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A B S T R A C T

In recent years, digitalisation has rendered machine learning a key tool for improving processes in several
sectors, as in the case of electrical power systems. Machine learning algorithms are data-driven models based
on statistical learning theory and employed as a tool to exploit the data generated by the power system and its
users. Energy communities are emerging as novel organisations for consumers and prosumers in the distribution
grid. These communities may operate differently depending on their objectives and the potential service the
community wants to offer to the distribution system operator. This paper presents the conceptualisation of a
local energy community on the basis of a review of 25 energy community projects. Furthermore, an extensive
literature review of machine learning algorithms for local energy community applications was conducted,
and these algorithms were categorised according to forecasting, storage optimisation, energy management
systems, power stability and quality, security, and energy transactions. The main algorithms reported in the
literature were analysed and classified as supervised, unsupervised, and reinforcement learning algorithms.
The findings demonstrate the manner in which supervised learning can provide accurate models for forecasting
tasks. Similarly, reinforcement learning presents interesting capabilities in terms of control-related applications.
1. Introduction

Recent technological developments in renewable energy have en-
abled a shift in the energy generation capacity closer to the con-
sumption. This evolution has led to a decentralisation process that is
required for the coordination of generation and demand in electric
power systems. A part of this process involves the management of a
greater number of active consumers and so-called prosumers, i.e., con-
sumers who also produce electricity in the grid. Consequently, the
energy sector is transitioning towards a more decentralised control
owing to these prosumers and active consumers, who cooperate for
the management and control of storage systems and flexible demand.
A resulting framework attempting to solve the challenges associated
with this decentralisation is that of local energy communities (LECs)
representing local, self-organising entities that operate autonomously
or semi-autonomously within an electricity grid [1]. The shift towards
a more community-focused approach from a traditionally centralised

∗ Corresponding author at: Centre d’Innovacin Tecnológica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Department dEnginyeria Elèctrica,
Universitat Politècnica de Catalunya, UPC, Av. Diagonal 647, Pl. 2., Barcelona, 08028, Catalunya, Spain.

E-mail address: alejandro.hernandez.matheus@upc.edu (A. Hernandez-Matheus).

power system is further amplified by the increasing digitalisation of
these systems, for example, in terms of the metering and control
of energy. In this context, recently popularised technologies such as
distributed ledgers [2], big data applications and artificial intelligence
have shown promising results for shaping the future of decentralised
power systems [3].

This paper focuses on the recently growing field of machine learn-
ing, which is a subcategory of the research field of artificial intelligence.
Machine learning is based on the development of computer systems
that can learn from data without explicitly following instructions. This
learning is achieved via algorithms and statistical models to analyse
and draw inferences from the data patterns. In several research fields
such as those of medicine and finance, machine learning has been used
to solve high-complexity problems. Moreover, community-based power
systems are no exception to the advent of machine learning [4]. This
study aims to discover a relationship between the operation of LECs and
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existing machine learning algorithms on the basis of recent research
reported in the literature.

1.1. Research questions and contributions

This study aims to provide a systematic review on the state-of-the-
art of machine learning that are applicable for LECs. Towards this
end, an in-depth discussion and conceptualisation has been provided
to answer the following question: ‘what constitutes as a local en-
ergy community?’ ; the LEC characteristics have been defined from
the perspective of European electricity systems. Following this general
conceptualisation, an extensive review was conducted on the basis of
the previously derived characteristics of LECs to answer the following
question: ‘which machine learning literature is related to local energy
communities’ . Eventually, an answer has been presented to the follow-
ing question: ‘what future trends and conclusions can be drawn from
machine learning utilised in local energy communities?’ .

In summary, the contributions of this paper are as follows:

1. A conceptualisation of LECs from a European perspective
2. An extensive review of state-of-the-art machine learning litera-

ture associated with LECs
3. Detailed applications of machine learning methods within LECs
4. An evaluation of and the future outlook on machine learning

methods that are utilised in LECs

1.2. Outline

This paper is structured as follows: In Section 2, LEC definitions
within regulatory frameworks and existing community-based energy
projects are presented. Furthermore, the criteria for conceptualising an
LEC are explored in detail. In Section 3 a meta-review of the associated
literature, aiming to better contextualise the present work with respect
to the existing literature reviews, is presented. In Section 4, an initial
overview of the different machine learning tasks and techniques are
listed. Furthermore, the different practical applications of machine
learning in LECs have been analysed, and a structured evaluation of
these applications is presented in Section 5. Finally, a summary of the
main research findings as well as an outline of current developments,
potential trends in the future, and suggestions for further research
direction are presented in Section 6.

2. Local energy communities

Although it has been indirectly defined in literature, for example,
the general definition within the regulatory framework of the Euro-
pean Union (EU) for energy communities, to the best of the authors’
knowledge, no direct definition of LEC has been reported in the relevant
literature. To close this research gap, the authors of this study analysed
25 existing community-based energy projects on the basis of two EU
regulatory definitions of energy communities. Accordingly, a definition
of an LEC is presented in this study. This definition serves as the
foundation for the identification of the areas of application for machine
learning methods.

2.1. Classification of local energy communities

In the existing literature, an LEC has been perceived mainly as
a technical rather than a structural concept. However, the definition
of an LEC extends beyond purely technical, social, and organisational
aspects [5]. In a study [6], the authors analysed different approaches
and terms for the integration of local energy systems into a larger
centralised energy system. They investigated community microgrids,
virtual power plants, energy hubs, prosumer community groups, com-
munity energy systems, and integrated community energy systems.
2

Subsequently, the authors introduced a comprehensive concept for
integrated community energy systems, which is similar to the concept
of LEC and is presented in Section 2.2. In another study [7], the
authors defined ‘clean energy communities’ as social and organisational
structures that are formed to achieve the specific goals of its members,
primarily in terms of clean energy production, consumption, supply,
and distribution. They analysed the long-term dynamics and possible
pathways of the transition from centralised to decentralised systems in
the energy sector as well as the co-evolution of energy systems and
energy communities. This study aims to explore the manner in which
different machine learning techniques can assist in the operation of
LECs and optimisation of their local energy systems. As presented in
the following sections, the foundation for a framework for LECs has
been established on the basis of two different definitions within the
EU regulatory framework and analyses of 25 existing community-based
energy projects.

2.1.1. Regulatory definitions
As mentioned, the EU has issued two directives with official defi-

nitions that are proximate to those of LECs: ‘Renewable Energy Com-
munity’ (REC) [8] and ‘Citizen Energy Community’ (CEC) [9]. These
definitions are listed in Table 1. Member states must revise national
laws to comply with the EU rules, and therefore, they must develop
national-level definitions for citizen and renewable energy communi-
ties.

The specific differences between citizen and renewable energy com-
munities are further explored in detail in the literature [1]. The authors
explored renewable energy communities to showcase certain charac-
teristics that are not inherited by the citizen energy communities: a
specific geographical scope owing to the required proximity to renew-
able energy projects, a more restricted membership, i.e., participants
cannot join the renewable energy community as their primary eco-
nomic activity, a need for autonomy from individual participants or
stakeholders, and the possibility of grid control by enterprises located
in the proximity of the renewable energy project. Furthermore, unlike
the renewable energy community, a citizen energy community gener-
ally follows technology-neutral policies, and thus, it incorporates both
renewable and conventional sources of electrical energy.

2.1.2. Existing energy community projects
A review of functional energy communities in Europe was per-

formed to identify the characteristics of an LEC. The following key-
words were used to search for energy community projects (Oct. 2020):
‘energy community’, ‘renewable energy community’, ‘citizen energy
community’, ‘local energy market’, ‘electric energy community’, ‘micro-
grid’, ‘renewable energy market’, ‘local energy system’, ‘micro energy
system’, ‘zero emission neighbourhood’, ‘smart neighbourhood’, and
‘micro markets’. This search resulted in approximately 200 projects, 60
of which were investigated in more detail in this study. For a project
to be included in the review, it had to: (a) fit the definitions of citizen
and/or renewable energy communities, (b) focus on electrical energy
systems, and (c) possess sufficient information regarding the structure,
stakeholders, technology, and motivation of the project. By applying
these criteria, the initial number of 60 projects was reduced to the
25 projects that are listed in Table 2. The research findings on the
structure, stakeholders, technology, and motivation of the 25 projects
are detailed herein.

Structure
In terms of composition, an energy community can be distinguished

by its physical and organisational structure. The physical structure
involves the geographical area and location of the grid as well as the
electrical grid topology. In contrast, an energy community’s organisa-
tional structure can be categorised into seven types, as described in
the relevant literature [1]: energy cooperatives, limited partnerships,
community trusts and foundations, housing associations, non-profit

customer-owned enterprises, public–private partnerships and public
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Table 1
Comparison of definitions of renewable and citizen energy community.

Renewable energy community [8] Citizen energy community [9]

(a) ‘‘which, in accordance with the applicable national law, is based
on open and voluntary participation, is autonomous, and is
effectively controlled by shareholders or members that are located
in the proximity of the renewable energy projects that are owned
and developed by that legal entity’’;

(a) ‘‘is based on voluntary and open participation and is effectively
controlled by members or shareholders that are natural persons,
local authorities, including municipalities, or small enterprises’’;

(b) ‘‘the shareholders or members of which are natural persons,
SMEs [small and medium-sized enterprises] or local authorities,
including municipalities’’; and

(b) ‘‘has for its primary purpose to provide environmental,
economic, or social community benefits to its members or
shareholders or to the local areas where it operates rather than to
generate financial profits’’; and

(c) ‘‘the primary purpose of which is to provide environmental,
economic or social community benefits for its shareholders or
members or for the local areas where it operates, rather than
financial profits’’

(c) ‘‘may engage in generation, including from renewable sources,
distribution, supply, consumption, aggregation, energy storage,
energy efficiency services or charging services for electric vehicles
or provide other energy services to its members or shareholders’’
Table 2
Existing energy community projects.

Project Country Motivation Participants

BeauVent [1] Belgium Increase renewable energy production >5000
Courant d’Air [10] Belgium Provide renewable energy to consumers >2000
Ecopower [11] Belgium Increase renewable and local energy production 56,000
Svalin Energy Collective [12] Denmark Increase renewable and local energy production, reduce climate impact 20 households
Cornwall Local Energy Market [13] England Test market-based flexibility provision, reduce climate impact 100 households, 100 businesses
Larsmo Vindkraft Ab [14] Finland Increase renewable and local energy production, lower costs 200
Enercoop [15] France Increase renewable energy production, lower costs 92,000
Fermes de Figeac [16] France Increased income for members 321
Jühnde Bioenergiedorf [17] Germany Local solutions for solving climate change 660
Elektrizitätswerke Schönau [18] Germany Increase renewable energy production, energy democratisation 185,000
Sprakebüll Village [19] Germany Increase renewable energy production, self-sufficiency 247
Wildspoldsried microgrid [20] Germany Self-sufficiency with renewable energy, research on microgrids 2500
Aran Islands Energy Cooperative [14] Ireland Self-sufficiency with renewable energy, research on microgrids 100 stakeholders
Erris Energy Community [21] Ireland Energy efficiency, increase renewable energy production, community aspect Unspecified
Amelander Energie Coöperatie [22] Netherlands Self-sufficiency, increase renewable energy production 286
Brattøra [23] Norway Energy efficiency, positive energy block 3 office buildings
Elnett21 [24] Norway Reduce fossil fuels in transport and enterprises, avoid grid congestion Port, airport, businesses
Spoldzielnia Nasza Energia [1] Poland Energy independency, lower costs 300
Slupsk pilot [1] Poland Energy poverty, reduce air pollution 200 households
Edinburgh Community Solar [25] Scotland Reduce climate change, energy poverty, energy security 540
Isle of Eigg [26] Scotland Increase renewable energy, lower costs 96
BRF Lyckansberg [27] Sweden Local renewable energy production, export surplus electricity 85 apartments
Farmarenergi Eslöv [28] Sweden Reduce fossil fuels 9 farmers
Simris Energy System [29] Sweden Increase renewable and local energy production, avoid congestion 140 households
Quartierstrom [30] Switzerland Local market to balance power from renewable energy 37 households
utility companies. A review of the 25 community projects revealed
numerous organisational structures. Certain projects, such as Svalin [1]
and the Isle of Eigg [31] are organised in collectives through citi-
zen engagement with the social aspects of sharing at its core. Other
projects were registered as companies owned by local citizens, such as
Amelander [32] and Jühnde [1]. As displayed in Table 2, the number
of members in these projects greatly vary, with three members in
Brattøra [23], and 56,000 members in Ecopower [11]. Furthermore, a
few of these projects have emerged from scientific research and are not
initiated by citizen participants.

In certain studies [32,33], researchers investigated the importance
of social and organisational aspects in energy communities. Reportedly,
factors such as a shared vision, the level of activity in the community,
the type of organisation, and the organisation’s affiliations on local,
regional, or national levels can significantly influence the success of
the energy community.

Stakeholders
Stakeholders in an energy community can either serve as active par-

ticipants forming the energy community or passive actors with invested
interests in the project. Within the 25 aforementioned projects, the
stakeholders comprise citizens, municipalities, technology providers,
distribution system operators (DSOs), universities, local businesses,
energy generation companies, and housing associations. In addition to
3

the aforementioned examples, the relevant literature [34] lists research
centres, consultancies, information and communications technology
(ICT), telecommunication companies, utilities and engineering service
providers, retail companies, transmission system operators (TSOs), in-
dustry organisations, real estate developers, energy service providers,
public utilities, energy cooperatives, and transport solution companies
as potential stakeholders.

Generation, load, storage and flexible resources
For the reviewed projects, the typical generation technologies in

energy communities comprise photovoltaic (PV) panels, wind turbines,
small-scale hydropower plants, and combined heat and power plants.
Additionally, thermal energy systems for heat production are incorpo-
rated in most of the reviewed communities, typically through combined
heat and power generation, or geothermal and solar heating. Energy
storage for back-up or other grid services was realised through ei-
ther diesel generators or battery-based energy storage systems. These
generation and storage technologies can be observed either at the
household level or as shared assets in the community. The various types
of load sources in these 25 reviewed energy community projects were
categorised as households, prosumers, office buildings, industry/farms,
and public buildings. The yearly load demands of these categories differ
on daily and seasonal scales. Typical flexible resources available within
load categories comprise electric vehicles (EVs), heat pumps, and water
boilers. Optimal control of these flexible resources and energy storage

systems is crucial to minimise the energy costs of the community.
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An energy management system will be required by the community
to control its flexible resources, through which the community can
ultimately decide the period and manner of energy utilisation, thereby
lowering the overall energy costs.

Motivation and benefits
The energy community projects, reviewed in this study, address

environmental concerns and the related goal of increasing the share of
renewable energy, which comprise the core motivation for establishing
an energy community. For example, both BeauVent [1] and Sprake-
üll [19] aimed to achieve 100% renewable energy production in the
ommunity, whereas Svalin [12] aimed to consume renewable energy
hat was entirely produced locally. Similarly, the common motivation
ehind energy community projects involves further investment in sus-
ainable energy infrastructure for the community [1]. Furthermore,
everal projects such as Amelander [22], Aran [14] and Wildpoldsried
icrogrid [20] have highlighted the importance of self-sufficiency. Such

equirements for self-sufficiency may be motivated by economics, se-
urity of supply (especially relevant in energy communities, which are
icrogrids), or a demand for greater transparency regarding the origin

f the consumed electricity.
The economic incentives of communities typically lead to reduced

holesale market expenses owing to increased self-consumption of
ocally produced energy, revenue generation through feed-in of excess
ower generation, or a reduction in costs to the DSO owing to a lowered
eak power consumption (caused by load shifting). Certain energy
ommunities provide balancing and frequency control services to the
SO, such as the Cornwall Local Energy Market [13] and Wildpolsried
microgrid [20].

2.2. Definition of a local energy community

As detailed in Section 2.1, the regulatory definitions and review
of existing energy community projects facilitate the establishment of a
definition of an LEC. This definition can be achieved by incorporating
the five criteria that are fundamental to an energy community, which
can be referred to as an LEC:

1. Locality: The community should possess a large proportion of
local investment and ownership and be managed locally. A
community is located within a defined geographical area and is
typically connected at the distribution-grid level.

2. Energy sustainability: The community or its members fully
or partially own the process of renewable energy generation,
energy storage, EV chargers, or other relevant assets or infras-
tructure. These assets and infrastructure are shared by the com-
munity; from an energy system perspective, they are established
at a single customer location.

3. Community engagement: Most of the participants are active
members of the community, i.e., they are invested in the energy-
related assets and provide flexible demand options. The main
objective of the community is not profit-oriented; however, it
aims to provide environmental, economic, or social benefits
for its members/shareholders and/or the local area where it
operates. The community participants may be individuals, small-
and medium-sized enterprises, or local authorities, including
municipalities.

4. ICT: The community possesses ICT infrastructure of varying de-
grees. Typically, this includes smart meters and communication,
control, and energy management systems. Such infrastructure
can enable the flexible operation and optimisation of the local
system and facilitate interaction with national power systems in
the form of transmission grids and wholesale electricity markets.

5. Transactions: The community allows for energy-related finan-
cial transactions amongst its members. This feature is generally
implemented in local energy markets; however, such a feature
4

is not mandatory. The transactions conducted not only consist
of local transactions but also include transactions between the
community and the national power system, for example, via
wholesale electricity markets.

Criteria 1, 2, and 3 are closely related to the definitions of citizen and
renewable energy communities. Criterion 4 indicates that an energy
community must exercise some degree of ICT technology for the control
of assets, communication amongst its members, and data collection.
According to Criterion 5, a mechanism is required to share the energy-
related costs and benefits amongst the members in the community.
Table 3 depicts the relationship between the criteria defined for the
applications, which are further detailed in Section 5.

To summarise this definition, an LEC is illustrated in Fig. 1 as a part
of the larger power system.

3. Associated literature reviews

On the basis of the definition of an LEC provided in Section 2.2,
a recent body of literature reviews associated with the topic has been
identified, as listed in Table 4. The associated literature reviews were
selected according to their relevance to the topic of LECs by consider-
ing the commonalities in the fundamental criteria established in the
previous section. The exception to this has been reported in several
studies [50–52], which possesses no direct relation but relates tangen-
tially to locality and ICT infrastructure. The associated methods are
explored in detail in the following section.

A range of literature reviews specialise in topics related to LEC;
however, they do not specifically focus on local applications. Within
the topic of forecasting, in a review [35] recurrent neural network
models focusing on the specific problem of solar power forecasting were
analysed with data from the South Korean power grid. Furthermore,
an overview of deep learning in renewable electricity forecasting has
been reported [37]. A review [39] specifically focused on time-series
drift in terms of flexibility in power system flexibility, whereas another
review [40] explored load forecasting from short to long term periods.
Most of reviews of energy management systems highlight the topic
of locality, except for the review [48] which presents a general view
on reinforcement learning and its application in problems concerning
power system control, and excluding the review [42] that explores
energy storage and EVs. With regard to the protection, stability and
quality of power systems, none of the reviews consider locality. In a
review [50], methods such as support vector machines, neural networks
and genetic algorithms were analysed in the context of fault detection.
Moreover, deep learning has been analysed in the context of power
quality [51]. Furthermore, the review [52] explores applications of
machine learning in reliability assessment and control (specifically on
the topics of security assessment, emergency control, preventive con-
trol, error measurement and power flow predictions). Most reviews of
machine learning in smart grids do not consider locality. The emerging
importance of machine learning and autonomous control in power sys-
tems has been reported [53]; although the review was not specifically
focused on decentralised solutions, the reported topics were strongly
related to such solutions. Furthermore, machine learning in smart grids
has been analysed with a focus on data and data security [54]. The
relevance of artificial intelligence to sustainable energy systems has
been investigated in a general context [56]. In a review [55] machine
learning in power systems has been investigated with a focus on topics
such as forecasting, failure analysis, demand side management, and
cyber security. Additionally, a review of the last decade of machine
learning in power systems has been established [4].

The remaining related literature reviews focus on the subcategories
of the field of machine learning. Reinforcement learning is a core
topic in studies that focus on control aspects. The Markov decision
process, i.e., the heating and storage of heat in water boilers, has been
explored, and Q-learning has been identified as the state-of-the-art for

dealing with control in such decision processes [43]. Researches [44]
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Table 3
Value matrix criteria—applications.

Application Locality Energy sustainability Community ICT Transactions

Forecasting

Generates information for
short-term planning of the
resources in the LEC

The individual and
community assets are
optimally managed by
having information of
future DER and related
asset behaviour (such as
storage)

Individuals can better
coordinate with better
prediction on their demand
and supply

A condition for data
security in forecasting
systems

Energy and price
forecasting provides
operational inputs allowing
the LEC to conduct an
optimised economic
dispatch

Storage
optimisation

Enables localised storage as a grid asset,
increases self-consumption of local
renewable resources in the LEC

Storage assets are
coordinated with other
assets in the community
and investments can be
shared

Automated control of the
storage system and
associated information
streams

Local assets interact with
the larger power grid via
wholesale markets, e.g. in
form of virtual power
plants

Demand
response

Decentralised demand
response becomes a
feasible asset in the power
system

Time-flexible demand can
increase the consumption
of intermittent renewable
energy in the community

Demand response can be
aggregated and
coordinated with other
community members

Local assets interact with
the larger power grid via
wholesale markets. e.g. as
virtual power plants

Energy
management
system

Decentralised coordination
of resources

More optimal coordination
provides more efficient
utilisation of renewable
energy and lowers
emissions

Provides the sense of
common welfare and a
central coordination point
within an LEC

Data storage and
monitoring systems
constitute the core of an
EMS

Power quality,
stability and
security

Practices that secure
proper functioning and
handling of the equipment
owned in the LEC

Towards energy
sustainability goals, energy
generated and dispatched
from LEC has to comply
with the quality standards
of power grids

Akin to centralised power
systems, in decentralised
systems such as LEC, the
grid remains a shared asset

Grid data collection,
maintenance and security

-

Energy
transactions

Transactions are moved to
the local level, consumers
and prosumers financially
interact with each other
within an LEC

Local markets trade mainly
local, renewable generation

Transactions within a
community lead to higher
level of self-consumption

LEC members are able to
make better informed
decisions about the
sourcing of their energy
supply; because to
information sensitivity,
transactions must also be
secure

Local markets are
integrated into wholesale
markets and also have to
provide proper
supply/demand on
balancing and regulating
markets
Fig. 1. Visualisation of a local energy community in the larger power system. The local energy community consists of two levels: the community and the individual level. The
individual level consists of the participants in the community, such as residential consumers, prosumers, and enterprises. The participants own individual assets such as EVs, PV
panels and batteries. Moreover, the ICT infrastructure, such as smart meters and energy management systems, are also incorporated into this system. The community level consists
of shared assets, such as community-owned PV panels, wind turbines, batteries and charging stations for EVs.
approached the topic from the perspective of building management
and discussed the real-world challenges involved in the implementation
of reinforcement-learning frameworks. Similarly, control problems in
5

buildings have been addressed through reinforcement learning, focus-
ing on demand response control [45] and the latter focusing on its
practical applications [46]. Another literature review focusing on the
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Table 4
Literature reviews on machine learning applied on associated topics.

Source Year Topic Locality Energy sustainability Community engagement ICT Transactions

Forecasting

[35] 2019 PV generation forecasting x ✓ x x x
[36] 2019 PV generation forecasting ✓ ✓ x x x
[37] 2019 Renewable energy forecasting x ✓ x x x
[38] 2019 Load prediction with smart meter data ✓ ✓ x ✓ x
[39] 2020 Forecasting of flexible resources x ✓ x x x
[40] 2020 Load forecasting x ✓ x x x

Energy management system

[41] 2020 Battery state estimation ✓ ✓ x ✓ x
[42] 2020 Battery control methods x x ✓ x ✓

[43] 2018 Water heater control ✓ x ✓ x x
[44] 2019 Energy management systems of buildings ✓ ✓ ✓ x x
[45] 2021 Energy management of appliances in buildings ✓ x ✓ x x
[46] 2019 Demand response control ✓ x ✓ x x
[47] 2020 Demand response ✓ x ✓ x x
[48] 2019 General control problems in power systems x x ✓ x ✓

[49] 2020 EV flexibility ✓ x ✓ x x

Power system protection, stability and quality

[50] 2017 Fault detection ∼ x x ∼ x
[51] 2019 Power quality analysis x x x ∼ x
[52] 2020 Reliability assessment and control x x x ∼ x

Machine learning in smart grids

[53] 2019 Role of machine learning in power systems x x x ✓ x
[54] 2019 Machine learning in smart grids x x x ✓ x
[55] 2020 Machine learning in smart grids x ✓ ✓ ✓ x
[4] 2020 Deep learning in smart grids x ✓ x ✓ ✓

[56] 2020 Sustainable development x ✓ x x x
[57] 2020 Distributed smart grids ✓ x ✓ x x

[*] – Local energy communities ✓ ✓ ✓ ✓ ✓

* this paper, ✓related, ∼ tangentially related.
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subcategory of supervised learning has been reported [41], focusing
on methods dealing with battery state estimations, namely Markov
process- based methodologies such as Kalman filters.

Compared to these sources, literature reviews focusing on local ap-
plications and considering multiple subcategories of machine learning
focus on specific problems. A review of applications, utilising smart
meter data, such as load forecasting and related issues, including
screening for energy theft and demand response forecasting, has been
reported in the literature [38]. Additionally, solar energy predictions
in microgrids have been surveyed [36], and the demand response
and associated methods for operation, prediction, and segmentation
have been highlighted [47]. Finally, a method for charging demand
prediction of electric vehicles have been reported in literature [49].

In terms of the existing literature, a prior research has been re-
ported, which is most relevant to this study [57]. However, the prior re-
search focuses on single assets, especially energy management systems,
whereas the present study focuses on energy communities, especially
LECs, as an integrative unit. Although these approaches overlap, the
research presented herein will dive deeper into specific applications
such as agent-based coordination and classification from a communal
perspective.

4. Machine learning methods

This section provides a short introduction to machine learning and
its main categories as well as the main topics related to LECs, which
were revealed in literature review performed in Section 3.

Popularised by a study [58], machine learning algorithms are tradi-
tionally classified into three main categories: (a) Supervised Learning,
(b) Unsupervised Learning, and (c) Reinforcement Learning. The three
ategories, with their respective associated algorithms, are illustrate in
ig. 2. The essence of these classifications lies in the interaction of the
lgorithms with the data and environment. A comprehensive review of
6

hese methods and associated concepts have been reported in [59]. i
Supervised Learning algorithms are supplied with knowledge per-
aining to the data in the form of so-called labels and are used to predict
ew and unknown data labels. This process can occur in the form
f tasks such as classification, where labels represent categories, and
egression tasks where the labels represent the values to be predicted.
n this study, the regression tasks are referred from traditional linear
egression, advanced models such as Lasso regression, or Ridge regres-
ion to models such as support vector machines, a method that can be
it on nonlinear data sets. In the context of LECs, regression methods
re primarily used to predict and forecast of uncertain parameters.
his forecast applies to both the demand side (e.g. household loads
r utilisation of devices) and the supply side (e.g. available PV capac-
ty) [60,61]. However, classification problems rely on prediction tasks
or categorical or qualitative outputs [59]. Consequently, classification
ethods are generally used in scenarios wherein the problem involves

he detection of specific cases in datasets on the basis of historical
xamples. The main applications of such methods related to LECs
omprise fault detection and error classification [62].

Finally, probabilistic tasks refer to methods that consider uncer-
ainty in the data not only to optimise the expected value but also to
nfer the distribution of such uncertainty. A simple example is provided
y the probabilistic form of regression, such as Bayesian regression.
pplications of probabilistic methods in LECs include the fitting of
tochastic processes or determination of the parameters of distributions
or renewable energy installations, household loads, or usage patterns
f electric vehicles and electric devices.

Deep learning, commonly referred to as a neural network, can per-
orm any of the aforementioned tasks. These methods employ function
pproximations consisting of stacks of differentiable linear regression
layers’ and nonlinear ‘activation functions’. Hence, neural networks are
uilt with different configurations of layers to solve the problem and
andle the nonlinearities of such problems. Such models are widely
sed in LECs, including neural networks for forecasts [63] and pre-
ictions of deep learning models for optimal control [4,64]. A more

n-depth discussion on deep learning topics has been reported in [65].
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Fig. 2. Machine learning methods and algorithms.
In contrast to supervised learning, unsupervised learning aims to
escribe associations and patterns between unlabelled input data [59].
lustering techniques aim to find commonalities in data sets and clas-
ify the closest data points as clusters. In the context of LECs, clustering
ethods are primarily found in applications for load profiling and

egmentation.
The last category, reinforcement learning (RL), from the other two

ategories. It not only passively observes and labels the data but also
xerts active control on a given system. A common textbook source for
L algorithm is provided [66]. However, in the traditional literature
n electrical engineering, these RL algorithms have also been referred
o in the context of optimal control under the name of ‘approximate
ynamic programming’. Further background information on this topic
s currently available [67].

. Applications in the operation of local energy communities

The literature review presented in Table 4 demonstrates the range
f potential applications of machine learning within microgrids, smart
rids and other energy communities. However, considering the criteria
n the definition of an LEC, as depicted in Section 2, applications
uch as forecasting, energy management system, power system pro-
ection, stability, quality, and optimisation and energy transactions
ave been selected as a result of a categorisation of the discovered
iterature associated with the aforementioned topics. The following
ection presents the analyses and further classification of the studies
nd models targeted specifically at the aforementioned applications
elated to LECs.

.1. Forecasting

Forecasting is the process of predicting a variable in the future by
nalysing historical data trends. Demand and generation forecasting
re of great importance to the system operators of electrical grids.
he frequency of occurrence of the algorithms that were used in the
eviewed studies for each forecast application is illustrated in Fig. 3.

Forecasting studies are commonly classified to their time horizon
rediction: short-term, medium-term, and long-term [57]. However,
ertain studies approach the problem on a very short-term horizon [61,
8]. The forecasting interval depends on the purpose on the fore-
ast. For daily operation tasks, very short-term and short-term are the
7

Table 5
Forecast time horizons.

Forecast horizon Time interval

Very short-term 1 s to less than 1 h
Short-term Few minutes to few days
Medium-term Few days to few months
Long-term Months, quarters, years

required time horizon, whereas for grid planning and investment evalu-
ation, a long-term horizon is preferred [40]. Table 6 shows the machine
learning algorithms in the literature review for different forecast tasks
classified according to time horizons listed in Table 5.

5.1.1. Demand forecasting
The literature on demand forecasting represents the largest share

of the recent literature on energy forecasting. This is because of the
increased uncertainty in the operation owing to the addition of new
actors to the energy system, such as prosumers or new assets, which can
act as flexible loads and shift or reduce their consumption during spe-
cific periods [48]. An accurate prediction of demand helps to improve
the operation of an LEC [97,98]. For LECs with controllable loads,
several control strategies rely on an accurate forecasting model [99].

Demand forecasting can be performed at individual, community,
or asset level facilitated by the data gathering ability of smart meters
and ICT infrastructure. In terms of the asset level, machine learning
regression models such as K-nearest neighbours (KNN), decision trees
and neural networks (NNs) have been explored to accurately predict
the consumption of two machine tools in a factory in a very short-term
horizon [68]. A combination of an autoregressive integrated moving
average (ARIMA) model with a nonlinear support vector machine
(SVM) has been used to predict the electrical consumption of an air
conditioner by employing the data retrieved from smart meters [81].
Similarly, [80] compared linear models, linear and nonlinear SVMs,
and NNs to predict annual heating and cooling loads in residential
spaces in a long-term prediction task; the optimal results were obtained
using nonlinear SVMs.

At individual level, researches [73] approached the short-term fore-
cast of the energy consumption of three households in a nanogrid via
smart meter data by reviewing several supervised learning algorithms.
Refs. [74,76] have discussed on the high volatility and uncertainty
of residential load profiles; Long short-term memory neural networks
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Fig. 3. Machine learning techniques used for forecasting in literature.
Table 6
Machine learning (ML) techniques for forecasting.

Forecast topic Task ML Algorithm Forecast horizon Year Source

Demand
forecasting

Load curve

SVM Short term, medium term 2021 [69]
Hybrid models Short term, long term 2020 [70]
CNN Short term 2019 [71]
LSTM Short term 2020 [72]

Households

Various Short term 2020 [73]
Linear models Short term 2018 [74]
Various medium term 2020 [75]
LSTM, SVM Short term 2019 [76]
LSTM Short term 2018 [77]

Households and SME Markov Model Short term 2019 [78]
Appliances LSTM Short term 2020 [79]
Residential space heating and cooling loads CNN Long term 2020 [80]
Machine tools SVM, NN Very short term 2020 [68]
Power demand for different facilities LSTM Short term, long term 2020 [63]
AC energy consumption LSTM Short term 2019 [81]
Rural microgrid NN Short term 2020 [82]

Renewable
energy
forecasting

PV generation
LSTM Short term 2019, 2020 [83,84]
Various Short term 2019 [85]
Various Various 2019 [61]

PV generation, wind generation and demand NARX NN Short term 2019 [86]
Wind forecasting Various Various 2020 [87]

Flexibility
forecasting

Demand side
flexibility

LSTM - MILP Short term 2021 [88]
Boosted decision trees Short term, medium term 2020 [89]
GLME Medium term 2019 [90]
Decision trees – 2021 [91]

EV charging demand prediction Boosted decision trees – 2020 [49]
EV charging navigation Q-learning – 2020 [92]

Price forecasting

Price forecasting Turkish market Various Short term 2018 [93]
Price forecasting Iberian market NN Short term 2018 [94]
Price forecasting EPEX Various Short term, long term 2019 [95]

Various Price, generation, demand Various Short term 2021 [96]
(LSTMS) were used to obtain short-term household forecasts, yielding
minimal prediction errors.

At community level, load forecasts are usually performed by con-
sidering aggregated load. For example, different algorithms have been
used to forecast one day-ahead energy consumption in a residential
building [77]. The authors first reviewed several single algorithms and
subsequently combined these algorithms with an optimisation tech-
nique, thereby achieving improved results with the latter technique.
Ref. [63] forecasted short-term and long-term energy consumption of
different buildings, ranging from a residential to a factory and hospital,
and the challenges of each profile have been reported. The authors
compare mixed-data sampling method with LSTMs and a combination
of both methods, resulting in a more accurate result.

In contrast to deterministic methods, probabilistic methods have
been applied in certain studies. These methods extend the capabilities
of the deterministic model by quantifying the uncertainty factors in
8

the load forecasting task. As exemplified in [71], the authors trained
recurrent neural networks (RNNs) using a probabilistic objective func-
tion to forecast the day-ahead load consumption. Probabilistic output
prediction provides information on risk and related scenarios for de-
cision making in the operation planning of the energy system [78].
Moreover, a semi-hidden Markov model have been developed to predict
short-term consumption of home appliances [79].

5.1.2. Renewable generation forecasting
Most LECs will have renewable energy sources to fulfil their energy

needs and sustainability goals. Accordingly, the nature of these energy
generation sources results in a significant level of uncertainty in the
energy supply [37,100]. An example has been reported [101], wherein
multiple methods were reviewed, including nonlinear autoregressive
exogenous neural networks (NARX NN), Gaussian process regression,

and SVM, to forecast the behaviour of wind generation, PV generation,
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and demand for households. The authors assessed the inputs needed for
each predictive task and highlighted the NARX NN as a robust model
for wind and PV generation by conducting a sensitivity analysis. As
reported in the literature [96], the results for wind generation forecasts
were improved through the incorporation of exogenous information
when comparing deterministic and probabilistic methods. Similarly,
NARX NNs have been used [102,103] for wind and PV generation.

As mentioned in Section 2.1, PV generation is one of the most
popular technologies for the generation of renewable energy in house-
holds and communities. Therefore, a number of studies have focused
on this particular application. For instance, the statistical and machine
learning methods for PV generation forecast have been comparatively
analysed [61]. Finally, the authors compared a hybrid combination of
two methods and an optimisation theorem, concluding hybrid methods
increase the forecasting accuracy by adding benefits of individual meth-
ods. The performances of several machine learning algorithms have
been analysed to predict the PV generation for a power plant [85]; the
importance of input data, such as weather, for the prediction perfor-
mance has been analysed to predict of PV generation for a power plant.
The optimal results were obtained using random forest. RNNs have
been extensively explored in the literature for forecast tasks concerning
PV generation; for example, LSTMs have been implemented to predict
the output power of different PV generation plants for a short-term time
horizon [83,84].

5.1.3. Flexibility forecasting
From a prosumer’s perspective, flexibility can be defined as the

ability to modulate generation/consumption behaviour via an external
signal, such as a change in the energy price [104]. Flexibility is a
service that can be provided within the LEC at both household and
community levels (refer to Fig. 1). Flexibility forecasting is based
on load forecasting, considering the available flexibility sources [90].
Accurate flexibility estimation allows the LEC and its participants to
generate revenue by selling flexibility to a system operator, such as
Cornwall Local Energy Market [13]. In accordance with the classification
eported in [105], flexible assets can be classified as demand side,
upply side, and storage assets. This section focuses on the demand side
lexibility and storage.

For flexibility estimation, [88] the economic optimisation of an
nergy management system has been attempted in an urban microgrid,
onsidering the flexibility of ancillary services. The load consumption
orecast was performed using LSTM. Furthermore, mixed integer linear
rogramming (MILP) was used to optimise the energy dispatch in the
ay-ahead operation of the microgrid with three different types of
oads: building, smart homes with and without available PV capacity,
nd differently clustered loads. In another study [89], the authors
orecast the loads’ total consumption and flexibility using boosted trees
or both day-ahead and week-ahead time horizons in a commercial
uilding. In a study [90], the flexibility was calculated for a single
ousehold for one month using generalised linear mixed-effect mod-
ls (GLMM). The present study also analyses the flexibility at the
ousehold asset level.

With the novel vehicle-to-grid (V2G) technology, EV charging sta-
ions in the grid serve as a flexible asset. V2G can operate as an avail-
ble energy storage device, thereby acting as a flexibility source [106].
n addition, they can be considered as a mobile energy storage sys-
em [105]. Therefore, they are also subject of study for forecasting
lexibility calculations. To this end [49], prediction methods for the
V charging demand during charging sessions have been studied to
ptimise the management of the electric grid. Models such as linear re-
ression, boosted decision trees, random forest, and SVM were used to
redict the charging demand of EVs for flexibility predictions. Ref. [92]
roposes a storage optimisation problem for EVs incorporating uncer-
ainty caused by traffic solved by a RL model-free Q-learning algorithm.
he use of decision trees has been evaluated for flexibility-based oper-
9

tional planning dispatch in a microgrid system connected to the grid, L
with storage, renewable generation, critical loads, and an industrial
controller [91]. The authors comment on the feasibility of implement-
ing decision tree-based rule programming in a PLC-based controller and
highlight its interpretability in the dispatch rules compared to other
state-of-the-art alternatives such as NNs.

5.1.4. Electricity price forecasting
Electricity price forecasting is an application for both community

and peer-to-peer market-level configurations. A forecast of the energy
price at a specific time in the future provides valuable information
for handling load consumption and flexibility more efficiently [107].
Moreover, price forecasting helps to create optimised programs to
efficiently dispatch the energy within the LEC, by supporting efficient
resource scheduling decisions [57]. In this section, although most of the
studies focus on centralised energy markets, they are highly relevant for
LECs.

Most of the studies on LECs focus on the day-ahead electricity price
forecasting. The price forecasting has been analysed in the Turkish
day-ahead market using an RNN, and the method was compared with
several other NN architectures [93]. The optimal results were obtained
using the gated recurrent unit configuration of RNN. The authors high-
light the capabilities of this algorithm to capture spikes and volatility.
Similarly, scholars [94] implemented a regression technique using NN
to predict day-ahead prices in the Iberian electricity market. Addition-
ally, researches [95] approached electricity price forecasting for both
day-ahead and a four-week time horizon in EPEX1 in Germany/Austria.
Reportedly, amongst the algorithms tested, the optimal results were
achieved using NNs.

5.2. Energy management systems

An optimised energy management system allows efficient energy
consumption scheduling through the coordination of the assets in the
system, such as PV generation, storage, EVs, and flexible loads via
demand response programs. As reported in the existing literature [104,
108], an energy management system can be used to process price
signals and perform cost-efficient dispatch within a wholesale market
framework. Furthermore, the relevant literature indicates that data-
driven algorithms support automatic optimisation of energy manage-
ment systems at both individual and community levels. The distribution
of machine learning techniques in the reviewed literature for energy
management system is displayed Fig. 4.

5.2.1. Energy management system and control
The majority of the studies focus on the energy management op-

timisation by data-driven algorithms. As reported in [109], an energy
management system has been developed using stochastic processes for
an islanded microgrid. Additionally, researches in [110] exposed a
method which optimises the power exchanged with the utility through
a probabilistic approach using a Gaussian process model and model
predictive control for interconnected microgrids. Supervised learning
algorithm algorithms were used by researches [111], who presented
a multi-agent day-ahead energy management system of a microgrid
incorporating various methods from machine learning and operations
research. Specifically, it demonstrates the incorporation of forecasting
via RNNs and convolutional neural networks (CNNs) into distributed
optimisation via the alternate direction method of multipliers. Fur-
thermore, a framework has been introduced to optimise the cost of
networked microgrids featuring wind turbine generation, EV charging,
and battery storage [112]. The output power of the wind turbines is
predicted via SVM and a battery optimisation algorithm is used to find

1 European Power Exchange SE is an electric power exchange operat-
ng in Austria, Belgium, Denmark, Finland, France, Germany, Great Britain,
uxembourg, the Netherlands, Norway, Sweden and Switzerland.
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Fig. 4. Machine learning techniques in literature for energy management system.
Table 7
Machine learning (ML) techniques for energy management system and control.

Task ML Algorithm Level Year Source

Energy management system
optimisation

Alternated Method of Multipliers Microgrid 2019 [111]
Q-learning Household 2020 [114]
MDP, RNN Microgrid 2019 [115]
SVM Microgrid 2021 [112]
MDP Microgrid 2021 [116]
DQN Microgrid 2020 [117]
Stochastic processes Islanded microgrid 2021 [109]
DQN Microgrid 2020 [118]
Linear reward interaction Islanded microgrid 2020 [119]

Energy management system optimisation —flexible demand Actor Critic Microgrid 2020 [120]

Energy management system optimisation —HVACs units Policy Gradients Building 2021 [121]

Energy management system optimisation —EVs Various Smart grid 2019 [113]

Non-intrusive load monitoring
NN, KNN Household 2019 [122]
Hidden Markov model Household 2019 [123]
CNN Household 2019 [124]

Energy share optimisation DQN Building 2018 [125]
Gaussian process Interconnected microgrids 2021 [110]

Energy data mining CNN Household 2019 [126]
Optimisation techniques Household 2019 [127]

Topology identification LSTMs Household 2020 [128]
the optimal power dispatch for batteries and EVs. Focusing on EVs,
researches in [113] reviewed the optimisation of EV charging sessions
by considering the vehicle’s state of charge with the objective of reduc-
ing charging costs. Several machine learning algorithms were tested
in this study; the results indicate that deep neural networks provide
solutions proximate to the global minimum owing to the complexity of
such an algorithm. A literature review of machine learning algorithms
for energy management systems and controls for different application
levels is presented in Table 7.

For RL approaches, scholars [117,118] used deep Q-learning (DQN)
to optimise operation of the elements connected to the EMS. Another
model-free approach reported in the literature featured an Actor–critic
approach to coordinate flexible demand, generation, and storage in a
real-time application [120]. In addition, the utilisation of determinis-
tic policy gradients has been reported for the optimisation of agents
comprising heating, ventilation, and air conditioning units [129]. The
solution was demonstrated in a case study, suggesting an improvement
over classical rule-based policies or discontinuous deep reinforcement
learning in the form of Q-learning.

Nonintrusive load monitoring is a technique used to segment the
energy consumption into patterns and identify the behind-the-meter
loads. In the context of LECs, this method was applied to identify
10
home appliances and consumption patterns. A hidden Markov model
approach has been presented to identify individual load sources of
various types in a single aggregated load time series, focusing on
online (i.e., real-time) applications [123]. Similarly, several machine
learning algorithms have been reviewed to perform a non-intrusive
load-monitoring task using a home energy management system [122].
As reported in the literature [126,127] sociodemographic information
was extrapolated from home energy management systems and smart
meter data via clustering techniques, such as KNN, and classifiers, such
as SVM.

5.2.2. Energy storage
Energy storage systems are used in LECs to balance energy over

multiple periods of operation. These assets provide opportunities for the
shifting of loads from peak to baseload periods and the integration of
intermittent renewable energy [130]. As [131] storage systems may be-
come essential assets in future LEC projects, such assets are crucial for
the day-to-day operation of an LEC, focusing on flexibility and energy
sources in islanded microgrids. The principle of optimal dispatching is
at the core of these operations. The field of machine learning comprises
a range of deep reinforcement learning (DRL) methods, which are the

prevalent methods applied to energy storage applications, as indicated
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Table 8
Machine learning (ML) techniques for energy storage optimisation.

Task ML Algorithm Year Source

Battery dispatch optimisation w/PV

MC Tree search 2020 [133]
DQN 2016 [134]
Q-learning 2016 [135]
PPO 2020 [60]

Battery dispatch optimisation

Decision trees 2020 [100]
Double DQN 2020 [136]
Q-learning 2020 [137]
DQN 2020 [138]
MC methods 2020 [129]

Transactional charging Q-learning 2020 [139]
in recent literature. Such DRL methods can be used to develop a
control function, represented via a Q-function that can handle large
search spaces for dynamic problems such as optimal storage [132]. The
algorithms reported in recent literature to address storage optimisation
problems in power systems, which are similar to those in LECs, are
listed in Table 8.

Q-learning has become a method of reference for research on most
battery storage optimisation, as is the case in [137]. Similarly, [138]
applied DQN to an islanded microgrid. The authors used a CNN ar-
chitecture to predict Q-values, arguing the chosen convolutional ar-
chitecture for its simplicity and good performance. In contrast, [136]
used a double-DQN to address the uncertainty in the microgrid system
for both grid-connected and islanded modes. The authors highlighted
that the chosen method mitigates the overestimation that a single
Q-value estimator can generate in the results. In contrast, [129] ap-
proached the DSO’s optimisation retail pricing strategy problem with a
RL Monte-Carlo method in a simulated multi-microgrid system.

Q-learning has also been used to solve the complexity caused by
PV generation in the microgrid [134,135]. Other model-free methods,
such as the Monte-Carlo tree search algorithm, have been implemented
as solutions to reduce the computational burden involved for solving
the stochastic dispatch of battery storage during PV generation [133].
Similarly, as reported in the literature [60], a policy gradient method,
namely the proximal policy approximation (PPO) has been established.
The PPO agent maximises the accumulated net revenue of the system
by successfully adapting to the PV uncertainties and market signals. The
PPO agent outperformed the other tested algorithms, such as the deep
deterministic policy gradient, Actor–critic, and double-DQN algorithms.

5.2.3. Optimal demand response
Demand response is defined, according to the Federal Energy Regu-

latory Commission, as ‘‘changes in electric usage by end-use customers
from their normal consumption patterns in response to changes in the
price of electricity over time, or to incentive payments designed to
induce lower electricity use at times of high wholesale market prices
or when system reliability is jeopardised’’ [140]. Accordingly, the
demand response can be used as a strategy to manage controllable loads
when this is beneficial to the user. Data-driven approaches to optimise
demand response strategies have been presented in the literature. The
machine learning techniques for demand response applications are
listed in Table 9. Similarly, for storage problems, RL is generally used
to handle the optimal demand response. Most studies have sought a
reduction strategy for energy costs. For instance, Q-learning has been
applied to determine the optimal hour-ahead consumption of several
appliances, such as time-shifting loads, non-controllable loads, and EVs,
considering future electricity prices and PV generation trends [114].
Moreover, as reported in [141], DQN has been used for dynamic control
of residential loads. A deterministic policy gradient has been employed
for the optimal load schedule [142], whereas in another study [143],
an Actor–critic approach was used. In contrast to previous model-free
algorithms, researchers [144] applied a model-based adjustment to the
traditional Q-learning algorithm, thereby improving the performance
over traditional model-free learning.
11
Pricing models have also been explored for the development of effi-
cient demand response programs. A study [146] aimed to approximate
the impact of time-of-use pricing on-demand response via the clustering
of smart meter usage data into various profiles, whilst considering the
uncertainty. With a similar objective, scholars [147] used stochastic
processes to incorporate uncertainty in the pricing demand response
to maximise the risk-sensitive revenue derived by the DSO. Another al-
gorithm [149] utilised the time-of-use tariffs to control the demand re-
sponse within a Markov decision process with binary action spaces. This
dynamic operation problem was thereafter solved via deep-duelling
Q-learning. For a real-time approach, researchers [150] utilised trust
region policy optimisation to address the dynamic scheduling problem
of batteries and demand response. The authors demonstrated the su-
periority of the algorithm compared to the traditional DQN and deep
deterministic policy gradient within a practical case study, wherein
various residential appliances were considered.

5.3. Power system protection, stability, quality and optimisation

Either when operating in islanded mode or when connected to the
grid, LECs may experience stability issues owing to weak interconnec-
tion points or insufficient capacity of distribution lines to handle the bi-
lateral power flows from renewable sources of energy generation [153].
Hence, the importance of fast location of faults and post-fault decision
making can be supported by intelligent computation programs on the
basis of machine learning, leveraging the ICT measurements as the
input. In the literature, different approaches to assist power system
protection, stability, quality, and optimisation for smart grids and
microgrids exist, and these approaches are of great interest for the
operation of LECs. This section broaches the literature on LEC system
adequacy and security applications, including cybersecurity concerns.
Fig. 5 illustrates the occurrence of a particular machine-learning tech-
nique in the reviewed literature used for power system protection,
stability, quality, and optimisation. The machine learning algorithms
for each application are summarised in Table 10.

5.3.1. Protection and fault monitoring
The secure operation of the energy service in the presence of a

fault is crucial for the security of the LEC [52]. Thus, identifying these
faults is an important task for LEC control systems, and historically, the
relevant research have focused on faster and more accurate methods to
identify fault events in the grid. This is achieved via historical and real-
time measurements as input data for the machine learning algorithms,
aiming to increase the likelihood of an appropriate response for the
grid’s protection control system.

Most studies approach the problem of fault event identification as
a supervised classification learning problem via training data-driven
algorithms and correlating features given by measurements of a pre-
specified type of fault. Researchers [154,159] have applied different
ensemble methods, such as random forest and boosting techniques,
to classify faults in a microgrid context. Furthermore, the multi-class
classification problem of fault detection in PV arrays has been analysed
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Table 9
Machine learning (ML) techniques for demand response.

Task ML Algorithm Level Year Source

Demand response

Actor critic Household 2018 [143]
RL model-based Microgrid 2016 [144]
Policy gradient 2021 [142]
DQN Household 2018 [141]
Anomaly detection algorithm 2021 [145]

Demand response pricing models Deep embedded clustering Household 2019 [146]
Stochastic processes Electric utility 2018 [147]

Demand response energy efficiency Q-learning Building 2019 [148]

Demand response control considering tariffs Duelling Q-learning Smart grid 2020 [149]

Demand response in real time Trust region policy optimisation Household 2020 [150]

Decentralised demand control Q-learning Household 2015, 2020 [114,151]
Q-learning Buildings 2020 [152]
Table 10
Machine learning (ML) techniques for power system protection, stability, quality and optimisation.

Topic Task ML Algorithm Level Year Source

Protection and fault
monitoring

Fault detection

Boosted decision trees Smart grid 2020 [154]
CNN Smart grid 2020 [155]
NNs energy grid 2020 [156]
NNs, SVM Microgrid 2020 [157]
Boosted decision trees Microgrid 2021 [158]
Random forest Microgrid 2020 [159]
SVM Smart grid 2019 [160]

Line fault detection and location NNs, SVM Microgrid 2019 [161]
Fault detection PV arrays Random forest Microgrid 2018 [162]
Fault detection generators SVM Microgrid 2020 [163]
Line fault detection NNs Microgrid 2017 [62]

Stability

Harmonic voltage estimation LSTM Unbalanced distribution grid 2020 [164]
Dynamic event detection NNs, decision trees, K-NN classifiers Microgrid 2018 [165]
Load shedding Duelling deep Q-learning Islanded microgrid 2021 [166]

Power quality

Power quality disturbances detection CNN Microgrid 2020 [167]
Power quality disturbances CNN Microgrid 2020 [167]
Volt-var control Actor–Critic Smart grid 2020 [168]

Optimal power flow

Simulate uncertain variables Markov processes Household 2020 [169]
Wind power integration uncertainty Bayesian inference Microgrid 2020 [170]
Simulate uncertain variables Bayesian inference – 2020 [171]
Simulate decentralised OPF problem Linear regression – 2020 [172]

Cyber security

Cyber attack identification

LSTM-LUBE Microgrid 2021 [173]
LUBE-MSOS Microgrid 2021 [174]
Markov decision process Smart grid 2018 [175]
Bayesian networks Smart grid 2019 [176]

Electricity theft identification RNN-GRU Distribution grid 2020 [177]
FDI attack detention Various Smart grid 2016 [178]
Fig. 5. Machine learning techniques in literature for power system protection, stability, quality, and optimisation.
sing a random forest with a majority voting decision on the final
nsemble algorithm [162]. Similarly, faults in generators present in a
icrogrid have been analysed using an SVM [163].
12
Nonlinear methods have shown the potential to deal with high-
complexity classification tasks by determining strong relationships
amongst the features extracted from the voltage and current signals.
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For instance, a general overview of the fault detection task in mi-
crogrids has been provided, whilst focusing on nonlinear classifiers,
and a comparative study of NNs and SVMs has been conducted [157].
Scholars [62] proposed a microgrid protection scheme that analyses
different classifiers, such as naive Bayes, SVMs, and NNs, highlighting
NNs performance over the rest of the classifiers. In a similar context,
a microgrid protection scheme has been proposed using line voltage
and currents to train the NN to detect faults and an SVM for fault loca-
tion [161]. In addition, a CNN has been suggested for classifying earth
faults and faulty feeders on the basis of signals obtained from smart
meters [155]; reportedly, the CNN can detect features in the input
dataset and provide accurate results using minimal signal processing
techniques.

Researchers [158] have proposed an in-depth analysis of fault cur-
rent tracing via the decomposition of current signals with wavelet
transforms to obtain three-phase line currents and zero-component
signals. This paper proposes the utilisation of these signals as the input
for optimised decision trees to classify fault types and faulty phases,
considering the short detection time and real-time application of the
proposed methodology. Moreover, scholars [156] approached fault
detection by analysing power signals and proposed applying anomaly
detection in the form of NNs classifiers.

5.3.2. Stability
During normal operation of the LEC, grid congestions may arise

due to sudden change in generation/consumption and weather events.
The ability of the network to maintain voltage magnitudes, voltage
angles, and inadequate frequency values is what is referred to as system
stability. Therefore, post-fault decision making is another contributing
factor in maintaining the grid stability in LECs. The identification
of various events has been explored for a microgrid with several
sources of energy generation [165]. The explored events include the
identification of starting generators, introduction to fault, post-fault
stability, operating point, fault clearance, and post-fault transient state.
The suggested multi-classifier methods are random forests featuring
bagging techniques, NN, and KNN. According to the authors, the further
addition of extracted features to the time-series data improved the
identification of all events.

Post-fault or preventive measures are required to maintain the grid
stability following event detection. In this regard, emergency load
shedding under different disturbance scenarios have been addressed
as a Markov decision problem, and duelling deep Q-learning has been
employed in an islanded microgrid [166].

5.3.3. Power quality
Power quality also refers to the voltage quality. Thus, this parameter

is used to analyse the presence of harmonics and the maintenance of
operational parameters within the recommended regulations. Power
quality issues can interrupt operation, damage equipment, and gen-
erate unpredictable behaviour in the controllers. The need for fast
methods to detect power-quality issues is increasing because of new
energy technologies involving power electronics [51]. Most of the
studies associated with LECs present signal analysis of voltage and/or
current measurements to classify disturbances in the grid as the main
applications of machine learning in this problem.

Accordingly, researchers [167] have proposed a CNN that was
trained to identify and classify power quality disturbances from a
voltage signal dataset consisting of harmonics, voltage swell, voltage
sags, and flicker. In another study, scholars [168] proposed an actor–
critic topology to manage the load injections of controllable devices
within a microgrid, aiming at decentralised voltage control. Moreover,
a method for harmonic state estimation has been reported in the litera-
ture [164], which was applied to smart meter data collected within an
unbalanced distribution grid. The authors used an LSTM to determine
power consumption and finally detected harmonic sources within the
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grid with a sparse Bayesian learning estimator.
5.3.4. Optimal power flow
To ensure the secure operation of the power system, power flows

need to satisfy stability limits, such as voltage limits. The guaranteed
optimisation of these power flows ensures the steady-state operation
of the system whilst minimising a specific objective function. To this
end, the other machine learning applications, which were reported
in the literature, focus on the study of the efficient computation of
power flows, with data-driven methods serving as an alternative to
traditional numerical methods. For example, scholars [172] suggested
a mechanism to decentralise the solution of optimal power flows using
machine learning by solving several cases under different parameters
to build a dataset that allows regression of unsolved optimal points
pertaining to the power flow problem.

Similarly, several studies have proposed machine-learning tech-
niques to study probabilistic power flows. In a study [171], varia-
tional Bayesian inference was used to approximate probabilistic op-
timal power flows, thereby addressing wind generation and load un-
certainties. Furthermore, the result from a study [170] supports the
integration of wind power in a microgrid, considering an AC opti-
mal power flow formulation. This was achieved by incorporating the
uncertainty into the balancing equations. The resulting problem was
formulated as a stochastic optimisation problem and solved via multi-
objective Bayesian learning. In another study [169], the authors utilised
Markov processes to simulate uncertain components such as household
loads or weather patterns.

5.3.5. Cyber security
Recently, cybersecurity in the context of power systems has be-

come increasingly important owing to the rise of digitalisation and
associated risks, such as breaches by third parties. Regardless of the
smart infrastructure at both the on-grid and household levels, LECs
are not insulated from these risks [179]. In recent studies, data-driven
models relying on machine learning have proposed solutions to security
challenges on a more local level. Accordingly, the use of power flow
equations combined with time-series prediction models has been pro-
posed to identify manipulated meter readings at the distribution grid
level [177]. Furthermore, the authors compared traditional models,
such as ARIMA, with RNNs. In addition, scholars [173,174] used an
LSTM with lower and upper bound estimates (LSTM-LUBE) to detect
cyberattacks in microgrids. RL was used in a study [175] to detect cy-
berattacks in smart grids. The problem was formulated as a model-free
partially observable Markov decision problem.

Although the advantages of this method have been demonstrated,
the authors remark on the implementation of deep RL as an improve-
ment. Another approach was reported in a study [176], which used
dynamic Bayesian networks and a restricted Boltzmann machine to
detect unobservable cyberattacks. Furthermore, false data injection
detection (FDI) have been formulated as a supervised learning prob-
lem [178]. Various classifiers are compared including the KNN, NNs,
and SVM algorithms for different grid sizes. AdaBoost and multiple
kernel learning were also employed as decision and feature levels;
reportedly, these fusion algorithms are less sensitive in terms of grid
size.

5.4. Energy transactions

Concerning the transactional activities of energy systems, data-
driven algorithms have shown suitability for application in trading
programs and as tools to study, analyse, and optimise participant be-
haviour in local energy markets regardless of the market configuration
in the LEC. Emerging blockchain technologies enable trading plat-
forms for LEC participant transactions in peer-to-peer market configu-
rations [104]. The machine learning algorithms reported in the recent
literature for energy transaction applications are listed in Table 11.

RL is the architecture chosen for research to generate goal-oriented

trading strategies. For example, researchers [180,182] applied
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Table 11
Machine learning (ML) techniques for energy transactions.

Task ML Algorithm Level Year Source

Trading strategies

Q-learning Microgrid 2017 [180]
DQN LEM 2018 [181]
Q-learning Distribution grid 2019 [182]
DQN Microgrid 2019 [183]

Energy-supply game with economic
dispatch and demand response

Q-learning Smart grid 2017 [184]

Peer-to-peer transactions Fuzzy Q-learning Energy community 2019 [185]
Trading strategy, reduce plant schedule DQN Microgrid 2019 [186]
Trading strategies real time DQN Microgrid 2018 [187]
Blockchain platform RNN Smart grid 2021 [188]
Q-learning algorithms to develop efficient trading strategies in local
energy markets, aiming to facilitate trading amongst participants and
maximising utility for agents in the local energy market. Similarly,
scholars [181] sought to model participants’ trading behaviour by
implementing a DQN algorithm. Furthermore, explored a CNN-DQN
incremental RL algorithm has been explored by storing transition
samples from training, a so-called experience replay procedure, thereby
enabling high data efficiency by reusing the samples [182]. In a
study, [186] the authors implemented DRL for energy trading within a
microgrid, aiming to optimise the schedule of the virtual power plant,
considering the availability of wind power and batteries.

Peer-to-peer market structures are currently being developed using
blockchain technology. Blockchain applications for this type of mar-
ket have been reviewed in detail [104], whilst scholars [188] have
explored a blockchain-enabled peer-to-peer energy-trading platform
with the integration of machine learning. The development of trading
strategies in a peer-to-peer market has been explored in a study [183],
which focuses on the development of a trading model for the micro-
grid market using DQN to overcome the challenges of dealing with
uncertain variables, such as renewable generation and load demand,
thereby obtaining revenues considering seasonal changes. Furthermore,
fuzzy Q-learning has been used to address continuous space-state prob-
lems [185], considering a large number of scenarios in an energy
trading process.

Researchers [187] generated a bidding strategy to maximise rev-
enues in a microgrid featuring flexible and non-flexible consumption,
storage, and solar generation for a real-time trading horizon. The strat-
egy was developed using a DQN algorithm that considers a tractable
state-action set.

6. Conclusions

6.1. Summary of findings

In this study, a definition of local energy communities was de-
rived on the basis of European legislation and practical examples of
community-based energy projects. The proposed definition identified
the traits of locality, energy sustainability, community engagement,
information and communication technology, and transactions as the
key traits for such an energy community. Based on this, related lit-
erature reviews and recent publications on machine learning methods
were identified, specifically in the key areas of energy management
systems, asset forecasting, power quality, stability, security, and opti-
mal control of storage and demand response. Furthermore, the present
study presented an overview of the three main categories of machine
learning. Specifically, for reinforcement learning, supervised learning,
and unsupervised learning, the specific methods applied to each of the
identified application areas were detailed in this study. Accordingly, an
analysis of the state-of-the-art techniques of each application was at the
core of this study. Fig. 6 maps the literature on machine learning areas
and techniques presented in the subsequent sections to the previously
introduced components of LECs by classifying each source according to
the four dimensions of technique, category, application, and criterion.
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This analysis revealed the bulk of the literature on machine learning
in local energy communities provided by recurrent neural networks
that were applied to forecasting problems. In addition, demand re-
sponse and storage control problems were solved via reinforcement
learning, specifically pure value function approximation techniques in
the form of Q-learning. Similarly, reinforcement learning was prevalent
in the transaction tasks.

In general, several nonlinear methods, ranging from tree-based to
deep learning-based methods, can be observed in recent publications,
independent of the application. In contrast, this review revealed a lack
of literature on probabilistic tasks and reinforcement learning methods
that considered policy function approximations with or without the
value function approximations. This finding will inform the future
research direction.

6.2. Proposal for future work

The goals and implementation of local energy communities appear
to revolve around the uncertainty created by the individualistic com-
munity participants and a high share of renewable energy. One result
is the increasing uncertainty. Whereas most of the machine learning
methods identified in this study do not consider such uncertainty as
a core aspect, such uncertainty is considered for the applications of
local energy communities. Consequently, a gap in the literature can be
observed, which treats uncertainty as a central aspect, especially from a
systems perspective in related control algorithms, energy management
systems, and forecasting methods.

Another consequence of an individualistic community participation
and the transition of the traditional market to a more decentralised
market is the need for a faster response from individual participants
and their assets. Large, centrally controlled systems might be too slow
to operate in real-time, and thus require resource-intensive and in-
depth scheduling and optimisation activities to optimally schedule and
dispatch whilst still maintaining the system between the operational
bounds. In contrast, a decentralised system can provide flexibility prox-
imate to real-time and offer a more granular resolution than discrete
decision frameworks such as Q-learning. This can be achieved using
the aforementioned policy of approximation methods.

The findings from the literature review suggest that nonlinear
methods outperform linear methods in terms of both solution time
and quality. This discovery suggests a trend towards neural-network-
based methods combined with modern, state-of-the-art hardware. Pre-
sumably, these nonlinear methods will gradually be introduced into
other traditional power-system applications. A nonlinear method that
is yet under-represented in local energy communities is the deep
Markov model, i.e., neural network-based formulations of traditional
hidden Markov models. Another example of such a method is the
traditional nonlinear auto-regression. Because most forecasting tasks
are conducted via recurrent neural networks or convolutional neural
networks, both these representative nonlinear methods require itera-
tive approaches and thus do not scale as effectively as non-iterative
autoregressive processes.

Finally, a fundamental component that is yet to be applied to local
energy communities is the analysis of interactions and social aspects
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Fig. 6. LEC criteria and corresponding machine learning techniques.
é:
using nonlinear methods. In particular, game-theoretic models and
system analysis are not well-represented in the literature; however,
they appear to rely on traditional methods and provide opportunities to
build on the state-of-the-art methods of other applications, as presented
in this paper.
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