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A B S T R A C T

A dynamic programming model with time-domain simulations of contingencies is created to find the least-
costly operational strategies according to a probabilistic operational criterion with selected preventive and
corrective actions. The results show that the operational model can identify strategies which appear to be
satisfactory according to a static analysis, but where the system response in the time-domain is violating the
systems operational requirements. The model calculates the costs related to many possible operating strategies
compared to models which only search parts of the solution space. This can be useful for TSOs that want to
use the model for decision support. However, computational times are very limiting due to the time-domain
simulations. Consequently, approaches for limiting the number of scenarios or speeding up the time-domain
simulations should be investigated.
1. Introduction

It is widely understood that the current practice of deterministic
reliability criteria may result in sub-optimal power system operation.
In fact, going beyond these criteria to probabilistic reliability criteria
was the topic of the recent European research project GARPUR that
proposed a roadmap for moving towards probabilistic criteria [1]. In
the roadmap they argue that improvements in probabilistic security
constrained optimal power flow (SCOPF) is needed before widespread
adoption of probabilistic reliability criteria by TSOs. One particular
problem they point out is that the AC-SCOPF is non-convex and that
solvers may reach a local optima or even diverge for stressed system
conditions. A point worth noting is that even if the solver reaches the
global optimum, there may be several near-optimal solutions. Since
simulation models are rarely perfect, one of the near-optimal solutions
may from a practical point of view be the preferred solution. Another
aspect they point out is the need to correctly model failure of corrective
actions.

Traditionally operational planning was done according to the de-
terministic N-1 criteria, which states that constraints should not be
violated in case of a single contingency. As an alternative to determinis-
tic approaches, it has been proposed to investigate the risk of violating
constraints [2,3]. However, decisions should not only be taken based on
the risk of violating constraints, instead the aim should be to minimize
the expected costs of operation [4].
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Approaches where one is minimizing the expected cost incurred in
operational planning have been presented [5,6]. In [6] a dc power flow
is used for the power flow and in [5] a transport model is used. More
recent approaches use machine learning for probabilistic operational
planning [7,8]

There has also been research on probabilistic approaches minimiz-
ing the cost of operation in real time operation that are relevant for this
paper [9–13]. The papers [9,10] use AC-power flow and experience
from more detailed dynamic simulations to assess the consequences
from contingencies. DC load flow is used in the papers [11,12], whereas
the paper [13] uses an AC power flow. Recent works include stability
considerations as constraints in the SCOPF. For instance by using a
linearized swing equation and ac power flow, thermal line limits and
frequency limits are considered [14]. Transient stability constraints
are included in an operational planning SCOPF using a deep learning
surrogate model for the stability constraints [15].

In the SCOPF literature there are some outstanding challenges that
have been pointed out. For instance it has been pointed out that the
SCOPF formulations should be more realistic to be useful for opera-
tors [16]. In particular an implicit assumption of AC-SCOPF is that the
transition from one state to another is stable. However, this may not be
the case. A more recent review [17] mentions papers including stability
considerations using approximate considerations or coupling the AC-
SCOPF with time-domain simulations. However, it also points out that
including these constraints may make the problem intractable.
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Nomenclature

Indices

𝑐 Corrective measure
𝑖 Generator
𝑛, 𝑚 Bus
𝑝 Preventive measure
𝑢 Uncertainty realization

Parameters

𝛥𝑚𝑎𝑥∕𝑚𝑖𝑛
𝑛 Maximum/minimum voltage angle (rad)

𝛾𝑐 Probability of corrective measure success
𝜌𝑢 Probability of realization of uncertainty
𝐵𝑛𝑚 Transmission line susceptance (MW)
𝐶 Generation cost (e/MWh)
𝐷𝑛 Electricity demand (MW)
𝐹𝑛𝑚 Transmission line capacity (MW)
𝐺𝑑𝑖𝑠𝑝
𝑖 Generator dispatch (MW)

𝐺𝑖 Generator capacity (MW)
𝑄 Load curtailment cost (e/MWh)
𝑅 Redispatch cost (e/MWh)

Sets

 Buses
 Corrective measures
 Generators
𝑛 Buses connected to bus n
 Preventive measures
 Uncertain parameters

Variables

𝛿𝑛 Voltage angle (rad)
𝛱 Minimum operational cost
𝑑+∕−𝑖 Up/down balancing by generator (MW)
𝑓𝑛𝑚 Flow on transmission line (MW)
𝑔𝑖 Generation (MW)
𝑟𝑛 Load curtailment (MW)

In this paper we aim at tackling the abovementioned challenges
elated to exploring near optimal solutions, detailed modeling of pre-
entive and corrective actions, handling of failure of corrective actions,
nd correctly simulating the transition between states. We want to
chieve a benchmark model that can be used for assessing the correct-
ess of other faster and potentially approximate methods. To achieve
his, we propose a dynamic programming approach using time-domain
imulations. This approach allows us to present several solutions that
re realistic in terms of stability constraints. Moreover, the approach
an easily integrate commercial software for calculating the power
ystem response to contingencies. This will allow for easier imple-
entation. In summary the novel contributions compared to previous

esearch are:

• A dynamic programming approach that also identifies the near
optimal solutions.

• The use of time-domain simulation to ensure that the proposed
solutions are stable and that all costs can be captured.

We want to achieve a benchmark model that can be used for
ssessing the correctness of other faster and potentially approximate
ethods. To achieve this we propose a dynamic programming approach
2

sing time-domain simulations. This approach allows us to present
several solutions that are realistic in terms of stability constraints.
Moreover, the approach can easily integrate commercial software for
calculating the power system response to contingencies. This will allow
for easier implementation.

In Section 2, we present the considered reliability criterion and the
different aspects that influence the operational costs of a power system.
Our methodology for calculating these costs is presented in Section 3,
and the Case Study in Section 4. The results are presented in Section 5,
and the conclusions in Section 6.

2. Theory and definitions

2.1. Power system probabilistic operational planning

In our probabilistic operational planning, we aim at finding the
preventive action 𝑝 ∈  , contingent on an uncertainty set  and a
set of corrective actions , that leads to the lowest expected system
operational cost 𝛱 (1).

𝛱 = min
𝑝∈

𝑆(𝑝 ∣  ,) (1)

where

𝑆(𝑝 ∣  ,) = 𝐷(𝑝, ) +
∑

𝑢∈
𝜌𝑢 min

𝑐∈
𝐶(𝑝, 𝑢, 𝑐) (2)

The cost of an operational strategy 𝑆 is calculated by finding the
generator dispatch cost 𝐷 and the corrective operation cost 𝐶 as shown
in (2). The corrective operation cost is calculated by the probability
𝜌𝑢 of the uncertainty realizations 𝑢 ∈  , while the optimal corrective
action 𝑐 is activated after observing the realization of the uncertainties.
In practice the uncertainty set  include possible realizations of load,
generation price, fault and successful activation of actions uncertain-
ties. Moreover, the uncertainty increases for the actions that are further
ahead in the future.

For calculating the expected system operation costs we use the
following equations:

𝐶(𝑝, 𝑢, 𝑐) = 𝛾𝑐𝑅(𝑝, 𝑢, 𝑐) + (1 − 𝛾𝑐 )𝑅(𝑝, 𝑢, 𝑐0) (3)
𝑅(𝑝, 𝑢, 𝑐) = 𝐹𝐶𝑅(𝑝, 𝑢, 𝑐) + 𝑆𝑃𝑆(𝑐)

+ 𝐶𝐸𝑁𝑆(𝑝, 𝑢, 𝑐) + 𝐵𝐴𝐿(𝑝, 𝑢, 𝑐) (4)

We account for the probability of successful SPS activation, 𝛾𝑐 , by
weighting the system response costs 𝑅 with SPS activation against the
case without SPS activation, 𝑐0 (3). The failure of other corrective
actions can be included in the same manner. As shown by (4), the
system response costs 𝑅, for each combination of preventive action,
realization of uncertainty (e.g. fault) and corrective action is the sum
of the following costs: frequency containment reserves (FCR) activation
cost, SPS activation costs, cost of energy not supplied (CENS) and
balancing costs (BAL).

2.2. Operational requirements and protection

Power system components are protected against harmful operating
conditions. This is done using protection systems that include over-
current and voltage protection of components, such as generators,
transformers and transmission lines. However, the protection systems
should allow for short periods of operation outside rated values to
increase resilience to faults. This is ensured by requiring that the power
system protection do not disconnect important components due to
non-critical dynamic phenomena after faults [18]. An example is fault
ride-through curves which specifies lower and upper bounds on voltage
and frequency within which the protection should not trip.

Similar to protection of system components there are also sys-
tem protection schemes. System protection schemes include strategic
disconnection of specific generators or loads in order to reduce the

consequences of a specific contingency. Contingencies which might
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Fig. 1. Comparison between the total system operational costs, bottleneck costs and
cont of energy not served (CENS) on the 220–420 kV transmission grid level in the
Norwegian power system for the period 2014–2019. CENS is missing for 2019.

Fig. 2. Breakdown of the system operation costs for the Norwegian TSO Statnett from
2016 to 2019.

result in large-scale disconnection of loads or total system collapse
from cascading generator tripping can be avoided by fast and strategic
disconnection specific generators or loads. This can improve the system
state such that it is within the specified operational limits for the
system.

2.3. Cost of power system operational measures

In the Norwegian and most European power systems, structural bot-
tlenecks on transmission corridors are handled by splitting the power
markets into bidding zones. This results in a price difference between
the zones on each side of the bottleneck. Moreover, transmission con-
gestions limit the most cost efficient generators from serving the loads
of the system leading to socio-economic losses. For a congested corridor
between two zones the socio-economic loss is proportional to the
reduced flow due to the congestion [19]. The Norwegian regulator does
not report the congestion cost, however, the congestion rent is reported.
This is the price difference times the flow from the surplus to the deficit
area and is collected by the TSOs. In Fig. 1, the congestion rent is com-
pared with the total system operational costs and the CENS [20]. The
congestion rent is mainly a result of insufficient transmission capacity,
due to thermal or dynamic line ratings. However, the transmission
capacity between two market areas can also be reduced as a preventive
measure to increase the system reliability and improve the dynamic
stability of the power system. The share of the congestion rent which
is a result of lacking transmission capacity or operational measures is
unclear. On the other hand, most of the power system operational costs
are very transparent.

A breakdown of the costs related to system operational measures in
Norway from 2016 to 2019 is shown in Fig. 2 [21]. Procuring sufficient
operational reserves represents a major part of the total power system
operational costs. There are three types of reserves differentiated based
on activation times, from short to long. These are FCR, frequency
restoration reserves (FRR) and restoration reserves (RR). The three
3

Fig. 3. Flow chart for illustrating the algorithm used to simulate power system
operation with preventive and corrective actions.

types of reserves are used for different purposes after a disturbance.
FCR are used to contain frequency variations. FRR are used to restore
the frequency to the nominal value. RR are used to relieve FRR such
that they are available for activation if needed.

Another significant system operation cost is special regulation. Spe-
cial regulation is when a reserve is activated due to a situation which
cannot be resolved by the balancing market (the market for activation
of RR). In such cases balancing might be needed at a specific point in
the system such that a balancing resource is activated, which might
not be the least expensive according to the balancing market merit
order. Special regulation is for example used to relieve congestion on
transmission lines within market areas or local system imbalances after
a fault.

The total cost of SPSs is typically lower than for reserves and special
regulation as it is less frequently used. However, the cost of SPSs was
increased by a factor of 2–3 in 2019. This might be indicative of
the future as less risk-averse operating strategies compared to the N-1
criterion might rely more heavily on SPSs in the case of contingencies.
Relying on SPSs allow TSOs to increase transmission capacities in the
power markets which often results in lower operating costs.

3. Methodology

A dynamic programming model is implemented to simulate the cost
of power system operation subject to selected preventive and corrective
actions. The model consists of three main levels that discretize and
simulate all combinations of preventive actions, faults and corrective
actions, as illustrated by the flow chart in Fig. 3.

3.1. Simulation model

On the first level, inter-area transmission capacities are discretized
to obtain a finite number of preventive strategies. These preventive
strategies represent the available inter market-area capacities which
are set by the TSO. For a given preventive strategy, an optimal power
flow (OPF) is solved to find the cheapest generation schedule to serve
the electricity demand as shown in (5) to (10).

min
∑

𝐶𝑔𝑖 (5)

𝑖∈
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∑

𝑖∈𝑛

𝑔𝑖 +
∑

𝑚∈𝑛

𝑓𝑛𝑚 = 𝐷𝑛 ∀𝑛 ∈  (6)

𝑓𝑛𝑚 = 𝐵𝑛𝑚(𝛿𝑛 − 𝛿𝑚) ∀𝑛 ∈ ,∀𝑚 ∈ 𝑛 (7)

0 ≤ 𝑔𝑖 ≤ 𝐺𝑖 ∀𝑖 ∈  (8)

𝐹𝑛𝑚 ≤ 𝑓𝑛𝑚 ≤ 𝐹𝑛𝑚 ∀𝑛 ∈ ,∀𝑚 ∈ 𝑛 (9)

𝛥𝑚𝑖𝑛
𝑛 ≤ 𝛿𝑛 ≤ 𝛥𝑚𝑎𝑥

𝑛 ∀𝑛 ∈  (10)

This includes the energy balance (6), dc power flow (7), generator
capacity (8), transmission line capacity (9) and voltage angle limits
(10). The OPF represents the day-ahead market clearing. The system
state after the day-ahead market is cleared is defined by the generation,
load, and power flows. The dispatch cost is defined as 𝐷(𝐹𝑛𝑚) =
∑

𝑖∈ 𝐶𝑔𝑖, where 𝐹𝑛𝑚 define the preventive strategy by limiting transfer
capacity on inter-area transmission lines.

A contingency analysis is performed on the second level to evaluate
the reliability of the system state subject to a list of predefined contin-
gencies. A time-domain simulation is performed for each contingency in
the contingency list to check if the system response to these failures is
within certain power system operational requirements specified by the
TSO. The operational requirements are typically upper and lower limits
for bus voltage, system frequency and loading of components such
as generators transformers and transmission lines. The time-domain
simulation includes detailed models with differential equations that
describe the dynamic behavior for all components in the power system,
such as transmission lines, transformers, buses, loads and generators,
including turbine governors and automatic voltage regulators.

On the third level of the algorithm, SPS are activated in a new
time-domain simulation if the combination of a contingency and a
system state leads to a system response that violates the operational
requirements. The algorithm iterates through a predefined list of SPS
in order to find the one that gives the best system response and lowest
costs.

3.2. Post-processing and calculation of costs

After the simulation model is finished, the results from the OPF
and the time-domain simulations are collected and post-processed. The
costs of the operational strategy is calculated according to (2)–(4). The
FCR costs are given directly by the system response, while the SPS
activation costs are given by the optimal corrective action. The optimal
CENS and balancing costs (BAL) are calculated by two optimization
models for emergency response and balancing, both models are defined
by the equations in (11) to (17).

min
∑

𝑖∈
𝑅(𝑑+𝑖 + 𝑑−𝑖 ) +

∑

𝑛∈
𝑄𝑟𝑛 (11)

∑

𝑖∈𝑛

𝑔𝑖 +
∑

𝑚∈𝑛

𝑓𝑛𝑚 + 𝑟𝑛 = 𝐷′
𝑛 ∀𝑛 ∈  (12)

𝑑−𝑖 − 𝑑+𝑖 = 𝐺𝑑𝑖𝑠𝑝
𝑖 − 𝑔𝑖 ∀𝑖 ∈  (13)

𝑓𝑛𝑚 = 𝐵𝑛𝑚(𝛿𝑛 − 𝛿𝑚) ∀𝑛 ∈ ,∀𝑚 ∈ 𝑛 (14)

0 ≤ 𝑔𝑖 ≤ 𝐺′
𝑖 ∀𝑖 ∈  (15)

𝐹 ′
𝑛𝑚 ≤ 𝑓𝑛𝑚 ≤ 𝐹 ′

𝑛𝑚 ∀𝑛 ∈ ,∀𝑚 ∈ 𝑛 (16)

𝛥𝑚𝑖𝑛
𝑛 ≤ 𝛿𝑛 ≤ 𝛥𝑚𝑎𝑥

𝑛 ∀𝑛 ∈  (17)

In the emergency response model, emergency limits are used for
the capacity on system components such as generators, transformers
and transmission lines and, selects the optimal load that has to be
curtailed to satisfy these limits. The capacity of generators or loads
that are disconnected due to SPS are set to zero, while generator re-
dispatch is restricted 𝑑+𝑖 = 0, 𝑑−𝑖 = 0. In the balancing model, we
allow the generators to balance production and consumption, 𝑑+𝑖 ≥
0, 𝑑−𝑖 ≥ 0, in addition to load curtailment to reduce the loading of
the system components within the nominal capacity limits (𝐺𝑖, 𝐹𝑛𝑚).
CENS is calculated by 𝐶𝐸𝑁𝑆 =

∑

𝑛∈ 𝑄𝑟𝑛 from both models, while the
balancing costs are calculated by 𝐵𝐴𝐿 = 𝑅(𝑑+𝑖 +𝑑−𝑖 ) from the balancing
4

model.
Fig. 4. A simplified illustration of the three area case system. Only inter-area
transmission lines and generators/loads which are part of the SPS are included. For a
fully detailed description of the system see [22].

3.3. Model limitations

The model focuses on reducing transmission capacities between
market areas as preventive actions. No reserve requirements are di-
rectly enforced in each market area. However, limiting the transmission
capacities between the market areas results in both available generation
capacity in surplus areas and minimum generation in deficit areas.
Thus, reserves are indirectly allocated as a part of the preventive
strategies. In this work, we focus on the effect of using SPS compared
to preventive strategies in general, as opposed to a very detailed and
realistic model where the results might be complex to interpret and
computational times would be excessive. A more detailed representa-
tion of reserves should be included in future studies or if the model is
used for supporting real-world decision making.

Furthermore, we do not consider how SPSs are implemented or
activated in practice for a specific contingency. The model simply finds
the SPSs which lead to a satisfactory system response in the most
cost-efficient manner. In practice, this can provide indication of which
SPSs that are most cost-effective and serves as a foundation for further
studies on how the SPSs can be implemented.

4. Case study

The algorithm is tested on the three area system which is illustrated
in Fig. 4 that represent parts of the Nordic power system [22]. The
relatively limited size (25 buses and 29 lines) makes it well suited for
computationally intensive market and reliability analysis.

We assume marginal generation costs of 30, 40 and 50 e/MWh in
area 1, 2 and 3 respectively. Solving the OPF for this system results in
a surplus of generation in area 1 and 2, while there is a energy deficit
in area 3. This leads to high power flows on the inter-area transmission
lines from the north to south. The capacity of Line 11 is fully utilized
while Lines 18 and 19 are loaded at 53.6 and 47.7% of maximum
capacity.

In the contingency list, we consider a short-circuit on all the inter-
area transmission lines (line 10, 11, 18 and 19). The short-circuit occurs
after 5 s of the 50 s dynamic simulation and is cleared with a delay of
0.2 s. After the fault is cleared the line that was short-circuited is set
out-of-service.

The system response after a contingency is evaluated by the system
operational requirements which are formulated in Table 1. The system
requirements are defined by inequalities related to the minimum and
maximum values of the variable of interest. The inequalities can be
breached for a limited duration.

We consider the response to be unsatisfactory if a fault results in a
system response that violates any of the operational requirements. This
results in losing the relevant system components. Violation of the oper-
ational requirements can for example trip generator protection relays
which takes the generators offline. At this point, we have to resort to

SPS to improve the system response such that it does not violate the



Electric Power Systems Research 211 (2022) 108379E.F. Bødal et al.

5

5

i
1

Table 1
Power system operational requirements.

Variable Unit From time (s) min max dur (s)

frequency (Hz) – 0 42.5 57.5 1
– 10 45.0 55.0 1
– 25 47.5 52.5 1

voltage (p.u) load 10 0.82 1.18 0
load 35 0.85 1.15 1
generator 0.15 0.25 – 0
generator 1.0 0.9 – 1

loading (%) generator, 10 – 220 1
generator, 30 – 150 1
generator, 40 – 115 1
branch 0 – 175 1
branch 30 – 120 1

Table 2
Parameters used when calculating system operational costs.

Parameter Symbol Value Unit

SPS – 13000 e/trip
CENS Q 6000 e/MWh
Redispatch cost R 60 e/MWh
Discretization step size – 5 % of line cap

operational requirements (or violates fewer operation requirements).
The SPSs considered in this case study are tripping of generator 12 and
18 in the surplus areas (area 1 and 2) and disconnection of load 9 in
the deficit area (area 3).

The model parameters in Table 2 are used to calculate the cost of the
corrective measures. These parameters are input for the post-processing
optimization models which determine optimal load curtailment and
balancing. The OPF and time-domain simulations are executed in Pow-
erFactory,1 while the algorithm in Fig. 3 is implemented in Python.

. Results

.1. Operational costs

Contingency related system operational costs are calculated accord-
ng to (2), assuming a fault probability of 1% and a SPS reliability of
00%. The system operational costs without preventive actions2 are

used as a reference value for all costs. The reliability related operational
costs are shown in Fig. 5 as a function of the power flow on Line 11,
which is the critical line with fully utilized capacity without preventive
actions.

The stacked areas in Fig. 5 represent the lowest expected costs for
flows on Line 11. The lowest cost strategy is selected using a rolling
window of 5 MW for all power flows on Line 11. The cost components
in Fig. 5 are defined in (2)–(4).

The state of the system response is highlighted by colored points.
This state is grouped into three categories, N-1 safe, saved by SPS and
not N-1 safe. If the system is N-1 safe, the system response satisfies all
the operational criteria for each fault in the contingency list separately.
If the system is not N-1 safe, but are within the operational criteria after
activating any one of the corrective actions in the SPS list the state is
considered ‘‘saved by SPS’’. Finally, if the corrective actions are not able
to keep the system response within the system limits the system state is
considered not to be N-1 safe. It should be noted that the states that are
saved by SPS are not strictly N-1 secure, however, some TSO operate
with SPS.

The preventive strategies with lowest expected costs restrict the
power flow on Line 11 to 60–90 MW. In this range there is low

1 https://www.digsilent.de/en/powerfactory.html
2 All lines have a capacity equal to the thermal capacity.
5

Fig. 5. Reliability related power system operational costs as a function of the total
power flow between the market-areas. The points represent the contingency state of
the system, i.e. if the system state fulfill the N-1 criterion, are saved by SPS or neither.

Fig. 6. Sensitivity of costs to different fault probabilities.

difference in cost between the strategies, but the TSO must rely on SPS
in case of one or more faults. Restricting the flow below 60 MW results
in a system that satisfies the N-1 criterion but also higher congestion
costs in the electricity markets due to the preventive actions. Increasing
the flow beyond 90 MW also increases the congestion costs as flow on
other lines have to be decreased. No SPS is sufficient to enable higher
flows than 110 MW on Line 11. In this case, the optimal power flow in
Line 11 is 91 MW if the TSO is operating the system according to the
expected value. However, there are strategies where the power flow on
Line 11 is 50–60 MW which practically have the same cost but are more
robust in case of some faults. This highlights the advantage of using
dynamic programming where many solutions are explored, while more
advanced algorithms might only find the least-cost solution.

5.2. Sensitivity to fault probability and SPS reliability

The impact of fault probability on the operational costs are plotted
in Fig. 6, which show the lowest cost strategies for a rolling window
of 5 MW for power flow on Line 11. Increasing the probability of
fault has little impact on the operational costs when the system state
is N-1 safe at power flows less than 60 MW. However, the impact of
increasing fault probability on operational costs is much higher when
SPSs are needed. As a result, the optimal flow on line 11 is reduced to

50 MW by marginally increasing the fault probability to 2%. The range

https://www.digsilent.de/en/powerfactory.html
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Fig. 7. Sensitivity of costs to different SPS reliability.

Fig. 8. Voltage at loads after fault on Line 11 for the optimal preventive strategy in
the base case.

of strategies with similar costs are also much smaller such that more
risk averse operation by deviating from the optimal solution given by
the expected value is less desirable.

The operational costs are also calculated for a line outage probabil-
ity of 1% and SPS reliability from 85%–100% as shown in Fig. 7. The
cost of strategies which rely on SPS increase quickly if the reliability is
less than 100%. Relying on SPS is not optimal for SPS reliability less
than 95%. This shows that SPS must have a high level of reliability to
be actively used by the TSO.

5.3. Violation of operational requirements by the dynamic system response

The optimal strategy from Fig. 5 is not purely preventive such as
strategies based on the traditional N-1 criterion, but it is a ‘‘hybrid’’
strategy which also rely on corrective actions in the form of SPS. The
dynamic system response subject to Line 11 fault results in under-
dampened oscillating load voltages as shown in Fig. 8. The lower load
voltage limit set by the TSO requirements is violated for load 3, 4 and
5, such that they are assumed to be disconnected. This results in sig-
nificant operational costs as energy not served to loads are very costly
for the TSO. This represents a very important consequence of strategic
decisions which would be ignored in most contingency analyses which
do not include time-domain simulations.

In case of a fault on Line 11, SPS can disconnect Load 9 to improve
the system response. This results in a system response where the load
voltages are still oscillating, but within the operating requirements as
shown in Fig. 9. A SPS which disconnects Load 9 ensures that all other
loads remain connected to the power system in the case of a fault on
6

Line 11. This shows that the value of including SPSs would not be
Fig. 9. Voltage at loads after fault on Line 11 and tripping of Load 9 for the optimal
preventive strategy in the base case.

Fig. 10. CENS and re-dispatch cost from the combination of line faults and corrective
actions for the optimal preventive strategy in the base case.

correctly calculated by a static load-flow based contingency analysis.

The CENS and re-dispatch costs due to faults on the inter-area
transmission lines are shown in Fig. 10. CENS and re-dispatch is plotted
on two different y-axes, where CENS is significantly larger than the re-
dispatch costs. In addition to using the SPS at Load 9 for faults on Line
11, disconnecting Generator 12 is an effective corrective action to avoid
CENS in case of faults on Line 10. Line 11 would be overloaded in the
case of fault on Line 18, but disconnecting Line 11 would not result in
CENS such that no SPS is used. A static contingency analysis would be
able to capture the costs related to faults on Line 10 and Line 18 as
these are related to line over-loading, but not the costs related to faults
on Line 11.

5.4. Computation

The time for executing the model from Fig. 3 for the case study
was 1 h 49 min on a Intel Core i7-8650U CPU with 1.90 GHz and 4
cores (8 logical processors). This illustrates the relatively high com-
putation times and limited scalability which is inherent to dynamic
programming approaches as it is based on discretization of the state
space.

A histogram of the number of simulations and time used for time-
domain simulations and OPFs are shown in Fig. 11. The time-domain
simulations use between 0.6–1.6 s which is significantly longer com-
pared to the OPFs which typically solves in less than 0.2 s. This further
increases the computation time compared to static approaches. Of the
total simulation time, around 43 min are used for solving the OPFs and
time-domain simulations, this constitutes 39% of the total simulation
time. The remaining time is used for reconfiguration of the case system
(adding/removing faults and corrective actions), checking operational
requirements and saving results.
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Fig. 11. Histogram showing the number of simulation at different computational times
for time-domain simulations and OPF.

The time-domain simulations are also significantly more numerous
than the OPFs. For each OPF there is at least one time-domain per
fault. If corrective actions have to be taken, the number of time-domain
simulations will grow further by the number of corrective actions
considered. Load and generation situations that lead to high export
between regions typically result in more cases where the operational
requirements are not satisfied after a line outage. This implies that the
simulation time for the model is very dependent on the level of inter-
area flows relative to the transmission capacities as it leads to a higher
number of the computationally demanding time-domain simulations.

6. Conclusions

We developed an algorithm for simulating power system opera-
tion with preventive and corrective actions. The algorithm includes
time-domain simulations for the system response after a contingency.
Dynamic simulations enable the contingency analysis to detect situ-
ations which are ignored in traditional contingency analysis models
based on load flow or OPF.

The model is applied to a case study with a simplified grid represen-
tation of parts of the Nordic power system. Results from the case study
shows that the model is able to quantify the costs related to preventive
and corrective operational measures, such as the costs of congestion,
frequency containment reserve activation, system protection schemes,
re-dispatch and energy-not-served. The model gives insight into the
costs for a wide range of solutions and not only the optimal value.
This enables the system operator to use their experience and knowledge
about the system when evaluating the best operational strategy. In
practice, this is important as it enables the system operator to choose
more conservative strategies with higher safety margins when it has
little impact on the costs (flat optimal region). The model also shows
that the most important costs for the investigated test system are
congestion costs and CENS.

The model captures the consequences of the dynamic response on
the power system reliability, for example in the case of oscillating
load and generator voltages or system frequency. SPSs can mitigate
these issues for some of the combinations of preventive strategies and
contingencies thus reducing the operational costs. This is shown to be
dependent on high reliability of system protection schemes.

The time-domain simulations are numerous and time consuming, es-
pecially when simulating constrained load flow situations. In addition,
dynamic programming has inherent challenges with computational
tractability. In further research, we will investigate options for tack-
ling these challenges. Running the algorithm in parallel on multi-core
computers or clusters is expected to be useful for decreasing the simu-
lation times such that more load situations and larger systems can be
simulated.
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