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a b s t r a c t

Extraction and processing of oil and gas with current technologies is energy- and carbon-intensive as
well as are the manufacture, transport and installation of the facilities needed for oil and gas production.
Nowadays, there is a strong emphasis on reducing emissions and energy usage to help mitigate climate
change. In this work, we demonstrate a method for decision-support in early-phase field planning based
on proxy modeling and optimization. An optimization model is developed to determine drilling and
production schedules, as well as the processing capacities of oil and gas that maximize a key perfor-
mance indicator. The key performance indicator is a linear combination of the normalized net present
value and environmental variables, the carbon footprint and carbon dioxide emissions. The weight of
each variable in the objective function is adjusted by varying the value of the constants. An offshore field
on the Norwegian Continental Shelf is used as a case study.

Results show that there is a clear trade-off between economic and environmental performance. There
are cases, however, where a modest improvement in field environmental performance can be achieved
without significantly decreasing its economic value or requiring additional technologies. As a result of a
13% and 8% reduction in NPV relative to the maximum achievable reduction, the carbon footprint and
CO2 emissions will be reduced by 30% and 35%, respectively. The paper offers comments and observa-
tions about the implementation and inclusion of environmental indicators into early-field development
planning. In the near future, this study will be improved to include a more accurate analysis of the impact
of environmental indicators and different low-emission technologies on the field development plan.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Greenhouse gases (GHG) emissions and energy consumption
derived from oil and gas usage corresponded to about 20 million
tonnes of carbon dioxide (CO2) equivalent [1] and 93,000 Terawatt
hour (TWh) in 2019 [2], which is equivalent to 55 and 53.5% of
worldwide emissions, respectively. Emissions from the petroleum
upstream sector are significant both globally and in Norway, where
they account for about one-quarter of Norway's aggregate GHG
emissions [3]. Emissions from Norway's oil and gas industry
amounted to 13.7 million tonnes of CO2 equivalent in 2019 [4].

Most of the Norwegian fields are mature, experiencing pro-
duction decay and utilize rather old infrastructures with low
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efficiency. This puts additional public and governmental pressure
on companies operating old offshore facilities in the North Sea and
the Norwegian Sea [5] to reduce emissions and improve energy
efficiency. Norway has set an ambitious target to reduce emissions
in offshore fields by 50% of 1990 levels by 2030 and to move to-
wards zero emissions in 2050 [6]. In addition to the initiative from
the Norwegian government, there is also increasing pressure from
the public and investors for oil and gas companies to set climate
targets that are consistent with the goals in the Paris Agreement [7].
To move away from the current path of increasing CO2 emissions to
one that involves keeping emissions flat or reducing them in the
future is a huge challenge because most countries are still heavily
dependent on fossil fuels [8]. Hence, new and improved technology
is usually required to deliver energy with the lowest possible
emissions [9]. According to Zhang [10] and Maeder [11], the
development of flexibility technologies (in this context, flexibility
refers to the ability to adjust the power supply/demand of the
system) is expected to mitigate this in the coming decades.
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

a Weighting factor
h Efficiency
r Density, ðKgm3Þ
BONMIN Basic Open-source Nonlinear Mixed Integer

programming
CAPEX Capital Expenditure, NOK
CCS Carbon Capture and Storage
CE CO2 emissions, tonne
ce Dimensionless CO2 emissions
CF Carbon Footprint, tonne
cf Dimensionless Carbon Footprint
CFt Total Carbon Footprint, tonne
CO2 Carbon dioxide
DRILLEX Drilling Expenditure, NOK
EF Emission Factor, ðtonneCO2

Sm3 Þ
FPSO Floating, Production, Storage and Offloading
GHG Greenhouse Gases

GOR Gas Oil Ratio
IOIP Initial Oil In Place, Sm3

IP Integer Programming
LCA Life-Cycle Assessment
LHV Lower Heating Value, ðMJ

KgÞ
LP Linear Programming
MINLP Mixed Integer NonLinear Programming
MW Molecular Weight, ð g

molÞ
NPV Net Present Value, NOK
npv Dimensionless Net Present Value
OPEX Operational Expenditure, NOK
q Total Production,Sm3

qmax Max Production, bpd
TWh Terawatt hour
W Consumption power, MJ
WFPSO WeightFPSO, tonne
WHull WeightHull, tonne
WTopside WeightTopside, tonne
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However, no single strategy can enable this goal to be reached [12].
Some researchers have worked on different new systems for

decreasing energy consumption, such as CO2 capture and injection,
advanced turbine co-generation, and wind farms that are not
commonly used in oil and gas fields. For example, Persichilli [13]
conducted a trade study to compare CO2 and steam-based heat
recovery systems. Kloster [14] argued that bottom steam cycles are
technically feasible and would result in a significant reduction of
CO2 emissions. The concept was theoretically proven in three North
Sea case studies [15]. The study of Sanchez [16] also demonstrated
that the integration of CO2-capture is technically feasible but re-
quires a significant amount of energy. Therefore, although it is of
advantages for reducing CO2 emissions, it contradicts the objective
of this work, which is to increase energy efficiency. Nguyen [17]
also argues that all of these studies focus on a single or a few
strategies to reduce CO2 emissions in oil and gas offshore fields, but
none of them evaluate each option from a process, thermodynamic,
economic, and environmental perspective. Besides, they are not
applicable in all fields whilewe are looking for amethod that can be
applied to different types of fields without adding technologies or
extra expenditure, although it is possible to consider new tech-
nologies as part of this work.

Improved energy efficiency is one of the most effective means of
protecting and enhancing the global environment, according to a
report from the International Energy Agency called World Energy
Outlook [18]. As the overall system efficiency is directly propor-
tional to CO2 emissions, if themitigation of CO2 emissions is studied
as one of the primary goals in the field planning, it will bring sig-
nificant effects on energy consumption reduction as well. A ma-
jority of studies have assessed environmental performance after
production is complete when accurate data on fuel consumption is
known or when there is a more detailed design. But, some studies
report methodological and data challenges when attempting to
quantify environmental indicators [19]. First, no consistent and
widely adopted method exists for measuring and predicting the
carbon intensity of oil production. Second, there is a lack of
comprehensive and geographically-rich data-sets that allow the
evaluation and monitoring of the life-cycle emissions [19]. In fact,
the challenge is how to ensure consistent results when neither
accurate fuel consumption data nor established emission factors
are available for the planned operations [20]. Early phase planning
offers many design options that have not been decided yet, and
2

there is a lot of flexibility to make changes that lead to major im-
provements. Gilbert [20] showed that conducting quantitative
forecasts in the planning phase before the field is in operation can
have substantial advantages since it helps mitigate emissions at the
source and allows engineers to compare different operational
strategies. Hence, our objective was to develop a practical and
understandable method for estimating environmental indicators
using limited data and include them in early development planning
which is the best way to provide the most efficient design features.

Field development planning is an essential early phase in the life
of an offshore field as many decisions, such as type of platform,
production and drilling schedules, and capacity of processing fa-
cilities, are made during this stage. In the industry, this is typically
done by several discipline teams, that compare and compute eco-
nomic performance and technical requirements of several field
development alternatives and ultimately choose the best. This
process is often time-consuming, involves manual work, and does
not allow the exploration of all possible designs. In addition, it does
not consider uncertainty in a robust manner. To address this chal-
lenge, several works have developed automated decision-support
methods with the goal of maximising the revenue from oil and
gas sales while respecting technical constraints. Some examples are
Shirangi [21], Angga [22], Schiozer [23], Gonzalez [24] and Bonti
[25] which complement each other's work. The main idea of their
work is to make an approximate numerical model of the value
chain, often using commercial simulators (or extracting data from
them), and apply an optimization algorithm to automatically
maximize revenue by changing the design parameters. Stochastic
analysis has been performed on the model to evaluate the effect of
uncertainty. The production and drilling schedules and the pro-
cessing capacities of gas, oil, and water directly impact the size and
weight of the offshore structure and processing facilities and the
number of wells required, which are elements that account for
most of the carbon footprint of an oil and gas production system.
However, these studies have not considered environmental per-
formance either as a constraint or as part of the objective to
minimize environmental effects. Thus, our goal was to improve on
the previous models by including environmental indicators in the
objective function.

Another important environmental performance parameter is
the carbon footprint. According to Wiedmann [26], the carbon
footprint is a measure of the total amount of CO2 emissions that are



Table 1
Parameters of the reservoirs.

Reservoirs First Second

Initial Oil In Place (IOIP) [MSm3] 56.25 39.25
GOR [Sm3/Sm3] 115 150
Productivity index [Sm3/day/bar] 1500 500
Number of wells 6 3
Pressure Maintenance method Water injection Gas injection
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directly and indirectly caused by an activity or are accumulated
over the life stages of a product. In our study, we consider emissions
derived only from manufacturing, transport, and installation. We
neglect emissions during operations (e.g. maintenance) and after
abandonment and decommissioning. There are a number of ways
to obtain estimates of the carbon footprint, ranging from simple
online calculators to sophisticated Life-Cycle Assessment (LCA).
However, there is an apparent lack of an approximate method to
estimate the carbon footprint of a floating processing facility for
early phase field development. The authors believe this might be
because of the relatively small carbon footprint contribution of
manufacturing facilities and equipment for oil and gas extraction in
comparison to lifetime CO2 emissions from the operation, which is
a highly energy-intensive process. Because of that, few studies
include the carbon footprint in their assessment of oil and gas
projects. One exception is Kim [27], a study that investigated power
generation via combined cycle configurations and post-combustion
capture with CO2 re-injection for carbon-footprint reduction while
increasing the gas export and oil production, respectively. However,
the procedure was applied on a field with high CO2 content and an
elevated gas-oil ratio (GOR). The carbon footprint from onshore and
offshore oil and gas-related infrastructure is material to the cradle-
to-gate footprint [28]. As oil and gas companies investigate the
cradle-to-gate carbon footprint for ways to reduce their footprint in
response to corporate reduction commitments, one potentially
interesting area is to study the impact of the largemass of materials
(e.g. steel) used to construct equipment and infrastructure for oil
and gas operations. Silva [28] reported that the carbon footprint of
the infrastructure is considerable, even when spread over the life-
time of a facility because of the substantial infrastructure mass.
Studying and quantifying the carbon footprint due to
manufacturing can be useful to understand the distribution of en-
ergy use and improve infrastructure energy efficiency. Therefore,
we attempted to include this indicator in our study.

Having considered all of the above, the novelty of the present
research is that it provides an approximate method for estimating
both the economic and environmental performance of a project
early in its development, while uncertainties are high, by allocating
weights to each of them based on the decision makers’ viewpoint,
and it is applicable to all offshore fields with traditional or advanced
technologies. Therefore, we intend to (i) identify a fast, simple, and
approximate method of calculating CO2 emissions with limited
data in the field development stage (ii) develop a method to esti-
mate the carbon footprint of Floating, Production, Storage and
Offloading (FPSO) systems, and (iii) perform simulation-based
multi-objective optimization to identify the potential trade-offs
between environmental performance and economics. The study
case is taken from the work of Alkindira [29], which considers an
offshore oil field with two reservoirs, and subseawells that produce
to an FPSO via risers. We formulate an integer non-linear optimi-
zation model instead of using the piece-wise linearization of
Alkindira [29].

The rest of the paper is organized as follows. Section 3 presents
the study case, and describes the optimization methodology and
the optimization model. Following this, several variations of the
optimization model are presented. The results are presented in
Section 4 and the imitations and drawbacks of the study are stated
in Section 5. Section 6 contains the conclusions and plans for the
future.

2. Methodology

2.1. Case study

The field considered in this study is an offshore oil field on the
3

Norwegian Continental Shelf in the southern part of the Barents
Sea, at the Loppa High area. It consists of two non-communicating
reservoirs. The reservoirs are saturated oil reservoirs with the
presence of a gas cap. For the purpose of this study, it will be
assumed that the production for this field is expected to start in
2025 with horizontal production and injection wells and is
scheduled for abandonment in 2045. The first reservoir has higher
volumes of oil in place than the second one. Table 1 presents some
information for each reservoir.
2.2. Optimization

In field development, there are usually several development
options that could be feasible, and they are ranked according to
their economic performance, and technical feasibility, among other
factors. Trade-off analysis is usually conducted as part of the
decision-making process. In trade-off analysis, we identify the most
acceptable production plan among a set of proposed alternatives
based on how well the alternative meets the agreed criteria [30]. In
this study, the criteria used when making the decision are eco-
nomic and environmental performance. These criteria define the
critical attributes that the ideal option must possess [31]. The
overall degree of fulfillment of these criteria is what is considered
in the evaluation process. However, there is usually a conflict be-
tween economic and environmental performance, i.e. there is a
trade-off between the economic performance and the degree of
CO2-abatement of oil and gas platforms. In these cases, a solution is
to assign weights to each indicator. The weights determine how
heavily a criterion contributes to the overall score. It is assigned
based on the level of importance of each criterion for stakeholders
and clients. Model-based optimization will allow finding the best
among all options, although it does not usually output all other
feasible solutions which are sub-optimal. The main idea of this
work is to include environmental indicators in the optimization to
see if it is possible to find development strategies that have good
economic performance (but are sub-optimal in terms of economic
performance only). At the same time, these strategies are to be
better in terms of environmental performance (optimal in terms of
both economic and environmental performance).

The objective function to be maximized is composed of three
different parts, as shown in Eq. (1).

Obj ¼ a1npv� ð1�a1Þ½a2ceþð1�a2Þcf � (1)

Where a1 and a2 are coefficient weights that range from 0 to 1.
We weigh the coefficients based on the relative importance of each
objective. To accomplish this, first, we divided the objective into
two parts: economic and environmental performance, so that the
total weight should equal one. The objective with higher relative
importance is given greater weight and vice versa. Therefore, if
a1¼1, the objective does not have an environmental impact, and all
importance is placed on net present value (NPV). It should be noted
that a1 ¼ 0 was not considered in the model, since there would be
no production and all objective parameters would be zero. We also
divided the environmental part into two subparts: CO2 emissions
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and the carbon footprint. For example, when a2 ¼ 0, we only
consider the carbon footprint of construction in the environmental
part of the objective.

npv, ce, and cf are also defined as follows:

npv ¼ NPV
NPVref

(2)

ce ¼ CE
CEref

(3)

cf ¼ CF
CFref

(4)

Where NPVref, CEref, and CFref are reference amounts for NPV,
CO2 emissions and the carbon footprint while the objective is
composed of NPV only. These reference values are used to make the
parameters dimensionless and exhibit similar orders of magnitude.
Initially, the plan was to determine the reference value of each
parameter by finding the maximum in a case where the respective
parameter is the sole objective (e.g. maximising NPV to find NPVref,
minimising CO2 emissions to find CEref, etc.). However, when the
objective is set to minimize CO2 emissions or the carbon footprint,
the hydrocarbon production is set to zero by the optimizer.
Therefore, the reference values for all quantities will be extracted
from the case of NPV optimization only.

A potential benefit of using a normalized objective function is
that the effect of uncertainties is somewhat mitigated as un-
certainties will affect both the numerators and denominators in
Eqs. (2), (3) and (4).

The rates of oil production in time, the number of producers in
time, and the timing of drilling new wells are the main decision
variables. The relationship between variables and objectives is
captured in the model by mathematical expressions. Variables are
computed by the optimizer based on the physical limitations of the
system, the equality and inequality constraints, set by the field
planner. The solutions are often non-intuitive and difficult to
determine using simple logic. One simple example is that a higher
oil production rate means higher revenue, but it also means higher
expenses due to the required equipment, more CO2 emissions due
to the increased energy consumption, and a larger footprint due to
Fig. 1. Visualization of
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the larger processing facilities required. Full details of the optimi-
zation formulation can be found in Appendix A and the work of
Guowen [32].

We used integer-nonlinear numerical optimization to solve this
problem. The optimization model is created in Excel(r) software
and is defined using the interface of the Excel Solver. As the size of
the problem exceeds the limits of the Standard Solver (provided by
the company Frontline) included by default in Excel, the open-
source OpenSolver is used [33], with the Basic Open-source
Nonlinear Mixed Integer programming (BONMIN) solver. Open-
Solver is an open-source Excel add-in that allows spreadsheet users
to solve their Linear Programming (LP) and Integer Programming
(IP) models. It does not have any of the size limitations found in the
built-in Excel solver, so it can solve larger models as well as provide
novel model construction and on-sheet visualization capabilities.
BONMIN is an experimental open-source code for solving general
Mixed Integer NonLinear Programming (MINLP) problems and is
often faster than the built-in Solver. Here, the variable set includes
48 continuous variables and 52 integer variables, and a precision of
10�6 is set for the constraints. The tolerance is also set to 1%. The
openSolver determines the optimal amount for each of these 100
variables, and calculates dependent variables (e.g., cumulative
production rate and total CO2 tax) to obtain themaximum objective
after introducing all inputs (e.g., oil price and tax rate) and con-
straints. Here, the objective refers to a variable defined in Eq. (1).

A flowchart showing the calculations performed in the Excel
sheet is depicted in Fig. 1.
2.2.1. Estimation of CO2 emissions from operation
In offshore facilities for oil and gas production, approximately

85% of the CO2 emissions are derived from the gas turbines utilized
to generate electricity in the facilities from the combustion of
natural gas and diesel. The rest of the emissions to air from pe-
troleum activities originate from natural gas and diesel combustion
in engines, boilers, flaring of natural gas for safety reasons, venting
and diffuse gas emissions, as well as the storage and loading of
crude oil [3]. An example of the contribution of several elements to
CO2 emissions is shown in Fig. 2. Thus, one can conclude that a
significant reduction of CO2 emissions in the oil and gas industry
can be achieved if the amount of CO2 emissions from gas turbines is
reduced or eliminated by different methods. Therefore, this study
the methodology.



Fig. 2. CO2 emissions by source.
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focuses only on the contribution of CO2 emissions from gas tur-
bines. Other GHG emitted by the turbine is neglected as we have
done the same for the carbon footprint.

The amount of installed power capacity required by the gas
turbine, its fuel consumption, and ultimately the CO2 emissions are
proportional to the oil and gas production rates. In this study, CO2
emissions are calculated assuming a linear relationship with the oil
production flow rate. The following equation is proposed using data
reported by the Norwegian Petroleum Directorate [3] and the
Rystad Energy reports [34]:

CE ¼ EF � q (5)

Where the emission factor (EF) is 0.05
tCO2
Sm3. Another equation to

determine CO2 emissions from oil production was derived using
reported values of EROI (energy return on investment) and stoi-
chiometry. The details are described in Appendix B. Both methods
yield similar results, therefore Eq. (5) was used in the model.

In Norway, CO2 emissions are taxed by the government, 543
NOK per tonne of CO2 [3] and will be increased to 2000 NOK per
tonne of CO2 within 2030. Therefore, in the model, from now to
2030, we increased the CO2 tax linearly to reach 2000 NOK per
tonne of CO2, and then kept it constant. The amount of total CO2 tax
can be calculated as follows:

CO2TAXt ½NOK� ¼ CEt ½tCO2
� � CO2TAXt

�
NOK
tCO2

�
(6)
2.2.2. Carbon footprint
The production system has an additional environmental impact,

not associated with operation and energy consumption, but rather
with manufacturing, transport, installation, repairs, and recycling.
The term accumulated emissions is often used to describe this part,
but in our work, we will refer to this using the term of the carbon
footprint. Our study assumes that the construction of the FPSO is
the major contributor to the carbon footprint, and we neglect the
contribution of other parts of the system, such as the subsea sys-
tem. Similar to Wiedmann [26], we only considered CO2 in the
carbon footprint analysis, despite the fact that we know that other
substances such as methane also contribute to greenhouse warm-
ing. Most of those substances are not carbon-based or are more
5

difficult to quantify because of insufficient data and uncertainties,
such as maintenance stops and unscheduled events. Because of
this, CO2 was the only GHG included in the carbon footprint anal-
ysis here. By this method, this work estimated the carbon footprint
using the following assumptions:

1. Most of the carbon footprint comes from steel fabrication. Car-
bon emissions produced during steel fabrication as assumed to
be 1.75 tonnes for each tonne of steel produced [35].

2. Other sources of the carbon footprint, such as yard activities,
including electricity, welding, cutting, and plate forming,
transport within the yard contribute 11% of the total carbon
footprint; the rest (89%) is attributed to steel production.
Therefore, one can use a factor of 0.216 (¼1.75*11/89)tonnes per
tonne of steel processed at the yard to compute the total carbon
footprint [35].

Hence, the carbon footprint can be calculated by:

CFt ¼ WFPSO � ð1:75þ0:216Þ (7)

Therefore, the weight of the FPSO is required. The weight of the
vessel and facilities is required to estimate the amount of steel
needed for the FPSO. This can be expressed as Eq. (8).

WFPSO ¼ WTopside þWHull (8)

A few different estimation methods and equations are available
in the literature for calculating the topside weight of FPSO, such as
Ha [36], Myung [37], Zou [38], and Zou [39]. The input parameters
to these equations vary widely and many do not consider the effect
of processing capacities while the weight of the vessel and facilities
usually depends on the processing capacities of oil, gas, and water.
For the topside weight, we selected the equation proposed by
Nunes [40], Eq. (9), because it considers the effect of processing
capacity and does not include parameters that are unavailable or
irrelevant to our study. Processing facilities, equipment, and so
forth are included in this equation as part of topside weight [40].

WTopside ¼ 16500þ qmax

�
0:01þ GOR

104
þ
�
0:01þ GOR

2*104

�
yCO2

þ
�
0:01þ GOR

4*104

��
yCO2

þ yH2S

��
(9)

The accuracy and validity of this equation were verified by
comparing it against machine learning techniques applied to the
Rystad Energy data. The data is made up of 80 data set, including oil
production capacity, gas production capacity, total design produc-
tion, storage capacity, water depth, and the minimum, average, and
maximumweight of the topside of the FPSO for 80 projects. In this
case, the average topside weight is the target variable expected to
be estimated by predicting variables including oil production ca-
pacity, gas production capacity, storage capacity, and water depth.
To determine the relationships between the target and predictor
variables, the Pearson correlation coefficients between them were
calculated. In Appendix C, a brief description of the coefficient is
provided.

The results revealed that the topside weight is strongly corre-
lated to oil production capacity while the others show a lower
correlation but are not small enough to be excluded. Using different
modeling techniques, the results found that linear regression is
appropriate to capture the relationship between the target and
predictor variables provided. Finally, we compared the result of the
derivedmodel with Eq. (9). The difference is on average 1.3%, which
is acceptable.
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Due to the lack of a simple and practical estimation method for
the hull weight, we estimated it from the topside weight by
assuming aweight coefficient of 2.18 (tonne hull/tonne topside), Eq.
(10). This number was estimated from a sensitivity analysis of the
data provided by Ha [36], and Jun Zou [38,39]. This approach was
preferred instead of using more detailed methods (e.g. Myung [37],
and Jun Zou [38]) because it was observed the hull weight is often a
function of topside weight. Besides, they often depend on several
factors that are irrelevant or unknown in our study.

WHull ¼ 2:18�WTopside (10)

Therefore:

WFPSO ¼ 3:18�WTopside (11)
2.2.3. NPV
The NPV of the project is defined as the discounted sum of

revenue and expenses. Expenses include drilling expenditure
(DRILLEX), operational expenditure (OPEX), capital expenditure
(CAPEX), tax and CO2 tax.

NPV ¼
X
t2T

  
1

ð1þ iÞt
!
ðSalet � CAPEXt � OPEXt �

DRILLEXt � TAXt � CO2TAXtÞÞ
(12)

where i is the discount rate, t is a given year, and T is the total
number of years. Expressions of DRILLEX, OPEX, and CAPEX were
taken from the work of Alkindira [29] and Lei [32]. NPV is dis-
counted to its present value using the discount rate i, which is a
decimal number. The expressions are reproduced in Appendix A for
clarity.
3. Results and discussion

Several optimizations were completed with different values of
a1 and a2 (ranging from 0 to 1), and the resulting values of NPV, CO2
emissions, and the carbon footprint were recorded. The values of
each objectivewere plotted in a 3D surface plot versus the values of
the weighting coefficients. Figs. 3e5, show the resulting plots.
Fig. 3. NPV values for several comb

6

Increasing a1 means the NPV is more prominent in the objective
than the environmental part. Therefore, NPV is increased by
increasing a1, and the carbon footprint and CO2 emissions are also
increased since more production results in higher NPV. On the
other hand, decreasing a1 means that reduction of environmental
performance indicators is preferred. Due to this, the production
decreases to achieve this goal, which results in a reduction of NPV,
CO2 emissions, and the carbon footprint. Moreover, increasing a2
means CO2 emissions are more prominent in the objective than the
carbon footprint. Therefore, CO2 emissions are decreased by
increasing a2. However, the carbon footprint is affected by both
weights simultaneously. Therefore, we can observe a decrease in
some areas and an increase in others. It is worthmentioning that in
some cases, the surfaces exhibit some non-smooth variations. This
is due to the interpolation used to obtain the surface plot. Addi-
tionally, the optimizer could not find a feasible solution for some
combinations of a1 and a2 because some constraints were not met
and the NPV had negative values.

It is possible to see that there is a clear trade-off between the
economic goal and environmental performance. By changing the
values of a1 and a2, several optimal solutions can be found with
high economic performance or high environmental performance,
or a combination of both. Fig. 6 illustrates the relationship between
environmental and economic performance. The color scale repre-
sents NPV, and the x and y axes represent environmental indicators,
CO2 emissions, and the carbon footprint, respectively. The region
with maximum values of NPV is when CO2 emissions and carbon
footprint are maximum. If one considers a constant value of CO2
emissions, the NPV value increases as the carbon footprint in-
creases since both correlate with the maximum oil and gas pro-
duction. Similar behavior is seenwhen assuming a constant carbon
footprint and increasing CO2 emissions. There are some areas on
the plot for which there were no solutions, and some edges are
non-smooth because of the magnitude of the step used in the
weight coefficients to generate the plot data points (0.1).

Fig. 7 illustrates how CO2 emissions and NPV relate to each
other. Increased production leads to more NPV and more CO2
emissions. However, there are some values of a1 and a2 that give
field designs with better environmental performance and still have
a good NPV. For instance, if one employs a value of a1 and a2 of 0.5
and 0.8, respectively, the resulting solution has 30% less emissions
and 13% less NPV relative to the solution using a1 equal 1 and a2
inations of weight coefficients.



Fig. 4. CO2 emission values for several combinations of weight coefficients.

Fig. 5. Carbon footprint values for several combinations of weight coefficients.
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equal zero. The oil production rate of both reservoirs is presented in
Fig. 8 for these two cases. The difference between the two strategies
occurs towards the end of the production horizon. The first and
second reservoirs both stop production earlier, and the second
reservoir enters earlier in decline. These results are consistent with
our expectations. The optimizer prioritizes reservoirs with high
productivity and more wells in order to maximize NPV and mini-
mize environmental impact. As a result, the second reservoir enters
into decline earlier since its productivity is half that of the first
reservoir and fewer wells are allowed to be drilled there. Therefore,
the best plan would be firstly to drill wells in the first reservoir and
apply the reduction to the second reservoir.

A similar observation can be done about field designs that
reduce considerably the carbon footprint but still posses a good
NPV. Fig. 9 illustrates how carbon footprint and NPV relate to each
other. For example, if one employs a value of a1 and a2 of 0.4 and 0.1
7

respectively, the resulting solution has 35% less carbon footprint
and 8% less NPV relative to the obtained window when compared
against the solution using a1 equal 1 and a2 equal zero. The oil
production profile of both reservoirs is presented in Fig. 10 for these
two cases. To achieve a reduction in carbon footprint, the second
reservoir is produced as it would bewhen prioritizing NPV only, but
the first reservoir is produced with a lower plateau rate but with a
slightly longer plateau duration.

Altogether, this means that it is possible to achieve a reduction
of approximately 340,000 tonnes of CO2 (emissions and footprint)
over a period of 26 years at the expense of a reduction of 1000
million NOK in NPV. This is equal to a CO2 cost of approximately
3000 NOK per tonne of CO2. This value is comparable with pub-
lished numbers for decarbonization, technologies such as Carbon
Capture and Storage (CCS) and hydrogen.

It is worth noting that these reductions and improvements in



Fig. 6. Optimized NPV spectrum in [million NOK] vs. CO2 emission and Carbon Footprint.

Fig. 7. NPV vs. CO2 emissions.

Fig. 8. Production rate vs. years; after changing the weight coefficients from a1 ¼ 1 and a2 ¼ 0 to a1 ¼ 0.5 and a2 ¼ 0.8.
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Fig. 9. NPV vs. Carbon footprint.

Fig. 10. Production rate vs. years; after changing the weight coefficients from a1 ¼ 1 and a2 ¼ 0 to a1 ¼ 0.4 and a2 ¼ 0.1.
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environmental performance require no new technologies. They are
achieved by careful design (using optimization) of the production
and drilling schedules and capacity of the topside facilities.

Multiplying a CO2 tax by the emissions is the standard way that
CO2 emissions are taken into account in the valuation of oil and gas
projects nowadays in Norway. It is also the way implemented in the
current model. However, it could be considered that this coefficient
represents also the monetary cost equivalent of the carbon foot-
print and CO2 emissions (e.g. to society). Therefore, by changing the
value of the CO2 tax, it could be used to model a variety of hypo-
thetical or real situations, such as: CO2 tax imposed by the gov-
ernment on emissions, tariffs to dispose safely of the CO2, economic
compensation to society for emitting CO2, and CO2 trading
schemes. It could be argued that, to find environmentally friendly
field designs, instead of using multi-objective optimization with
linear scalarization, one could simply increase the value of the CO2
tax. To study this issue, a sensitivity analysis of the CO2 tax rate has
also been conducted. The optimization process was repeated for
three different CO2 tax rates: the base model in which the CO2 tax
rate was increased from 543 to 2000 NOK per tonne of CO2 in 2030,
and remained constant until the end of the project, a fixed CO2 tax
rate of 543 NOK per tonne of CO2 (lower tax rate), and a fixed CO2
tax rate of 2000 NOK per tonne of CO2 (higher tax rate). Optimi-
zations were performed for several values of a1 and a2. Similar to
Figs. 7 and 11 illustrates the relationship between CO2 emissions
9

and NPV for three values of CO2 tax and for several combinations of
a1 and a2. It can be observed the lines for base and high CO2 tax
have similar shape, but the curve is slightly different for low CO2
tax. The right extreme of the chart corresponds to optimization
with a1 equal 1 (considering maximising NPV only). For this value
of a1, all field designs obtained have the same value of CO2 emis-
sions, the same production and drilling schedule; however, they
have a different NPV value. This indicates that increasing the CO2
tax did not allow to find field designs with less CO2 emissions, but it
rather caused a reduction in the NPV. To study this issue more in
detail, we performed several optimizations using several CO2 tax
values between 543 and 4000 NOK per tonne of CO2, considering
NPV only as an objective (a1 equal 1). Table 2 shows optimized
values of NPV and cumulative production of oil for various values of
CO2 tax. The optimal production profile and drilling schedule of all
these cases were identical.

Consider that field planners wish to achieve a given target NPV.
From Fig. 11, a higher CO2 tax results in higher emissions, which
seems counter-intuitive. However, this could be explained due to
the fact that higher tax rates represent more expenses, and there-
fore, more oil and gas must be produced to generate additional
value.

These results indicate that increasing the CO2 tax rate, does not
encourage finding more environmentally friendly field designs, but
will simply reduce the economic value of the project, or induce the



Fig. 11. NPV vs. CO2 emissions for different CO2 tax rates.
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production of more oil and gas (and more CO2 emissions) to
compensate for CO2 costs. In Table 2, the field design given in the
Table 2
NPV and Oil Cumulative Production for different CO2 tax rates.

CO2 tax rate ½NOKtCO2
� NPV [1e06NOK] Oil Cumulative Production [Sm3]

543 4162.91 29,961,564.2
1000 3932.41 29,961,564.2
1500 3680.23 29,961,564.2
2000 3428.05 29,961,564.2
2500 3175.87 29,961,564.2
3000 2923.69 29,961,564.2
3500 2671.51 29,961,564.2
4000 2412.45 29,961,564.2

Fig. 12. Confusi

10
first row is the decision considering a low cost of CO2, while the last
row is the decision considering a higher cost for CO2 emissions.

The Pearson correlation coefficient was calculated with all data
points generated in the simulations to determine the relationship
between key parameters such as CO2 emission, carbon footprint,
NPV, recovery factors, and cumulative production. The Pearson
correlation coefficient measures the strength of the linear rela-
tionship between two variables. To make comparison easier, the
coefficient values are depicted in a Confusion matrix, Fig. 12. Basi-
cally, we only utilized the visual aspect of the confusion matrix in
this work. Consequently, the matrix is symmetric, with the number
1 on its main diagonal because each parameter is positively related
to itself. All of these calculations have been done in Python. Fig. 12
shows that there is a considerable correlation between most pa-
rameters analyzed. Increasing one of them leads to increasing
on matrix.
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almost all other parameters. The carbon footprint has a compara-
tively small relationship with other parameters compared to
others. The reason is that it is computed once according to the
maximum amount of production and then spread over the lifetime
of a facility, while the amount of CO2 emissions are affected by the
production profile. Additionally, the carbon footprint and the re-
covery factor of the second reservoir show the least relationship. As
mentioned, the carbon footprint is tied to maximum production,
and the facilities are required to accomplish that. Therefore, the
carbon footprint of this development plan is less related to the
second reservoir due to its lower productivity than the first reser-
voir; hence, its Pearson correlation coefficient is smaller in the
confusion matrix.

4. Limitations and drawbacks of the study

The presented approach focused on using simplified analytical
expressions and correlations that require a limited amount of
background information to provide a quick insight into the future
plan of the field development. Our model assumed a linear rela-
tionship between CO2 emissions and oil productionwhich has been
is used extensively in previous studies and by governmental
agencies. However, by assuming a linear relationship in the model,
we may underestimate emissions in the later life and overestimate
them in the early years of production. This may lead to some un-
certainty in the results. In future works, environmental un-
certainties should be quantified. A more detailed calculation of CO2

emissions will also be performed, and this should be just as fast as
and more accurate than the current estimate. Additionally, more
research on the hull weight of the FPSO is necessary before a
definitive answer can be provided on the weight of the FPSO and
subsequently the carbon footprint.

An assessment of the environmental impacts of different oper-
ation alternatives is also required to help compare quantitatively
and decide the best field development plan.

5. Conclusions

In this paper, a multi-objective optimization on numerical
models has been used to numerically assess the trade-offs between
the gain in reducing CO2 emissions and the carbon footprint, and
increasing NPV. The study case consisted of a multi-reservoir field.
The optimization involves determining the drilling and production
schedules and processing capacities that maximize a composite key
performance indicator that includes a weighted sum of normalized
NPV, CO2 emissions, and carbon footprint. Field planners can
benefit from the proposed methodology as it is a valuable decision-
support tool in the early stage of development.

The main goal of this study was to explore how the optimal field
development solution is affected when environmental parameters
are included in the optimization objective. We derived different
auxiliary equations for the objectives. Various methods were used
to validate CO2 emissions and the carbon footprint equations. Every
objective was designed to be as straightforward as possible to be
understandable and practical for the industry.

Several optimizations were performed for different combina-
tions of weights in the objective function. The results obtained are
greatly dependent on the weight values. For the specific case
studied, there are economically feasible field development solu-
tions with lowCO2 emissions. The results indicate that a decrease of
CO2 emissions by 30% and a decrease in the carbon footprint of 35%
will entail a respective decrease of 13% and 8% in NPV.

Lower CO2 emissions mean lower production and income,
which has a negative impact on NPV. However, they also imply a
reduction in CO2 tax, which affects NPV positively. Thus, an
11
optimum can be found, depending on the criteria and constraints. A
similar situation occurs for the carbon footprint. Reduction in
production gives less revenue but also reduced production capacity,
which reduces CAPEX and carbon footprint. The weights could be
adjusted by field planners to find development options that have
high economic value and better environmental performance. It is
also possible to add a constraint such as a specific minimumNPV or
maximum CO2 emissions allowable by the decision-makers. For
instance, we can include a minimum NPV that the investors will
accept into the constraints, after which the optimization will meet
this requirement. A sensitivity analysis of the CO2 tax rate has also
been conducted. According to the results, changing the CO2 tax rate
without providing new solutions or technologies will not result in a
decrease in CO2 emissions.

By considering innovative technologies and methods, the re-
ductions in CO2 emissions and carbon footprint can be achieved
without a reduction in NPV because new technologies or solutions
may decrease OPEX and power consumption, such as CO2 bot-
toming cycle, CCS, and Cold Flow. This will be studied in future
work. Therefore, this research will be extended to show how CO2
emissions, carbon footprint, and NPV can be reduced by including
innovative technologies. Thus, quantitative comparisons could be
made between different methods. In addition, an analysis of the
environmental performance of different operation alternatives
during the planning process would allow better decisions to be
taken and ensure that the environmental impact of the field is
minimized.
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Appendix A. Optimization formulation

The objective function is to maximize NPV and minimize CO2
emissions and the carbon footprint formulated in Eq. (1). NPV, CO2
emissions and the carbon footprint are also formulated in Eqs. (5),
(7) and (12) respectively. Other equations are as follow:

Salest ¼ Po;tDNp;f ;t (13)

Po,t is oil price in time. The value is input in USD/bbl and then
converted to Norwegian kroner using an exchange rate. D Np,f,t is
the oil produced by the field in the year t.

CAPEXt ¼ Nw;f ;maxaCAPEX
XNR

r¼1
qr;maxbðGOR;WCÞ (14)

Nw,f,max is the maximum number of wells in the field. aCAPEX is
the CAPEX well coefficient. qr,max is the maximum oil rate of each
reservoir. b is the coefficient which is a function of GOR and WC.

Besides, OPEX is a function of the field oil rate at the end of the
year and the total operative number of wells in the field at the end
of the year.
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DRILLEXt ¼
XNR

r¼1
DNw;p;r;t

0
B@1þ N inj

prod;r

1
CAaDRILLEX (15)

NR is the total number of reservoirs in the field. A given reservoir
is denoted with the letter r. N inj

prod
is the number of injectors per

producer in reservoir r. D Nw,p,r,t is the number of new producer
wells in reservoir r in the year t. aDRILLEX is the DRILLEX well
coefficient.

The constraints are:
The oil production at a given end of year t must be less or equal

to the production potential qpp,t end of year.

qo;t � qpp;t (16)

It is only possible to drill x new producer wells every year in a given
reservoir and producer wells cannot be “undrilled”:

0 � DNw;p;r;t � x (17)

It is only possible to drill y new producer wells every year in the
field:

DNw;p;f ;t � y (18)
Appendix B. CO2 emissions calculation via stoichiometry and
EROI (Energy Return on Investment)

CE ¼ MWCO2
nCO2

(19)

where:

nCO2
¼ nCnoil (20)

noil ¼
mfuel

MWfuel
(21)

Additionally, different equipment is supplied with energy from
turbines:

hequipmentWequipment ¼ hequipmenthturbinemfuelLHVfuel (22)

We also know that the energy consumption is equal to energy
released by production:

hequipmentWequipment ¼
LHVoil

EROI
roilq (23)

where EROI is the ratio of energy returned to the energy invested in
that energy source, along its entire life cycle.

Combining all these equations gives:

CO2emissions ¼ MWCO2

MWfuel

nc
hequipmenthturbine

1
EROI

LHVoil

LHVfuel
roilq

(24)

Where molecular weight of CO2 and fuel are 44 and 244 g
mol,

respectively. Fuel is assumed to be diesel with 12 carbon. hequipment

and hturbine are assumed to be 0.7 and 0.5. EROI is also assumed to be

100. Lower heating value of oil and fuel are 42.7 and 43.4 MJ
Kg . Oil
12
density is 850 Kg
m3. Therefore:

CE ¼ 0:05� q (25)

Appendix C. Pearson correlation coefficient

This method is defined as the measurement of the strength of
the linear relationship between two variables and their association
with each other. In other words, this coefficient calculates the effect
of change in one variablewhen the other variable changes [41]. As a
formal definition, the Pearson correlation coefficient of two vari-
ables x and y is the covariance of the two variables divided by the
product of their standard deviations, and it can be expressed in the
following manner [42]:

rxy ¼
Pn

i¼1ðxi � xÞðyi � yÞ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � xÞ2

q �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � yÞ2

q � (26)

Where x and y denotes the mean of x and y. Coefficient rxy varies
from �1 to þ1 with r ¼ 1 indicating a perfect positive correlation
and r¼�1 indicating a perfect negative correlation. If the variables
are directly related, the correlation coefficient is positive. If they are
inversely related, the correlation coefficient is negative.
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