descent (GD) is one of the simplest algorithms in the field
f numerical optimization. The algorithm is classified as a local search
ethod since it returns a local optima of a differentiable objective

unction. The idea behind GD is to repeatedly make a move within the
iven search space, where the movement itself is guided by the slope
f the response surface. GD enforces two principal operations:

1. Evaluate the gradient of the objective function.
2. Update the position based on the predetermined gradient direc-

tion.

This subsection presents a collaborative gradient descent (C-GD)
uilt upon the conventional GD algorithm. Even though GD is sel-
om employed in simulation-based optimization as it can only find a
ocal optima, we herein present C-GD to exemplify the applicability
f collaborative concept, not only on population-based but also on
radient-based optimization methods. A pseudocode of the first version
f C-GD, abbreviated as C-GD-I, is given in Algorithm 5. The opti-
ization procedure starts by defining a set of starting points. Each of

hese points reflects an initial solution for a specific member of the
roblem set, e.g., �⃗� 𝑖 denotes a solution candidate for problem 𝑖. After

initialization, the optimization iterative routine commences (line 6–18
in Algorithm 5). In contrast to traditional approaches, C-GD seeks for
the optimal solutions of all defined problems simultaneously, in the
sense that we advance all the points toward better locations on every
single iteration. When updating the point location, we remain using the
traditional GD operations.

Although GD is fast and efficient, the solution is often affected by
the choice of starting location. Especially for an optimization problem
having a multi-modal objective function, the search process using GD
might get stuck in a local optima. The presented C-GD-I algorithm
extends the traditional GD by the collaborative operation (line 8–11
in Algorithm 5). This operation helps preventing the search process
from getting trapped at local optima, particularly in the early iterations,
and thus provides an opportunity to improve the search performance.
In essence, through the utilization of shared objective function data,
the collaborative operation will upgrade the current solution, �⃗� 𝑖, with
a better replacement candidate. The procedure for deciding the best
replacement candidates is elaborated in Algorithm 6. Again, the C-GD-
I algorithm is equivalent to the traditional GD when we exclude the
collaborative operation.

A possible downside of the replacement scenario yielded from Al-
gorithm 6 is the fact that some of the replacement candidates could
be identical. This implies that the replacement candidates have lower
diversity, which may cause premature convergence. With the goal of
maintaining the diversity of the replacement candidates, and thus the
degree of exploration within the search space, we introduce and exam-
ine another collaborative version of GD called C-GD-II. This algorithm
is similar to C-GD-I, except for the strategy in deciding the replacement
candidates (detailed in Algorithm 7). In this replacement strategy we
only swap the current solution of one problem with the current so-
lution of another problem in such a way that the swap scenario will
maximize an aggregated objective function, 𝐻(𝑘). Maximizing 𝐻(𝑘)
is the most straightforward approach for deciding the swap scenario,
7

however other procedures, e.g., which add some randomness, could be
more effective. Referring to Algorithm 7, we implement an exhaustive
search in order to find the best swap scenario. Note that the search for
the best swap scenario in Algorithm 7 can become a computationally
demanding task, since the number of swap scenarios to evaluate grows
factorially with the number of problems, i.e., 𝑁𝑟 = 𝑁𝑝!. It is possible to
treat the search task as a combinatorial problem analogous to the trav-
eling salesman problem, and then use algorithms that can solve such a
combinatorial problem efficiently, like dynamic programming [57,58],
branch-and-bound [59,60], or branch-and-cut [61] algorithms. Such
efforts are beyond the scope of this article.

3.5. Number of function evaluations & computational cost

With reference to Fig. 1, the number of objective function evalu-
ations in traditional non-collaborative approaches, 𝑁𝑓,𝑛𝑐 , is expressed
s:

𝑓,𝑛𝑐 = 𝑁𝑡 ⋅𝑁𝑚 ⋅𝑁𝑝 (1)

here 𝑁𝑡 and 𝑁𝑝 indicate the number of iterations and the number of
roblems, respectively. For GA and PSO, 𝑁𝑚 ≥ 1 indicates the number
f solution candidates in each population, while for GD, 𝑁𝑚 = 1 because
here is only one solution candidate to evaluate for each problem in
very iteration. The equation above could also reflect the number of
bjective evaluations that occur in MTO algorithms. Further, referring
o Fig. 2, the number of objective function evaluations in collaborative
lgorithms, 𝑁𝑓,𝑐 , is formulated as:

𝑓,𝑐 = 𝑁𝑡 ⋅𝑁𝑚 ⋅ (𝑁𝑝)2 (2)

The second-order exponent for 𝑁𝑝 comes from the fact that in
ollaborative algorithms the heavy function (simulation) outcomes are
hared and used for computing 𝑁𝑝 different light functions embedded
n the problems. The ratio between 𝑁𝑓,𝑐 and 𝑁𝑓,𝑛𝑐 then becomes:
𝑁𝑓,𝑐

𝑁𝑓,𝑛𝑐
= 𝑁𝑝 (3)

This ratio implies that the search conducted by the collaborative al-
gorithms is guided by a larger number of solution candidates compared
to the sampling performed by either the non-collaborative methods or
the MTO algorithms. We therefore can expect that the collaborative
algorithms will outperform the non-collaborative methods as well as
the MTO algorithms.

On the one hand, run time for the traditional non-collaborative
techniques, 𝑇𝑛𝑐 , can be estimated using:

𝑇𝑛𝑐 = 𝑁𝑡 ⋅𝑁𝑚 ⋅𝑁𝑝 ⋅ (𝑇ℎ + 𝑇𝑙) (4)

where 𝑇ℎ and 𝑇𝑙 symbolize the computation time of the heavy and
light functions, respectively. This equation is also valid for the MTO
algorithms. On the other hand, run time of the collaborative algorithms,
𝑇𝑐 , is approximately given by:

𝑇𝑐 = 𝑁𝑡 ⋅𝑁𝑚 ⋅𝑁𝑝 ⋅ (𝑇ℎ +𝑁𝑝 ⋅ 𝑇𝑙) (5)

The multiplier for 𝑇𝑙 again arises from the extended utilization of
the results of heavy function evaluation. Dividing 𝑇𝑐 by 𝑇𝑛𝑐 gives us:
𝑇𝑐
𝑇𝑛𝑐

=
𝑇ℎ +𝑁𝑝 ⋅ 𝑇𝑙

𝑇ℎ + 𝑇𝑙
= 1 +

(𝑁𝑝 − 1) ⋅ 𝑇𝑙
𝑇ℎ + 𝑇𝑙

= 1 +
𝑁𝑝 − 1

(

𝑇ℎ
𝑇𝑙

+ 1
) (6)

The relation between 𝑇ℎ
𝑇𝑙

and 𝑇𝑐
𝑇𝑛𝑐

is illustrated in Fig. 3. According
to the relation, 𝑇𝑐

𝑇𝑛𝑐
monotonically decreases as 𝑇ℎ

𝑇𝑙
increases, and it

is asymptotic to one when 𝑇ℎ
𝑇𝑙

→ +∞. In other words, if the heavy
function is much more expensive to calculate than the light function,
the additional computing time needed by the collaborative algorithms
is negligible. Despite the limited increase in computational cost, the
increase in function evaluations, as given by Eq. (3), can be large. Thus,
for large 𝑇ℎ

𝑇𝑙
the collaborative feature enables a larger sampling size at

a similar computational cost as the non-collaborative approaches or the
MTO algorithms.



Array 16 (2022) 100249I G.A.G. Angga et al.

a

Fig. 3. Relation between 𝑇ℎ
𝑇𝑙

and 𝑇𝑐
𝑇𝑛𝑐

, as given by Eq. (6).

4. Descriptions of problem sets

Four problem sets are considered for comparing the collaborative
algorithms against both traditional optimization techniques (i.e., GA,
PSO, and GD) and an existing MTO algorithm (i.e., MFEA). These
problem sets are intended to showcase the benefits of our proposed
algorithms, without having the complexity and the computational cost
where our proposed algorithms will be most beneficial. Even though the
presented problem sets do not necessarily have computationally heavy
function 𝑓ℎ, we want to compare the efficiency of optimization process
with respect to the same number of 𝑓ℎ evaluations, as the proposed
algorithms are intended for problems sets where 𝑓ℎ is dominating the
computational time.

For the first three problem sets, analytical objective functions are
defined and used. These first three problem sets do not actually involve
any heavy simulation, and are intended for illustrating the difference
between the traditional and collaborative algorithms. Note that the
exclusion of heavy function evaluation has no influence on the perfor-
mance of the collaborative algorithms in terms of final solution and
objective function value. Thus, it is still possible to compare the per-
formance of the collaborative and non-collaborative approaches along
these lines for these simple problem sets. For the fourth problem set,
we have an example of the special MTO case with characteristics as de-
scribed in Section 2. The goal of this last problem set is to demonstrate
a more realistic application of the collaborative algorithms.

4.1. Problem Sets #1, #2, and #3

In these problem sets, we aim at finding a solution candidate
for problem 𝑖, �⃗�𝑖 =

(

𝑥𝑖,1; 𝑥𝑖,2;… ; 𝑥𝑖,𝑁𝑑

)

∈ R𝑁𝑑 , that maximizes the
following objective function:

𝑓𝑙,𝑖(�⃗�𝑖) = − 𝐴 ⋅𝑁𝑑 +
𝑁𝑑
∑

𝑘=1

(

𝐴 ⋅ cos
(

2𝜋
(

𝑥𝑖,𝑘 + 𝑠𝑖,𝑘
))

−
(

𝑥𝑖,𝑘 + 𝑠𝑖,𝑘
)2
)

+
𝑁𝑑
∑

𝑘=1

(

𝑚𝑖,𝑘
(

𝑥𝑖,𝑘 + 𝑠𝑖,𝑘
))

(7)

where 𝑠𝑖 =
(

𝑠𝑖,1; 𝑠𝑖,2;… ; 𝑠𝑖,𝑁𝑑

)

∈ R𝑁𝑑 and �⃗�𝑖 =
(

𝑚𝑖,1;𝑚𝑖,2;… ;𝑚𝑖,𝑁𝑑

)

∈
R𝑁𝑑 are sets of constants and coefficients, respectively, which are
specific for problem 𝑖.

In Problem Set #1 we define nine two-dimensional optimization
problems, thus 𝑁𝑝 = 9 and 𝑁𝑑 = 2. Values of 𝑠𝑖, �⃗�𝑖, and 𝐴 are
given in Table 1. The objective function above is constructed based
on the Rastrigin function [62]. Some modifications of the original
function include (i) the addition of a linear plane with slope �⃗�𝑖 which
is represented by the last term of Eq. (7), and (ii) a shift of the
entire response surface through the set of constants 𝑠𝑖. Furthermore,
ll the optimization problems have an identical search space, i.e., �⃗�𝑖 ∈
−5.12, 5.12 𝑁𝑑 .
8

[ ]
Table 1
Constants and coefficients for objective functions in Problem Set #1.

Problem 𝑖 𝑁𝑑 𝐴 𝑠𝑖 �⃗�𝑖

1 2 10 [0, 0] [10, 10]
2 2 10 [0.125, 0.125] [10, 7.5]
3 2 10 [0.25, 0.25] [10, 5]
4 2 10 [0.375, 0.375] [10, 2.5]
5 2 10 [0.5, 0.5] [10, 0]
6 2 10 [0.625, 0.625] [10,−2.5]
7 2 10 [0.75, 0.75] [10,−5]
8 2 10 [0.875, 0.875] [10,−7.5]
9 2 10 [1, 1] [10,−10]

Table 2
Constants and coefficients for objective functions in Problem Set #2.

Problem 𝑖 𝑁𝑑 𝐴 𝑠𝑖 �⃗�𝑖

1 3 10 [0, 0, 0] [10, 10, 10]
2 3 10 [0.125, 0.125, 0.125] [10, 7.5, 7.5]
3 3 10 [0.25, 0.25, 0.25] [10, 5, 5]
4 3 10 [0.375, 0.375, 0.375] [10, 2.5, 2.5]
5 3 10 [0.5, 0.5, 0.5] [10, 0, 0]
6 3 10 [0.625, 0.625, 0.625] [10,−2.5,−2.5]
7 3 10 [0.75, 0.75, 0.75] [10,−5,−5]
8 3 10 [0.875, 0.875, 0.875] [10,−7.5,−7.5]
9 3 10 [1, 1, 1] [10,−10,−10]

Imposing unique 𝑠𝑖 and �⃗�𝑖 for each optimization problem means
that all the problems have different objective functions. Response sur-
faces of three (out of nine) optimization problems under study are
visualized in Fig. 4. The black, blue, and red squares in the figure
indicate different optimal solutions for different problems. Besides, we
can observe the nature of the objective functions which have many
local optima.

Problem Set #2 is similar to Problem Set #1, except for the number
of variables to optimize is increased to 𝑁𝑑 = 3. The goal is to assess
and compare the performance of our cooperative algorithms on a more
complex setting. Values of 𝑠𝑖, �⃗�𝑖, and 𝐴 are detailed in Table 2.

Problem Set #3 is included for investigating the significance of
our collaborative algorithms on tackling optimization problems with
smooth and uni-modal objective functions. To establish these kind of
functions, we simply set the coefficient 𝐴 in Eq. (7) to zero, while
keeping the other components as in Problem Set #1.

Several parameters needed by our collaborative algorithms and the
traditional optimization techniques for solving Problem Set #1 to #3
are listed in Table 3 (for GA and C-GA), Table 4 (for PSO and C-PSO),
and Table 5 (for GD and C-GD). Besides, we employ the basic MFEA
presented in [3,36,38] for solving Problem Set #1 to #3. Parameters
for the MFEA are given in Table 6. The initial solution candidates are
selected using the Latin Hypercube Sampling method [63], aiming to
better distribute them across the entire search space. Moreover, the
same set of initial solution candidates is used for both the collaborative
algorithms and the traditional methods as well as the MFEA to provide
a fair comparison. We implement a reflective approach to deal with
the boundary constraints, where a newly-generated solution candidate
is reflected away from the boundary if it is going outside the defined
search space. Lastly, we repeat the optimization processes with 1000
different sets of initial solution candidates in order to have a solid and
unbiased comparison.

4.2. Problem Set #4

For this problem set, we take an example of optimization in the
field of petroleum engineering, specifically from the work of Angga
et al. [64]. The hydrocarbon recovery process is usually aided with
an injection of external fluids, like water or gas, into the reservoir.
The injection scenario, i.e., the injection rates and pressures imple-
mented over a given production period, affects not only the volume



Array 16 (2022) 100249I G.A.G. Angga et al.
Fig. 4. Response surfaces of three optimization problems in Problem Set #1.
Table 3
Parameter setting for GA and C-GA.

Parameter Value Description

𝑁𝑡 10 Number of iterations
𝑁𝑚 2 ⋅𝑁𝑑 Size of each population
𝑝 1

𝑁𝑚
Proportional parameter for selection operation [42]

𝜆 0.1 Probability threshold for conducting crossover
operation [42]

𝜙
0

0.25 Bound for random perturbations during mutation
operation [42]

𝑏 4 Parameter that controls mutation step size [42]
𝑁𝑐 1 Number of promising individuals to be cloned

Table 4
Parameter setting for PSO and C-PSO.

Parameter Value Description

𝑁𝑡 10 Number of iterations
𝑁𝑚 2 ⋅𝑁𝑑 Size of each population
𝜔 0.5 Inertia weight [50]
𝑐𝑝 2 Cognitive factor [50]
𝑐𝑔 2 Social factor [50]

Table 5
Parameter setting for GD and C-GD.

Parameter Value Description

𝑁𝑡 10 Number of iterations

Table 6
Parameter setting for MFEA.

Parameter Value Description

𝑁𝑡 10 Number of iterations
𝑁𝑚 2 ⋅𝑁𝑑 Number of individuals (in the single population)

that have the same skill factor
𝑝𝑐 1 Probability for the simulated binary crossover

(SBX) operator [36]
𝜂𝑐 15 Distribution index for the SBX operator [36]
𝑝𝑚

1
𝑁𝑑

Probability for the polynomial mutation (PM)
operator [36]

𝜂𝑚 15 Distribution index for the PM operator [36]
𝑟𝑚𝑝 0.3 Random mating probability [36]
9

of hydrocarbon produced, but also the amount of CO2 gas emitted. The
optimization goal is thus to find an injection scenario that maximizes
the revenue from production minus the operational cost and carbon
tax. The carbon tax itself is a product of the CO2 tax rate, 𝑟CO2

, and the
amount of carbon emissions.

Angga et al. conduct a sensitivity analysis to identify the influence
of 𝑟CO2

on the optimal injection scenario [64]. In that work, eleven
optimization problems with different 𝑟CO2

values are defined (the 𝑟CO2
values are uniformly sampled between 0 and 525 USD/ton CO2). In
these optimization problems, the calculation of each objective function
comprises two stages as discussed in Section 2. The first one is to
predict the reservoir performance under a particular injection scenario,
�⃗�, by means of a numerical simulation, 𝑓ℎ. The simulation results,
𝑦 = 𝑓ℎ(�⃗�), are then used to estimate the revenue, 𝑅(𝑦), operating cost,
𝐶(𝑦), and quantity of carbon emissions, 𝑀CO2

(𝑦); which all constitute
the objective function expressed as follows.

𝑓𝑙,𝑖
(

𝑦
)

= 𝑅
(

𝑦
)

− 𝐶
(

𝑦
)

− 𝑟CO2 ,𝑖 ⋅𝑀CO2

(

𝑦
)

(8)

where 𝑟CO2 ,𝑖 represents the CO2 tax rate embedded in problem 𝑖. The
numerical reservoir simulation, 𝑓ℎ, is the computationally expensive
part of the objective function evaluation; one simulation finishes in
around four seconds, while the latter function 𝑓𝑙,𝑖 completes in around
one tenth of a second. Other details about the optimization prob-
lems, including a complete description of the objective function, are
presented in [64].

5. Results and discussions

5.1. Problem Set #1

This subsection presents and discusses the performance of opti-
mization algorithms while solving Problem Set #1. The first point
of discussion is about the progression of the objective function value
(OFV) displayed in Fig. 5. The first three subfigures intend to compare
the performance of our collaborative algorithms (prefix ‘‘C-’’) against
the traditional non-collaborative optimization algorithms (prefix ‘‘NC-
’’), whereas the last subfigure compares our C-GA against the MFEA
as they both adopt the principles of natural evolution. As a reminder,
we have nine optimization problems in Problem Set #1 and run the
optimization algorithms 1000 times (under different sets of initial solu-
tion candidates). We therefore have 9000 ‘‘iteration vs OFV’’ curves for
every optimization algorithm examined. To draw a solid line in Fig. 5,
we first normalize the ‘‘iteration vs OFV’’ curves with the minimum



Array 16 (2022) 100249I G.A.G. Angga et al.
Fig. 5. Progression of objective function value (OFV) for Problem Set #1.
and maximum OFVs of the corresponding optimization problem. The
solid line is then drawn representing the median (P50) of those 9000
normalized curves, while the shaded (or the pattern-filled) area is
constructed based on the P10 and P90 lines. We depict these parameters
instead of the arithmetic average and standard deviation because we
have skewed distributions. The steps above are repeated to process the
results of other optimization algorithms.

Referring to Fig. 5, we can safely say that our collaborative algo-
rithms outperform not only the non-collaborative optimization methods
but also the MFEA. One clear advantage is that the collaborative algo-
rithms yield optimal solutions with higher OFVs. We also notice that
the variations in OFVs, particularly at the final iteration, are smaller
for the collaborative algorithms. This implies that the collaborative
algorithms produce more consistent solutions and are less dependent
on the initial solution candidates being used. Furthermore, the collabo-
rative algorithms have faster convergence; fewer iterations are required
before reaching a stable condition or plateau where the search process
does not longer significantly improve the current solutions. All these
gains originate from the collaborative operation (see Section 3.1). The
extended utilization of the simulation results enables the collaborative
algorithms to enhance their sampling of the search space, and thus
offering more information when generating new solution candidates.

Fig. 5(c) shows that the performance of C-GD-II is worse than C-
GD-I. As explained in Section 3.4, C-GD-II employs a specific procedure
that is intended to preserve the diversity among the solution candidates
when deciding a replacement scenario (see Algorithm 7). This was
included to maintain the degree of exploration with the aim of im-
proving the optimization performance. Apparently, this does not hold
for this particular example, as C-GD-II performs worse than C-GD-I.
10
The procedure in fact restricts the movement during the collaborative
operation, and thus decreases the performance gain. This highlights
that the performance gain due to collaborative operation is affected by
the way the simulation results are shared.

The origin of useful information is another interesting observation.
Here, the term ‘‘useful information’’ refers to individuals (or solution
candidates) of other populations which will influence the creation of
new solution candidates for a particular problem. For C-GA, this term
refers to the clones that improve the population 𝛷𝑖 (see Algorithm 1).
For C-PSO, this term refers to the particles that enhance the global
best position 𝛽𝑖 (see Algorithm 3). While in this discussion we only
consider C-GA, the same argumentation holds for C-PSO too. Fig. 6
depicts the source of useful clones in C-GA while solving Problem
Set #1. The black lines indicate the number of useful clones taken
from any other populations, while the red lines denote the number of
useful clones coming from populations for the ‘‘neighboring’’ problems.
The term ‘‘neighboring’’ refers to optimization problems which have
adjacent optimal solutions. Typically, ‘‘neighboring’’ problems have
similar objective functions, i.e., relatively small differences in objec-
tive function parameters (e.g., coefficients and constants). In Problem
Set #1, Problem 1 and 2 are deemed ‘‘neighboring’’ since they have
adjacent solutions (see Fig. 4), while the neighbors of Problem 2 are
Problem 1 and 3. Note that the number of useful clones is in fact
an integer; however, the black and red lines in Fig. 6 are pointing to
decimal values since they represent the arithmetic averages of 1000
runs.

Referring to the black lines in Fig. 6, the number of useful clones
generally declines as the iteration count increases. We also notice
that, in the early stage of optimization, the useful clones are taken



Array 16 (2022) 100249I G.A.G. Angga et al.
Fig. 6. Source of useful clones in C-GA while solving Problem Set #1.
Fig. 7. Overlapping search path in C-GA while solving Problem Set #1.
from any population irrespective of objective function similarity. As
the optimization progresses, on the other hand, the useful clones are
chiefly taken from populations corresponding to the ‘‘neighboring’’
problems. This behavior can be explained with Fig. 7, which visualizes
the overlapping search path in C-GA. Circles in this figure represent
the solution candidates for different problems (distinguished by their
colors), while the squares denote the ‘‘true’’ optimal solutions for the
problems (as shown in Fig. 4). In the early stage of optimization the
solution candidates for Problem 9 still spread across the search space,
so they can be helpful for Problem 1 despite the relatively long distance
between the optimal solutions of Problems 1 and 9 (see Figs. 7(a) and
11
7(b)). Conversely, later in the optimization, the solution candidates
for a particular problem center around the problem’s optimal solution.
Therefore, the solution candidates for the ‘‘neighboring’’ problems, in
this case Problem 2, are the most useful clones for Problem 1 (see
Figs. 7(c) and 7(d)). The same behavior is also observed for C-PSO.

5.2. Problem Set #2 and #3

Problem Set #2 is a higher dimensional version of Problem Set #1.
The progression of OFV for Problem Set #2 is shown in Fig. 8. We
have similar interpretations of this figure as in Section 5.1. A minor



Array 16 (2022) 100249I G.A.G. Angga et al.
Fig. 8. Progression of objective function value (OFV) for Problem Set #2.
distinction is that all the optimization algorithms require more itera-
tions to converge due to the higher number of decision variables. While
the first two problem sets employ multi-modal objective functions, the
third problem set consists of smooth and uni-modal functions. The
progression of OFV for Problem Set #3 is provided in Fig. 9. Most of
our observations in Section 5.1 also apply for this figure. Even though
the optimal solutions found by our collaborative algorithms are similar
to the ones obtained from the traditional non-collaborative methods,
the collaborative algorithms converge faster. The similarity between
collaborative and non-collaborative final solutions is likely due to the
simpler objective function characteristics of this problem set, enabling
all methods to identify the optimal solutions.

Problem Set #1, #2, and #3 do not include the heavy computation
part in their objective function evaluation, meaning that 𝑇ℎ = 0, while
the light computation parts in these problem sets entail fractions of a
second to complete. By inserting 𝑇ℎ = 0 into Eq. (6), we have 𝑇𝑐

𝑇𝑛𝑐
=

𝑁𝑝. Since each of the problem sets has nine optimization problems,
𝑁𝑝 = 9, we therefore have 𝑇𝑐

𝑇𝑛𝑐
= 9. This implies that the run times

of the collaborative algorithms are around nine times of the traditional
methods when solving for Problem Set #1, #2, and #3. Now imagine
that we include a heavy function that maps �⃗�𝑖 to �⃗�𝑖 in Problem Set
#1, #2, and #3, but that function involves a time delay to represent a
heavy and complex calculation in real-world problems. The inclusion
of such heavy function will increase the optimization run time and
lower the ratio of 𝑇𝑐

𝑇𝑛𝑐
. It however will not influence the performance

of the collaborative algorithms, including the quality of solutions, the
consistency, and the convergence speed, shown in Figs. 5, 8, and 9.
12
5.3. Problem Set #4

In this problem set, the objective function calculation involves a
numerical simulation (i.e., the heavy function), which prolongs the
overall optimization run time. We therefore run the optimization al-
gorithms, particularly C-PSO and the traditional PSO, for only five
times with different initial particle populations. Note that the numerical
simulation involved in this problem set is rather simple where each
simulation lasts for around four seconds, 𝑇ℎ = 4 s. In real-world
problems, numerical simulations can last in order of minutes, hours,
or even days. For such heavy and complex simulation, the ratio 𝑇𝑐

𝑇𝑛𝑐
given in Eq. (6) will be approximately equal to one, meaning that
the addition of computation time due to the collaborative operation
will be insignificant compared to the total run time of traditional non-
collaborative optimization methods. Using a 9-core workstation, each
C-PSO run in this problem set entails around 57 h to finish, while the
traditional PSO needs around 44 h (11 optimization problems × 4 h for
solving each problem). As the numerical simulation in this problem set
is rather simple, the total run time of C-PSO is significantly higher than
the total run time of the traditional PSO. We have 𝑇𝑐∕𝑇𝑛𝑐 ≃ 57∕44 ≃ 1.3,
which is quite close to an estimate of 1.25 obtained from Eq. (6) with
𝑁𝑝 = 11, 𝑇ℎ = 4 s, and 𝑇𝑙 = 0.1 s.

The OFV progressions for two problems are presented in Fig. 10.
Despite the limited increase in computational cost, Fig. 10 shows that
C-PSO runs have overall higher OFVs and also quicker convergence
compared to runs performed with the traditional PSO. This improved
optimization performance comes from the fact that C-PSO enlarges the
sampling size by a factor of eleven as given by Eq. (3). Referring to
Fig. 10, we observe that relative solution improvements are not as



Array 16 (2022) 100249I G.A.G. Angga et al.
Fig. 9. Progression of objective function value (OFV) for Problem Set #3.
Fig. 10. Progression of objective function value (OFV) for Problem Set #4.
significant for Problem 1 (see Fig. 10(a)) as they are for Problem 6 (see
Fig. 10(b)). One possible explanation is that Problem 1 is considerably
different from the other problems in the set, and therefore has fewer
and a longer distance to its neighboring problems which can assist
the search process. By contrast, the middle problem, i.e., Problem
6, may have many and close neighboring problems, from which the
search process can get substantial contributions. Note that the OFV
scales in Figs. 10(a) and 10(b) are different because Problem 1 and
Problem 6 involve different objective functions, in particular, they
enforce different CO tax rates, 𝑟 .
13

2 CO2
6. Clarifications on the term ‘‘collaborative’’

In the literature there are optimization algorithms which put the
‘‘cooperative’’ word in their names. The term is somewhat similar in
meaning as the ‘‘collaborative’’ term we use, and the distinction there-
fore needs some clarifications. One of the algorithms is the cooperative
co-evolutionary algorithm (CCEA), which was coined by Potter and
Jong [65] in 1994. Since then many developments and implementa-
tions of CCEA have been reported, e.g., in [66–69]. CCEA is beneficial
particularly for solving a high dimensional SOO problem, meaning that



Array 16 (2022) 100249I G.A.G. Angga et al.
the problem includes a large number of variables to optimize. Based on
a divide-and-conquer strategy, CCEA decomposes a high dimensional
problem into several subproblems with fewer variables to optimize,
and resolves these subproblems individually. Solutions from different
subproblems are then recombined to update all subproblems as the
iteration progresses and to eventually form an overall solution for the
high dimensional problem. This is probably the reason CCEA has the
‘‘cooperative’’ term in its name. Again, the nature of problem tackled
by CCEA and the collaborative algorithms is different; CCEA solves just
one SOO problem, while the collaborative algorithms solve a collection
of SOO problems simultaneously.

7. Conclusions

We propose a collaborative optimization framework that is effective
for solving a special multi-task optimization (MTO) case consisting
of several single-objective optimization problems. In this special MTO
case, each problem has a specific objective function and the evaluation
of this objective function consists of two steps. The first step involves a
computationally heavy function, like running a numerical simulation.
The second step is a computationally light function, e.g., the simulation
results enter as input into a simple equation, for example a net present
value calculation. This light function is unique for every problem in the
MTO case, e.g., a unique discount rate in the net present value, while
the heavy function is identical across all problems.

The proposed collaborative algorithms have two distinctive fea-
tures, i.e., (i) they solve all the optimization problems simultaneously,
and (ii) they perform a ‘‘collaborative’’ operation in every iteration. In
this collaborative operation, the simulation results are shared across
all problems, enhancing the sampling capacity of the algorithms. The
added information improves the quality of new solution candidates and
thus enables a more efficient search.

The algorithms have been tested using four different problem sets.
The results suggest that the collaborative algorithms have character-
istics to improve solutions, consistency, and convergence with the
same number of heavy function evaluations 𝑓ℎ compared to tradi-
tional search methods and an MTO algorithm. The information sharing
contributes the most during early stages of the optimization when
objective function sampling for the various problems is spread across
the search space. At later stages, when the different search processes
start converging towards their individual best solutions, information
sharing from similar problems (‘‘neighboring’’ problems) becomes most
helpful. The collaborative feature entails additional computing time.
However, this additional run time is negligible when the heavy function
is much more expensive to compute than the light functions.

8. Future work

The collaborative optimization framework presented in this article
could have many potential applications and underlie some algorithm
developments or improvements. In this section we mention several po-
tential studies with the basis of collaborative optimization algorithms.
Firstly, special MTO cases with characteristics described in Section 2
may appear in various disciplines, including engineering, business, and
healthcare, as simulation-based optimization technique is common for
these disciplines. Some low hanging fruits for future studies are to have
some real-world applications of the proposed collaborative algorithms.
Performance comparisons of the collaborative algorithms against tradi-
tional optimization methods or MTO algorithms when solving for the
real-world problems are relevant for future studies.

Secondly, future studies can consider the developments of new
collaborative algorithms (besides the one presented in this article). For
example by adopting the collaborative concepts into other traditional
optimization methods, like pattern search or Bayesian optimization.
Thirdly, future studies can explore and investigate some potential
14

improvements for the collaborative optimization framework. One of
the improvements could come from an idea of selective-and-adaptive
collaboration. The term ‘‘selective’’ means that the transfer of informa-
tion is carried out only between similar tasks or problems because the
information sharing between similar problems is found most helpful,
particularly at later stages. The term ‘‘adaptive’’ implies to keep updat-
ing the similarity of the tasks along the search processes. For this we
can utilize the source of ‘‘useful information’’ data (as in Fig. 6) or other
measures explained in [8,37]. Next, as discussed in Section 5, the way
of sharing simulation results (e.g., C-GD-I versus C-GD-II) affects the
performance of collaborative algorithms. The sharing mechanism can
thus be considered as room for improvements. Making the collaborative
operation more efficient is also an interesting topic for future studies.
For instance, we can transform the operation for deciding the best swap
scenario in C-GD-II (see Algorithm 7) into a combinatorial problem.
Moreover, extensions into asynchronous versions of the collaborative
methods can speed up the optimization if the heavy calculations have
significantly different run times.

Lastly, besides the non-dominated sorting genetic algorithm (NSGA-
II) [70], one approach for finding Pareto-optimal solutions of an MOO
problem is by converting the MOO problem into a set of SOO problems
(e.g., by methods proposed in [5,6]), and then solving those problems
one at a time. In case the SOO problems have properties as described
in Section 2, the collaborative algorithms may serve as an alternative
to the NSGA-II. Comparisons between this alternative approach against
the NSGA-II or other MTO algorithms are interesting to look into in
future studies.

CRediT authorship contribution statement

I Gusti Agung Gede Angga: Methodology, Investigation, Software,
Visualization, Writing – original draft. Mathias Bellout: Validation,
Formal analysis, Writing – original draft. Per Eirik Strand Bergmo:
Formal analysis, Writing – review & editing, Project administration,
Funding acquisition. Per Arne Slotte: Validation, Formal analysis,
Writing – review & editing. Carl Fredrik Berg: Conceptualization,
Writing – original draft, Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests: I
Gusti Agung Gede Angga reports financial support was provided by the
Research Council of Norway.

Acknowledgment

The first author, I Gusti Agung Gede Angga, was supported by the
Research Council of Norway through its Research Centre for Petroleum
(PETROSENTER) program, project number 296207, LowEmission.

Appendix A. Code availability

Python scripts of the collaborative algorithms presented in this
article are available at the GitHub page of Petroleum Cybernetics Group
NTNU.1

1 https://github.com/PetroleumCyberneticsGroup/Materials.

https://github.com/PetroleumCyberneticsGroup/Materials


Array 16 (2022) 100249I G.A.G. Angga et al.
References

[1] Osaba E, Martinez AD, Del Ser J. Evolutionary multitask optimization: A
methodological overview, challenges and future research directions. 2021.

[2] Gupta A, Ong Y-S. Genetic transfer or population diversification? Deciphering the
secret ingredients of evolutionary multitask optimization. In: IEEE symposium
series on computational intelligence (SSCI). 2016, p. 1–7.

[3] Gupta A, Ong Y-S, Feng L. Multifactorial evolution: Toward evolutionary
multitasking. IEEE Trans Evol Comput 2016;20(3):343–57.

[4] Gupta A, Ong Y-S, Feng L, Tan KC. Multiobjective multifactorial optimization in
evolutionary multitasking. IEEE Trans Cybern 2017;47(7):1652–65.

[5] Das I, Dennis JE. Normal-boundary intersection: A new method for generating the
Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim
1998;8(3):631–57.

[6] Utyuzhnikov SV, Fantini P, Guenov MD. A method for generating a well-
distributed Pareto set in nonlinear multiobjective optimization. J Comput Appl
Math 2009;223(2):820–41.

[7] Zheng X, Lei Y, Qin AK, Zhou D, Shi J, Gong M. Differential evolutionary multi-
task optimization. In: IEEE congress on evolutionary computation (CEC). 2019,
p. 1914–21.

[8] Gupta A, Ong YS, Da B, Feng L, Handoko SD. Measuring complementarity
between function landscapes in evolutionary multitasking. In: IEEE congress on
evolutionary computation (CEC). 2016.

[9] Tang Z, Gong M, Jiang F, Li H, Wu Y. Multipopulation optimization for multitask
optimization. In: IEEE congress on evolutionary computation (CEC). 2019, p.
1906–13.

[10] Cheng M-Y, Gupta A, Ong Y-S, Ni Z-W. Coevolutionary multitasking for concur-
rent global optimization: With case studies in complex engineering design. Eng
Appl Artif Intell 2017;64:13–24.

[11] Feng L, Zhou W, Zhou L, Jiang SW, Zhong JH, Da BS, Zhu ZX, Wang Y. An
empirical study of multifactorial PSO and multifactorial DE. In: IEEE congress
on evolutionary computation (CEC). 2017, p. 921–8.

[12] Song H, Qin AK, Tsai P-W, Liang JJ. Multitasking multi-swarm optimization. In:
IEEE congress on evolutionary computation (CEC). 2019, p. 1937–44.

[13] Swersky K, Snoek J, Adams RP. Multi-task Bayesian optimization. In: Advances
in neural information processing systems (NIPS), Vol. 26. 2013.

[14] Rice J, Cloninger CR, Reich T. Multifactorial inheritance with cultural transmis-
sion and assortative mating. I. Description and basic properties of the unitary
models. Am J Human Genet 1978;30(6):618–43.

[15] Cloninger CR, Rice J, Reich T. Multifactorial inheritance with cultural trans-
mission and assortative mating. II. A general model of combined polygenic and
cultural inheritance. Am J Human Genet 1979;31(2):176–98.

[16] Li G, Zhang Q, Gao W. Multipopulation evolution framework for multifactorial
optimization. In: Genetic and evolutionary computation conference. 2018, p.
215—216.

[17] Li G, Lin Q, Gao W. Multifactorial optimization via explicit multipopulation
evolutionary framework. Inform Sci 2020;512:1555–70.

[18] Li X, Wang L, Jiang Q. Multipopulation-based multi-tasking evolutionary
algorithm. Appl Intell 2022.

[19] Hashimoto R, Ishibuchi H, Masuyama N, Nojima Y. Analysis of evolutionary
multi-tasking as an island model. In: Genetic and evolutionary computation
conference. 2018, p. 1894—1897.

[20] Bonilla EV, Chai K, Williams C. Multi-task Gaussian process prediction. In:
Advances in neural information processing systems (NIPS), Vol. 20. 2007.

[21] Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N. Taking the human out
of the loop: A review of Bayesian optimization. Proc IEEE 2016;104(1):148–75.

[22] Han Z, Xu C, Zhang L, Zhang Y, Zhang K, Song W. Efficient aerodynamic
shape optimization using variable-fidelity surrogate models and multilevel
computational grids. Chin J Aeronaut 2020;33(1):31–47.

[23] Koziel S, Leifsson L. Multi-level CFD-based airfoil shape optimization with
automated low-fidelity model selection. Procedia Comput Sci 2013;18:889–98.

[24] Anitha D, Shamili GK, Ravi Kumar P, Sabari Vihar R. Air foil shape optimization
using CFD and parametrization methods. Mater Today: Proc 2018;5(2):5364–73.

[25] Baumann EJM, Dale SI, Bellout MC. FieldOpt: A powerful and effective pro-
gramming framework tailored for field development optimization. Comput Geosci
2020;135:104379.

[26] Bellout MC, Echeverría Ciaurri D, Durlofsky LJ, Foss B, Kleppe J.
Joint optimization of oil well placement and controls. Comput Geosci
2012;16(4):1061–79.

[27] Emerick AA, Portella RCM. Production optimization with intelligent wells. In:
Latin American & caribbean petroleum engineering conference. 2007.

[28] Farajzadeh R, Kahrobaei SS, Zwart AHd, Boersma DM. Life-cycle production op-
timization of hydrocarbon fields: Thermoeconomics perspective. Sustain Energy
Fuels 2019;3(11):3050–60.

[29] Lemarechal C. Cauchy and the gradient method. Doc Math 2012;251–4.
[30] Hooke R, Jeeves TA. "Direct search" solution of numerical and statistical

problems. J ACM 1961;8(2):212–29.
[31] Holland JH. Adaptation in natural and artificial systems. Ann Arbor: University

of Michigan Press; 1975.
15
[32] Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE international
conference on neural networks, Vol. 4. 1995, p. 1942–8.

[33] Shi Y, Eberhart R. A modified particle swarm optimizer. In: IEEE international
conference on evolutionary computation. 1998, p. 69–73.

[34] Kushner HJ. A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. J Basic Eng 1964;86(1):97–106.

[35] Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive
black-box functions. J Global Optim 1998;13(4):455–92.

[36] Bali KK, Ong Y-S, Gupta A, Tan PS. Multifactorial evolutionary algorithm
with online transfer parameter estimation: MFEA-II. IEEE Trans Evol Comput
2020;24(1):69–83.

[37] Zhou L, Feng L, Zhong J, Zhu Z, Da B, Wu Z. A study of similarity mea-
sure between tasks for multifactorial evolutionary algorithm. In: Genetic and
evolutionary computation conference. 2018, p. 229–30.

[38] Da B, Ong Y-S, Feng L, Qin AK, Gupta A, Zhu Z, Ting C-K, Tang K, Yao X. Evo-
lutionary multitasking for single-objective continuous optimization: Benchmark
problems, performance metric, and baseline results. 2017.

[39] Man K, Tang K, Kwong S. Genetic algorithms: Concepts and applications [in
engineering design]. IEEE Trans Ind Electron 1996;43(5):519–34.

[40] Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: Past, present,
and future. Multimedia Tools Appl 2021;80(5):8091–126.

[41] Ghaheri A, Shoar S, Naderan M, Hoseini SS. The applications of genetic
algorithms in medicine. Oman Med J 2015;30(6):406–16.

[42] Chuang Y-C, Chen C-T, Hwang C. A real-coded genetic algorithm with a
direction-based crossover operator. Inform Sci 2015;305:320–48.

[43] Zhan Z-H, Zhang J, Li Y, Shi Y-H. Orthogonal learning particle swarm
optimization. IEEE Trans Evol Comput 2011;15(6):832–47.

[44] Park J-B, Jeong Y-W, Shin J-R, Lee KY. An improved particle swarm opti-
mization for nonconvex economic dispatch problems. IEEE Trans Power Syst
2010;25(1):156–66.

[45] Yang C, Simon D. A new particle swarm optimization technique. In: International
conference on systems engineering. 2005, p. 164–9.

[46] Onwunalu JE, Durlofsky LJ. Application of a particle swarm optimization
algorithm for determining optimum well location and type. Comput Geosci
2010;14(1):183–98.

[47] Babazadeh A, Poorzahedy H, Nikoosokhan S. Application of particle swarm
optimization to transportation network design problem. J King Saud Univ - Sci
2011;23(3):293–300.

[48] Zhou Y, Li Z, Zhou H, Li R. The application of PSO in the power grid: A review.
In: Chinese control conference. 2016, p. 10061–6.

[49] Ajbar W, Parrales A, Cruz-Jacobo U, Conde-Gutiérrez RA, Bassam A,
Jaramillo OA, Hernández JA. The multivariable inverse artificial neural network
combined with GA and PSO to improve the performance of solar parabolic trough
collector. Appl Therm Eng 2021;189:116651.

[50] Wang D, Tan D, Liu L. Particle swarm optimization algorithm: An overview. Soft
Comput 2018;22(2):387–408.

[51] Clerc M, Kennedy J. The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Trans Evol Comput 2002;6(1):58–73.

[52] Li C, Yang S, Nguyen TT. A self-learning particle swarm optimizer for global
optimization problems. IEEE Trans Syst Man Cybern B 2012;42(3):627–46.

[53] Peram T, Veeramachaneni K, Mohan C. Fitness-distance-ratio based particle
swarm optimization. In: IEEE swarm intelligence symposium. 2003, p. 174–81.

[54] Ardizzon G, Cavazzini G, Pavesi G. Adaptive acceleration coefficients for a new
search diversification strategy in particle swarm optimization algorithms. Inform
Sci 2015;299:337–78.

[55] Roy R, Ghoshal SP. A novel crazy swarm optimized economic load dis-
patch for various types of cost functions. Int J Electr Power Energy Syst
2008;30(4):242–53.

[56] Freitas D, Lopes LG, Morgado-Dias F. Particle swarm optimisation: A historical
review up to the current developments. Entropy 2020;22(3):362.

[57] Bellman R. Dynamic programming treatment of the travelling salesman problem.
J ACM 1962;9(1):61–3.

[58] Held M, Karp RM. A dynamic programming approach to sequencing problems.
J Soc Ind Appl Math 1962;10(1):196–210.

[59] Volgenant T, Jonker R. A branch and bound algorithm for the symmetric
traveling salesman problem based on the 1-tree relaxation. European J Oper
Res 1982;9(1):83–9.

[60] Carpaneto G, Dell’Amico M, Toth P. Exact solution of large-scale, asymmetric
traveling salesman problems. ACM Trans Math Software 1995;21(4):394–409.

[61] Padberg M, Rinaldi G. A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Rev 1991;33(1):60–100.

[62] Yang X-S. Test problems in optimization. In: Yang X-S, editor. Engineering
optimization: an introduction with metaheuristic applications. John Wiley &
Sons; 2010.

[63] McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code. Technometrics 1979;21(2):239–45.

[64] Angga IGAG, Bellout M, Kristoffersen BS, Bergmo PES, Slotte PA, Berg CF. Effect
of CO2 tax on energy use in oil production: Waterflooding optimization under
different emission costs. 2022, (submitted for publication).

http://refhub.elsevier.com/S2590-0056(22)00082-0/sb1
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb1
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb1
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb2
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb2
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb2
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb2
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb2
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb3
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb3
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb3
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb4
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb4
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb4
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb5
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb5
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb5
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb5
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb5
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb6
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb6
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb6
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb6
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb6
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb7
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb7
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb7
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb7
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb7
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb8
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb8
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb8
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb8
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb8
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb9
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb9
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb9
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb9
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb9
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb10
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb10
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb10
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb10
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb10
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb11
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb11
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb11
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb11
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb11
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb12
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb12
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb12
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb13
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb13
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb13
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb14
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb14
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb14
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb14
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb14
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb15
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb15
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb15
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb15
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb15
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb16
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb16
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb16
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb16
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb16
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb17
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb17
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb17
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb18
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb18
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb18
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb19
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb19
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb19
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb19
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb19
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb20
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb20
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb20
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb21
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb21
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb21
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb22
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb22
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb22
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb22
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb22
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb23
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb23
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb23
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb24
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb24
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb24
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb25
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb25
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb25
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb25
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb25
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb26
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb26
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb26
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb26
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb26
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb27
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb27
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb27
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb28
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb28
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb28
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb28
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb28
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb29
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb30
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb30
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb30
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb31
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb31
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb31
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb32
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb32
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb32
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb33
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb33
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb33
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb34
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb34
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb34
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb35
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb35
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb35
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb36
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb36
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb36
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb36
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb36
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb37
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb37
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb37
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb37
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb37
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb38
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb38
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb38
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb38
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb38
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb39
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb39
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb39
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb40
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb40
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb40
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb41
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb41
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb41
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb42
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb42
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb42
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb43
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb43
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb43
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb44
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb44
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb44
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb44
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb44
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb45
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb45
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb45
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb46
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb46
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb46
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb46
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb46
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb47
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb47
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb47
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb47
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb47
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb48
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb48
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb48
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb49
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb49
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb49
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb49
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb49
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb49
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb49
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb50
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb50
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb50
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb51
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb51
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb51
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb52
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb52
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb52
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb53
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb53
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb53
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb54
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb54
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb54
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb54
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb54
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb55
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb55
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb55
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb55
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb55
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb56
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb56
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb56
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb57
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb57
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb57
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb58
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb58
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb58
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb59
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb59
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb59
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb59
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb59
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb60
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb60
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb60
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb61
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb61
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb61
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb62
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb62
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb62
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb62
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb62
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb63
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb63
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb63
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb63
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb63
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb64
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb64
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb64
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb64
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb64


Array 16 (2022) 100249I G.A.G. Angga et al.
[65] Potter MA, De Jong KA. A cooperative coevolutionary approach to function
optimization. In: Davidor Y, Schwefel H-P, Männer R, editors. International
conference on parallel problem solving from nature. 1994, p. 249–57.

[66] Yang Z, Tang K, Yao X. Large scale evolutionary optimization using cooperative
coevolution. Inform Sci 2008;178(15):2985–99.

[67] van den Bergh F, Engelbrecht A. A cooperative approach to particle swarm
optimization. IEEE Trans Evol Comput 2004;8(3):225–39.
16
[68] Li X, Yao X. Cooperatively coevolving particle swarms for large scale
optimization. IEEE Trans Evol Comput 2012;16(2):210–24.

[69] Parsopoulos KE. Cooperative micro-particle swarm optimization. In:
ACM/SIGEVO summit on genetic and evolutionary computation. 2009, p.
467–74.

[70] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182–97.

http://refhub.elsevier.com/S2590-0056(22)00082-0/sb65
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb65
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb65
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb65
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb65
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb66
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb66
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb66
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb67
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb67
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb67
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb68
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb68
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb68
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb69
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb69
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb69
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb69
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb69
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb70
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb70
http://refhub.elsevier.com/S2590-0056(22)00082-0/sb70

	Collaborative optimization by shared objective function data
	Introduction
	Characteristics of optimization problems
	Collaborative optimization algorithms
	Main concepts
	Collaborative genetic algorithm (C-GA)
	Collaborative particle swarm optimization (C-PSO)
	Collaborative gradient descent (C-GD)
	Number of function evaluations  computational cost

	Descriptions of problem sets
	Problem Sets 1, 2, and 3
	Problem Set 4

	Results and discussions
	Problem Set 1
	Problem Set 2 and 3
	Problem Set 4

	Clarifications on the term ``collaborative''
	Conclusions
	Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Code availability
	References


