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Hydropower Aggregation by Spatial Decomposition — An
SDDP Approach

Arild Helseth, Birger Mo

Abstract—The balance between detailed technical description, rep-
resentation of uncertainty and computational complexity is central in
long-term scheduling models applied to hydro-dominated power system.
The aggregation of complex hydropower systems into equivalent energy
representations (EER) is a commonly used technique to reduce dimen-
sionality and computation time in scheduling models. This work presents
a method for coordinating the EERs with their detailed hydropower
system representation within a model based on stochastic dual dynamic
programming (SDDP). SDDP is applied to an EER representation of
the hydropower system, where feasibility cuts derived from optimization
of the detailed hydropower are used to constrain the flexibility of the
EERs. These cuts can be computed either before or during the execution
of the SDDP algorithm and allow system details to be captured within the
SDDP strategies without compromising the convergence rate and state-
space dimensionality. Results in terms of computational performance and
system operation are reported from a test system comprising realistic
hydropower watercourses.

Index Terms—Hydroelectric power generation, Power generation
scheduling, Optimization methods, Stochastic Processes.

NOMENCLATURE
A. Index Sets
ac A Set of price areas;
ce CP/F  Set of Benders (B) or feasibility (F) cuts;
d €D, Set of price-elastic demands;
g€ Ga Set of thermal units;
h e Ha Set of hydropower modules;
kekK Set of time steps within decision stage;
et~ Setoflines directed to (+) or from (9;
n € N Set of discharge segments;
je QS/C Set of hydropower modules, defined Sec. IlI-A;

je wD/B/SSet of upstream modules discharging (D), bypassing V¢

(B) or spilling (S) toh.

It Average inflow, in Mnf;

Lhat Inflow mean value, in GWh;

NS Number of scenarios in SDDP forward it.;
Mot \Volume coeff. for Benders cut, i€/ GWh,;

i Vector of inflow coefficients for Benders cut;

ﬁ% Max. generation capacity, in GWh;

P Max. price-elastic demand, in GWh;
EZ,FZ Max./Min. EER generation, in GWh;

Py Max. generation capacity, in MW;

N\ End-of horizon valuation of water;

@fht Upper bound for discharge segment, ifi/s)
Cat Inflow standard deviation, in GWh;

T Number of decision stagds

Vahvat Max./Min. EER reservoir volume, in GWh;
Ve Vi Max./Min. reservoir volume, in M

Waitk Wind power, in GWh;

Ck Fraction of weekly time covered by stép
¢ Distribution factors for volume;

¢t Distribution factors inflow;

Vector of normalized inflows;.

C. Decision Variables
at Future expected cost, i;

fetr Flow on line?, in GWh;

pc’;k Generation from thermal unit, in GWh;
pd%tk Price-elastic demand, in GWh;

p, Hydropower generation per EER, in GWh;
ph. Hydropower generation per module, in MW;
> Spillage from EER reservoir, in GWh;

qb, Discharge through station, in’ts;

ql Discharge through segment, in’fs;

qB., Bypass passing station, in’fs;

Qe Spillage from reservoir, in fis;

Tatk Curtailed power, in GWh;

Vector of EER reservoir volumes,, in GWh;

Vatk EER reservoir volume, in GWh;
Vhik Reservoir volume, in M

Tt, Yt State and stage variables;

yl JyE Slack variables, in GWh.

I. INTRODUCTION

B. Parameters
B4 Right-hand side for Benders cut, &
@m Right-hand side for feasibility cut, in GWh;
ch Marginal value for demand, i€/GWh;
Cth Marginal cost for thermal gen., i€/GWh,;
CR Marginal cost of curtailment, i€/GWh;
Ant Max. change in discharge, ins;
Dk Firm demand, in GWh;
o Inflow correlation matrix;
Dat Fraction of controllable inflow to EER;
Fo Max. capacity on ling, in GWh;
€ Inflow white noise;
Nnh Efficiency at segment, in MW/m?3/s;
nd Best efficiency point, in MW/nVs;
nhd Best eff. to sea, in MW/ifs;
nh¢ Best eff. for controllable inflow, in MW/nYs;
Iw Conversion to Mm;
T, Conversion to GWh;
P/ k¥ Coefficients for feasibility cut, fraction;
ot Energy inflow to EER, in GWh;
T Average energy inflow to EER, in GWh;
T Inflow to module, in Mn3;

Long-term scheduling (LTS) of hydropower storages is an impor-
tant task in hydro-dominated power systems which is typically ac-
commodated in a single optimization model with a planning horizon
of multiple years. LTS models support operational decision making
through computation of strategies for hydropower utilization in terms
of dual information (water values or prices) or volume targets. These
strategies are applied in medium- and short-term models [1], and
the coordination of such models can be organized in scheduling
toolchains, as is the current practice in countries such as Brazil and
Norway [2]. In addition, LTS models are used for planning tasks,
such as system analyses [3], expansion planning [4], and maintenance
planning [5]. While LTS models emphasize on the representation of
uncertainties over the planning horizon typically using a rather coarse
description of the technical system, shorter-term models are oriented
towards deterministic formulations and a detailed physical system
description [6], [7]. System simplifications in LTS models could lead
to time-inconsistent policies [8], revealing a need for embedding more
details from the short-term scheduling into LTS models [9]. However,
as LTS models are typically not used for detailed system dispatch,
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A variety of methodologies have been proposed for solving theUnlike previous works, the use of feasibility cuts provides a
LTS problem, see e.g. the review by [10]. The use of methodsrmal linkage between the aggregated and the detailed hydropower
based on optimization has matured over the last decades [IEpresentation per EER within the SDDP algorithm. In contrast
and in particular the stochastic dual dynamic programming (SDDR) the hybrid approach in [15], hydropower details are considered
algorithm introduced in [12] has been widely applied in operativérrough the entire planning horizon seen by SDDP. The use of global
scheduling models [13]-[15], and is subject to improvements affehasibility cuts to deal with functionality that is not explicit in the
extensions by the research community [16]-[22]. SDDP formulation has previously been applied for embedding risk

Although SDDP allows for efficient treatment of systems wittmeasures [37], [38] in LTS model formulations. Differently from
multiple reservoirs, explicit treatment of physical reservoirs in largehose works, we use feasibility cuts to facilitate spatial decomposition,
scale systems may lead to prohibitive computation times, as demaperdinating aggregated and detailed hydropower representations
strated for the Norwegian system in [23]. A commonly used practicethin the SDDP algorithm.
for reducing computational complexity is to aggregate the physicalThe main contributions from this work can be summarized as
description of watercourses (or cascades) into an equivalent enefgjows:

representation (EER) of the reservoirs and plants [13], [15], [24], , A methodology for dynamically constraining the EER of hy-
[25]. The use of EERs, where the sum of potential energy in the  gropower within the SDDP algorithm by use of feasibility
reservoirs is represented rather than the water in each reservoir, was cyts per watercourse is presented. The feasibility cuts can be
introduced in [26], and is often found to be a reasonable approxima-  computed in the forward SDDP iterations and are shared among
tion for systems with large regulation capability and hydrologically  gifferent states within each decision stage, and thus allows
homogenous basins [27]. As discussed in [28], and later demonstrated computationally efficient integration with the SDDP algorithm.
in [29], local constraints on reservoirs, flows and generations are not, The use of feasibility cuts computed prior to solving the SDDP
explicitly accounted for in such aggregated models, which may lead  model is described. Through a priori computation and removal
to suboptimal use of hydropower resources. of identical cuts it is demonstrated that computation time can

Various techniques have been applied to coordinate the representa- pe significantly reduced without compromising solution quality.
tion of EERs and the detailed hydropower system within LTS models.

In the EMPS model, which is widely applied for analyses of the I
Nordic power market, a detailed drawdown model based on heuristics o ] ] ]
is applied to dynamically improve the EER representation within a 1€ LTS optimization problem is generally defined in (1), com-
framework based on stochastic dynamic programming and systBRFINg state variables: and stage variableg, for each decision
simulation [30], [31]. In the official Brazilian LTS model NEWAVE, Staget. One seeks to find an operating strategy that minimizes the
the various EER attributes are estimated prior to running the SDISKPected cost of supplying electricity in (1a), accounting for the
model, as discussed in [25]. A method to consider hydraulicalfd-0f-horizon valuation of stored water («r), and respecting
coupled systems in the construction of the EERs is presented in [3ZJnstraints in (1b)-(1d). In this work a planning horizon of multiple
Moreover, a comparison between the use of EERs per subsyst&A's iS applied, assuming weekly decision stages, allowing a finer

and per cascade is provided in [33]. The NEWAVE model allows fc;ime discretization within the week. Reservoir volumes and inflows
a hybrid approach, where the individual reservoirs are conside the EERs are considered as state variables. The stage variables

in a first part of the planning horizon and then coupled to digpresent the operational decisions to be made in each stage, while

EER representation covering the remaining horizon [15]. The hybr%late variables transfer information about the system state between
approach is primarily useful when the LTS model is part of §29€s.
toolchain leading to operational decisions.
Recent works apply genetic algorithms [34] and bilevel optimiza- T
tion [35], [36] to build hydropower equivalents for shorter-term (m’yl)lf}‘i’f(l”’yT)E{th(fztvyt) +‘I’(l’T)} (1a)
and deterministic hydropower scheduling models. Despite promising t=1
results, these approaches do not easily fit into LTS model frameworks

. PROBLEM DESCRIPTION

based on stochastic dynamic programming principles. st. Wz +Hxio1 + Gy = h(&) (1b)

Based on the literature review above, there is clearly a need By, =0 (1c)
for LTS models and methodologies based on approximation of (z,y:) € Xy (1d)
the detailed hydropower system, appropriately balancing the trade- Ve {1,2,...,T}

off between accuracy of results and computational performance.

Considering typical LTS application areas, modest computation timesThe constraints are indicated in (1b)-(1d), where the initial state
are important to facilitate many and frequently repeated analyses.vettor x is given, X is the feasible set for the decision variables
this context, we propose a method where the LTS problem is modelefdtime stept, and W, H, G, and B, are matrices of suitable

by use of EERs to represent the hydropower, and SDDP is appligichensions. The expectation in (la) is taken over the stochastic
to solve the problem. It is demonstrated how each EER can interadtow. Inflow to the EERs is represented by a vector autoregressive
with its underlying detailed hydropower description through lineanodel of first order according to the procedure described in [39].
inequalities (referred to afeasibility cuts in the following) added The right-hand-side parameter vectofs;) in (1b) is dependent on

in the SDDP algorithm. Provided trial EER solutions, the feasibilitthe random vector of inflow “white noisef; whose distribution is
cuts are derived by separately optimizing the detailed hydropowkemown, and wherg; are the realizations.

watercourses, and thus represent the system limitations through @he problem in (1) can be classified as a multi-stage stochastic
spatial decomposition approach. The overall motivation is to increaggtimization problem, which may be efficiently solved by decom-
the accuracy of hydropower representation in LTS models, whiosition techniques [40]. In the following we will use the SDDP
maintaining the convergence properties and low state space dimalgorithm, which is a sampling-based variant of multi-stage Benders
sionality obtained when representing complex hydropower systeaiscomposition. The problem in (1) can be decomposed into stage-
by EERSs. wise nested linear programming (LP) problems of type:
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Fig. 2: Relationship between power and discharge for a hyavepo
module.

downstream. Converting inflow for a reservaéirto EER energy in-
flow involves a separation between controllable and non-controllable
. water. For each module we define best efficiency referred sea level
(right). for the controllable part of the inflow in (3b), whef& comprises

the modules from modulé and downstream starting at the first
reservoir with non-zero storage capacity. From the example in Fig. 1,
QFf =0f ={1,2,3}, Q5 ={2,3}, 9F = {3}, Q5 = Qf = {3}.

Fig. 1: Aggregation of a hydropower watercourse (left) to arREE

Oi(xi—1) = min fi(xe,ye) + ae(x (2a)
(1) = min fi(weye) + (o) =S )
st (@, y1) € Xe(e-1,8) (2b) jeas
The variablea: expresses the future expected cost function seen nZC = Z nZ (3b)
from the end of stage This variable will gradually be constrained by jead
Benders cuts constructed in the SDDP iterations, as will be explained

in detail later. The properties of the EER per decision stagee defined in (4).

In Section Il we elaborate on the stage-wise decision probleﬁh‘?s‘? parameters are calculated in advance and kept constant V\(hen
in (2), while the solution strategy for solving (1) is outlined inOPtimizing the system by use of SDDP. Average energy inflow is
Section IV. found in (4a), and the controllable fraction of the energy inflow is
defined in (4b). Maximum and minimum storage capacities are found
in (4d) and (4c), respectively. The maximum generation capacity of
the EER is found as the sum of the individual capacities in (4f), while

In this section the stage-wise decision problem in (2) is describgge minimum generation depends on non-controllable inflow in (4e).
in detail. It is assumed that the hydropower is aggregated in EERs
and that each EER represents a single watercourse and belongs to a

Ill. STAGE-WISE DECISIONPROBLEM

separate price area (or bidding zone). These assumptions are without Tt = Z Teny Ine (4a)
loss of generality, as the formulations could be adapted so that an hEHq )
EER represents multiple watercourses and with multiple EERs within Zhe’Ha TenbC Ine
a price area. Further division of multiple EERs per watercourse, as bat = Tt (4b)
discussed in [32], is not possible without modeling adjustments.
[32] p g aqj v, = Z TenlSv,, (4c)
hEHq
A. Hydropower System Aggregation Vo= Z Fenﬁsvht (4d)
The procedure for aggregating a watercourse to an EER is il- hEHq
lustrated in Fig. 1 and described below. A watercourse comprises P2 — (1= ¢ar) - Tar (4e)
connected hydropower modules, each with a reservoir and a power B _ .7 (49
station, as illustrated within the stapled rectangle to the upper left at = Z et ht

in Fig. 1. Inflow is directed into the reservoirs, and both reservoirs heHa

and power stations may have zero capacity in a module, such as th&he aggregated hydropower description in (4) will, for most
dummy reservoir with zero storage capacity in module 2 in Fig. 1detailed system configurations, overestimate the flexibility of the
Hydropower generation for a power station is represented hgdropower system, since energy conversion refers to best efficiencies
a piecewise linear and concave relationship between power aamtl EER capacities are found as the sum of module capacities.
discharge, represented by a set of discharge segments with decredsin8ection 1lI-C it is described how the flexibility of EERs can
efficiency, as illustrated in Fig. 2. A power station typically compriselse constrained by linear inequalities found by optimizing operation
multiple generation units, and [41] provides a description on howf the detailed hydropower system. It should be noted that EER
power station production functions can be derived through data geErrameters can be derived differently, to incorporate features such as
generation unit. Each hydropower station has a best efficiency padiné dependency of energy conversion and maximum power generation
1% which represents the efficiency of the first segment. on reservoir level, and losses in the non-controllable inflows due to
A best efficiency point referred to sea level can be defined apillage, see e.g. [25], [26], [32], [42]. In the presented approach, it
in (3a), whereQ; comprises the modules from module and is recommended to include such features in the detailed hydropower
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model described in Section IlI-C to further constrain EER operation The decision problem in (5) decides on the EER hydropower
by feasibility cuts. generation per time step/f;) and its final stored energw{ =
[vi. %, Val]). These decisions are in turn checked in (6), and feasibility
cuts of type (9) may be added to (5) to further constraint the
EER decision, as will be elaborated on in the following. Note that
The decision problem for a weekis defined as an LP problem in additional EER constraints explicitly formulated in (5) could help
(5), detailing the general formulation in (2). The hydropower systeliding the decision problem towards feasible EER decisions when
is aggregated in EERs, and the vector of EER volumes ( = no or few feasibility cuts are available, but such experiments were
[vato, Va]) and normalized EER inflowsz{_1) from the previous not pursued in this work.
stage are considered state variables.

B. Decision Problem

C. Disaggregation

Q(vi_i,zio1) =min » Y | > Coipgin The aggregated hydropower description will tend to overestimate
k€K ac Al g€Ga the capability of the detailed hydropower system. In this section it is
b b " described how the feasibility of the EER decisions from (5) related
- Z Carparre + Crark | + an (5a) to hydropower generationp{;) and energy volume at the end of
d€Daq the decision periody;) for a state defined bw;_, and I,: can
7z = Pzi_1 + € (‘,.-Z) (5b) be validated considering detailed hydropower description per EER.
The EER solution is disaggregated to a detailed representation by
lat = Oatzat + fat Va  (50) applying the same conversion factors and mappings that were used
Vi1 =Vi_4 (ﬂ-”) (5d) for the aggregation. In the LP problem in (6) the feasibility of the
- s aggregated results is checked.
Vatk — Vat,k—1 T Patk + Gatk = Cklat Va,k  (5€)
H G D
Pa + p - D + Tatk * * * .
" Qgg:a o dEzD:a “ Zat(pé{fk, Vi, Vi1, Iﬂ«t) = min Z yiljt + ytE (Ga)
ke
+ feer — fetk 2 Datke — Wae  Va,k - (5)
ZZ+ Z, Untk + L (Q;ﬁk + Ghk + qstk)
€L, LEL,
it Y MacVatk + Y TactZat > Bat Ve (59) - Fw( Do Gt D Gt Y qjstk)
acA acA jewp jewp jEwy
= Fo < fur < Fo Ve, k- (5h) = pivai1 + CeCluilar VheHa k=1 (6b)
G —G .
0 <pgu < ng Vg, k(5] Uhtk — Uht,k—1 + Lw (q;?tk + ok + q;?tk)
0<phn <P Vg,k (5]
= < P (X et Y et Y a)
P < <P Ya, k (5k) P D i B i S
Loy S Patk > _at ’ JEwWy, JEW) JEwy
Vi < vatk < Var Va  (3)) = ChClpelat VheHa,keK\1 (6c)
The objective in (5a) is to minimize the costs associated with ¢/}, = Z Trchtk Vh € Ha, k (6d)
operation of the system in the current decision period and the neNy,

expected cost of operating system in the future. The current cost _ A,, <D — oD <A, VheHa ke K\ 1 (6€)
comes from thermal generation and curtailment of price-inelastic N ' N

D —D
demand, while the coverage of price-elastic demand is seen as a 0= dnner < Qune Vn,h € Ha, k (6
revenue. The future expected cost is representedvbyhich is 0< q}f’tk < @ft Vh € Ha, k (69)
constrained by Benders cuts in (59). Vo < onen < Vi Vh € Ha, k (6h)

A vector autoregressive model of first order representing the
weekly normalized inflow to EERS is described in (5b). The corre- > LelnnGmner + Yie = Pati (Vﬁtk) vk (6i)
lation matrix @) and residualse) are fitted to observations, where h€Ha neN),
residuals are adapted to a three-parameter lognormal distribution Z Tentvnk + yf > vl (’YL) (6))
according to [39]. The normalized inflow is converted to energy 7,
inflow in (5c). Note that the inflow model always generates non- X y
negative energy inflows. In (5d) a copy of the EER reservoir volume Ya,t=1 = Va,t—1 (H‘“) (6K)
state variables are taken, for the ease of finding their dual values j , — r*, (an) (61)
7”. EER energy balances are provided in (5e). These balances are
only considered when feasibility cuts of type (9) are not added to The objective in (6a) is to minimize the use of slack variables
(5), such as in case REF in Section V, to provide a linkage betwefm constraints (6i) and (6j). Hydropower modulgsare connected
the initial and final EER storages. An energy balance for each priteough the three possible waterways discharge, bypass and spillage.
area and time step is defined in (5f), allowing exchange of enerach module has associated sets comprising upstream modules dis-
between price areas. Benders cuts in (5g) are constructed in t¢harging (2), bypassing(?) and spilling (v3) to it. Water balances
backward iteration of the SDDP algorithm based on sensitivities afe defined for the first (6b) and subsequent (6¢) time steps for each
the state variables, found as dual values from (5b) and (5d), as willim@dule, accounting for the hydrological topology provided by the
described in Section IV-A. Variable boundaries are presented in (5aterways. A concave relationship between power and discharge
(51), where boundaries in (5k) and (5l) are obtained from (4e)-(4® facilitated by discharge segments, as described in Section IlI-A
and (4c)-(4d), respectively. and illustrated in Fig. 2. The total discharge is found in (6d).
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Ramping constraints on discharge are included in (6e). Boundaries
on discharge, bypass, and reservoir volume are provided in (6f), (6g) . » H s v .
and (6h), respectively. These boundaries are often subject to seasonal 0 = Zat + Z Vatk (patk - patk) T Yar (”“t - ”at>
variations, e.g., due to environmental constraints on river flows and hek )

reservoir levels. The constraints in (6i) and (6j) serve to check the + Koy (va,tﬂ — v;,tfl) + Ko (Iat — I;}) (8)
feasibility of the schedules of generation per time step and volume_at o

the end of the decision stage obtained from the EER in (5). FinaII-Q1e inequality in (8) can be rearranged as

copies of the state variables are introduced in (6k) and (6l) to ease Z ’Yfimpftk A Vet + K Va1 + Ky Lo < BE, 9)
the computation of their dual values, which are needed in the creation '

kek
of feasibility cuts.

Note that the hydropower production function illustrated in Fig. ﬁvhere
and represented in (6i) can be improved to include the dependency g — _z7* Z Vﬁtkpftz + VS 4 Ko 1 + KTE,
of power output on net head (or reservoir volumes). Improvements ek

need to comply with the convexity of (6) to avoid compromising the The feasibility cut in (9) constrains the solution space for the

validity of the feasibility cuts. As an example, the piecewise IineaéER production and storage decisions, and can be added to (5).

formula.tlon in [43] which represents thg relationship between pow L the problem formulated in (6) is convex and the SDDP state
production, discharge, volume, and spillage, could be embedded In. L .
©) variables are accounted for, the feasibility cuts in (9) can be shared

The parametersY,, define the fraction of initial energy reservoiramong different states in the same decision stage [44]. The addition

volume to be distributed to the individual reservoirs. In this woYk, of feasibility cuts (9) to the decision problem (5) do not require

are defined by the relative energy storage capability of the reserVa?lrdltlonal slack variables to ensure relatively complete recourse in

capacities according to (7a). Similarly, the parametdrs defined the SDDP algorithm.
cap ) 9 ' Y, P i Getin Note that the spatial decomposition provided by coordinating
in (7b) provide fractions of energy inflow volumes to be distributed " L A
L . . solutions of (5) and (6) by feasibility cuts (9) has similarities to La-
to the individual reservoirs, and are based on average annual inflow ™ "> . . . .
(Fn) grangian Relaxation techniques frequently proposed in the literature
ho- for solving the hydrothermal scheduling problem [41]. However, it is

not necessary to solve (6) for each time (5) is solved within the SDDP

&= ﬂ (7a) algorithm. In Section 1V it is described how the EER feasibility can
aht bST . S .
Zieﬂa n;” Vit be constrained by feasibility cuts constructed dynamically as part
, n2S e of the SDDP algorithm or even constructed prior to running SDDP.
Cant = (70)  Although the use of feasibility cuts is well known within multi-stage

b
Zie”a U Benders decomposition algorithms [40], the application to facilitate
One should strive to let the parametef¥,,, and ¢, reflect spatial decomposition within the LTS problem has, to the best of our
the most likely distribution for each decision stage in the planningnowledge, not been addressed in the previous technical literature.
horizon. In the case of disaggregating EER storage to hydropowelThe feasibility cut coefficients are obtained as dual variables from
modules, more advanced distribution parameters could resem{8d-(6l). While the coefficientsy” reflect the marginal cost of the
different strategies in the typical filling and depletion seasons of tigeneration requirement in (6i), the coefficients x” and ' reflect
individual reservoirs [30]. The same reasoning cannot be used fbe cost (resp. benefit) of having more (resp. less) water available
inflow, as its disaggregation is determined by nature and not strateffic generation. Provided an initial reservoir volumg:_1, inflow
decisions. I, and distribution parameters’ and¢’, the constraint in (9) will
Note that the distribution parameters suggested in (7a) and (Tiform the decision problem in (5) if the proposed:
can be seen as rough estimates, and that higher precision can kg Generation schedufe’; is not feasible for all time steps. In

introduced by deploying detailed knowledge about the system athand  thjs case (6i) is binding for the non-feasible time stépsvith
and its initial state. Although there are different ways of defining 4  — 1.0, while the other coefficients are zero.

the distribution parameters, one should keep in mind that they mush) Target reservoir volume;, is not feasible. In this case (6j) is
be independent of the EER state variables to comply with SDDP  pinding with 2, = 1.0, while the other coefficients are zero.

convexity requirements and to facilitate cut sharing. c) Combination of generation schedule and target volume is not
feasible. In this case one or mofe< ~?,, < 1.0 and 0 <
D. Feasihility Cuts Yo < 1.0.

By considering the decision problem in (5) as the master probléWihile cases a) and b) concern the capacity of the system, case c)
and the hydropower feasibility problems in (6) as subproblemspncerns the trade-off between energy generation and energy storage.
one can apply two-stage Benders decomposition to coordinate ffiee different types of cuts are visualized in two dimensions in Fig. 3.
solutions to achieve optimality of (5) while respecting the feasibilitifhe feasible region is colored grey and is constrained by @uts,
check. Letpfl: andv?, be a decision from (5) to be evaluated in (6)wherec; is of type a),c2 of type b), andcz-c4 of type c).

If this trial decision is feasible, no slack variables are used in (6) andA cut reflecting case c) informs the optimization problem in (5)
the objective function valug;;, and dual values in (6) are zero. If not,that it cannot decide on a high generation and a high final storage
the linear inequality in (8) (reformulated to (9)) can be constructeat the same time, it needs to compromise on one (or both) of them.
and added to (5) to constrain the EER decisions. This inequaliBonsider the case where (5) suggest maximum generation throughout
involves all subproblem state variables?(,, va:, va.:—1, andI.;), the decision period. When evaluated in (6), all discharge segments
and allows EER decision variables’{, andv.;) to adjust to prepare in (6i) are activated, where the last segment has the lowest water
for feasible hydropower operation. We use the téeasibility cut to  conversion efficiency (as illustrated in Fig. 2). Thus, the energy
describe (9) due to the feasibility check performed in (6) and in lirgischarge in (5) is likely to underestimate the actual water usage
with the terminology and formulation in [40] (Section 5.1.b). needed in (6) to meet the suggested generation target. Recall, that

This is the accepted version of an article published in IEEE Transactions of Sustainable Energy
https://doi.org/10.1109/TSTE.2022.3214497



© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 6

AL, t by solving (5). From the sensitivities of the objective function to
the initial state values, found as dual values from (5b) and (5e), new
C1 Benders cuts of type (5g) at the end of stage 1 are obtained.
o B. Dynamic Feasibility Cuts
In principle, the feasibility check per EER defined in (6) can be
\\03 carried out for each solved instance of (5) in both the forward and
backward iterations of the SDDP algorithm. Feasibility cuts of type
N (9) are then built dynamically for each stage and EER and added to
the set of cut€’;. For a given state and decision stage, the following
Uat> steps are carried out:

1. Solve (5) with existing feasibility cuts (9) i@%,,Va € A.
2. Check if the trial solutionp: andv?, are feasible by solving
(6) for all EERs.

. oy F
(5) is not explicitly informed about the water to power conversion 3. If not, add a new feasibility cut of type (9) 1@, for EERs

used in (6i). However, as feasibility cuts are added, this information with infeasible trial solutions.
is implicitly embedded. To limit the computational expense involved with solving (6),

it was found efficient checking hydropower feasibility only in the
forward SDDP iteration. That is, step 1 is carried out in both the

IV. SOLUTION STRATEGY i > :
. L . . forward and backward SDDP iterations, while steps 2 and 3 are only
A main iteration in the SDDP algorithm consists of a forwarq;arried out in the forward iterations

and a backward iteration as briefly described in Section IV-A. Two
different approaches for embedding feasibility cuts in SDDP are then

Fig. 3: Feasibility cuts illustrated.

described in Sections IV-B and IV-C. C. Satic Feasibility Cuts
The detailed hydropower problem in (6) depends on the SDDP state
A. SDDP variables for the particular EER, but does not explicitly depend on

}he SDDP strategies represented by Benders cuts in (5g). Thus, it is

1) Forward lteration: In the SDDP forward iteration a sequence 0possible to evaluate (6) prior to an SDDP run for a selection of state

nflow scenarios; = 1.’ -, V5 covering the pgrlod of .analy3|s from variables. The following steps were conducted to create feasibility
t =1,...,T are defined by randomly sampling residuals from thg .

i R . ts a priori.

fitted three-parameter lognormal distribution according to [39] andJ .

by use of (5b). Subsequently, the stage decision problem (5) withl: Sample alarge number of inflow scenargs for¢ = 1,..., T

from (5b) and (5c).
Representv,,.—1 as a set of points covering the interval
Vs, Vat). For each value ob, ;—1, define a range of feasible

volumes[V*,,V.,] for the end of stage.

at?

hydropower EERs is solved for each stagelong the simulated

scenarios, and results are collected and state variables are update&‘
for the next stage. The simulated state at the end of the stage is used
as the initial state for the next stage. The forward simulation provides ) "
an updated set of state trajectories. Moreover, the forward simulation> Sample hydropower generatiop$;, between[P, P,,] and

is used to obtain a lower bounti” in (10) representing the first stage energy reservoir volumes;, between[V:,,V,].
cost plus the future expected cost seen from the first stage, and afr For each EER, check if the sample;, andv;, are feasible
upper boundJ* in (11) representing the average simulated cost. E‘é; the corresponding state variables; -1 and .. by solving
J7 = fi(zr,yn) +oa (10) 5. If not, create a new cut of type (9).
| Ns T 6. Check if cutc is equal to existing cuts igZ;. If not, addc to
Jt = WZth(wsnyst) (11) Car-
s=1t=1 A large number of feasibility cuts can be generated prior to the

Uncertainty around the upper bound can be used as a conv@BDP run with the above procedure. Since the solution of (6) is part
gence check [12]. One computes the standard deviatidnas of a two-stage decomposition process and does not depend on the
in (12) and checks if the lower bound/{) lies in the interval SDDP strategies, the feasibility cuts are tight. However, as the share

[JJr —1.96 Sﬁs; Jt +1.96 S}is]' of equal cuts may be substantial, the equality check in step 6 above
serves an important role in limiting the size @f;.
NS T
1 2
= ( oty Yat) — J*) 12
s NS—1 ; ;ft(x tYst) (12) V. COMPUTATIONAL EXPERIMENTS

As discussed in the literature, e.g. in [24] and [45], this statisticAt ystém and Case Description
convergence criterion has limitations, and for practical purposes theAn LTS model based on SDDP applied to the aggregated hy-
stabilization of the lower bound may serve as an alternative criteridnopower description and with feasibility cuts was implemented
[45]. in Jul i a, using theJuMP package [46]. Computational tests were
2) Backward lteration: Benders cuts at the end of the planningarried out on a test system comprising 4 price areas, with a combi-
horizont = T can be obtained from a predefined final value functionation of generation technologies and grid topology as indicated in
W, Fort =T —1,...,1in the backward iteration one loops throughFig. 4. Approximately 70 % of the installed generation capacity in
each state trajectory obtained from the last forward iteration. Startitige test system is from hydropower, the rest is covered by a mix of
from the state at the end of stage- 1, for each realization of wind and thermal power. A total of 20 thermal units with variable
stochastic variables one computes the optimal operation for stagarginal costs are represented.
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convergence criterion described in Section IV-ALl.
Four separate cases were considered:

V/ 1. Reference (REF) using the SDDP formulation described in
Section IV-A, with weekly decision problems in (5), and
without feasibility cuts.

2. Dynamic Feasibility Cuts (DYN-FC) using the same SDDP
formulation as in REF, but with dynamic construction and
addition of feasibility cuts (9) in the forward SDDP iterations,
as described in Section IV-B.

3. Satic Feasihility Cuts (STAT-FC) using the same SDDP for-
mulation as in REF, but with pre-computed feasibility cuts (9)
as described in Section IV-C.

I 4. Detailed Formulation (DET) using the same SDDP formulation

[
N

w
N

as in REF, but with explicit inclusion of detailed the hydropower
representation (6) in the decision problem in (5). Problem (6)

—*— is coupled with (5) by treating EER decisiop$,,, andv,; as

variables instead of parameters in (6i) and (6j), respectively.

Fig. 4: Test system topology and mix of generation technok)gié\‘me that (5e) was included in case REF, but excluded in cases DYN-
(hydro, wind, and thermal power). FC, STAT-FC and DET, for reasons discussed in Section IlI-B.

For case DYN-FC, a maximum of 200 new feasibility cuts are built

in each forward iteration for each stage. These cuts will accumulate
‘.._._%]I : ;-: with the forward iterations. In case STAT-FC we initially created
1) 100000 cuts per stage according to the description in Section IV-C.
By removing equal cuts, the number of feasibility cuts to be con-
: E: sidered per stage of the SDDP run was in the range of 500-1000.
2) For all cases, Benders cuts of type (5g) were constructed and added
iteratively in the SDDP backward iteration as described in IV-A, and
3) accumulated without further cut management.

B. Sngle Scenario
Fig. 5: Topologies for hydropower watercourses in areas 18. U T test the convergence properties of the model, it was run for a
stream reservoirs are to the left. pre-sampled single scenario, i.e., with deterministic inflow in both
the forward and backward iterations of the SDDP algorithm. Fig. 6
shows how the cost bounds converge for cases DYN-FC, STAT-FC

Price areas 1-3 each comprise a hydropower watercourse, ;3§ peT. The three cases converge to a cost gap of 080&ithin
illustrated in Fig. 5, representing real hydropower systems locatgg (DET), 67 (STAT-FC) and 109 (DYN-FC) iterations. Case REF
in Norway. Reservoirs in Fig. 5 are shown as rectangles, Whefgnyerges in 53 iterations to a cost that is approximately 5% lower
the color black indicates a reservoir with non-zero storage capaciffan for the other cases, and is therefore not shown in this figure. The
while white indicates reservoirs without storage capacity, i.e., r'un-Q§gT and DYN-FC cases converge at the same objective value, while
river.plarjts. Black circles indicate hydropower pllants. All reservoir§ TaT-FC converges at a value that is approximately % lawer.
receive inflow. The 33 power stations have different numbers @fe ower objective value can be explained by the fact that not all
discharge segments, in the range 1-7, to represent their productiphtes can possibly be covered by the sampling in the cut creation
functions, as illustrated in Fig. 2. procedure applied in STAT-FC.

All tests were carried out on an Intel Core i7-9850H processor p single feasibility cut is built in each forward iteration for each
with maximum frequency of 4.60 GHz and 64 GB RAM. CPLEXstage in DYN-FC, leading to a rather slow convergence process
version 12.10 was used to solve the LP problems, using the ddgbwn in Fig. 6. On the other DYN-FC is significantly faster. The
Simplex algorithm. Parallel processing of the SDDP algorithm wagi computation times were 38 sec (DYN-FC), 213 sec (STAT-FC)
not applied. and 1250 sec (DET). This demonstrates that DYN-FC is efficient in

A scheduling horizon of 3 years was applied with weekly decisiogreating feasibility cuts along a single scenario, while STAT-FC create
stages. Each week was divided into 56 time steps each with a leng{Bise cuts without knowledge about the hydropower generation and
of 3 hours. Ramping constraints on discharge were considered opd¥ervoir trajectory. Explicit formulation of the detailed hydropower
for the results presented in Section V-E. A total of 200 inflow scenaf; case DET is significantly slower than using feasibility cuts. This
ios were re-sampled in each forward SDDP iteration, and 12 discretgy pe explained by the size of the LP problems solved. While the
inflow white noise terms were sampled at each stage in the backwggsl problem of type (5) including feasibility cuts (9) for STAT-FC on
SDDP fiterations. Consequently, a total 260 x 156 = 31200 ayerage comprises 2.5k variables and 1.8k constraints, the DET LP

decision problems of type (5) are solved in the forward iteratiggyoplems where (5) and (6) are combined comprises 19k variables
and 200 x 12 x 156 = 374400 in the backward iteration. The g3nd 12k constraints.

stabilization of the lower bound obtained from (10) indicates that
further iterations of the SDDP algorithm do not significantly improve

the constructed policy and can be used as a practical convergeﬁc
criterion [45]. A maximum number of 100 iterations was applied in The convergence characteristic of the algorithm is shown in Fig. 7,
the experiments, which turned out to be stricter than the statisticaimparing the lower bounds for all cases for the first 50 iterations.

Computational Performance
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Fig. 6: Convergence characteristics for a single scenaripetJpnd Fig. 7: Convergence characteristics. Lower bounds for aksasd
upper bound for case DYN-FC.

lower bounds for cases DYN-FC, STAT-FC and DET.

The upper bound for case DYN-FC is included to show how the

TABLE |: Computation times, in seconds.

gap between the upper and lower bound gradually decreases witl (éaEs':e |ter3n§. 1| lter 2(1 S0 | lter ﬁ).4100 Tg;gl
iterations. Stable lower bounds were observed for all cases within —pyrN-EC 1 5940 7365 14347
the maximum number of iterations. Both DYN-FC and STAT-FC | STAT-FC 39.9 52.8 775 3204
converge to approximately the same lower cost bound, which is DET 158.0 1346.0 11941.0 229130

5.9 % higher than the REF bound. Clearly, the feasibility cuts have

constrained the operation of the hydropower EERs, leading to a

higher expected cost of operating the system over the schedulf@fes. Since differences in simulation results between thi-BE

horizon. The lower bound of case DET is approximately 1&0(&r and STAT-FC cases are muted, only REF and STAT-FC results are

0.045 %) higher than that of DYN-FC and STAT-FC after 10§ompared in the following.

iterations. Comparing the DYN-FC lower bound in the deterministic Fig- 8 presents the duration curves for simulated EER generation

case (Fig. 6) and stochastic (Fig. 7) shows that the convergence f@fearea 2. It can be observed that the total amount of generation

is significantly improved in the latter case when up to 200 nefpr the two cases are similar, which is reasonable since the energy

feasibility cuts are constructed per forward iteration. inflow is the same in both cases. Furthermore, the maximum and
The computation times for all cases are shown in Table |, measuf8ilimum generation levels are less exploited in the constrained

as time spent per iteration for the first, middle and last iteratiof, TAT-FC case. This can be explained by the tendency of case REF to

as well as the total time. Since all cases accumulate Benders ¢grestimate EER generation capability, due to optimistic information

of type (5g), an increase in computation time per iteration waPout generation efficiency and stored energy.

expected. The REF case does not consider feasibility cuts and i§i9- 9 shows the weekly average power prices for area 3 obtained

therefore faster to solve than DYN-FC and STAT-FC. Comparinom REF and STAT-FC, as the mean, 0 and 100 percentiles. These

DYN-FC and STAT-FC, the former is considerably faster in the firflfices were obtained as the dual values from (5f). The limited

iteration, but gradually slows down with iterations as the number 8¢xibility of hydropower in case STAT-FC contributes to increased

feasibility cuts grows. On the other hand, STAT-FC considers a fix@ice levels on average as well as higher price spikes.

number of feasibility cuts and has a comparatively modest increase in

computation time from iteration 1 to 100. No direct comparison witk. Ramping Constraints

a SDDP model for the detailed system without aggregation was made- 556 STAT-FC was run for different levels of maximum allowed

in this work. However, the significant increase in computation timf%mping on discharge, by settiry, in (6€) equal to a certain percent-
for case DET, which represents the detailed hydropower explicitly,

- e ae of the maximum discharge capacity for a set of relevant modules.
demonstrates the computational efficiency of cases DYN-FC apf; aach ramping level, SDDP was run separately according to the

STAT-FC. It should be noted that there is considerable potential {8y, defined in Section V-A, followed by a simulation considering
further speed up the computation time by use of cut managemeit same 2000 sampled inflow scenarios as used in Section V-D.
techniques (such as relaxation or declaration of lazy constraintghe «activation” of (6e) is explicity seen in the evaluation of
since only a few feasibility cuts are binding at the time. the detailed hydropower system, and communicated to the SDDP
decision problem through feasibility cuts. Table Il shows the expected

D. Smulation Results simulated costs for the different levels of maximum allowed ramping

To compare the simulated results for the different cases, 2006A discharge considered. The last line in Table Il shows how the
inflow scenarios were sampled and operation along these webected cost of operating the system increases (in percentage) with
simulated with the strategies and feasibility cuts obtained from alecreasing maximum ramping capacity on discharge.
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TABLE II: Impact of ramping constraints on discharge.

Max. ramp. 100% 80% 50% 30%
EXp. cost [K€] | 245694 | 245077 | 248383 | 256007
=3 R Increase (%) | 0.00 0.12 1.09 4.20
[Te)
o
O -
=)
= o
% 7 — 100%
= 8 i — 80%
_5 ) 50 %
§ — 30%
2 o S -
8 8 ] §, © \
=
S § o
— g g — .
()
c
(]
T T T T (O]
20 40 60 80 100 g |
Percentage N
Fig. 8: Duration curves for generation from EER in area 2.
I I I I
20 40 60 80 100
Percentage
8 — REF, mean ! : . . . . .
REF, 0/100 p ,‘: Fig. 10: Duration curves for generation from EER in price area 3
o |- STAI_FC. Olr00 ' ',' : considering different levels of maximum ramping on discharge.
~ |
|
g 2 A ! demonstrated on a test system comprising three realistic and rather
= ! complex hydropower watercourses.
% o | ' The test results show that the inclusion of feasibility cuts signifi-
o “ cantly increases computation time. However, the low dimensionality
3 5 in terms of aggregated reservoir volumes and inflows is maintained,
a ¥ and SDDP convergence rates do not change notably. Computing fea-
W A ‘e sibility cuts prior to an SDDP run proved to be faster than cut creation
S A \’\ ,"“,",' within SDDP. It was demonstrated that implicit representation of
\ S detailed hydropower through feasibility cuts served to constrain the
o | ' flexibility of the aggregated hydropower system. Moreover, the tests
L T T T T ‘ demonstrated how changes in the detailed system, exemplified by the
0 20 40 60 80 100 addition of maximum discharge ramping constraints, are naturally
Week captured by the proposed method.
When evaluating the proposed method against the reference case
Fig. 9: Weekly average power prices for area 3. that does not consider feasibility cuts, the trade-off between increased

precision in results versus increased computation time is central.

. . ) The increased result precision is clearly demonstrated in the case

~ Fig. 10 shows the duration curves for generation for the EERjies but one could argue that the EER applied in the reference
in price area 3 for different levels of maximum allowed ramping.ase could be further constrained by adjusting the EER parameters.

As r_amping capa_bi_lity is graduall_y limited, generation close to th@n the other hand, the estimated increase in computation time when
maximum and minimum boundaries becomes less frequent, and H%?ng feasibility cuts is not discouraging compared to an explicit

duration curve takes a flatter profile. This illustrates how the ﬂeXibi"%rmulation of the detailed hydropower system

of the hydropower is limited with stricter ramping constraints. Promising avenues for further research involve testing on large-

scale systems, improved management of feasibility cuts, inclusion of

more hydropower details (such as head dependencies), and improved

This work considers an SDDP model representing the aggregatggtors for distribution of reservoir and inflow energy to the detailed
hydropower as a reference and presents a method for facilitatiigstem.

the interaction between aggregated and detailed hydropower by

applying spatial decomposition principles. Feasibility cuts obtained

by optimizing the detailed hydropower system are used to constrain REFERENCES
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