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Abstract 

As in many real applications, in the world of fine 

powders and small particles, depending on the accuracy 

of the relevant method, there are uncertainties and 

vagueness in the parameters such as particle size, 

sphericity, initial solid void fraction, envelope density, 

etc. In some cases, there are different methods to 

measure a parameter, such as a particle size that depends 

on the method (based on length, weight, and volume); 

the measured values may be significantly different from 

each other. Therefore, there is no crisp or exactly known 

parameter in many cases because of the fine powders' 

inherent uncertain nature. On the other hand, being 

characteristic of the dynamic systems, physical 

parameters such as temperature and pressure fluctuate 

but can be kept in an acceptable range, affecting the 

main design parameters such as fluid density and 

dynamic viscosity.  

The most traditional tools and methods for simulating, 

modeling, and reasoning are crisp, deterministic, and 

precise, but these values are estimated or changing 

(randomly or stochastically). Several approaches can 

describe this phenomenon. Moreover, when it comes to 

uncertainties, mathematical tools are probably the best 

solutions.  With the fuzzy set theory method, linguistic 

variables or ranges can be converted to mathematical 

expressions, and consequently, instead of crisp values, 

these can be applied to the equations. The uncertainty 

analysis can be more important when the model is 

susceptible to one parameter. A preliminary sensitivity 

analysis on a fluidized bed application has shown that 

the solid void fraction has the highest, and the fluid 

density has the lowest sensitivity to its operation. The 

performed uncertain theoretical approach has been 

validated by CPFD simulation using Barracuda v20.1.0.  

Keywords: Fuzzy set theory, Sensitivity analysis, 

uncertainty analysis, circulating fluidized bed reactor, 

CPFD simulation 

1 Introduction 

In general, a solid particle in a fluid behaves in a state of 

uncertainty. This fact motivates to study the behavior of 

uncertain phenomena. Most traditional formal 

modeling, reasoning, and computing tools are crisp, 

deterministic, and precise. In order to model 

uncertainty, it is essential to know the uncertainty causes 

in nature and how it is possible to deal with it. In real-

life applications, the system complexity inevitably 

results in weak models with a high degree of parametric 

or functional uncertainty. If the controlled system has a 

multi-valued function or exhibits several modes of 

behavior during the operation, the problem gets much 

more complex (Herzallah, 2005). 

Generally, gas-solid systems perform pretty in 

different ways under minor changes of process 

conditions. For example, changing the velocity from 

below the minimum fluidization velocity up to a very 

high velocity, the system experiences many regimes 

such as the fixed bed, minimum fluidization, smooth, 

bubbling, slugging, turbulent fluidization, and finally 

lean phase fluidization with pneumatic transport (Kunii 

& Levenspiel, 1991). For instance, the hydrodynamics 

in the fluidized bed is heavily influenced by solid 

particle properties such as size distribution, sphericity, 

and voidage. The measurement error, for instance, 

maybe the most crucial factor for the uncertainty of the 

particle size distribution (Tinke, 2020). 

There are different approaches to categorizing 

uncertainties in a system. These can be classified into 

two categories. The first is the uncertainty in a 

mathematical sense due to the difference between 

measured, estimated, and actual values, including errors 

in observations or calculations (Zhu, 2015). The second 

is the sources of uncertainty, including uncertainty in the 

particle and fluid physical properties, reaction kinetics 

(Valkó & Turányi, 2020), reactor temperature, etc.  

Traditional and deterministic approaches to a complex 

system study (such as powder and particulate systems) 

would not deal with the above uncertainties. Therefore, 

as seen in Figure 1, the most used uncertainty modeling 

techniques include probabilistic, possibilistic, and 

hybrid possibilistic–probabilistic methods, information 

Gap decision theory (IGDT), and robust optimization 

(Aien et al., 2016). 

These approaches are primarily used to assess the 

effect of uncertain input parameters on system output 

parameters. The critical distinction between these 
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methods is that they use different ways to describe the 

ambiguity of input parameters. The following is a short 

overview of how the above approaches can be used to 

model uncertainty: 

• Probabilistic approach: it is assumed that the 

probability distribution functions of input variables are 

known. One of the earliest works in stochastic 

programming was done by (Dantzig, 1955). 

• Possibilistic approach: a membership function is 

assigned to model input parameters in this approach 

(Zadeh, 1999). 

•  Hybrid possibilistic–probabilistic approaches: in this 

approach, both random and possibilistic parameters are 

used to handle the uncertain input parameters (Aien et 

al., 2014; Soroudi & Ehsan, 2011).  

• Information Gap Decision Theory (IGDT): contrary to 

probabilistic and possibilistic decision theory, this does 

not use probability distribution or membership function. 

Instead, it measures the deviation of differences between 

parameters and their estimates, but not the probability of 

outcomes (Ben-Haim, 2001). 

• Robust optimization: For describing the uncertainty of 

input parameters, uncertainty sets are used. Obtained 

decisions are optimal for the worst-case realization of 

the uncertain parameter within a given set by using this 

technique (Soyster, 1973). 

• Interval analysis: The unknown parameters are 

assumed to take their values from a known interval. It 

resembles probabilistic simulation with a uniform 

probability distribution function in several ways (Moore 

et al., 2009). 

Between these causes, the lack of information and 

measurement errors found in the system can be modeled 

with the fuzzy set theory, which was first introduced in 

1965 (Zadeh, 1965). Reducing the weaknesses of the 

probability theory, Zadeh introduced the possibility 

theory (Zadeh, 1999), which naturally complements the 

fuzzy set theory for handling uncertainty induced by 

fuzzy and incomplete pieces of information. Possibility 

theory turns out to be a non-probabilistic view of 

uncertainty that aims to model states of partial or 

complete ignorance rather than capture randomness.  

Using this theory, Dubois and parade (Dubois & Prade, 

1983) have studied the ranking of fuzzy numbers 

considering the possibility and necessity of events. 

(Goetschel & Voxman, 1986) have introduced a model 

for ranking fuzzy numbers, which become the primary 

notion for introducing possibilistic moments by Carlson 

and Fuller (Carlsson & Fullér, 2001). 

On the other hand, the term "sensitivity" describes 

how our outcomes vary when assumptions in our model 

are changed. When sensitivity is high, the results 

fluctuate dramatically when specific assumptions are 

changed; these assumptions must be extremely well 

established (Fragoulakis et al., 2015). The Sensitivity 

Analysis (SA) method is a numerical model that 

examines how uncertainties in one or more input 

variables might lead to uncertainties in the output 

variables (Pichery, 2014). In general, there are two 

approaches to sensitivity analysis, global and local. The 

behavior of input parameters on the change of the model 

output is the focus of global SA, while a local SA looks 

at sensitivity concerning a single parameter value 

change. In contrast, a global analysis looks at sensitivity 

throughout the parameter field (Abedi et al., 2016).  

The present study aims to find the parameters that a 

circulating fluidized bed is sensitive to (using the local 

SA method) and apply the fuzzy set theory to the 

mathematical calculations. As numerical examples, the 

calculated minimum fluidization velocity and cyclone 

efficiency for the alumina chlorination FBR 

(Barahmand et al., 2021a) will be compared with the 

CPFD results. The mathematical approach focuses on 

Generalized Trapezoidal Fuzzy Numbers (GTrFN) 

algebraic operations through α-cuts (Zhang et al., 2014) 

and its application in the CFB. 

The present paper describes the fuzzy sets' basic 

definitions and algebraic operations, properties, and 

sensitivity analysis. Finally, some numerical examples 

have adopted the fuzzy model to calculate the minimum 

fluidization velocity and cyclone efficiency under 

uncertainty. 

2 Fuzzy Set Basics 

This section introduces the basic concepts and 

definitions used in fuzzy sets theory to facilitate future 

discussions. The notation and concepts introduced by 

(Carlsson & Fullér, 2001), (Fullér & Majlender, 2003), 

and (Zimmermann, 1985) are used in this section. 

Figure 1. The uncertainty modeling approaches  
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2.1 Definitions 

Definition 1 fuzzy set A, denoted �̃�, is characterized by 

a Membership Function (MF) 𝜇�̃�(𝑥), where 𝑥 ∈ 𝑋 

(Thavaneswaran et al., 2009). 

�̃� = {(𝑥, 𝜇𝐴(𝑋))|𝑥 ∈ 𝐴}   ,    𝜇𝐴(𝑋): 𝑋 → {0,1} (1) 

𝜇�̃�(𝑥)  is the degree of membership of 𝑋 in �̃�. The closer 

the value of 𝜇�̃�(𝑥) is to 1, the more 𝑥 belongs to �̃�. 

Definition 2 Let �̃� be a fuzzy set in 𝑋. Then the support 

of �̃�, denoted by 𝑆𝑢𝑝𝑝(𝐴), is the crisp set given by, 

𝑆𝑢𝑝𝑝(𝐴) = {𝑥 ∈ 𝑋: 𝜇𝐴 (𝑥) > 0}, (2) 

Definition 3 Let �̃� be a fuzzy set in 𝑋. The height ℎ(𝐴) 
of �̃� is defined as, 

𝑆ℎ(𝐴) = 𝑠𝑢𝑝
𝑥∈𝑋

𝜇�̃� (𝑥) (3) 

Definition 4 If ℎ(𝐴) = 1, then the fuzzy set �̃� is called 

a normal fuzzy set. 

Definition 5 A Fuzzy Number �̃� is a fuzzy set on the 

real-line R, which possesses the following properties 

(Carlsson & Fullér, 2001). 

(1) A is a normal, convex fuzzy set on R, 

(2) The 𝐴(𝛼) is a closed interval for every 𝛼 ∈ (0,1], 
(3)The membership function is an upper semi-

continuous, and 

(4) The support of �̃�, 𝑆(𝐴) = {𝑥 ∈ 𝐴 ∶  𝜇𝐴(𝑋) > 0}, is 

bounded. 

Definition 6 As shown in Figure 2, a trapezoidal fuzzy 

number �̃� = [𝑎1, 𝑎2, 𝑎3, 𝑎4](𝑚,𝑛) is defined to be 

Generalized Trapezoidal Fuzzy Number having orders 

of 𝑚 and 𝑛  (GTrFN or TrFN(𝑚, 𝑛)) if the MF is given 

by, 

𝜇𝐴(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

    

0                             𝑥 ≤ 𝑎1

ℎ(𝐴) (
𝑥 − 𝑎1
𝑎2 − 𝑎1

)
𝑚

           𝑎1 ≤ 𝑥 ≤ 𝑎2

ℎ(𝐴)                    𝑎2 ≤ 𝑥 ≤ 𝑎3

ℎ(𝐴) (
𝑥 − 𝑎4
𝑎3 − 𝑎4

)
𝑛

           𝑎3 ≤ 𝑥 ≤ 𝑎4

0                             𝑥 ≥ 𝑎4

 (4) 

 

Definition 7 An 𝛼 − 𝑐𝑢𝑡 (interval of confidence) 

denoted by 𝐴(𝛼) is the crisp set of elements x∈ℛ whose 

degree of belonging to the fuzzy set �̃� is at least α 

(Thavaneswaran et al., 2013). 

𝐴(𝛼) = {𝑥 ∈ 𝐴| 𝜇𝐴(𝑋) ≥ 𝛼 ∈ (0,1]} = 𝐴(𝛼)

= [𝑎1
(𝛼), 𝑎2

(𝛼) ] 
(5) 

Putting membership functions in definition 6 equal to 𝛼,  

and by finding 𝑥, the equation (5) will be reached. 

𝐴(𝛼) = [𝑎1
(𝛼), 𝑎2

(𝛼) ] = 

[𝑎1 + (𝑎2 − 𝑎1) (
𝛼

ℎ(𝐴)
)

1
𝑚
 , 𝑎4 + (𝑎3 − 𝑎4) (

𝛼

ℎ(𝐴)
)

1
𝑛
] 

(6) 

Definition 8 Defuzzification (Karnik & Mendel, 2001) 

of a fuzzy set �̃� with Center of Gravity (CoG) method 

can be defined as whose domain, 𝑥 ∈ 𝑋, is discretized 

into N sub-areas, 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑁, is given as, 

𝑐�̃� =
∑ 𝑥𝑖
𝑁
𝑖=1 𝐴𝑖
∑ 𝐴𝑖
𝑁
𝑖=1

 (7) 

where, 𝑥𝑖 is the CoG in sub-areas. 

Definition 9 The f-weighted possibilistic mean value of 

a fuzzy number (�̃� = [𝑎1, 𝑎2, 𝑎3, 𝑎4](𝑚,𝑛)) is defined as 

(Carlsson & Fullér, 2001; Fullér & Majlender, 2003), 

�̅�(𝐴) =
𝑎1+𝑎4
2

+
(𝑎2 − 𝑎1)𝑚

(2𝑚 + 1)
+
(𝑎3 − 𝑎4)𝑛

(2𝑛 + 1)
 (8) 

3 Sensitivity Analysis 

The local sensitivity analysis (Zhou & Lin, 2008) 

technique defines how an independent variable will 

impact a specific dependent variable under a given set 

of assumptions. In this model, the sensitivity of the 

minimum fluidization velocity to five different 

parameters (which have uncertainty in nature) has been 

studied. These parameters are the voidage at the 

minimum fluidization condition, fluid and solid 

Figure 2 The generalized trapezoidal fuzzy number applying for different orders 
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particles density, average particle diameter, particle 

sphericity, and gas viscosity. 

In the simplified case, with microscopic particles 

(𝑅𝑒𝑚𝑓 < 20), the minimum fluidization velocity can be 

calculated by, 

𝑢𝑚𝑓 =
𝑑𝑝
2 (𝜌𝑠 − 𝜌𝑔)𝑔

150 𝜇
.
𝜀𝑚𝑓
3  ∅𝑠

2

1 − 𝜀𝑚𝑓
 (9) 

where, 𝑅𝑒𝑚𝑓 is Reynolds number at the minimum 

fluidization condition, 𝑔 is the acceleration gravity,  
𝜀𝑚𝑓 is the voidage at the minimum fluidization 

condition, 𝜌𝑔 and 𝜌𝑠 are the fluid and solid particles 

density, respectively,  𝑑𝑃 is the average particle 

diameter, 𝜇 is the fluid dynamic viscosity and  ∅𝑠 is the 

particle sphericity.  

Table 1. Sensitivity Analysis of minimum fluidization 

velocity in a fluidized bed 

 Output Input 

 𝑢𝑚𝑓 𝜀𝑚𝑓 

Initial 0.00452 0.4 

Secondary 0.01059 0.5 

% changed 134% 25% 

Sensitivity 134/25 = 5.36 

 𝑢𝑚𝑓 𝜌𝑔 

Initial 0.01059 0.93 

Secondary 0.01059 2 

% changed 0% 115% 

Sensitivity 

 

0/115 = 0 

 𝑢𝑚𝑓 𝑑𝑃 

Initial 0.01059 0.000098 

Secondary 0.01588 0.000120 

% changed 49.9% 22.5% 

Sensitivity 

 

49.9/22.5 = 2.22 

 𝑢𝑚𝑓 ∅𝑠 

Initial 0.00939 0.8 

Secondary 0.01188 0.9 

% changed 26.5% 12.5 

Sensitivity 

 

26.5/12.5 = 2.12 

 𝑢𝑚𝑓 𝜇 

Initial 0.01059 0.000042 

Secondary 0.00747 0.000060 

% changed -29.5% 42.8% 

Sensitivity 

 

29.5/42.8 = 0.68 

The results in Table 1 show that the highest sensitivity 

belongs to the 𝜀𝑚𝑓. On the contrary, the model is not 

sensitive to the 𝜌𝑔. The fluid’s dynamic viscosity has the 

second-lowest sensitivity. When it comes to defining a 

value for each, the value for the voidage must be chosen 

as accurately as possible because it has the highest 

sensitivity in the model.  

4 Fuzzy Models 

4.1 Minimum Fluidization Velocity 

Using definition (6), except for solid particle density and 

acceleration of gravity can be assumed as deterministic 

parameters, other parameters are considered as a 

GTrFN. Therefore,  

�̃�𝑝 = (�̃�𝑝1, �̃�𝑝2, �̃�𝑝3, �̃�𝑝4, ℎ(�̃�𝑝))𝑚,𝑛 

�̃�𝑔 = (�̃�𝑔1, �̃�𝑔2, �̃�𝑔3, �̃�𝑔4, ℎ(�̃�𝑔))𝑚,𝑛 

𝜀�̃�𝑓 = (𝜀�̃�𝑓1, 𝜀�̃�𝑓2, 𝜀�̃�𝑓3, 𝜀�̃�𝑓4, ℎ(𝜀�̃�𝑓))𝑚,𝑛 

�̃� = (�̃�1, �̃�2, �̃�3, �̃�4, ℎ(�̃�))𝑚,𝑛 

∅̃𝑠 = (∅̃𝑠1, ∅̃𝑠2, ∅̃𝑠3, ∅̃𝑠4, ℎ(∅̃𝑠))𝑚,𝑛 

The fuzzy form of the equation (7) is,  

�̃�𝑚𝑓 =
�̃�𝑝
2 (𝜌𝑠 − �̃�𝑔)𝑔

150 �̃�
.
𝜀�̃�𝑓
3  ∅̃𝑠

2

1 − 𝜀�̃�𝑓
 (10) 

Based on the introduced procedure in (Appadoo, 2006) 

and definition (7), the upper and lower  𝛼–cuts of the 

�̃�𝑚𝑓 (�̃�𝑚𝑓 = [�̃�𝑚𝑓
1 (𝛼) , �̃�𝑚𝑓

2 (𝛼) ]),  can be written as 

below: 

�̃�𝑚𝑓
1 (𝛼)

=
�̃�𝑝1
2  (𝜌𝑠 − �̃�𝑔1)𝑔𝜀�̃�𝑓1

3  ∅̃𝑠1
2

150 �̃�1(1 − 𝜀�̃�𝑓1)

+ (
�̃�𝑝2
2  (𝜌𝑠 − �̃�𝑔2)𝑔𝜀�̃�𝑓2

3  ∅̃𝑠2
2

150 �̃�2(1 − 𝜀�̃�𝑓2)

−
�̃�𝑝1
2  (𝜌𝑠 − �̃�𝑔1)𝑔𝜀�̃�𝑓1

3  ∅̃𝑠1
2

150 �̃�1(1 − 𝜀�̃�𝑓1)
) (

𝛼

ℎ(�̃�𝑚𝑓)
)

1
𝑚

 

(11) 

�̃�𝑚𝑓
2 (𝛼)

=
�̃�𝑝4
2  (𝜌𝑠 − �̃�𝑔4)𝑔𝜀�̃�𝑓4

3  ∅̃𝑠4
2

150 �̃�4(1 − 𝜀�̃�𝑓4)

+ (
�̃�𝑝3
2  (𝜌𝑠 − �̃�𝑔3)𝑔𝜀�̃�𝑓3

3  ∅̃𝑠3
2

150 �̃�3(1 − 𝜀�̃�𝑓3)

−
�̃�𝑝4
2  (𝜌𝑠 − �̃�𝑔4)𝑔𝜀�̃�𝑓4

3  ∅̃𝑠4
2

150 �̃�4(1 − 𝜀�̃�𝑓4)
) (

𝛼

ℎ(�̃�𝑚𝑓)
)

1
𝑛

 

(12) 

As a result, the standard form of the fuzzy minimum 

fluidization velocity will be: 

�̃�𝑚𝑓
= (�̃�𝑚𝑓1, �̃�𝑚𝑓2, �̃�𝑚𝑓3, �̃�𝑚𝑓4, ℎ(�̃�𝑚𝑓))𝑚,𝑛 

 

(13) 

where, ℎ(�̃�𝑚𝑓) can be calculated as the following, 

ℎ(�̃�𝑚𝑓) =

𝑀𝑖𝑛{ℎ(�̃�𝑝), ℎ(�̃�𝑔), ℎ(𝜀�̃�𝑓), ℎ(�̃�), ℎ(∅̃𝑠)}  
(14) 
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The membership function of the �̃�𝑚𝑓 can be calculated 

from equation (15).  

4.2 Cyclone Efficiency 

In general, cyclones are the most common kind of 

mechanical separator. This basic system has very high 

efficiency with a low-pressure drop without any moving 

mechanical components, which are the most favorable 

advantages. A cyclone is a device that separates solid 

particles from a fluid by centrifugal force and works 

simply by the kinetic energy of the incoming mixture 

(flow stream) and the geometry of the cyclone. Particle 

(in fluid) velocity and residence time are two main 

factors in cyclone design (Cooper & Alley, 2010). A 

typical cyclone scheme is shown in Figure 3.  

 

Figure 3. Components of a vertical axis tangential entry 

cyclone (Afework et al., 2018) 

Because of the cyclone's cylindrical form and the 

tangential entrance of the gas, the gas-solid suspension 

flows in two concentric vortices around the cyclone.  

The outer vortex is heading downward, while the central 

vortex is moving upward. Solids with a higher density 

than flue gas exit the outer vortex and pass against the 

wall due to centrifugal force. The comparatively clean 

gas rises through the inner vortex and leaves through a 

vertical exit on the cyclone's top (Basu, 2015). 

Many parameters affect cyclone efficiency. Table 2 

shows the effect of design and process parameters on 

cyclones’ efficiency (Cooper & Alley, 2010). If the 

parameter increases, the cyclone’s efficiency will: 

Table 2. Effect of parameters on the cyclone efficiency 

Parameter  

Particle size Increase 

Particle density Increase 

Dust loading Increase* 

Inlet gas velocity Increase* 

Cyclone body diameter Decrease 

The ratio of body length to diameter Increase 

The smoothness of cyclone’s inner wall Increase 

Gas viscosity Decrease 

Gas density Decrease 

Gas inlet duct area Decrease 

Gas exit pipe diameter Decrease 

*With these parameters, cyclone efficiency can only 

increase to a certain point and then decrease. 

 

Similarly, as explained in Section 4.1, the uncertainty 

has been applied to the cyclone calculations based on the  

𝜇𝑢𝑚𝑓(𝑥) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

    

0                                                                                     𝑥 ≤ �̃�𝑚𝑓1

ℎ(�̃�𝑚𝑓)

(

 
 

𝑥 −
�̃�𝑝1
2  (𝜌𝑠 − �̃�𝑔1)𝑔𝜀�̃�𝑓1

3  ∅̃𝑠1
2

150 �̃�1(1 − 𝜀�̃�𝑓1)

�̃�𝑝2
2  (𝜌𝑠 − �̃�𝑔2)𝑔𝜀�̃�𝑓2

3  ∅̃𝑠2
2

150 �̃�2(1 − 𝜀�̃�𝑓2)
−
�̃�𝑝1
2  (𝜌𝑠 − �̃�𝑔1)𝑔𝜀�̃�𝑓1

3  ∅̃𝑠1
2

150 �̃�1(1 − 𝜀�̃�𝑓1) )

 
 

𝑚

           �̃�𝑚𝑓1 ≤ 𝑥 ≤ �̃�𝑚𝑓2

ℎ(�̃�𝑚𝑓)                                                               �̃�𝑚𝑓2 ≤ 𝑥 ≤ �̃�𝑚𝑓3

ℎ(�̃�𝑚𝑓)

(

 
 

𝑥 −
�̃�𝑝4
2  (𝜌𝑠 − �̃�𝑔4)𝑔𝜀�̃�𝑓4

3  ∅̃𝑠4
2

150 �̃�4(1 − 𝜀�̃�𝑓4)

�̃�𝑝3
2  (𝜌𝑠 − �̃�𝑔3)𝑔𝜀�̃�𝑓3

3  ∅̃𝑠3
2

150 �̃�3(1 − 𝜀�̃�𝑓3)
−
�̃�𝑝4
2  (𝜌𝑠 − �̃�𝑔4)𝑔𝜀�̃�𝑓4

3  ∅̃𝑠4
2

150 �̃�4(1 − 𝜀�̃�𝑓4) )

 
 

𝑛

           �̃�𝑚𝑓3 ≤ 𝑥 ≤ �̃�𝑚𝑓4

0                                                                                     𝑥 ≥ �̃�𝑚𝑓4

 

 

(15) 
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Table 3. Model’s deterministic and fuzzy parameters                              

 

Lapple method (Cooper & Alley, 2010). As a result, the 

cyclone efficiency can be calculated by equation 16.  

𝜂 =
1

1 + (
𝑑50
𝑑𝑝
)
2 

(16) 

 

where, 𝜂 is the cyclone efficiency, 𝑑𝑝 is the average 

particle diameter and 𝑑50 can be calculated by the 

equation below. 

𝑑50 = √
9𝜇𝑊

2𝜋𝜗𝑖𝑛(𝜌𝑝 − 𝜌𝑔)𝑁𝐴
 (17) 

where, 𝜗𝑖𝑛 in the fluid’s superficial velocity inlet to the 

cyclone, 𝑊 is the cyclone’s inlet width and 𝑁𝐴 is: 

𝑁𝐴 =
𝐿𝑏 + 0.5𝐿𝑐

𝐻
 (18) 

where, 𝐿𝑏 is the cyclone main body height, 𝐿𝑐 is the 

height of the conical part of the cyclone, and 𝐻 is the 

height of the inlet of the cyclone. All the parameters in 

this equation are deterministic. In equations 16 and 17, 

except 𝑁𝐴, 𝜌𝑝 and 𝑊 other parameters can be assumed 

as the fuzzy number as below,  

�̃�𝑝 = (�̃�𝑝1, �̃�𝑝2, �̃�𝑝3, �̃�𝑝4, ℎ(�̃�𝑝))𝑚,𝑛 

�̃�𝑔 = (�̃�𝑔1, �̃�𝑔2, �̃�𝑔3, �̃�𝑔4, ℎ(�̃�𝑔))𝑚,𝑛 

�̃�𝑖𝑛 = (�̃�1, �̃�2, �̃�3, �̃�4, ℎ(�̃�𝑖𝑛))𝑚,𝑛 

�̃� = (�̃�1, �̃�2, �̃�3, �̃�4, ℎ(�̃�))𝑚,𝑛 

In equation 15, defining the fuzzy 𝑑𝑝 is sufficient 

because the value for 𝑑50 (which all the uncertainties 

have been considered) will be calculated accordingly.  

Equation 16 is an intermediate equation that can be 

used in the central equation. Therefore, the possibilistic 
mean value of the uncertain parameters can be used to 

calculate 𝑑50. Based on definition 9, equation (17) can 

be written in the following form: 

�̅�50 = √
9�̅�𝑊

2𝜋�̅�𝑖𝑛(𝜌𝑝 − �̅�𝑔)𝑁𝐴
 (19) 

 

 

where, �̅�, �̅�𝑖𝑛, and �̅�𝑔 are the possibilistic mean value 

for the corresponding parameters.  

Now, the fuzzy form of the cyclone’s efficiency can be 

written as, 

𝜂 =
1

1 + (
�̅�50
�̃�𝑝
)

2 
(20) 

Based on definition 7, the upper and lower  𝛼–cuts of 

the 𝜂 can be written as below: 

𝜂 =
1

1 + (
�̅�50
�̃�𝑝1

)

2 +

(

 
 
 1

1 + (
�̅�50
�̃�𝑝2

)

2

−
1

1 + (
�̅�50
�̃�𝑝1

)

2

)

 
 
 
(
𝛼

ℎ(𝜂)
)

1
𝑚

 

(21) 

𝜂 =
1

1 + (
�̅�50
�̃�𝑝4

)

2 +

(

 
 
 1

1 + (
�̅�50
�̃�𝑝3

)

2

−
1

1 + (
�̅�50
�̃�𝑝4

)

2

)

 
 
 
(
𝛼

ℎ(𝜂)
)

1
𝑛
 

(22) 

 

where, ℎ(𝜂) can be calculated as the following, 

ℎ(𝜂) = 𝑀𝑖𝑛{ℎ(�̃�𝑝), ℎ(�̃�𝑔), ℎ(�̃�𝑖𝑛), ℎ(�̃�)}  (23) 

5 Numerical Examples 

5.1 Minimum fluidization Velocity 

The following trapezoidal fuzzy parameters are defined 

for the alumina chlorination in a fluidized bed reactor 

(Barahmand et al., 2021b). There are different methods 

to define a fuzzy number. For fuzzy particle diameter, 

  

Value 

Crisp 

Value 

Normal Linear Trapezoidal Fuzzy 

Number 

Weighted 

P-Mean 

Defuzzified 

(CoG method) 

𝑑𝑝 𝜇𝑚 98 (20, 75, 115, 190, 1)1,1 103 102 

𝜌𝑠 𝑘𝑔/𝑚3 3958 - - - 

𝜌𝑔 𝑘𝑔/𝑚3 9.29e-01 (1.04, 9.38e-01, 9.19e-01, 8.24e-01, 1)1,1 9.32e-01 9.31e-01 

𝜀𝑚𝑓 - 0.4 (0.35, 0.39, 0.41, 0.42, 1)1,1 0.39 0.4 

𝑔 𝑚/𝑠2 9.8 - - - 

𝜇 𝑘𝑔/𝑚𝑠 4.2e-05 (3.68e-05, 4.23e-05, 4.39e-05, 5.04e-05, 1)1,1 4.3e-05 4.3e-05 

∅𝑠 - 0.85 (0.5, 0.65, 0.75, 0.90, 1)1,1 0.7 0.7 
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as an example, this can be achieved by fitting a 

trapezoidal to the size distribution diagram (Figure 4). 

In this case, the fuzzy particle diameter can be defined 

as, 

 �̃�𝑝 = (20, 75, 115,190,1)1,1 

This fuzzy number shows that the particles with a 

diameter less and more than 25 and 190 microns do not 

belong to this fuzzy set (the range is between extreme 

values). The other helpful information given by this 

fuzzy number is that the particles with a diameter of 85-

125 microns 100% belong to this set. To make it more 

straightforward, as an example, assume a set defined as 

the black balls. The white, light grey, dark grey, and 

black balls belong to this set with different belonging 

degrees. In this case, the belonging degree in the range 

[0, 1] for these balls is 0, 0.2, 0.8, and 1, respectively.  

 

 

Figure 4. Fitted trapezoidal to the alumina size 

distribution 

Similarly, the other parameters can be defined by 

operating conditions, results from the dynamic system 

(fluctuations), experiments, etc.  

Table 3 gives the deterministic and fuzzy values used in 

the numerical example. As an example, for the fluid’s 

density and dynamic viscosity, the interval of the 

midpoints and endpoints are calculated based on ±10℃ 

and ±40℃, respectively. 

By applying the data into equations 11 and 12, the 

minimum fluidization velocity 𝛼–cuts can be derived as, 

�̃�𝑚𝑓 = [�̃�𝑚𝑓
1 (𝛼) , �̃�𝑚𝑓

2 (𝛼) ] 

         = [0.00012 + 0.00256𝛼 , 0.02133 − 0.014𝛼] 
To find the interior and endpoints, let 𝛼 = 1 and 𝛼 = 0 

in equation (13). As a result, the fuzzy minimum 

fluidization velocity can be defined as below, 

�̃�𝑚𝑓 = (0.00012, 0.00268, 0.00733, 0.02136), where 

the membership function is, 

 

𝜇𝑢𝑚𝑓(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

    

0                                          𝑥 ≤ 0.00012

𝑥 − 0.00012

0.00256
    0.00012 ≤ 𝑥 ≤ 0.00268

1                    0.00268 ≤ 𝑥 ≤ 0.00733

𝑥 − 0.02136

−0.014
       0.00733 ≤ 𝑥 ≤ 0.02136

0                                          𝑥 ≥ 0.02136

 

 

Now, based on the above membership and calculated α-

cuts (Table 4) and the graphical fuzzy minimum 

fluidization velocity is presented in Figure 5.  

 

Table 4. �̃�𝒎𝒇 α-cuts with linear membership functions  

𝛼 0.00 0.20 0.40 0.60 0.80 1.00 

�̃�𝑚𝑓
1  0.012 0.063 0.114 0.166 0.20 0.27 

𝛼 0.00 0.20 0.40 0.60 0.80 1.00 

�̃�𝑚𝑓
2  2.14 1.72 1.43 1.29 1.01 0.73 

 

Considering all uncertain and certain parameters, the 

calculated fuzzy minimum fluidization velocity is given 

in Figure 4. 

 

 

Figure 5. Calculated fuzzy minimum fluidization velocity 

with linear membership functions.  

The results show that the minimum fluidization velocity 

without considering uncertainty has been calculated as 

0.32 cm/s, ideally in the range with the highest 

belonging degree in the fuzzy number. The fuzzy 

minimum fluidization velocity gives more information.  

This analysis illustrates that considering all the defined 

uncertainties, the minimum fluidization velocity will not 

be more than 2.14 cm/s and not drop below 0.012 cm/s, 

but the velocities in the range [0.27, 0.73] cm/s have the 

highest belonging degree to this set. As seen in Figure 

5, the average deterministic value of this fuzzy number 

(defuzzified based on the center of gravity method and 

possibilistic mean). Instead of the deterministic 

calculated value, these values can be used in further 

reactor design calculations, representing the model's 

uncertainty.  

5.2 Cyclone Efficiency 

5.2.1 Base model 

To study the performance of the cyclone in a specific 

operating condition, a CPFD simulation has been done 

to study the performance of the cyclone in a specific 

operating condition. The cyclone diameter has been 
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chosen 0.5 m, and all other dimensions can be calculated 

accordingly. The model has been simulated under the 

following operating condition, as shown in Table 5. 

Figure 6 shows a snapshot of the cyclone simulation in 

an isothermal condition. As it is clear, most of the 

particles leave the system from the bottom. Therefore, 

the average cyclone efficiency can be calculated by 

dividing the average particle mass flow rates between 

the bottom and the inlet.  

 

Table 5. Cyclone’s operating conditions used for the 

simulations 

Number of cells in setup grid:  500000 

Fluid superficial velocity (inlet) 36.5   m/s 

Particle  duty in: 0.3  kg/s 

Temperature: 973.15  K 

Outlet pressure: 1.5  bars 

Average particle diameter: 20  microns 

Fluid density: 1.3318  kg/m3 

Fluid dynamic viscosity: 0.0000287893  pa.s 

Cyclone type: High-Efficiency 

Nominal efficiency: 99% 

Particle density: 2100  kg/m3 

 

 

Figure 6. Particle distribution inside the cyclone 

5.2.2 Uncertainty in Theoretical Approach 

As discussed in Section 4.2, for the first step, the fuzzy 

parameters should be defined. The particle diameter and 

superficial velocity inlet to the cyclone are assumed as 

fuzzy numbers with linear membership functions (m and 

n equal to 1). Other parameters are kept the same as 

Table 5. 

�̃�𝑝 = (10, 18, 20, 22, 1)  

�̃�𝑖𝑛 = (35.64, 36.42, 36.92, 37.34, 1)  

Following the procedure in Section 4.2, in the second 

step, using definition 9, �̅�50 can be calculated by using 

possibilistic mean values in equation 19. From 

equations 21 and 22, the fuzzy efficiency of the cyclone 

can be calculated as Figure 7. 

5.2.3 Uncertainty in CPFD Model 

In the base model, the particle duty entered into the 

system has been set to 0.3 kg/s. To study the uncertainty 

using Barracuda® as the best alternative, the particle 

duty inlet to the cyclone has been chosen because all 

other uncertain parameters directly or indirectly affect 

the particle mass concentration.  

 

 

Figure 7. Fuzzy cyclone efficiency 

 
According to Table 6, by increasing the particle duty, 

the cyclone’s efficiency will increase, and after a 

certain point, it will start to drop. By investigating this 

with the CPFD simulation, the following results have 

been observed (Table 6). 

Table 6. Sensitivity of Cyclone efficiency to particle 

concentrations inlet to the cyclone 

Particle duty 

(kg/s) 

Particle Escape 

 (kg/s) 

Efficiency  

(%) 

0.05 0.002676 94.6 

0.1 0.005447 94.6 

0.2 0.007239 96.4 

0.3 0.008284 97.2 

0.4 0.011694 97.1 

 

The calculated fuzzy efficiency is in the overall range of 

92.3-98.3%. On the other hand, the CPFD simulation 

shows the efficiency in the range 94.6-97.1%. Using the 

parameters in Table 5 and applying equation 16, the 

theoretical efficiency can be calculated at 98%. Figure 7 

clearly shows these calculated efficiency ranges with the 

highest belonging degree (97.5-98%). On the other 

hand, there is more information about the efficiency of 

the system. Considering all the defined uncertainties, the 

possibility of having efficiency lower than 92.3% and 

higher than 98.3% is very low, and the efficiency will 

be in the range of 92.3-98.3%. This range covers the 

range resulted from CPFD simulation.  
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6 Conclusion 

Solid particles and fine powders in many industrial 

systems behave in a state of uncertainty. In a circulating 

fluidized bed, specifically, both sources of uncertainty 

are available. These sources are the uncertainty in a 

mathematical sense due to the difference between 

measured, estimated, and actual values, including errors 

in observations or calculations, and the uncertainty in 

particle and fluid physical properties, reaction kinetics, 

reactor temperature, etc. 

The fuzzy set theory is one of the robust tools which 

can model these uncertainties mathematically. 

Moreover, applying generalized trapezoidal fuzzy sets 

to fluidized bed calculation gives designers and analysts 

a more dependable tool to analyze the uncertainty. As 

can be seen in the result, the fuzzy model is efficient and 

valuable, and without introducing this method, it would 

not be possible to consider this genuine uncertainty. 

Overall, it is pretty clear that except for engineering, 

this fuzzy modeling method has applications in most 

branches of science and life, such as biomedical 

sciences, finance, social sciences, etc. Furthermore, 

future research could extend our model by type-2 

incorporating different heights for fuzzy inputs. 
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