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Abstract

The blockages of pipelines caused by agglomeration of gas hydrates is a major flow assur-

ance issue in the oil and gas industry. Some crude oils form gas hydrates that remain as

transportable particles in a slurry. It is commonly believed that naturally occurring compo-

nents in those crude oils alter the surface properties of gas hydrate particles when formed.

The exact structure of the crude oil components responsible for this surface modification

remains unknown. In this study, a successive accumulation and spiking of hydrate-active

crude oil fractions was performed to increase the concentration of hydrate related com-

pounds. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was

then utilised to analyse extracted oil samples for each spiking generation. Machine learning-

based variable selection was used on the FT-ICR MS spectra to identify the components

related to hydrate formation. Among six different methods, Partial Least Squares Discrimi-

nant Analysis (PLS-DA) was selected as the best performing model and the 23 most impor-

tant variables were determined. The FT-ICR MS mass spectra for each spiking level was

compared to samples extracted before the successive accumulation, to identify changes in

the composition. Principal Component Analysis (PCA) exhibited differences between the

oils and spiking levels, indicating an accumulation of hydrate active components. Molecular

formulas, double bond equivalents (DBE) and hydrogen-carbon (H/C) ratios were deter-

mined for each of the selected variables and evaluated. Some variables were identified as

possibly asphaltenes and naphthenic acids which could be related to the positive wetting

index (WI) for the oils.

Introduction

One of the major flow assurance challenges in the oil and gas industry is the formation of gas

hydrates and their agglomeration, causing complete blockage of pipelines [1]. Gas hydrates are

formed under low temperatures and high pressures, as guest molecules are trapped inside and

help stabilise crystalline cages consisting of water molecules held together by hydrogen bonds.
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Remediation methods consists of thermodynamic inhibitors (methanol, ethanol or glycols),

low dosage hydrate inhibitors (LDHIs), or by ensuring operation outside the hydrate region by

controlling the pressure and/or temperature [2]. However, operating outside the hydrate

region is not always possible or economically feasible and chemicals have negative environ-

mental impacts and should be avoided if possible. Previous experiments have shown that some

crude oils form gas hydrates that do not agglomerate or deposit, but remain as transportable

particles [3–5]. This can be explained by the existence of naturally occurring components in

the crude oils with hydrate active properties that can interact with and alter the surface wetting

properties of the hydrate particles from being hydrophilic to becoming hydrophobic, thus pre-

venting agglomeration [6]. Despite a lot of research on the topic, the nature and structure of

the hydrate active components in crude oils have not yet been determined in detail.

To prevent agglomeration of the hydrate particles, their wettability state must be controlled.

Oil-wet particles are hydrophobic and associated with non-aggregating and thus flowable dis-

persions, while water-wet particles are hydrophilic and associated with aggregating hydrate

particles with a higher potential for plugging [7]. The particles’ wettability can be affected by

the crude oil composition by adsorption or inclusion of components naturally occurring in

crude oil to the hydrate surface.

Petroleum acids have shown surface activity towards hydrate surfaces. It has therefore been

suggested that naturally occurring hydrate inhibiting components are present in the acid frac-

tions of crude oils [8–11]. Furthermore, the acid fractions have been shown to contain large

amounts of naphthenic acid compounds [12]. They consist of a complex mixture of alkyl-

substituted acyclic and cycloaliphatic carboxylic acids with the general formula CnH2n+zO2

where n corresponds to the number of carbon atoms and z specifies the hydrogen deficiency

from ring formation [13]. Comparatively, asphaltene fractions are known to possess self-

agglomerating properties and can stabilise oil-wetted systems [14]. It has been shown that the

asphaltene fractions able to stabilise oil-wetted systems often are more polar, with higher oxy-

gen content, higher acidity and lower DBEs [15]. Other studies have suggested that the possible

hydrate activity of asphaltenes is related to their sulfoxide content [16]. Accordingly, some

asphaltenes can alter the plugging potential of crude oils [17, 18].

The complex mixture and relatively high masses of the components in crude oils make it diffi-

cult to identify single components with most mass spectrometers. However, with the high mass

accuracy of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS)

more detailed analysis of crude oils with the ability to identify a large number of polar groups,

including compounds present in low concentrations, is possible [19]. FT-ICR MS has previously

been used extensively for crude oil characterisation [20–27]. Qian et al. [28, 29] showed that elec-

trospray ionisation (ESI) FT-ICR MS was able to identify more than 3000 chemical formulas of

nitrogen containing aromatic compounds in positive mode. Additionally, studies have shown

that asphaltenes can be characterised by positive mode ESI FT-ICR MS [30–32].

With the highly detailed spectra derived from FT-ICR MS, there is a need for powerful data

analysis methods to efficiently extract valuable information and disregard unimportant infor-

mation. The present work describes the use of machine learning-based variable selection for

the identification of naturally occurring hydrate inhibitors from ESI positive FT-ICR MS spec-

tra and relating the selected variables to the wettability state of the respective crude oils.

Materials and methods

Fluid system

The crude oils used originated from the Norwegian continental shelf and were used as received

unless specifically mentioned. The water phase consisted of 3.5 wt% NaCl in tap water, thus
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containing only monovalent ions in the water-phase, which simplifies the water chemistry

avioding possible unwanted reactions by bivalent ions such as Ca2+ [33]. The gas phase was a

mixture of 86/8/6 mol% of methane, ethane and propane respectively (Linde Gas AS) with a

mixture tolerance of 10% and an analysis uncertainty of 2%.

Experimental set-up

The autoclave used in the experiments was a 200 mL high-pressure sapphire cell (Top Indus-

trie) owned by SINTEF AS, placed inside a temperature controlled chamber. The temperature

was measured using a PT-100 element positioned at the bottom of the cell. A connected stirrer

mixed the phases to create a fully dispersed system. The cell was fitted with a Hy-Lok FT

Micron Tee Filter with a 150 μm sintered stainless steel filter element. A probe inserted from

the top was used to measure the conductivity in the liquid phase. Gas filling was controlled

using an IN-FLOW HI-Press MFC mass flow controller (Bronkhorst).

Successive accumulation of hydrate active components

A successive accumulation procedure (spiking) was performed with the aim of accumulating

possible hydrate active components. A schematic illustration of the procedure is shown in

Fig 1. The method developed by Fossen et al. [34] was based on Borgund et al. [6] which pre-

sented the same procedure, but with a non-pressurised system using tetrahydrofuran as

hydrate former. The procedure started with a fresh oil sample which was added to the cell with

the water phase at a given water cut and pressurised with a hydrocarbon gas phase. The pres-

sure used for the current study was 65 bar. The water cut is the ratio of water compared to the

total volume of the system. The temperature was lowered to 2˚C while stirring the liquid to

ensure a homogeneous dispersion. By cooling the system at high pressure, the hydrate forma-

tion region will eventually be reached, and given enough sub-cooling, the system will form

hydrates. For the current tests, the system was kept at low temperature over night, to ensure

hydrate formation. When hydrates had formed, and the reaction allowed to reach equilibrium,

Fig 1. Schematic illustration of the successive accumulation experiment for spiking of the hydrate phase.

https://doi.org/10.1371/journal.pone.0273084.g001
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the phase not associated with hydrates, called the bulk phase, was drained through the bottom

of the cell. The driving force for draining was the pressure difference of the cell and the ambi-

ent pressure conditions outside the cell. The hydrate phase was retained by the filter, so only

water and oil not associated to hydrates were drained. Once the bulk phase was drained, the

cell was depressurised and the temperature was increased, leading to dissociation of the

hydrate phase which was drained and collected, resulting in an oil and a water phase that had

been associated to the gas hydrates. The now liquid hydrate phase was then mixed with fresh

oil and water at a ratio ensuring the same water cut as the previous run, before repeating the

hydrate formation and draining procedure. Small samples were taken from both the bulk

phase and the hydrate phase at each step for analysis by FT-ICR MS.

Wetting index experiments

A wetting index (WI) procedure for determining the emulsion inversion point was developed

by Høiland et al. [35] and advanced by Fossen et al. [34]. In short, the WI is obtained from

determination of the inversion point of the emulsions with and without hydrates present.

When the emulsion inversion point shifts towards higher water cuts after hydrate formation,

the hydrates are oil-wetted, and when the shift is towards lower water cuts, the hydrates are

water-wetted. This is in accordance with the principles of Bancroft [36]. The WI is defined as

the normalised difference in inversion point with, and without hydrates present, represented

by a number between -1 and +1. Positive values indicate oil-wetted systems with little or no

potential of plugging, while negative values indicate water-wetted systems with a high potential

of plugging. The absolute value of the WI number is expected to be of importance, and a

higher positive or negative value indicates higher degrees of oil-wetted or water-wetted hydrate

particles.

FT-ICR MS analysis

For the FT-ICR MS analysis, the samples were prepared by dissolving 20 μL sample in 980 μL

dichloromethane. 20 μL of the diluted sample was then added to 980 μL of a 1:1 mixture of tol-

uene and methanol. 100 μL were injected onto the FT-ICR MS using a Aglient 1290 Infinity

HPLC system as the introduction device. The 100 μL were injected over a period of 10 minutes

with a flow of 10 μL per minute. The mass spectra were acquired using a Bruker Solarix XR

FT-ICR MS (Bruker Daltonik GmbH, Germany) equipped with a 12 Tesla magnet (Bruker

Biospin, France) owned by SINTEF and located in Trondheim (resolution: 450 000 at m/z

400). The FT-ICR was equipped with an electrospray ion source (ESI) operating in positive

mode with the mass range set to 150–3000 m/z.

3 oil samples (anonymised to A, J2 and I) underwent the successive accumulation proce-

dure resulting in 41 samples of different spiking levels. 6 spiking levels for oil A and 5 spiking

levels for oil J2 and I. The samples were analysed by FT-ICR MS in three parallels each. For

each sample, 220 spectra were collected.

Data treatment

A bucket table was created of the data using Bruker Compass ProfileAnalysis 2.1. The settings

in ProfileAnalysis was as follows: the average peak list was calculated, normalisation was set to

the sum of bucket values in analysis, no baseline or smoothing, S/N threshold of 4, relative

intensity threshold of 0.01 and absolute intensity threshold of 100. The resulting data set con-

sisted of 123 samples and 27600 variables between m/z 148.44 and 1001.66.

PLOS ONE Using variable selection to identify hydrate related components from FT-ICR MS

PLOS ONE | https://doi.org/10.1371/journal.pone.0273084 August 17, 2022 4 / 20

https://doi.org/10.1371/journal.pone.0273084


Principal Component Analysis (PCA)

PCA [37] is an unsupervised method for data reduction where a large data set X is decomposed

into a subspace containing linear combinations of the original variables as shown in Eq 1.

X ¼ XInwgtX ð1Þ

Where XIn has the shape (N, K) and is the mass spectra for N oil samples with K X -variables

and X has the shape (N, K) which are the balanced spectra for N oil samples with K variables.

Eq 2 shows the PCA model for A Principal Components (PCs).

X ¼ �x þ TAP
T
A þ EA ð2Þ

Where PA are the loadings and orthonormal eigenvectors of (X � �xÞTðX � �xÞ with shape (K,

A), minimising the covariance between the X -variables after A PCs. The scores (TA) are

orthogonal as shown by Eq 3 andwil have shape (N, A).

TA ¼ ðX � xÞPA ð3Þ

The error term in 2 is EA which is calculated by Eq 4.

EA ¼ X � �x � TAP
T
A ð4Þ

Variable selection methods

Variable selection is the process of selecting a subset of relevant variables to use when con-

structing a model. When a data set contains a large number of variables, it is often assumed

that the data contains irrelevant or redundant variables that can be removed without loss of

information. Removing them can improve the prediction ability of the model and reduce the

computational cost during modelling. Variable selection can also be used to identify the fea-

tures with the highest correlation to the response, i.e. the most important variables.

In this paper, variable selection methods such as Partial Least Squares Discriminant Analy-

sis, Decision Trees, Random Forest, Boosting, and LASSO (Least Absolute Shrinkage and

Selection Operator) regularisation were compared with the aim of predicting whether the sam-

ples were related to the hydrate or the bulk phase. An attempt was made to identify compo-

nents in the data related to hydrate formation with the hypothesis that there could be

systematic differences in the spectra which the proposed methods could be able to distinguish.

Partial Least Squares Discriminant Analysis (PLS-DA). PLS-DA [38] decomposes large

data sets into a subspace of latent variables consisting of scores and loadings which represent

the main features of covariance in the data. The latent variables are found by a maximisation

of the covariance between the features, X and the response, Y. X has the same input model as

for PCA, shown in Eq 1. As PLS-DA also takes the response into account as opposed to PCA,

the input model for Y is shown in Eq 5.

Y ¼ Y InwgtY ð5Þ

Where YIn has the shape (N, J) and is the input categorical variables (0 or 1) for N oil samples

with J categorical variables, wgtX are the statistical weights for balancing the sum of squares for

the Y variables and Y is the balanced data with shape (N, J) for N oil samples with J Y -vari-

ables. The decomposition of X is taken into account, resulting in Y relevant latent variables.

This is shown by Eqs 6 and 7.

X ¼ �x þ TAP
T
A þ EA ð6Þ
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Y ¼ �y þ UAQ
T
A þ FA ð7Þ

Where A denotes the number of PCs used and EA and FA are the error terms using A PCs.

Plotting of these latent variables provides overview of co-variations both within and between

model inputs and outputs. The loading weight matrix (WA) maximises the covariance between

X and Y by maximising the covariance between T and U after A components. The scores (TA)

are orthogonal as shown by Eq 8.

TA ¼ ðX � �xÞ �WA ð8Þ

The loadings for X (PA) are calculated by Eq 9 while the loadings for Y (QA) are calculated

by Eq 10.

PA ¼ ðT
T
AT

T
AÞ
� 1TT

AðX � xÞ ð9Þ

QA ¼ ðT
T
AT

T
AÞ
� 1TT

AðY � yÞ ð10Þ

The error term for X (EA) is calculated as for PCA in Eq 4 and the error term for Y (FA) is

calculated by Eq 11.

FA ¼ Y � yTAQ
T
A ð11Þ

The regression coefficients (BA), which are measures of the impact of variations in the vari-

ous features on the respective response variables, are calculated by Eq 12.

BA ¼WAQ
T
A ð12Þ

Prediction of Y is then obtained by Eq 13 where b0 is the intercept.

Ypred ¼ b0 þ XnewBA þ FA ð13Þ

When Y is categorical and the problem is classification, Linear Discriminant Analysis

(LDA) is used to predict the class membership of the samples from the PLS-DA component

construction by encoding the class membership of the observed variables in X into 0 or 1 [39].

PLS-DA can be used for variable selection by calculation of the Variable Importance in Pro-

jection (VIP) for each X variable in the PLS-DA model. The VIP score summarises the influ-

ence of the individual X variables on the PLS-DA model and are calculated as the weighted

sum of squares for the PLS-DA weights wj which takes the amount of explained variance in Y
into account for each extracted latent variable. VIP therefore gives a measure that can be used

to select variables which contribute the most to the explanation of the variance in Y. The VIP

score for variable K can be calculated from Eq 14.

VIPK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

PA
j¼1

B2

j t
T
j tj

wkj

k wj k

 !

PA
j¼1

B2

j t
T
j tj

v
u
u
u
u
t ð14Þ

Where B is the regression coefficient matrix, wj is the weight vector, wkj is the kth element of

wj and tj the score vector from the PLS-DA model with A PCs. A variable with a VIP score

greater then 1 are generally considered as important, however this limit is sensitive to non-rel-

evant information in X [40]. In this study, the threshold for selecting variables were deter-

mined as the point where the VIP-values flatten out, which was found to be 5.
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Decision Trees (DTs). DTs [41, 42] are models where decisions are made by asking a

series of questions and generating decision rules based on them. These models consist of a tree

root, decision nodes, branches and leaf nodes. They aim to find the smallest set of rules that is

consistent with the training data. In general, the rules have the form: if condition1 and condi-
tion2 and condition3 then outcome and are chosen to divide observations into segments that

have the largest difference with respect to the target variable. Therefore, the rule selects both

the variable and the best break point (usually selected by significance testing or reduction in

variance criteria) for maximal separation of the resulting subgroups.

To avoid overfitting, the trees often have to be pruned by setting a limit for the maximal depth.

A leaf can no longer be split when there are too few observations, the maximum depth (the hierar-

chy of the tree) has been reached, or no significant split can be identified. It is assumed that obser-

vations belonging to different classes have different values in at least one of their features. DTs are

usually univariate, since they use splits based on a single feature at each internal node.

Random forest (RF). In DTs, the initial selected split effects the optimality of variables

considered for subsequent splits, making these methods prone to overfitting and other prob-

lems. This can be handled by introducing RF [43–45], an ensemble tree method where each

tree is based on a random subset of the data and its features (selected by bootstrapping). The

advantage of ensemble trees is that the trees are grown with varying initial splits, and either a

voting or the average of the predictions for each new data point across all trees is used. The

vote distribution can be used to develop a non-parametric probabilistic predictive model. The

change in prediction accuracy when the values of a feature are randomly permuted among the

observations gives estimates of the importance of each feature.

Ensemble learning. Ensemble learning combines weak classification models with the

main idea that many models in combination perform better than one model alone [46].

Boosting [47] is an ensemble learner where weak learners are trained sequentially, trying to

improve upon its predecessor. The classifiers emphasise errors made by the previous classifier,

aiming at decreasing the model bias. Boosting learners combine underfitting models with low

prediction accuracy with the aim of improving the final prediction. Gradient Boosting [48, 49]

is a boosting method where trees are built in every iteration, always minimising the prediction

error of the classifier. This combination of several smaller trees forms a stronger learner able

to fit larger parts of the data than a simple decision tree can. XGBoost (eXtreme Gradient

Boosting) [50] is another boosting method based on gradient boosting, which introduces a

penalty function in the boosting algorithm and utilise the computational power more effi-

ciently, reducing the computation times.

Regularisation. Another type of machine learning method valuable for variable selection

purposes is the regularisation-based method LASSO (least absolute shrinkage and selection

operator) [51].

LASSO. In LASSO the estimates of the regression coefficients are obtained using L1-con-

strained least squares. This forces the sum of the absolute values of the regression coefficients

to be less than a fixed value, which forces certain coefficients (βj) to be set to zero. The variables

which have their regression coefficients set to zero, are omitted from the model. LASSO mini-

mises Eq 15 where the ordinary least squares (OLS) problem is the first term with β0 as the

intercept, and the second term l
Pp

i¼1
jbjj is the regularisation term.

RSSLASSO ¼
Xn

i¼1

ðyi � b0 �
Xp

j¼1

bjXijÞ
2
þ l
Xp

i¼1

jbjj ð15Þ
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Variable importance score. For each of the variable selection methods a variable impor-

tance score can be computed, which is a measure of the variables’ relative importance in the

prediction model. These scores therefore reflect which variables are the most relevant for the

target and which variables are of least importance.

The variable importance score can also be used to improve the prediction model by includ-

ing only the variables with high scores in the model.

Data analysis

All statistical methods were implemented using Python 3.8 and its machine learning packages.

The response consisted of a vector containing information of the samples origin, either

extracted from the hydrate phase or from the bulk phase. For the linear models, PCA, PLS-DA

and LASSO, the data set was standardised (standard deviation = 1) and mean centered

(mean = 0). For PLS-DA, the optimal number of components were selected by splitting the

training set into two, 70% for calibration and 30% for validation, and finding the most com-

monly selected number of components by calculating the accuracy over 25 splits. All methods

were validated using 25 different training and test set splits with 70% in the training set and

30% in the test set. Molecular formulas were determined using Bruker Compass DataAnalysis

5.0. From the peak corresponding to the m/z of the variables selected, the formula best fitting

to the peak was chosen.

Results

Wetting index experiments

The three oils underwent the WI experiment and their WIs were calculated. The WI for oil A

was shown to be 0, indicating that it has no clear plugging tendency. Oil J2 and I were deter-

mined to have positive WIs of 0.44 for oil J2 and 0.31 for oil I, indicating that they have low or

no tendency of plugging. The resolution of the measurements in terms of water cut were 10

volume%. This gives an accuracy of the measurement of ±0.05 volume% and thus a corre-

sponding uncertainty in the measured WIs. Evaluation of the sensitivity of the water cut reso-

lution on the WIs was not performed in this study.

PCA

Each of the oil samples were analysed by PCA and the resulting scoreplot of the first Principal

Component (PC1) and the second Principal Component (PC2) for the data set is shown in

Fig 2 where the samples are identified by the oil they originated from. The same scoreplot is

shown in Fig 3 with the samples distinguishing the individual spiking levels. In both figures,

the samples from the bulk phase are shown in the plot to the left and the samples from the

hydrate phase are shown in the plot to the right. Fig 2 shows the differences between the three

oils, and PC1 shows the difference between the samples from oil J2 and the samples from the

two other oils, A and I. Additionally, PC1 shows a separation between the samples that have

undergone the spiking experiment, and the crude oil samples which are clustered around 0.

PC2 shows differences in the spiking samples from oil A and I. The spiking samples for oil J2

are clustered at 0 for PC2.

Fig 3 shows the differences between the spiking levels along PC2.

Comparing mass spectra

To investigate differences between the spiking levels of the hydrate phase in each of the oils,

the mass spectra from each spiking level were compared to a sample which had not been
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spiked. This was only performed for the hydrate phase as it was assumed that the hydrate active

components would be present in this phase. An average spectrum was calculated from the tree

parallels for each spiking level and for samples removed before the spiking experiment. The

sample removed before spiking is referred to as spiking level 0. The mass spectra for spiking

level 0 was subtracted from the spectra for the remaining spiking levels for each of the oils. The

results for oil A are shown in Fig 4. From Fig 4, four m/z values appeared to have an increasing

trend as the spiking levels increased for oil A. They are shown in Table 1 with the molecular

formula, double bond equivalent (DBE), the degree of unsaturation of the molecule, the hydro-

gen-carbon (H/C) ratios, which adduct the molecule has, either sodium (Na) or hydrogen

(H+) and the molecular weight.

Fig 2. PCA scoreplots with samples from the bulk phase shown in the left plot and samples from the hydrate phase shown in the right plot.

Samples are coloured according to which crude oil they originated from and the crude oils have the symbol x.

https://doi.org/10.1371/journal.pone.0273084.g002

Fig 3. PCA scoreplots with samples from the bulk phase shown in the left plot and samples from the hydrate phase shown in the right plot.

Samples are coloured by spiking level and the crude oils have the symbol x.

https://doi.org/10.1371/journal.pone.0273084.g003
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Fig 4. Mass spectra of samples from the hydrate phase for oil A with spiking level 0 subtracted from each of the spiking levels

1–6.

https://doi.org/10.1371/journal.pone.0273084.g004
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The results with spiking level 0 subtracted from the remaining spiking levels for oil J2 are

shown in Fig 5. For oil J2 no distinct m/z values increased with increasing spiking levels.

The results with spiking level 0 subtracted from the remaining spiking levels for oil I are

shown in Fig 6. From Fig 6, two m/z values appeared to have an increasing trend as the spiking

level increased for oil I. They are shown in Table 2 with molecular formula, DBE, H/C-ratio,

which adduct the molecule has and the molecular weight. Additionally, the variable m/z

156.44 increased, but this is an ion with charge three from the m/z 469.32 peak and is therefore

not reported.

Variable selection

Several variable selection methods such as Decision Trees, Random Forest, Gradient Boosting,

XGBoost, LASSO regularisation and PLS-DA through VIP were tested with the aim of finding

components related to hydrate formation. The samples were classified by their origin, whether

they were sampled from the bulk phase (0) or from the hydrate phase (1). During the data

analysis, it was discovered that the accuracy of the models depended on the composition of the

training and test sets. This is an indication that the samples have such large variation between

them that some compositions of the training set are not able to predict the test set. This was

overcome by running 25 different training and test set combinations. The variable selection

methods were tested on all variables to evaluate which method predicted the samples most

accurately. The accuracy scores of the test set for each of the six methods are shown in Fig 7,

where the accuracy is defined as the fraction of correctly classified samples. The distributions

in accuracy for each method is shown by the bars in Fig 7. The best performing model was

PLS-DA with an accuracy of 0.62 ± 0.12.

The performance for each of the variable selection methods is shown in Table 3. Each time

a model was fitted to a new training and test set, the variables selected by the model were

extracted. Variables that were selected by several different training/test sets are more likely to

be related to hydrate formation. For the best performing variable selection method, PLS-DA,

26 variables were selected as important by all of the 25 models out of the total 27600 variables

in the data set. However, during inspection of the m/z-values, it became apparent that two of

the variables referred to the same peak. Additionally, two variables were the corresponding iso-

tope peak, for m/z 393.30 (isotope peak: 394.30) and 469.32 (isotope peak: 470.32). The vari-

ables were combined, resulting in 23 unique selected variables which are shown in Table 4

with molecular formula, DBE, H/C-ratio, which adduct the molecule has and molecular

weight.

Table 1. Peaks increasing for oil A.

m/z Formula DBE H/C Adduct Molecular formula

273.17 C12H26O5 0 2.17 Na 250.1780

397.18 C18H30O8 4 1.67 Na 374.1941

457.28 C22H42O7 2 1.91 Na 434.2880

469.31 C28H46O4 10 1.64 Na 446.3244

The m/z values with increasing trend as spiking levels increased for oil A, their molecular formula, DBE, H/C-ratio, which adduct the molecule has, Na or H+, and the

molecular weight

https://doi.org/10.1371/journal.pone.0273084.t001
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Fig 5. Mass spectra of samples from the hydrate phases for oil J2 with spiking level 0 subtracted from each of the spiking

levels 1–5.

https://doi.org/10.1371/journal.pone.0273084.g005
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Fig 6. Mass spectra of samples from the hydrate phase for oil I with spiking level 0 subtracted from each of the spiking levels

1–5.

https://doi.org/10.1371/journal.pone.0273084.g006
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Discussion

The results from this work indicated that using machine learning-based variable selection, it is

possible to identify components related to hydrate formation. Several methods were tested,

and PLS-DA was determined as the best performing method with an accuracy of 0.62 ± 0.12

over 25 different training and test set splits. To determine a representative range, 25, 50, 75

and 100 training and test set splits were run. This sensitivity evaluation indicated that increas-

ing the amount of splits above 25 would not affect the standard deviation significantly. Vari-

able selection models can be prone to overfitting as they consume degrees of freedom, but

when using an independent test set, overfitting of the models are counteracted. For each of the

25 times a new model was fitted, the variables selected as important by the model, based on

their variable importance score, were extracted. The variables were extracted from the model

with the highest accuracy score as that is the model that most accurately predicts the differ-

ences between the bulk samples and the hydrate samples, and therefore selects the variables

with the highest probability of being related to hydrate formation.

From PLS-DA, 23 variables were selected as important by all of the 25 models and they

were identified with their molecular formula, DBE and H/C-ratio. The variables selected ran-

ged from m/z 271.19 to 763.61 and the carbon chains from C9 to C49. The DBE numbers show

Table 2. Peaks incresing for oil I.

m/z Formula DBE H/C Adduct Molecular formula

273.17 C12H26O5 0 2.17 Na 250.1780

469.32 C28H46O4 10 1.64 Na 446.3396

The m/z values with increasing trend as spiking levels increased for oil I and their molecular formula, DBE, H/C-ratio, which adduct the molecule has, Na or H+, and

the molecular weight.

https://doi.org/10.1371/journal.pone.0273084.t002

Fig 7. Accuracy scores for the variable selection methods with error bars showing the standard deviation over 25

training/test set splits.

https://doi.org/10.1371/journal.pone.0273084.g007
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6 saturated variables, with DBE of 0, and the highest DBE was 10. The average weight of

asphaltenes is*750 Da [52], and some of the selected m/z-values were in the range 705–763,

indicating that these could be asphaltenes. The asphaltenes with hydrate inhibiting properties

often have higher oxygen and sulfoxide content, higher acidity and lower DBEs [15, 53]. All of

the possible asphaltenic structures exhibit these properties, and could thereby be related to the

positive WI for oil J2 and I. Further studies on the oil samples by extracting and analysing the

Table 4. The variables selected by PLS-DA through VIP.

m/z Formula DBE H/C Adduct Molecular weight

271.19 C13H28O4 5 2.15 Na 248.1988

273.17 C12H26O5 0 2.17 Na 250.1780

313.24 C17H32N2O3 3 1.88 H+ 312.2491

326.38 C22H47N 0 2.14 H+ 325.3709

353.27 C19H38O4 1 2.00 Na 330.2770

357.26 C18H38O5 0 2.11 Na 334.2719

359.24 C17H36O6 0 2.12 Na 336.2512

360.32 C22H43NO 2 1.95 Na 337.3345

361.22 C16H34O7 0 2.13 Na 338.2305

381.30 C21H42O4 1 2 Na 358.3083

393.30 C22H42O4 2 1.91 Na 370.3083

397.18 C18H30O8 4 1.67 Na 374.1941

401.29 C26H40OS 9 1.53 H+ 400.2710

408.31 C22H43NO4 2 1.95 Na 385.3291

425.41 C26H52N2O2 2 2.00 H+ 424.4029

445.31 C22H46O7 0 2.09 Na 422.4029

451.19 C21H29O9 6 1.52 Na 328.2046

457.28 C22H42O7 2 1.91 Na 434.2880

469.31 C24H46O7 2 1.92 Na 446.3244

469.32 C28H46O4 10 1.64 Na 446.3396

705.58 C42H82O4S 4 1.95 Na 682.5934

750.52 C36H81N3O7SV 2 2.25 H+ 749.5157

763.61 C45H80N4O3 8 1.78 Na 740.6180

Table of the 23 m/z values selected in every of the 25 PLS-DA models, their molecular formulas, DBE numbers, hydrate-carbon ratio, which adduct the molecule has,

sodium or (Na) or hydrogen (H+), and the molecular weight.

https://doi.org/10.1371/journal.pone.0273084.t004

Table 3. Performance of the variable selection methods.

Method Accuracy Standard deviation No. of variables selected No. of variables selected in every model

PLS-DA 0.62 0.12 132 26

Decision Trees 0.53 0.13 98 0

Random Forest 0.54 0.09 24929 44

Gradient Boosting 0.54 0.10 12364 0

XGBoost 0.53 0.09 786 0

LASSO 0.58 0.09 334 0

Performance for each variable selection method, their average accuracy, standard deviation, the number of variables selected during the 25 models and the number of

variables that were selected in every model.

https://doi.org/10.1371/journal.pone.0273084.t003
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asphaltenes may confirm this. One variable, m/z 469.32, follows the general molecular formula

for naphthenic acids. Other m/z values appear to have properties that could possibly define

them as naphthenic acids, two or more oxygen molecules, DBEs indicating unsaturation and

H/C-ratios below 2. As naphthenic acids are suggested to be related to hydrate active compo-

nents [8], it is therefore likely that they contribute to the positive wetting index for oil J2 and I.

Several of the selected variables have molecular formulas corresponding to CnH2n+2 and have a

DBE of zero. They have carbon chains between C12 and C22 and contain either large amounts

of oxygen (O5 or more) or nitrogen. It is therefore probable that these are polyethylene glycol

(PEG) molecules stemming from production chemicals used to treat flow assurance issues dur-

ing extraction and processing of the crude oil [54].

By conducting the successive accumulation procedure for a given oil, generations with pos-

sibly increased concentration of hydrate active components could be accumulated. The oils

with positive WI, likely to exhibit non-plugging properties, should thereby achieve an increase

in the components related to anti-agglomeration, making their identification easier. The PCA

scoreplots in Fig 2 show that the crude oils are distinguishable from the spiking samples in

both the bulk phase and the hydrate phase. Additionally, the PCA scoreplots in Fig 3 show that

the different spiking levels are separated, indicating that there were differences between the

samples extracted from each spiking level. The spiking procedure therefore altered the compo-

sition of the oils. The variables selected by PLS-DA were also identified as increasing in the

hydrate phase spiking fractions for oil A and I supporting the theory of accumulation.

The mass spectra for oil J2 in Fig 5 showed that no distinct m/z values increased as the spik-

ing levels increased. However, for spiking level 2, 3, 4 and 5, the area between m/z 400 and 600

increased, indicating that the variables relevant for hydrate formation could lie in this m/z

region. Another possible explanation could be that this oil is saturated with hydrate active

components, and the spiking procedure therefore would not change the composition of the

oil. This fits well with the WI of +0.44 for oil J2, indicating little or no plugging. It is therefore

likely that oil J2 contains more hydrate active components than the oils with lower WI.

The results from the variable selection methods showed that the two linear methods,

PLS-DA and LASSO, achieved higher accuracy scores than the tree-based methods. Linear

methods are more robust and less susceptible to changes in the data. As there were variations

in the accuracy for the models using different training and test set splits, the tree-based meth-

ods were likely affected negatively.

The molecular formulas presented in this paper are only suggestions of the most likely

molecular formulas from the DataAnalysis software. As the mass of the molecule increases, the

amount of possible structures and formulas also increases. Accordingly, the uncertainty of the

suggested formulas increases with the mass of the molecule. Nonetheless, the structures give

an indication of the nature of the molecules related to hydrate formation, and can be used to

indicate whether they are i.e. asphaltenes, acids or alkanes.

For any complex data matrix, there are often assumptions that some of the data is noise and

unrelated to the desired prediction. With the methodology presented in this paper, we show

that it is possible to extract relevant information from complex data and relate it to the chemi-

cal composition of the samples. Thus, the proposed methods can be used in any application

where there is a need for extracting, identifying and evaluating important variables.

Further studies

When the m/z values of components related to hydrate formation are identified, the next step

will be to determine the molecular structures with higher certainty. This can be done by isola-

tion and fragmentation by FT-ICR MS, making it easier to identify the structures of
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complicated molecules. When the compounds are found, they can be tested with the oils to

evaluate how their presence changes the characteristics of the oils and the formation of

hydrates.

Conclusion

In this study, machine learning-based variable selection was used to identify components

related to hydrate formation. A successive accumulation procedure was performed to increase

the concentration of the hydrate active components. PCA demonstrated the difference

between the spiking levels and the crude oils, establishing that the spiking procedure alters the

sample composition significantly, suggesting that hydrate active components have been accu-

mulated. Variable selection methods such as Decision Trees, Random Forest, Gradient Boost-

ing, XGBoost, LASSO regularisation and PLS-DA through VIP were tested to identify the

hydrate active components. The best performing prediction model was obtained using

PLS-DA which gave an average accuracy of 0.62±0.12 over 25 different training and test set

combinations. From the 25 models, 23 variables were selected as important in every model,

and their molecular formulas were determined in an attempt to identify molecules related to

hydrate formation. Some of the variables were identified as possible asphaltenic structures

which could be related to the positive WI for the oils.

Identifying variables in the oil related to hydrate formation takes us one step closer to iden-

tifying the naturally occurring hydrate active components.

Supporting information

S1 Fig. Experimental set-up. Picture of the autoclave used for the hydrate formation and spik-

ing experiments. It consists of a sapphire cell between two titanium grad II flanges. Pressure,

temperature and conductance is measured inside the sapphire cell. A motor is mounted above

the cell driving a stirrer through a magnetic connection.

(PDF)

S2 Fig. Determining the threshold for VIP Plotting of the VIP values for the 25 PLS-DA

models with 20 components. The curve flattens around 5 which was selected as the threshold.

(EPS)

S3 Fig. Determining the optimal training/test set split. Accuracy scores for the classification

methods showing the mean accuracy over 25, 50, 75 and 100 training/test set splits and stan-

dard deviations.

(EPS)
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