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Hydropower Aggregation by Spatial Decomposition – An
SDDP Approach

Arild Helseth, Birger Mo

Abstract—The balance between detailed technical description, rep-
resentation of uncertainty and computational complexity is central in
long-term scheduling models applied to hydro-dominated power system.
The aggregation of complex hydropower systems into equivalent energy
representations (EER) is a commonly used technique to reduce dimen-
sionality and computation time in scheduling models. This work presents
a method for coordinating the EERs with their detailed hydropower
system representation within a model based on stochastic dual dynamic
programming (SDDP). SDDP is applied to an EER representation of
the hydropower system, where feasibility cuts derived from optimization
of the detailed hydropower are used to constrain the flexibility of the
EERs. These cuts can be computed either before or during the execution
of the SDDP algorithm and allow system details to be captured within the
SDDP strategies without compromising the convergence rate and state-
space dimensionality. Results in terms of computational performance and
system operation are reported from a test system comprising realistic
hydropower watercourses.

Index Terms—Hydroelectric power generation, Power generation
scheduling, Optimization methods, Stochastic Processes.

NOMENCLATURE

A. Index Sets

a ∈ A Set of price areas;
c ∈ CB/F Set of Benders (B) or feasibility (F) cuts;
d ∈ Da Set of price-elastic demands;
g ∈ Ga Set of thermal units;
h ∈ Ha Set of hydropower modules;
k ∈ K Set of time steps within decision stage;
ℓ ∈ L+/−

a Set of lines directed to (+) or from (-)a;
n ∈ Nh Set of discharge segments;
j ∈ Ω

S/C
h Set of hydropower modules, defined Sec. III-A;

j ∈ ω
D/B/S
h Set of upstream modules discharging (D), bypassing

(B) or spilling (S) toh.

B. Parameters

βB
ct Right-hand side for Benders cut, ine;

βF
act Right-hand side for feasibility cut, in GWh;

CD
dt Marginal value for demand, ine/GWh;

CG
gt Marginal cost for thermal gen., ine/GWh;

CR Marginal cost of curtailment, ine/GWh;
∆ht Max. change in discharge, in m3/s;
Datk Firm demand, in GWh;
Φ Inflow correlation matrix;
φat Fraction of controllable inflow to EER;
F ℓt Max. capacity on lineℓ, in GWh;
ǫt Inflow white noise;
ηnh Efficiency at segmentn, in MW/m3/s;
ηb
h Best efficiency point, in MW/m3/s;

ηbS
h Best eff. to sea, in MW/m3/s;

ηbC
h Best eff. for controllable inflow, in MW/m3/s;

Γw Conversion to Mm3;
Γe Conversion to GWh;
γp/v, κv/i Coefficients for feasibility cut, fraction;
Iat Energy inflow to EER, in GWh;
Ĩat Average energy inflow to EER, in GWh;
Iht Inflow to module, in Mm3;
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Ĩht Average inflow, in Mm3;
µat Inflow mean value, in GWh;
NS Number of scenarioss in SDDP forward it.;
πv
act Volume coeff. for Benders cut, ine/GWh;

π
z Vector of inflow coefficients for Benders cut;

P
G
gt Max. generation capacity, in GWh;

P
D
dt Max. price-elastic demand, in GWh;

PH
at, P

H
at Max./Min. EER generation, in GWh;

P
H
ht Max. generation capacity, in MW;

Ψ End-of horizon valuation of water;
Q

D

nht Upper bound for discharge segment, in m3/s;
σat Inflow standard deviation, in GWh;
T Number of decision stagest;
V at, V at Max./Min. EER reservoir volume, in GWh;
V ht, V ht Max./Min. reservoir volume, in Mm3;
Watk Wind power, in GWh;
ζk Fraction of weekly time covered by stepk;
ζVaht Distribution factors for volume;
ζIaht Distribution factors inflow;
zt Vector of normalized inflowszat.

C. Decision Variables

αt Future expected cost, ine;
fℓtk Flow on line ℓ, in GWh;
pGgtk Generation from thermal unit, in GWh;
pDdtk Price-elastic demand, in GWh;
pHatk Hydropower generation per EER, in GWh;
pHhtk Hydropower generation per module, in MW;
qSatk Spillage from EER reservoir, in GWh;
qDhtk Discharge through station, in m3/s;
qDnhtk Discharge through segment, in m3/s;
qBhtk Bypass passing station, in m3/s;
qShtk Spillage from reservoir, in m3/s;
ratk Curtailed power, in GWh;
vt Vector of EER reservoir volumesvat, in GWh;
vatk EER reservoir volume, in GWh;
vhtk Reservoir volume, in Mm3;
xt, yt State and stage variables;
yP
tk/y

E
t Slack variables, in GWh.

I. I NTRODUCTION

Long-term scheduling (LTS) of hydropower storages is an impor-
tant task in hydro-dominated power systems which is typically ac-
commodated in a single optimization model with a planning horizon
of multiple years. LTS models support operational decision making
through computation of strategies for hydropower utilization in terms
of dual information (water values or prices) or volume targets. These
strategies are applied in medium- and short-term models [1], and
the coordination of such models can be organized in scheduling
toolchains, as is the current practice in countries such as Brazil and
Norway [2]. In addition, LTS models are used for planning tasks,
such as system analyses [3], expansion planning [4], and maintenance
planning [5]. While LTS models emphasize on the representation of
uncertainties over the planning horizon typically using a rather coarse
description of the technical system, shorter-term models are oriented
towards deterministic formulations and a detailed physical system
description [6], [7]. System simplifications in LTS models could lead
to time-inconsistent policies [8], revealing a need for embedding more
details from the short-term scheduling into LTS models [9]. However,
as LTS models are typically not used for detailed system dispatch,
one is primarily interested in the impact of the finer technical details
rather than the detailed results.
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A variety of methodologies have been proposed for solving the
LTS problem, see e.g. the review by [10]. The use of methods
based on optimization has matured over the last decades [11],
and in particular the stochastic dual dynamic programming (SDDP)
algorithm introduced in [12] has been widely applied in operative
scheduling models [13]–[15], and is subject to improvements and
extensions by the research community [16]–[22].

Although SDDP allows for efficient treatment of systems with
multiple reservoirs, explicit treatment of physical reservoirs in large-
scale systems may lead to prohibitive computation times, as demon-
strated for the Norwegian system in [23]. A commonly used practice
for reducing computational complexity is to aggregate the physical
description of watercourses (or cascades) into an equivalent energy
representation (EER) of the reservoirs and plants [13], [15], [24],
[25]. The use of EERs, where the sum of potential energy in the
reservoirs is represented rather than the water in each reservoir, was
introduced in [26], and is often found to be a reasonable approxima-
tion for systems with large regulation capability and hydrologically
homogenous basins [27]. As discussed in [28], and later demonstrated
in [29], local constraints on reservoirs, flows and generations are not
explicitly accounted for in such aggregated models, which may lead
to suboptimal use of hydropower resources.

Various techniques have been applied to coordinate the representa-
tion of EERs and the detailed hydropower system within LTS models.
In the EMPS model, which is widely applied for analyses of the
Nordic power market, a detailed drawdown model based on heuristics
is applied to dynamically improve the EER representation within a
framework based on stochastic dynamic programming and system
simulation [30], [31]. In the official Brazilian LTS model NEWAVE,
the various EER attributes are estimated prior to running the SDDP
model, as discussed in [25]. A method to consider hydraulically
coupled systems in the construction of the EERs is presented in [32].
Moreover, a comparison between the use of EERs per subsystem
and per cascade is provided in [33]. The NEWAVE model allows for
a hybrid approach, where the individual reservoirs are considered
in a first part of the planning horizon and then coupled to an
EER representation covering the remaining horizon [15]. The hybrid
approach is primarily useful when the LTS model is part of a
toolchain leading to operational decisions.

Recent works apply genetic algorithms [34] and bilevel optimiza-
tion [35], [36] to build hydropower equivalents for shorter-term
and deterministic hydropower scheduling models. Despite promising
results, these approaches do not easily fit into LTS model frameworks
based on stochastic dynamic programming principles.

Based on the literature review above, there is clearly a need
for LTS models and methodologies based on approximation of
the detailed hydropower system, appropriately balancing the trade-
off between accuracy of results and computational performance.
Considering typical LTS application areas, modest computation times
are important to facilitate many and frequently repeated analyses. In
this context, we propose a method where the LTS problem is modeled
by use of EERs to represent the hydropower, and SDDP is applied
to solve the problem. It is demonstrated how each EER can interact
with its underlying detailed hydropower description through linear
inequalities (referred to asfeasibility cuts in the following) added
in the SDDP algorithm. Provided trial EER solutions, the feasibility
cuts are derived by separately optimizing the detailed hydropower
watercourses, and thus represent the system limitations through a
spatial decomposition approach. The overall motivation is to increase
the accuracy of hydropower representation in LTS models, while
maintaining the convergence properties and low state space dimen-
sionality obtained when representing complex hydropower systems
by EERs.

Unlike previous works, the use of feasibility cuts provides a
formal linkage between the aggregated and the detailed hydropower
representation per EER within the SDDP algorithm. In contrast
to the hybrid approach in [15], hydropower details are considered
through the entire planning horizon seen by SDDP. The use of global
feasibility cuts to deal with functionality that is not explicit in the
SDDP formulation has previously been applied for embedding risk
measures [37], [38] in LTS model formulations. Differently from
those works, we use feasibility cuts to facilitate spatial decomposition,
coordinating aggregated and detailed hydropower representations
within the SDDP algorithm.

The main contributions from this work can be summarized as
follows:

• A methodology for dynamically constraining the EER of hy-
dropower within the SDDP algorithm by use of feasibility
cuts per watercourse is presented. The feasibility cuts can be
computed in the forward SDDP iterations and are shared among
different states within each decision stage, and thus allows
computationally efficient integration with the SDDP algorithm.

• The use of feasibility cuts computed prior to solving the SDDP
model is described. Through a priori computation and removal
of identical cuts it is demonstrated that computation time can
be significantly reduced without compromising solution quality.

II. PROBLEM DESCRIPTION

The LTS optimization problem is generally defined in (1), com-
prising state variablesxt and stage variablesyt for each decision
staget. One seeks to find an operating strategy that minimizes the
expected cost of supplying electricity in (1a), accounting for the
end-of-horizon valuation of stored water inΨ(xT ), and respecting
constraints in (1b)-(1d). In this work a planning horizon of multiple
years is applied, assuming weekly decision stages, allowing a finer
time discretization within the week. Reservoir volumes and inflows
for the EERs are considered as state variables. The stage variables
represent the operational decisions to be made in each stage, while
state variables transfer information about the system state between
stages.

min
(x1,y1),...,(xT ,yT )

E

{

T
∑

t=1

ft(xt, yt) + Ψ(xT )

}

(1a)

s.t. Wxt +Hxt−1 +Gyt = h(ξt) (1b)

Byt = 0 (1c)

(xt, yt) ∈ Xt (1d)

∀t ∈ {1, 2, . . . , T}

The constraints are indicated in (1b)-(1d), where the initial state
vector x0 is given,Xt is the feasible set for the decision variables
of time step t, and W, H, G, and B, are matrices of suitable
dimensions. The expectation in (1a) is taken over the stochastic
inflow. Inflow to the EERs is represented by a vector autoregressive
model of first order according to the procedure described in [39].
The right-hand-side parameter vectorh(ξt) in (1b) is dependent on
the random vector of inflow “white noise”ξt whose distribution is
known, and whereξt are the realizations.

The problem in (1) can be classified as a multi-stage stochastic
optimization problem, which may be efficiently solved by decom-
position techniques [40]. In the following we will use the SDDP
algorithm, which is a sampling-based variant of multi-stage Benders
decomposition. The problem in (1) can be decomposed into stage-
wise nested linear programming (LP) problems of type:
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Fig. 1: Aggregation of a hydropower watercourse (left) to an EER
(right).

Qt(xt−1) = min
xt,yt

ft(xt, yt) + αt(xt) (2a)

s.t. (xt, yt) ∈ Xt(xt−1, ξt) (2b)

The variableαt expresses the future expected cost function seen
from the end of staget. This variable will gradually be constrained by
Benders cuts constructed in the SDDP iterations, as will be explained
in detail later.

In Section III we elaborate on the stage-wise decision problem
in (2), while the solution strategy for solving (1) is outlined in
Section IV.

III. STAGE-WISE DECISION PROBLEM

In this section the stage-wise decision problem in (2) is described
in detail. It is assumed that the hydropower is aggregated in EERs
and that each EER represents a single watercourse and belongs to a
separate price area (or bidding zone). These assumptions are without
loss of generality, as the formulations could be adapted so that an
EER represents multiple watercourses and with multiple EERs within
a price area. Further division of multiple EERs per watercourse, as
discussed in [32], is not possible without modeling adjustments.

A. Hydropower System Aggregation

The procedure for aggregating a watercourse to an EER is il-
lustrated in Fig. 1 and described below. A watercourse comprises
connected hydropower modules, each with a reservoir and a power
station, as illustrated within the stapled rectangle to the upper left
in Fig. 1. Inflow is directed into the reservoirs, and both reservoirs
and power stations may have zero capacity in a module, such as the
dummy reservoir with zero storage capacity in module 2 in Fig. 1.

Hydropower generation for a power station is represented as
a piecewise linear and concave relationship between power and
discharge, represented by a set of discharge segments with decreasing
efficiency, as illustrated in Fig. 2. A power station typically comprises
multiple generation units, and [41] provides a description on how
power station production functions can be derived through data per
generation unit. Each hydropower station has a best efficiency point
ηb
h which represents the efficiency of the first segment.
A best efficiency point referred to sea level can be defined as

in (3a), whereΩS
h comprises the modules from moduleh and

Fig. 2: Relationship between power and discharge for a hydropower
module.

downstream. Converting inflow for a reservoirh to EER energy in-
flow involves a separation between controllable and non-controllable
water. For each module we define best efficiency referred sea level
for the controllable part of the inflow in (3b), whereΩC

h comprises
the modules from moduleh and downstream starting at the first
reservoir with non-zero storage capacity. From the example in Fig. 1,
ΩS

1 = ΩC
1 = {1, 2, 3}, ΩS

2 = {2, 3}, ΩC
2 = {3}, ΩS

3 = ΩC
3 = {3}.

ηbS
h =

∑

j∈ΩS

h

ηb
h (3a)

ηbC
h =

∑

j∈ΩC

h

ηb
h (3b)

The properties of the EER per decision staget are defined in (4).
These parameters are calculated in advance and kept constant when
optimizing the system by use of SDDP. Average energy inflow is
found in (4a), and the controllable fraction of the energy inflow is
defined in (4b). Maximum and minimum storage capacities are found
in (4d) and (4c), respectively. The maximum generation capacity of
the EER is found as the sum of the individual capacities in (4f), while
the minimum generation depends on non-controllable inflow in (4e).

Ĩat =
∑

h∈Ha

Γeη
bS
h Ĩht (4a)

φat =

∑

h∈Ha
Γeη

bC
h Ĩht

Iat
(4b)

V at =
∑

h∈Ha

Γeη
bS
h V ht (4c)

V at =
∑

h∈Ha

Γeη
bS
h V ht (4d)

PH
at = (1− φat) · Ĩat (4e)

P
H
at =

∑

h∈Ha

ΓeP
H
ht (4f)

The aggregated hydropower description in (4) will, for most
detailed system configurations, overestimate the flexibility of the
hydropower system, since energy conversion refers to best efficiencies
and EER capacities are found as the sum of module capacities.
In Section III-C it is described how the flexibility of EERs can
be constrained by linear inequalities found by optimizing operation
of the detailed hydropower system. It should be noted that EER
parameters can be derived differently, to incorporate features such as
the dependency of energy conversion and maximum power generation
on reservoir level, and losses in the non-controllable inflows due to
spillage, see e.g. [25], [26], [32], [42]. In the presented approach, it
is recommended to include such features in the detailed hydropower
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model described in Section III-C to further constrain EER operation
by feasibility cuts.

B. Decision Problem

The decision problem for a weekt is defined as an LP problem in
(5), detailing the general formulation in (2). The hydropower system
is aggregated in EERs, and the vector of EER volumes (v

∗
t−1 =

[v∗at0,∀a]) and normalized EER inflows (zt−1) from the previous
stage are considered state variables.

Qt(v
∗
t−1, zt−1) = min

∑

k∈K

∑

a∈A

[

∑

g∈Ga

CG
gtp

G
gtk

−
∑

d∈Da

CD
dtp

D
dtk + CRratk

]

+ αt (5a)

zt = Φzt−1 + ǫt

(

π
z
)

(5b)

Iat = σatzat + µat ∀a (5c)

vt−1 = v
∗
t−1

(

π
v
)

(5d)

vatk − vat,k−1 + pHatk + qSatk = ζkIat ∀a, k (5e)

pHatk +
∑

g∈Ga

pGgtk −
∑

d∈Da

pDdtk + ratk

+
∑

ℓ∈L+
a

fℓtk −
∑

ℓ∈L−

a

fℓtk ≥ Datk −Watk ∀a, k (5f)

αt +
∑

a∈A
πv
actvatK +

∑

a∈A
πz
actzat ≥ βB

ct ∀c (5g)

− F ℓt ≤ fℓtk ≤ F ℓt ∀ℓ, k (5h)

0 ≤ pGgtk ≤ P
G
gt ∀g, k (5i)

0 ≤ pDdtk ≤ P
D
dt ∀g, k (5j)

PH
at ≤ pHatk ≤ P

H
at ∀a, k (5k)

V at ≤ vatk ≤ V at ∀a (5l)

The objective in (5a) is to minimize the costs associated with
operation of the system in the current decision period and the
expected cost of operating system in the future. The current cost
comes from thermal generation and curtailment of price-inelastic
demand, while the coverage of price-elastic demand is seen as a
revenue. The future expected cost is represented byαt which is
constrained by Benders cuts in (5g).

A vector autoregressive model of first order representing the
weekly normalized inflow to EERs is described in (5b). The corre-
lation matrix (Φ) and residuals (ǫt) are fitted to observations, where
residuals are adapted to a three-parameter lognormal distribution
according to [39]. The normalized inflow is converted to energy
inflow in (5c). Note that the inflow model always generates non-
negative energy inflows. In (5d) a copy of the EER reservoir volume
state variables are taken, for the ease of finding their dual values
π

v. EER energy balances are provided in (5e). These balances are
only considered when feasibility cuts of type (9) are not added to
(5), such as in case REF in Section V, to provide a linkage between
the initial and final EER storages. An energy balance for each price
area and time step is defined in (5f), allowing exchange of energy
between price areas. Benders cuts in (5g) are constructed in the
backward iteration of the SDDP algorithm based on sensitivities of
the state variables, found as dual values from (5b) and (5d), as will be
described in Section IV-A. Variable boundaries are presented in (5h)-
(5l), where boundaries in (5k) and (5l) are obtained from (4e)-(4f)
and (4c)-(4d), respectively.

The decision problem in (5) decides on the EER hydropower
generation per time step (pH∗

atk) and its final stored energy (v∗
t =

[v∗atK ,∀a]). These decisions are in turn checked in (6), and feasibility
cuts of type (9) may be added to (5) to further constraint the
EER decision, as will be elaborated on in the following. Note that
additional EER constraints explicitly formulated in (5) could help
guiding the decision problem towards feasible EER decisions when
no or few feasibility cuts are available, but such experiments were
not pursued in this work.

C. Disaggregation

The aggregated hydropower description will tend to overestimate
the capability of the detailed hydropower system. In this section it is
described how the feasibility of the EER decisions from (5) related
to hydropower generation (pH∗

atk) and energy volume at the end of
the decision period (v∗

t ) for a state defined byv∗
t−1 and Iat can

be validated considering detailed hydropower description per EER.
The EER solution is disaggregated to a detailed representation by
applying the same conversion factors and mappings that were used
for the aggregation. In the LP problem in (6) the feasibility of the
aggregated results is checked.

Zat(p
H∗
atk,v

∗
t ,v

∗
t−1, Iat) = min

∑

k∈K
yP
kt + yE

t (6a)

vhtk + Γw

(

qDhtk + qBhtk + qShtk

)

− Γw

(

∑

j∈ωD

h

qDjtk +
∑

j∈ωB

h

qBjtk +
∑

j∈ωS

h

qSjtk

)

= ζVahtva,t−1 + ζkζ
I
ahtIat ∀h ∈ Ha, k = 1 (6b)

vhtk − vht,k−1 + Γw

(

qDhtk + qBhtk + qShtk

)

− Γw

(

∑

j∈ωD

h

qDjtk +
∑

j∈ωB

h

qBjtk +
∑

j∈ωS

h

qSjtk

)

= ζkζ
I
ahtIat ∀h ∈ Ha, k ∈ K \ 1 (6c)

qDhtk =
∑

n∈Nh

qDnhtk ∀h ∈ Ha, k (6d)

−∆ht ≤ qDhtk − qDht,k−1 ≤ ∆ht ∀h ∈ Ha, k ∈ K \ 1 (6e)

0 ≤ qDnhtk ≤ Q
D

nht ∀n, h ∈ Ha, k (6f)

0 ≤ qBhtk ≤ Q
B

ht ∀h ∈ Ha, k (6g)

V ht ≤ vhtk ≤ V ht ∀h ∈ Ha, k (6h)
∑

h∈Ha

∑

n∈Nh

Γeηnhq
D
nhtk + yP

kt ≥ pH∗
atk

(

γp
atk

)

∀k (6i)

∑

h∈Ha

Γeη
bS
h vhK + yE

t ≥ v∗at
(

γv
at

)

(6j)

va,t−1 = v∗a,t−1

(

κv
at

)

(6k)

Iat = I∗at
(

κi
at

)

(6l)

The objective in (6a) is to minimize the use of slack variables
for constraints (6i) and (6j). Hydropower modulesh are connected
through the three possible waterways discharge, bypass and spillage.
Each module has associated sets comprising upstream modules dis-
charging (ωD

h ), bypassing (ωB
h ) and spilling (ωS

h ) to it. Water balances
are defined for the first (6b) and subsequent (6c) time steps for each
module, accounting for the hydrological topology provided by the
waterways. A concave relationship between power and discharge
is facilitated by discharge segments, as described in Section III-A
and illustrated in Fig. 2. The total discharge is found in (6d).
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Ramping constraints on discharge are included in (6e). Boundaries
on discharge, bypass, and reservoir volume are provided in (6f), (6g)
and (6h), respectively. These boundaries are often subject to seasonal
variations, e.g., due to environmental constraints on river flows and
reservoir levels. The constraints in (6i) and (6j) serve to check the
feasibility of the schedules of generation per time step and volume at
the end of the decision stage obtained from the EER in (5). Finally,
copies of the state variables are introduced in (6k) and (6l) to ease
the computation of their dual values, which are needed in the creation
of feasibility cuts.

Note that the hydropower production function illustrated in Fig. 2
and represented in (6i) can be improved to include the dependency
of power output on net head (or reservoir volumes). Improvements
need to comply with the convexity of (6) to avoid compromising the
validity of the feasibility cuts. As an example, the piecewise linear
formulation in [43] which represents the relationship between power
production, discharge, volume, and spillage, could be embedded in
(6).

The parametersζVaht define the fraction of initial energy reservoir
volume to be distributed to the individual reservoirs. In this workζVaht
are defined by the relative energy storage capability of the reservoir
capacities according to (7a). Similarly, the parametersζIaht defined
in (7b) provide fractions of energy inflow volumes to be distributed
to the individual reservoirs, and are based on average annual inflow
(Ĩh).

ζVaht =
ηbS
h V ht

∑

i∈Ha
ηbS
i V it

(7a)

ζIaht =
ηbS
h Ĩht

∑

i∈Ha
ηbS
i Ĩit

(7b)

One should strive to let the parametersζVahtk and ζIaht reflect
the most likely distribution for each decision stage in the planning
horizon. In the case of disaggregating EER storage to hydropower
modules, more advanced distribution parameters could resemble
different strategies in the typical filling and depletion seasons of the
individual reservoirs [30]. The same reasoning cannot be used for
inflow, as its disaggregation is determined by nature and not strategic
decisions.

Note that the distribution parameters suggested in (7a) and (7b)
can be seen as rough estimates, and that higher precision can be
introduced by deploying detailed knowledge about the system at hand
and its initial state. Although there are different ways of defining
the distribution parameters, one should keep in mind that they must
be independent of the EER state variables to comply with SDDP
convexity requirements and to facilitate cut sharing.

D. Feasibility Cuts

By considering the decision problem in (5) as the master problem
and the hydropower feasibility problems in (6) as subproblems,
one can apply two-stage Benders decomposition to coordinate the
solutions to achieve optimality of (5) while respecting the feasibility
check. LetpH∗

atk andv∗at be a decision from (5) to be evaluated in (6).
If this trial decision is feasible, no slack variables are used in (6) and
the objective function valueZ∗

at and dual values in (6) are zero. If not,
the linear inequality in (8) (reformulated to (9)) can be constructed
and added to (5) to constrain the EER decisions. This inequality
involves all subproblem state variables (pHatk, vat, va,t−1, and Iat),
and allows EER decision variables (pHatk andvat) to adjust to prepare
for feasible hydropower operation. We use the termfeasibility cut to
describe (9) due to the feasibility check performed in (6) and in line
with the terminology and formulation in [40] (Section 5.1.b).

0 ≥ Z∗
at +

∑

k∈K
γp
atk

(

pHatk − pH∗
atk

)

+ γv
at

(

vat − v∗at
)

+ κv
at

(

va,t−1 − v∗a,t−1

)

+ κi
at

(

Iat − I∗at
)

(8)

The inequality in (8) can be rearranged as
∑

k∈K
γp
atkp

H
atk + γv

atvat + κv
atva,t−1 + κi

atIat ≤ βF
at, (9)

where

βF
at = −Z∗

at +
∑

k∈K
γp
atkp

H∗
atk + γv

atv
∗
at + κv

atv
∗
a,t−1 + κi

aI
∗
at.

The feasibility cut in (9) constrains the solution space for the
EER production and storage decisions, and can be added to (5).
As the problem formulated in (6) is convex and the SDDP state
variables are accounted for, the feasibility cuts in (9) can be shared
among different states in the same decision stage [44]. The addition
of feasibility cuts (9) to the decision problem (5) do not require
additional slack variables to ensure relatively complete recourse in
the SDDP algorithm.

Note that the spatial decomposition provided by coordinating
solutions of (5) and (6) by feasibility cuts (9) has similarities to La-
grangian Relaxation techniques frequently proposed in the literature
for solving the hydrothermal scheduling problem [41]. However, it is
not necessary to solve (6) for each time (5) is solved within the SDDP
algorithm. In Section IV it is described how the EER feasibility can
be constrained by feasibility cuts constructed dynamically as part
of the SDDP algorithm or even constructed prior to running SDDP.
Although the use of feasibility cuts is well known within multi-stage
Benders decomposition algorithms [40], the application to facilitate
spatial decomposition within the LTS problem has, to the best of our
knowledge, not been addressed in the previous technical literature.

The feasibility cut coefficients are obtained as dual variables from
(6i)-(6l). While the coefficientsγp reflect the marginal cost of the
generation requirement in (6i), the coefficientsγv, κv andκi reflect
the cost (resp. benefit) of having more (resp. less) water available
for generation. Provided an initial reservoir volumeva,t−1, inflow
Iat and distribution parametersζV andζI , the constraint in (9) will
inform the decision problem in (5) if the proposed:

a) Generation schedulepH∗
atk is not feasible for all time stepsk. In

this case (6i) is binding for the non-feasible time stepsk
′

with
γp

atk
′ = 1.0, while the other coefficients are zero.

b) Target reservoir volumev∗at is not feasible. In this case (6j) is
binding with γv

at = 1.0, while the other coefficients are zero.
c) Combination of generation schedule and target volume is not

feasible. In this case one or more0 < γp
atk ≤ 1.0 and 0 <

γv
a ≤ 1.0.

While cases a) and b) concern the capacity of the system, case c)
concerns the trade-off between energy generation and energy storage.
The different types of cuts are visualized in two dimensions in Fig. 3.
The feasible region is colored grey and is constrained by cutsc1-c4,
wherec1 is of type a),c2 of type b), andc3-c4 of type c).

A cut reflecting case c) informs the optimization problem in (5)
that it cannot decide on a high generation and a high final storage
at the same time, it needs to compromise on one (or both) of them.
Consider the case where (5) suggest maximum generation throughout
the decision period. When evaluated in (6), all discharge segments
in (6i) are activated, where the last segment has the lowest water
conversion efficiency (as illustrated in Fig. 2). Thus, the energy
discharge in (5) is likely to underestimate the actual water usage
needed in (6) to meet the suggested generation target. Recall, that
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Fig. 3: Feasibility cuts illustrated.

(5) is not explicitly informed about the water to power conversion
used in (6i). However, as feasibility cuts are added, this information
is implicitly embedded.

IV. SOLUTION STRATEGY

A main iteration in the SDDP algorithm consists of a forward
and a backward iteration as briefly described in Section IV-A. Two
different approaches for embedding feasibility cuts in SDDP are then
described in Sections IV-B and IV-C.

A. SDDP

1) Forward Iteration: In the SDDP forward iteration a sequence of
inflow scenarioss = 1, . . . , NS covering the period of analysis from
t = 1, . . . , T are defined by randomly sampling residuals from the
fitted three-parameter lognormal distribution according to [39] and
by use of (5b). Subsequently, the stage decision problem (5) with
hydropower EERs is solved for each staget along the simulated
scenarios, and results are collected and state variables are updated
for the next stage. The simulated state at the end of the stage is used
as the initial state for the next stage. The forward simulation provides
an updated set of state trajectories. Moreover, the forward simulation
is used to obtain a lower boundJ− in (10) representing the first stage
cost plus the future expected cost seen from the first stage, and an
upper boundJ+ in (11) representing the average simulated cost.

J− = f1(x1, y1) + α1 (10)

J+ =
1

NS

NS
∑

s=1

T
∑

t=1

ft(xst, yst) (11)

Uncertainty around the upper bound can be used as a conver-
gence check [12]. One computes the standard deviationsd as
in (12) and checks if the lower bound (J−) lies in the interval
[

J+ − 1.96 sd√
NS

; J+ + 1.96 sd√
NS

]

.

sd2 =
1

NS − 1

NS
∑

s=1

(

T
∑

t=1

ft(xst, yst)− J+
)2

(12)

As discussed in the literature, e.g. in [24] and [45], this statistical
convergence criterion has limitations, and for practical purposes the
stabilization of the lower bound may serve as an alternative criterion
[45].

2) Backward Iteration: Benders cuts at the end of the planning
horizont = T can be obtained from a predefined final value function
Ψ. For t = T −1, . . . , 1 in the backward iteration one loops through
each state trajectory obtained from the last forward iteration. Starting
from the state at the end of staget − 1, for each realization of
stochastic variables one computes the optimal operation for stage

t by solving (5). From the sensitivities of the objective function to
the initial state values, found as dual values from (5b) and (5e), new
Benders cuts of type (5g) at the end of staget− 1 are obtained.

B. Dynamic Feasibility Cuts

In principle, the feasibility check per EER defined in (6) can be
carried out for each solved instance of (5) in both the forward and
backward iterations of the SDDP algorithm. Feasibility cuts of type
(9) are then built dynamically for each stage and EER and added to
the set of cutsCF

at. For a given state and decision stage, the following
steps are carried out:

1. Solve (5) with existing feasibility cuts (9) inCF
at,∀a ∈ A.

2. Check if the trial solutionspH∗
atk andv∗at are feasible by solving

(6) for all EERs.
3. If not, add a new feasibility cut of type (9) toCF

at for EERs
with infeasible trial solutions.

To limit the computational expense involved with solving (6),
it was found efficient checking hydropower feasibility only in the
forward SDDP iteration. That is, step 1 is carried out in both the
forward and backward SDDP iterations, while steps 2 and 3 are only
carried out in the forward iterations.

C. Static Feasibility Cuts

The detailed hydropower problem in (6) depends on the SDDP state
variables for the particular EER, but does not explicitly depend on
the SDDP strategies represented by Benders cuts in (5g). Thus, it is
possible to evaluate (6) prior to an SDDP run for a selection of state
variables. The following steps were conducted to create feasibility
cuts a priori.

1. Sample a large number of inflow scenariosIat, for t = 1, . . . , T
from (5b) and (5c).

2. Representva,t−1 as a set of points covering the interval
[V at, V at]. For each value ofva,t−1, define a range of feasible
volumes[V ∗

at, V
∗
at] for the end of staget.

3. Sample hydropower generationspH∗
atk between[PH

at, P
H
at] and

energy reservoir volumesv∗at between[V ∗
at, V

∗
at].

4. For each EER, check if the samplespH∗
atk and v∗at are feasible

for the corresponding state variablesva,t−1 andIat by solving
(6).

5. If not, create a new cutc of type (9).
6. Check if cutc is equal to existing cuts inCF

at. If not, addc to
CF
at.

A large number of feasibility cuts can be generated prior to the
SDDP run with the above procedure. Since the solution of (6) is part
of a two-stage decomposition process and does not depend on the
SDDP strategies, the feasibility cuts are tight. However, as the share
of equal cuts may be substantial, the equality check in step 6 above
serves an important role in limiting the size ofCF

at.

V. COMPUTATIONAL EXPERIMENTS

A. System and Case Description

An LTS model based on SDDP applied to the aggregated hy-
dropower description and with feasibility cuts was implemented
in Julia, using theJuMP package [46]. Computational tests were
carried out on a test system comprising 4 price areas, with a combi-
nation of generation technologies and grid topology as indicated in
Fig. 4. Approximately 70 % of the installed generation capacity in
the test system is from hydropower, the rest is covered by a mix of
wind and thermal power. A total of 20 thermal units with variable
marginal costs are represented.
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Fig. 4: Test system topology and mix of generation technologies
(hydro, wind, and thermal power).

Fig. 5: Topologies for hydropower watercourses in areas 1-3. Up-
stream reservoirs are to the left.

Price areas 1-3 each comprise a hydropower watercourse, as
illustrated in Fig. 5, representing real hydropower systems located
in Norway. Reservoirs in Fig. 5 are shown as rectangles, where
the color black indicates a reservoir with non-zero storage capacity,
while white indicates reservoirs without storage capacity, i.e., run-of-
river plants. Black circles indicate hydropower plants. All reservoirs
receive inflow. The 33 power stations have different numbers of
discharge segments, in the range 1-7, to represent their production
functions, as illustrated in Fig. 2.

All tests were carried out on an Intel Core i7-9850H processor
with maximum frequency of 4.60 GHz and 64 GB RAM. CPLEX
version 12.10 was used to solve the LP problems, using the dual
Simplex algorithm. Parallel processing of the SDDP algorithm was
not applied.

A scheduling horizon of 3 years was applied with weekly decision
stages. Each week was divided into 56 time steps each with a length
of 3 hours. Ramping constraints on discharge were considered only
for the results presented in Section V-E. A total of 200 inflow scenar-
ios were re-sampled in each forward SDDP iteration, and 12 discrete
inflow white noise terms were sampled at each stage in the backward
SDDP iterations. Consequently, a total of200 × 156 = 31200
decision problems of type (5) are solved in the forward iteration
and 200 × 12 × 156 = 374400 in the backward iteration. The
stabilization of the lower bound obtained from (10) indicates that
further iterations of the SDDP algorithm do not significantly improve
the constructed policy and can be used as a practical convergence
criterion [45]. A maximum number of 100 iterations was applied in
the experiments, which turned out to be stricter than the statistical

convergence criterion described in Section IV-A1.
Four separate cases were considered:

1. Reference (REF) using the SDDP formulation described in
Section IV-A, with weekly decision problems in (5), and
without feasibility cuts.

2. Dynamic Feasibility Cuts (DYN-FC) using the same SDDP
formulation as in REF, but with dynamic construction and
addition of feasibility cuts (9) in the forward SDDP iterations,
as described in Section IV-B.

3. Static Feasibility Cuts (STAT-FC) using the same SDDP for-
mulation as in REF, but with pre-computed feasibility cuts (9)
as described in Section IV-C.

4. Detailed Formulation (DET) using the same SDDP formulation
as in REF, but with explicit inclusion of detailed the hydropower
representation (6) in the decision problem in (5). Problem (6)
is coupled with (5) by treating EER decisionspHatk andvat as
variables instead of parameters in (6i) and (6j), respectively.

Note that (5e) was included in case REF, but excluded in cases DYN-
FC, STAT-FC and DET, for reasons discussed in Section III-B.

For case DYN-FC, a maximum of 200 new feasibility cuts are built
in each forward iteration for each stage. These cuts will accumulate
with the forward iterations. In case STAT-FC we initially created
100000 cuts per stage according to the description in Section IV-C.
By removing equal cuts, the number of feasibility cuts to be con-
sidered per stage of the SDDP run was in the range of 500-1000.
For all cases, Benders cuts of type (5g) were constructed and added
iteratively in the SDDP backward iteration as described in IV-A, and
accumulated without further cut management.

B. Single Scenario

To test the convergence properties of the model, it was run for a
pre-sampled single scenario, i.e., with deterministic inflow in both
the forward and backward iterations of the SDDP algorithm. Fig. 6
shows how the cost bounds converge for cases DYN-FC, STAT-FC
and DET. The three cases converge to a cost gap of 0.001 ke within
65 (DET), 67 (STAT-FC) and 109 (DYN-FC) iterations. Case REF
converges in 53 iterations to a cost that is approximately 5% lower
than for the other cases, and is therefore not shown in this figure. The
DET and DYN-FC cases converge at the same objective value, while
STAT-FC converges at a value that is approximately 30 ke lower.
The lower objective value can be explained by the fact that not all
states can possibly be covered by the sampling in the cut creation
procedure applied in STAT-FC.

A single feasibility cut is built in each forward iteration for each
stage in DYN-FC, leading to a rather slow convergence process
shown in Fig. 6. On the other DYN-FC is significantly faster. The
total computation times were 38 sec (DYN-FC), 213 sec (STAT-FC)
and 1250 sec (DET). This demonstrates that DYN-FC is efficient in
creating feasibility cuts along a single scenario, while STAT-FC create
these cuts without knowledge about the hydropower generation and
reservoir trajectory. Explicit formulation of the detailed hydropower
in case DET is significantly slower than using feasibility cuts. This
can be explained by the size of the LP problems solved. While the
LP problem of type (5) including feasibility cuts (9) for STAT-FC on
average comprises 2.5k variables and 1.8k constraints, the DET LP
problems where (5) and (6) are combined comprises 19k variables
and 12k constraints.

C. Computational Performance

The convergence characteristic of the algorithm is shown in Fig. 7,
comparing the lower bounds for all cases for the first 50 iterations.
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Fig. 6: Convergence characteristics for a single scenario. Upper and
lower bounds for cases DYN-FC, STAT-FC and DET.

The upper bound for case DYN-FC is included to show how the
gap between the upper and lower bound gradually decreases with
iterations. Stable lower bounds were observed for all cases within
the maximum number of iterations. Both DYN-FC and STAT-FC
converge to approximately the same lower cost bound, which is
5.9 % higher than the REF bound. Clearly, the feasibility cuts have
constrained the operation of the hydropower EERs, leading to a
higher expected cost of operating the system over the scheduling
horizon. The lower bound of case DET is approximately 110 ke (or
0.045 %) higher than that of DYN-FC and STAT-FC after 100
iterations. Comparing the DYN-FC lower bound in the deterministic
case (Fig. 6) and stochastic (Fig. 7) shows that the convergence rate
is significantly improved in the latter case when up to 200 new
feasibility cuts are constructed per forward iteration.

The computation times for all cases are shown in Table I, measured
as time spent per iteration for the first, middle and last iteration,
as well as the total time. Since all cases accumulate Benders cuts
of type (5g), an increase in computation time per iteration was
expected. The REF case does not consider feasibility cuts and is
therefore faster to solve than DYN-FC and STAT-FC. Comparing
DYN-FC and STAT-FC, the former is considerably faster in the first
iteration, but gradually slows down with iterations as the number of
feasibility cuts grows. On the other hand, STAT-FC considers a fixed
number of feasibility cuts and has a comparatively modest increase in
computation time from iteration 1 to 100. No direct comparison with
a SDDP model for the detailed system without aggregation was made
in this work. However, the significant increase in computation time
for case DET, which represents the detailed hydropower explicitly,
demonstrates the computational efficiency of cases DYN-FC and
STAT-FC. It should be noted that there is considerable potential to
further speed up the computation time by use of cut management
techniques (such as relaxation or declaration of lazy constraints),
since only a few feasibility cuts are binding at the time.

D. Simulation Results

To compare the simulated results for the different cases, 2000
inflow scenarios were sampled and operation along these were
simulated with the strategies and feasibility cuts obtained from all
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Fig. 7: Convergence characteristics. Lower bounds for all cases and
upper bound for case DYN-FC.

TABLE I: Computation times, in seconds.

Case Iter no. 1 Iter no. 50 Iter no. 100 Total
REF 3.2 5.1 11.4 370

DYN-FC 4.1 294.0 736.5 14347
STAT-FC 39.9 52.8 77.5 3204

DET 158.0 1346.0 11941.0 229130

cases. Since differences in simulation results between the DYN-FC
and STAT-FC cases are muted, only REF and STAT-FC results are
compared in the following.

Fig. 8 presents the duration curves for simulated EER generation
for area 2. It can be observed that the total amount of generation
for the two cases are similar, which is reasonable since the energy
inflow is the same in both cases. Furthermore, the maximum and
minimum generation levels are less exploited in the constrained
STAT-FC case. This can be explained by the tendency of case REF to
overestimate EER generation capability, due to optimistic information
about generation efficiency and stored energy.

Fig. 9 shows the weekly average power prices for area 3 obtained
from REF and STAT-FC, as the mean, 0 and 100 percentiles. These
prices were obtained as the dual values from (5f). The limited
flexibility of hydropower in case STAT-FC contributes to increased
price levels on average as well as higher price spikes.

E. Ramping Constraints

Case STAT-FC was run for different levels of maximum allowed
ramping on discharge, by setting∆h in (6e) equal to a certain percent-
age of the maximum discharge capacity for a set of relevant modules.
For each ramping level, SDDP was run separately according to the
setup defined in Section V-A, followed by a simulation considering
the same 2000 sampled inflow scenarios as used in Section V-D.
The “activation” of (6e) is explicitly seen in the evaluation of
the detailed hydropower system, and communicated to the SDDP
decision problem through feasibility cuts. Table II shows the expected
simulated costs for the different levels of maximum allowed ramping
on discharge considered. The last line in Table II shows how the
expected cost of operating the system increases (in percentage) with
decreasing maximum ramping capacity on discharge.
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Fig. 8: Duration curves for generation from EER in area 2.
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Fig. 9: Weekly average power prices for area 3.

Fig. 10 shows the duration curves for generation for the EER
in price area 3 for different levels of maximum allowed ramping.
As ramping capability is gradually limited, generation close to the
maximum and minimum boundaries becomes less frequent, and the
duration curve takes a flatter profile. This illustrates how the flexibility
of the hydropower is limited with stricter ramping constraints.

VI. CONCLUSIONS

This work considers an SDDP model representing the aggregated
hydropower as a reference and presents a method for facilitating
the interaction between aggregated and detailed hydropower by
applying spatial decomposition principles. Feasibility cuts obtained
by optimizing the detailed hydropower system are used to constrain
the flexibility of the aggregated hydropower system. The construction
and use of feasibility cuts fits well into the SDDP algorithm and
can even be computed prior to an SDDP run. The method was

TABLE II: Impact of ramping constraints on discharge.

Max. ramp. 100% 80% 50% 30%
Exp. cost [ke] 245694 245977 248383 256007
Increase (%) 0.00 0.12 1.09 4.20
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Fig. 10: Duration curves for generation from EER in price area 3
considering different levels of maximum ramping on discharge.

demonstrated on a test system comprising three realistic and rather
complex hydropower watercourses.

The test results show that the inclusion of feasibility cuts signifi-
cantly increases computation time. However, the low dimensionality
in terms of aggregated reservoir volumes and inflows is maintained,
and SDDP convergence rates do not change notably. Computing fea-
sibility cuts prior to an SDDP run proved to be faster than cut creation
within SDDP. It was demonstrated that implicit representation of
detailed hydropower through feasibility cuts served to constrain the
flexibility of the aggregated hydropower system. Moreover, the tests
demonstrated how changes in the detailed system, exemplified by the
addition of maximum discharge ramping constraints, are naturally
captured by the proposed method.

When evaluating the proposed method against the reference case
that does not consider feasibility cuts, the trade-off between increased
precision in results versus increased computation time is central.
The increased result precision is clearly demonstrated in the case
studies, but one could argue that the EER applied in the reference
case could be further constrained by adjusting the EER parameters.
On the other hand, the estimated increase in computation time when
using feasibility cuts is not discouraging compared to an explicit
formulation of the detailed hydropower system.

Promising avenues for further research involve testing on large-
scale systems, improved management of feasibility cuts, inclusion of
more hydropower details (such as head dependencies), and improved
factors for distribution of reservoir and inflow energy to the detailed
system.

REFERENCES
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