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Abstract: In the present investigation, wire arc additive manufacturing of Inconel 625 was carried
out with the cold metal transfer variant of the metal inert gas process. The heat input varied between
0.46 and 0.63 kJ/mm, which is a rather low heat input with low deposition rate. The built walls
were subjected to Charpy V and crack tip opening displacement (CTOD) fracture toughness testing,
in addition to microstructure examination with light microscope and scanning and transmission
electron microscope. The results obtained show that hardness increases from the base metal level
of 210, via the heat-affected zone (in the building plate) with HV of 220, to the weld metal, with a
hardness of around 240–250. All individual Charpy V values fall within the range from 160 to 200 J,
while the CTOD fracture toughness is within the range from 0.49 to 1.05 mm. The microstructure
examination revealed the microsegregation of certain elements to the interdendritic regions, causing
three different particle types to form. Particles with a spherical morphology were identified as spinel
(MgAl2O4). Some of the spinel particles were surrounded by disc-shaped precipitates, which were
identified as (NbTi)(CN), having the same orientation as the spinel.

Keywords: wire arc additive manufacturing; nickel superalloy; mechanical properties; microstruc-
tures; microsegregation

1. Introduction

Additive manufacturing (AM), or 3D printing, represents a relatively new method for
the production of components and parts. Compared with powder-based AM techniques,
which usually employ laser beams and electron beams as heat sources, Martina et al. [1],
Szoost et al. [2], and Williams et al. [3] all found that wire arc additive manufacturing
(WAAM) [4] shows advantages for the manufacture of large-scale components due to its
high deposition rate, high material use rate, low production and equipment cost, and
high equipment flexibility and scalability. This is in contrast to conventional subtractive
production involving casting and/or forming with final cutting and machining with the
removal of excess material from the final product.

WAAM can be applied for most metals and alloys that are weldable with fusion
welding techniques. However, the product design may influence the deposition parameters
to be used, restricting the operation window. Another challenge is anisotropy in mechanical
properties. Several processes can be used in WAAM. Fang et al. [5,6] employed the cold
metal transfer (CMT) process using different arc modes in the deposition of AA2219 and
AA5183 alloys. The authors reported that pulse advanced CMT (CMT-PADV) and advanced
CMT (CMT-ADV), respectively, appeared to give the highest strength for the two alloys.
Similar studies were carried out by Cong et al. [7,8], with the lowest porosity being obtained
when using advanced CMT (CMT+ADV). Horgar et al. [9] reported mechanical test data
from WAAM of AA5183 using conventional gas metal arc welding (GMAW), demonstrating
that quite good mechanical properties can be achieved despite the fact that porosity and
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some hot cracking may arise. A major and still not solved problem for aluminium alloys is
the limited commercial availability of wires, which may limit the use of WAAM of Al alloys.

By contrast, WAAM of titanium alloys has been demonstrated using a rapid plasma
deposition (RPD) process (Norsk Titanium). Martina et al. [1] demonstrated that a plasma
wire deposition process was able to produce straight walls of Ti–6Al–4V alloy with widths
of up to 17.4 mm, giving a maximum effective wall width after machining of 15.9 mm. In
addition, they reported a micro-hardness value of 387 HV, which was 12% higher than that
of the substrate. Wu et al. [10] investigated the influence of heat accumulation on bead
formation, arc stability, and metal transfer behaviour during the manufacture of Ti6Al4V
with the gas tungsten wire arc additive manufacturing (GT-WAAM) using localized gas
shielding. Owing to the influences of heat accumulation, the interlayer surface oxidation
and bead geometries varied along the building direction, especially for the first few layers
of the deposited wall, leading to variation in arc shape and metal transfer behaviour.
Martina et al. [11] examined the effect of high-pressure interpass rolling after six passes
of deposition using GT-WAAM. The microstructure changed from large columnar prior β
grains traversing the component to equiaxed grains. In metals with an absence of solid-
state phase transformation, epitaxial solidification provides grains growing throughout the
individual layers.

In addition to light metals like aluminium and titanium alloys, both nickel superalloys
and austenitic stainless steels have been subjected to WAAM. For the latter material, type
304 austenitic stainless steel was studied by Haden et al. [12]. They found that the wear
rate declined in the direction of weld deposition, indicating that material wear resistance
and strength were graded along the deposition path. Anisotropy in strength was also
found by Ji et al. [13], which was explained by different grain boundary strengthening
effects between the transverse direction and the longitudinal direction. Rodriguez et al. [14]
manufactured 316L grade austenitic stainless steel using the CMT and TopTIG (tungsten
inert gas) processes. After process optimization, the authors reported material deposition
rates of up to 3.7 kg/h and above 2 kg/h for CMT and TopTIG, respectively. They found
some anisotropy in mechanical properties in the as-built state, with lower strength values
in the vertical (Z) orientation. WAAM of 17–4 PH martensitic stainless steel was reported
by Martina et al. [15], where solution heat treatment after completion of deposition was
found to increase the strength to the base plate level. Caballero et al. [16] showed that direct
aging solution treatment resulted in a reduction in ductility by nearly 50%, possibly due to
the formation of intermetallic phases.

Duplex stainless steel is a popular material for oil and gas applications, but there are
very limited results available from additive manufacturing. Eriksson et al. [17] concluded
that additive manufacturing of superduplex stainless steels by the wire and arc process
is feasible. Their microstructure observations consisted of low ferrite volume fraction,
precipitation of Cr nitrides in the heat-affected zone (HAZ) towards the support plate and
formation of secondary austenite in reheated areas. Recent results by Akselsen et al. [18],
using elevated temperature between the deposition of each layer to increase productivity
clearly demonstrated the harmful effects of sigma phase formation on the toughness of
WAAM samples.

Ni-based superalloys are widely applied in the aeronautical, aerospace, chemical,
petrochemical and marine industries. They are also popular in the oil and gas industry due
to their good resistance to high-temperature corrosion on prolonged exposure to aggressive
environments, as noticed by Shankar et al. [19,20] and Xu et al. [21]. One example is
the 718 study by Asala et al. [22], which demonstrated extensive formation of eutectic
solidification microconstituents including Laves and MC-type carbide phases due to the
microsegregation of Nb. The γ′ (Ni3Al) is the primary precipitation strengthening phase in
this alloy. Although the Ni-based alloys were developed for high-temperature applications,
they have excellent corrosion properties, which made them popular in the oil and gas
industry. This is a precipitation hardening alloy, where the strength is derived from the
precipitation of fine γ′, Nb3Al, and γ′′, Nb3Nb. Such precipitates have been identified by
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Cozar and Pineau [23], Xie et al. [24] and Asala et al. [22]. One perhaps more frequently
used alloy is Inconel 625, which, in contrast to alloy 718, receives its strength from solid
solution strengthening. Due to the high costs of these alloys and the minimum lead
time for replacing damaged parts, the development of additive manufacturing processes
may contribute to shortening the time required for replacement. Moreover, preventative
maintenance and design changes/upgrades, or even online repair and refurbishment of
eroded/corroded or cracked components may be feasible, and may be much more cost
effective than full replacement. Due to the complex shape of such components, direct
metal deposition (DMD) techniques for Inconel 625 components have attracted increasing
attention, as discussed by Thivillon et al. [25].

WAAM represents a clear alternative to powder bed fusion (PBF) and DMD, using
various alternative process options that may also provide high productivity beyond that
of laser-assisted powder melting methods, but which may not produce details that are as
complex, and which needs machining post layer deposition. In the present study, WAAM of
Inconel 625, using the cold metal transfer (CMT) variant of gas metal arc welding (GMAW),
is performed with the objective of assessing microstructure and toughness properties
after wall deposition. Today, such data are very scarce; in particular, impact and fracture
toughness data are lacking. An attempt is also made to compare current results with the
hardness and toughness achieved using other AM processes.

2. Materials and Methods
2.1. Materials

The nickel-based superalloy Inconel 625 was selected for the present study. This is a
Ni-Cr-Mo-Nb alloy supplied in the form of wire with a diameter of 1.2 mm. The support
plate was also Inconel 625. The alloy contains minimum 58% Ni with 20–23% Cr and
8–10% Mo (see Table 1). Some microalloying elements may also be found in some alloys,
like Ti and Al. Its melting temperature is in the range of 2350–2460 ◦C, depending on the
chemical composition. Both yield and tensile strength of the material vary within a wide
range, depending on the production route and heat treatment practice.

Table 1. Nominal chemical composition of Inconel 625 wire.

Ni Cr Mo Fe Nb C Mn Si P S

>58.0 20.0–23.0 8.0–10.0 < 5.0 3.15–4.15 <0.10 <0.50 <0.50 <0.015 <0.015

2.2. Deposition of Walls

The deposition of walls was carried out with a CMT power source (Fronius Norge AS,
Hokksund, Norway), which is a special type of gas metal arc welding (GMAW) providing
lower heat input. The parameters used are outlined in Table 2. The heat input was varied
from 0.36 to 0.76 kJ/mm and was adjusted by increasing/decreasing current. Thus, the heat
input was very low for all deposited layers. In addition, the interpass temperature varied;
the higher the heat input, the higher the interpass temperature. The deposition results are
seen in Table 3, indicating that all walls had 16 layers with average layer heights varying
from 2.5 to 2.8 mm. As expected, the layer height (and width) increased with increasing
heat input.
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Table 2. Layer deposition parameters.

Parameter
Wall No.

W1 W2 W3 and W4

Current (A) 231 201 139
Voltage (V) 21 20 17

Travel speed (mm/s) 7.0 7.0 7.0
Wire speed (mm/s) 12.7 10.3 6.7
Heat input (kJ/mm) 0.76 0.62 0.36

Average interpass temperature (◦C) 152 140 85
Polarity DC+ DC+ DC+

Table 3. Deposition results.

Wall Production Data
Wall No.

W1 W2 W3 and W4

Number of layers 16 16 16
Average layer height (mm) 2.8 2.7 2.5

Wall width (mm) 11.8 10.2 7
Wall length (mm) 230 230 230

2.3. Testing and Characterization

The walls were cut perpendicular to the deposition direction to prepare cross-section
macrographs for visual inspection, hardness measurements (Zwick Roell ZHV30 A, Zwick
Roell GmbH, Ulm, Germany) and microstructure characterization. Three subsized Charpy
V samples with a cross-section of 5 mm × 10 mm and a length of 55 mm were cut from
the walls, with their length axes parallel to the deposition direction. Three CTOD (Crack
Tip Opening Displacement) specimens were also cut from the walls, with the same cross-
sections as the Charpy V samples. Both Charpy and CTOD specimens were tested at a
temperature of −46 ◦C.

Microstructure characterization was carried out with light microscopy, scanning elec-
tron microscopy (SEM) and transmission electron microscopy (TEM). SEM imaging and
chemical analysis using energy-dispersive X-ray spectroscopy (EDX) was performed using
an FEI Apreo (Thermo Fisher Scientific, Waltham, MA, USA). Electron backscattered diffrac-
tion was performed in a Hitachi SU-6600 SEM (Hitachi High-Tech Corporation, Tokyo,
Japan). Scanning TEM (STEM) EDX point analysis and selected-area electron diffraction
(SAED) was performed in a JEOL JEM-2100F TEM (JEOL Ltd., Tokyo, Japan), while simul-
taneous EDX and electron energy-loss spectroscopy (EELS) mapping was performed in an
aberration-corrected JEOL ARM 200F (JEOL Ltd., Tokyo, Japan), all at 200 kV. SEM and
TEM specimens were prepared in the final step by electropolishing, except for before the
EBSD analysis, in which case polishing with a colloidal silica suspension was done in the
final step to obtain a flat surface.

Hough indexing of EBSD patterns was performed with the EDAX TSL OIM DC
software (v7.3, EDAX, Mahwah, NJ, USA). Dictionary indexing (DI) of EBSD patterns [26]
was performed with the open-source kikuchipy Python library [27], using dynamically
simulated master patterns and orientation sampling obtained with EMsoft v5.0 [28,29].
Dictionaries of simulated patterns were populated by orientations sampled with an average
angular step size of 1.4◦. Patterns were projected from master patterns in the square
Lambert projection onto the detector using bi-quadratic interpolation with a fixed projection
centre. Static and dynamic background corrections were performed on experimental
patterns prior to indexing. Experimental and dictionary patterns were compared using the
normalized cross-correlation (NCC) coefficient, r. Final orientation refinement of the best
match in the dictionary to each experimental pattern was done through optimization of the
NCC score using the Nelder–Mead algorithm, implemented in SciPy [30].
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3. Results and Discussion
3.1. Macroscopic Examination

The macrographs of wall cross-sections are shown in Figure 1. The walls were free
from weld defects, but had some distortion.
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the Charpy and crack tip opening displacement (CTOD) specimens indicated.

3.2. Hardness

The hardness was measured along the vertical line along the centreline of the wall (the
hardness indentations are shown as white spots in the macrographs in Figure 1). It can be
seen from the data presented in Figure 2 that the employed heat input range does not alter
the hardness level much, either in the HAZ or the deposited layers. The hardness increases
from the base metal level of 210, via the HAZ with HV of 220 to the fused metal with a
hardness of around 240–250. The base metal hardness is the lowest of all regions; probably
due to the fact that plates of Inconel 625 are normally heat treated (to reduced hardness
level) to achieve more homogeneous properties throughout the material. The hardness of
the support plate increases in the HAZ due to the rapid heating and cooling cycle. This
seems to be sufficient for dissolution and reprecipitation of the strength-enhancing NbC.
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Figure 2. Maximum hardness distribution. WM: weld metal, HAZ: heat-affected zone, BM:
base metal.

The hardness of the deposited layers falls in the same range as the results pub-
lished by Dinda et al. based on deposition with a 6 kW CO2 laser using a laser power
of 600–900 W [31]. Similar levels were reported in CMT-WAAM experiments by Wang
et al. [32]. The measured HV corresponds to single-pass pulsed current gas tungsten arc
welding (PCGTAW), as recently found by Korropati et al. [33].

The hardness level seems to be lower than that reported by Xu et al. using pulsed
plasma arc deposition AM, where a hardness of 294 was reported [34]. The authors
increased the hardness to 342 following stepwise heat treatment with solution treatment
at 980 ◦C for 1 h. In another study by these authors, a hardness in the range 260–280 was
reported [35]. According to Wang et al., based upon gas tungsten arc AM, the microhardness
tends to vary somewhat within different regions, ranging from 240 to 270 HV [36].

3.3. Toughness

The Charpy V toughness at −46 ◦C is plotted versus heat input in Figure 3. All
individual values fall within the range from 160 to 200 J, which is excellent. It is difficult to
find published literature on the WAAM of Inconel 625 that also addresses impact toughness
properties. However, Paul et al. published room temperature Charpy V values from
powder baser laser manufacturing [37]. Their results were all between 100 and 110 J. Even
lower values were achieved by Puppala et al. in laser manufacturing, reporting values
of 48–50 J in the as-deposited state, and 50–54 J after stress relieving heat treatment (at
950 ◦C for one hour followed by oil quenching) [38]. The authors did not report the test
temperature, so it is reasonable to assume that this was performed at room temperature.
The comparison clearly demonstrates the potential of the employed WAAM process and
parameters in making components in this alloy. The toughness is difficult to relate directly
to the microstructure, since the test samples comprise both nonreheated and reheated
areas. One may expect that the samples with the most reheated areas would offer better
toughness due to the more homogeneous material. In practice, this point is difficult to
verify experimentally.
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The results for the CTOD fracture mechanics specimens are outlined in Figure 4. It
was found that the CTOD values obtained at −46 ◦C fall within the range from 0.49 to
1.05 mm. The average value seems to deteriorate with increasing heat input. Fortunately,
CTOD test results have been published previously for WAAM of Inconel 625. Puppala
et al. [38] reported a similar test set-up using laser-based (2.8–3.0 kW laser power) additive
manufacturing with powder, with CTOD values in the as-deposited state in the range of
0.28–0.4 mm, which is somewhat lower than those in the present investigation. Even after
post-deposition heating, the values were in the range of 0.34–0.54 mm, which is still below
the data set presented in Figure 4. Cam et al. reported weld metal fracture toughness of
laser-welded Inconel 625 sheets in the range of 0.48–0.54 mm [39], whereas Yeni and Kocak
reported somewhat higher values of 0.53–0.88 mm [40]. Cam et al. reported that the values
for their 625 alloy in the wrought form were about 1.03–1.16 mm [39]. Considering that all
these values were obtained at room temperature, the developed layer deposition process
appeared to offer excellent toughness. It is to be noted that specimen thickness strongly
influences fracture toughness, as mode of fracture undergoes a transition from plane stress
to plane strain conditions (with an associated increase in the constraint at the crack tip) with
increasing thickness. In the present work, samples of 5 mm were used, which is smaller
than in the work by Cam et al. [39].
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3.4. Optical Microscopy

The microstructures of the different walls were examined using a light microscope.
Starting with the building plate, the microstructure is shown in Figure 5. It can be seen that
the grain size is large, with some grains even approaching 100 µm. They are polygonal in
shape. Another feature is that the solidification microstructure is revealed with interden-
dritic segregation, including particle alignment. The width of these regions seems to vary
between ~12 and 30 µm, and they are separated by an average centre-to-centre distance of
62 µm (primary dendrite spacing). The polygonal grains are formed in the Liq→ γ reac-
tion, while microsegregation takes place for the elements Cr, Mo, Nb to the interdendritic
regions, which will be the last to solidify through the reaction Liq→ γ + Laves. Banded
microstructures of this type may display very poor ductility when strained perpendicular
to the bands [41]. However, no Laves phase was found in the present investigation, which
may be connected to the low heat input employed in wall deposition.
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After deposition of the first layer, the heat-affected zone (HAZ) is formed in the
building plate similar to a HAZ in welding. The microstructure is shown in Figure 6,
and indicates clear changes upon reheating when compared with the base plate. Brown-
ish/yellowish regions form that contain intermetallic compounds (discussed below). The
higher the peak temperature in reheating, the denser these regions will be. These are
formed in a matrix of γ grains of polygonal shape. Apparently, these colonies are not
aligned although they seem to follow the initial segregation pattern, and form arbitrarily at
grain boundaries or the grain interior. No grain coarsening takes place in the HAZ due
to the large initial size, offering low driving force for grain growth. Another important
observation is that the HAZ has a maximum width of 200 µm, due to the low heat input
employed and the low thermal conductivity in the alloy. W1 and W2 have even smaller
widths, approaching 100 µm in the case of the latter.
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The microstructure of the fused zone is shown in Figure 7 for W1 as an example. It
is evident that columnar dendritic solidification takes place. This means that primary
dendrites of the γ phase nucleate and grow, with heavy microsegregation of elements like
Mo and Nb to liquid interdendritic regions. As expected, the primary dendrite spacing
is substantially refined compared with the building plate. This is linked to much faster
cooling rates involved in layer deposition than in the production of the building plate.
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The primary dendrite spacing was also measured after layer deposition. These mea-
surements were not straightforward, due to the columnar form of dendrites. It was decided
to carry out the measurements using micrographs taken at an intermediate magnification
(200X) in order to see clear details while still having an overview of the solidification
structure. The results are plotted in Figure 8. After layer deposition, the as-fused metal has
a primary dendrite arm spacing within the range of 9 to 18 µm with a standard deviation
of 2.1–3.1 µm. For the reheated part of the layer, the spacing varied between 8 and 23 µm,
with an associated standard deviation of 2.9–4.2 µm. As is evident from Figure 8, there is no
unambiguous trend in the effects of heat input on dendrite arm spacing. However, there is
a clear indication that the dendrite arm spacing increases after reheating. This observation
is substantiated by the micrograph contained in Figure 9. The top of the micrograph shows
a new layer consisting of a primary part and a part reheated at high temperature, while the
bottom area is unaffected layer due to lower temperature. The alloy melts at about 1350 ◦C
and starts to solidify at ~1290 ◦C [42].
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3.5. SEM and TEM Observations

SEM and TEM samples were prepared from the middle of the wall cross-sections.
Figure 10 shows a backscattered electron (BSE) image and corresponding EDX elemental
maps from a typical region in the middle of W1. The microstructure is quite similar to the
optical microscopy image shown in Figure 7b. The interdendritic regions are brighter in the
BSE image since they are enriched with Nb and Mo. The values of the partition coefficient
k for Mo and Nb are lower than 1. Thus, these elements segregate during solidification
into the liquid and hence, when solidification is completed, the inter-dendritic regions are
considerably enriched with Nb and Mo. By contrast, Ni, Cr and possibly Fe have partition
coefficients above 1, and are therefore enriched in the primary dendrite arms. The elemental
maps show that there are also some particles rich in Nb and some rich in Al, mainly in
interdendritic regions. The “flower-like” features in the BSE image had a composition
identical to that of the surrounding matrix. It was therefore concluded that these features
are artefacts of the electropolishing.
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Figure 11 gives a more detailed view of an SEM sample taken from the middle of W3.
The EDX analysis confirms that the interdendritic regions are enriched with Nb and Mo.
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The SEM-EDX spectra from the particles indicate that some particles are rich in Al, and
dark in the BSE image, while brighter particles are rich in Nb.

Table 4. Compositions measured by SEM EDX from the areas shown in Figure 11, given in atomic
percent. The carbon content is overestimated due to hydrocarbon contamination of the sample surface.

Element/Spectrum C N O Mg Al Si Ti Cr Fe Ni Nb Mo

29 26.9 7.2 25.0 5.5 12.4 - 3.4 4.1 - 7.7 6.9 1.0
30 25.4 - - - 0.3 - 0.3 18.8 0.2 45.9 4.0 5.1
31 26.0 - - - 0.1 0.3 0.2 19.7 0.2 47.5 1.7 3.8
32 46.2 - 16.0 - 0.9 0.1 2.7 5.7 - 11.8 14.9 1.7Metals 2022, 12, x FOR PEER REVIEW 12 of 18 
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To be able to identify the particles found in the interdendritic regions, TEM was used 
for more detailed chemical and structural analysis. Figure 12 shows a high-angle annular 
dark-field (HAADF) STEM image from the middle of W2. As shown in the image, parti-
cles had often nucleated on other particles. Three different types of particles were identi-
fied based on TEM. 

Figure 11. SEM BSE image of a cross-section near the middle of W3. Regions rich in Nb and Mo
(spectrum 30) can be distinguished by the higher intensity in the image. Chemical composition
measured in the indicated regions are given in Table 4.

To be able to identify the particles found in the interdendritic regions, TEM was used
for more detailed chemical and structural analysis. Figure 12 shows a high-angle annular
dark-field (HAADF) STEM image from the middle of W2. As shown in the image, particles
had often nucleated on other particles. Three different types of particles were identified
based on TEM.

Table 5. Compositions measured by STEM-EDX from the areas indicated in Figure 12, given in
atomic percent.

Element/Spectrum O Mg Al Ti Cr Fe Ni Nb Mo

1 - - - 6.3 14.7 0.3 32.4 41.9 4.4
2 38.1 7.0 41.3 6.4 1.5 - 2.1 3.7 -
3 7.7 - - 17.7 13.8 - 30.4 28.0 2.4
4 50.1 5.1 19.0 4.7 1.1 - 1.6 17.7 0.8
5 4.0 - - 5.8 7.5 - 13.6 65.3 3.9
6 - - - - 26.1 0.5 63.7 4.1 5.6
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EDX was lower than expected for spinel. However, the composition of spinel can deviate 
significantly from its stoichiometric composition [44]. 

Figure 12. HAADF STEM image of particles in the middle of W2. Compositions from the indicated
regions measured by STEM-EDX are given in Table 5.

The first type of particle typically had a spherical morphology and contained Al, O, and
some Mg. Based on the chemical composition, and combined with selected-area electron
diffraction patterns (Figure 13), these particles could be identified as spinel (MgAl2O4,
space group Fd-3m, lattice parameter a = 8.08 Å [43]). The Mg content measured by STEM-
EDX was lower than expected for spinel. However, the composition of spinel can deviate
significantly from its stoichiometric composition [44].

Some of the spinel particles were surrounded by disc-shaped particles, as seen in
Figures 12 and 13a. This second type of particles could, using selected-area electron
diffraction (Figure 13c and combined EDX/EELS mapping (Figure 14)), be identified as the
NbTiCN phase (space group Fm-3m, a = 4.363 Å [45]). This phase has a lattice parameter
close to half the lattice parameter of spinel. As can be seen in the diffraction pattern
in Figure 13c, the spinel particle and the NbTiCN particle have the same orientation,
suggesting that the interface between them is partially coherent.
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Figure 13. (a) Bright-field TEM image of a spinel particle surrounded by a NbTiCN particle in W2.
(b) SAED pattern from the centre of the spinel sphere on the [011] zone axis. (c) SAED pattern
from a region including both spinel and NbTiCN, acquired under the same conditions as in (b).
(d) Schematic of the central part of the diffraction pattern in (c). Reflections due to spinel and
NbTiCN are indicated by full and dashed circles, respectively. The Miller indices of three of the spinel
reflections are given. The forbidden 200 reflections are present due to dynamical diffraction.
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els were identified manually in the ADP map and are highlighted in white circles in Figure 
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to dynamically simulated patterns from the four candidate phases obtained from the TEM 
results: NiCr, NbTiCN, Spinel MgAl2O4, and CrNbNi. The comparison was performed via 
dictionary indexing (DI). The phase best matching the patterns in Figure 15d,e is Spinel, 
while the phase best matching the patterns in Figure 15c,f is NiCr, as shown by their hav-
ing the two highest NCC scores, r, for the best and next-best matching phases. However, 
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Figure 14. HAADF STEM image and elemental composition maps of spinel/NbTiCN particles in
W2. The elemental maps were acquired with EDX, except for N, which was acquired by EELS. The
lower-right image is a red–green–blue colour composite of the Ni, Nb and Al maps. The elliptical
shape of the spinel particle is due to sample drift during acquisition.

All EBSD patterns were first indexed using Hough indexing, assuming that all patterns
match NiCr. The orientations obtained from Hough indexing show good matches between
experimental and simulated patterns from NiCr in Figure 15a,b for the green and red grain,
respectively. Four spherical regions of low similarity to their neighbouring pixels were
identified manually in the ADP map and are highlighted in white circles in Figure 15. The
averaged pattern from each of these regions, shown in Figure 15c–f, was compared to
dynamically simulated patterns from the four candidate phases obtained from the TEM
results: NiCr, NbTiCN, Spinel MgAl2O4, and CrNbNi. The comparison was performed via
dictionary indexing (DI). The phase best matching the patterns in Figure 15d,e is Spinel,
while the phase best matching the patterns in Figure 15c,f is NiCr, as shown by their having
the two highest NCC scores, r, for the best and next-best matching phases. However, the
patterns in Figure 15c,f contain Kikuchi bands from two or more crystals, and the next-best
matching phases are NbTiCN and spinel, respectively.
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4. Conclusions

The present study was initiated to study the properties of the WAAM of Inconel 625.
The following conclusions can be drawn:

1. The hardness increases from the base metal level of 210, via the HAZ, with HV10 of
220, to the weld fused metal, with a hardness of around 240–250.

2. The hardness was almost independent of the heat input within the current variation
range.

3. The Charpy V notch toughness was excellent, with variation between 160 and 200 J.
4. The fracture toughness (CTOD) fell within a range of 0.49 to 1.05 mm.
5. Columnar dendritic solidification took place with heavy microsegregation of Mo

and Nb to liquid interdendritic regions, and enrichment of Ni, Cr and possibly Fein
primary dendrites.

6. Interdendritic regions contained particles like spinel (MgAl2O4). These were often
surrounded by NbTiCN phase with the same orientation as spinel, suggesting that
the interface between them is partially coherent.
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