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Abstract Locally refined B-spline (LRB) surfaces provide a representation that is
well suited to scattered data approximation. When a data set has local details in some
areas and is largely smooth elsewhere, LR B-splines allow the spatial distribution of
degrees of freedom to follow the variations of the data set. An LRB surface approx-
imating a data set is refined in areas where the accuracy does not meet a required
tolerance. In this paper we address, in a systematic study, different LRB refinement
strategies and polynomial degrees for surface approximation. We study their influ-
ence on the resulting data volume and accuracy when applied to geospatial data
sets with different structural behaviour. The relative performance of the refinement
strategies is reasonably coherent for the different data sets and this paper concludes
with some recommendations. An overall evaluation indicates that bi-quadratic LRB
are preferable for the use cases tested, and that the strategies we denote as “full span”
have the overall best performance.

1 Introduction

Tensor-product B-spline surfaces are a mature and standardized geometry represen-
tation that has been known at least since the 1970s. The first uses of Tensor-product B-
splines were in Computer Aided Design (CAD). In Isogeometric Analysis (IgA) [6],
B-splines replace the traditional shape functions used in Finite Element Analysis
(FEA). A guide to splines can be found in [9]. Tensor-product spline surfaces have
very good numerical properties, but lack local refinement of the spline space. In
recent years several approaches have been proposed for local refinement of spline
surfaces including T-splines [3, 20], Truncated Hierarchical B-splines (THB) [11],
and LR B-splines (LRB) [2, 7]. We will, in this paper, focus on the use of LRB
surfaces for approximation of scattered data.
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We perform a systematic study on the effects of different strategies for local refine-
ment of LRB surfaces for the approximation of geospatial point clouds. Section 2
provides an overview of relevant locally refined spline methods and outlines the
algorithmic approach we employ for scattered data approximation. Section 3 gives
a brief overview over previously published local refinement strategies for bi-variate
splines and discusses the concept of a good refinement strategy for approximation
of large point clouds. A set of candidate strategies are defined in Sect. 4. Section 5
presents five data sets and the corresponding approximation results for the selected
refinement strategies along with analysis of the result related to each data set. In
Sect. 6 the case specific analysis is summarized to provide a unified understanding,
and finally in Sect.7 some conclusions are drawn.

2 Background

Section 2.1 presents locally refined splines in general and LRB in particular. We
also explain why we focus on LRB rather than T-splines and THB. We then turn to
scattered data approximation in Sect.2.2.

2.1 Locally Refined Splines

The lack of local refinement for tensor-product splines provides severe restrictions
for IgA as well as for scattered data approximation. Using tensor product B-splines
will in most cases introduce significantly more degrees of freedom than actually
needed. This makes the data volume grow and restricts the size of problems that can
be addressed. Two basic approaches exist for building local spline surfaces:

e Refinement in the mesh of vertices/control points: the approach used for T-splines.
e Refinement in the parameter domain: the approach used for THB and LRB.

For simulation and approximation purposes, it is convenient to span the locally
refined spline space by a set of linearly independent functions. T-spline, LRB and
THB spaces are all spanned by functions that are composed from tensor products of
univariate B-splines. It is also attractive to have quasi interpolants for hierarchical
spaces [22].

2.1.1 T-Splines

T-splines were introduced by Sederberg et. al. [20] to enhance the modelling flexi-
bility in CAD design. The starting point of the T-spline T-mesh is the regular grid
of control points in a tensor product B-splines surface. New control points in the
T-mesh are added on axis parallel lines between existing control points according
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to a set of T-spline rules. Each control point in the T-mesh corresponds to a tensor
product B-spline. The knot vectors of each such B-spline are identified by travers-
ing the T-mesh starting from the control point and going outwards, in all four axis
parallel directions, until a degree dependent number of meshlines are intersected. In
the bi-cubic case this traversing stops after two lines in the T-mesh are intersected in
each of the four directions. The new control points are used to model local details in
a preexisting surface. Frequently, the B-splines spanning the T-spline space have to
be scaled to form a partition of unity.

The most general version of T-splines possesses neither nested spline spaces nor
a guarantee for linear independence [5] of B-splines. In IgA, linear independence
is important and additional rules were added to the T-spline creation algorithm to
ensure it, giving rise to Analysis Suitable T-splines [3].

2.1.2 Truncated Hierarchical B-Splines

Hierarchical B-splines (HB), introduced by Forsey and Bartels [10], are based on a
dyadic sequence of grids determined by scaled lattices over which uniform spline
spaces are defined. HB provide nested spline spaces spanned by tensor product B-
splines, but do not form a partition of unity and they are not linearly independent. How
to select B-splines that gives linearly independent HB was solved in [15]. To provide
partition of unity for HB, THB [11] were introduced. THB allow non-uniform spline
spaces, are linearly independent and reduce the support of the basis functions. The
basis functions of THB are made by truncating tensor product B-splines with tensor
product B-splines from finer refinement levels. That is, they are made by eliminating
the contribution corresponding to the subset of the finer B-splines included in the
hierarchical basis from the representation of such coarser B-splines. The truncated
B-splines can be described as a sum of scaled tensor product B-splines from finer
levels.

2.1.3 Locally Refined B-Splines

An LRB surface is a piecewise polynomial or piecewise rational polynomial surface
defined on an LR-mesh. An LR-mesh is a locally refined mesh made by applying
a sequence of refinements starting from a tensor-product mesh. LRB are algorith-
mically defined throughout the refinement process of the mesh. An LRB surface is
defined as

L L
Fu,v) =Y PisiRip,.p, . 0) = > PiNip, (1, ), (1)

i=1 i=1

where P;,i =1, ..., L are the surface coefficients, and s; are scaling factors intro-
duced to ensure partition of unity of the resulting collection of tensor product B-
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splines. The tensor product B-splines R; p, ,, are of bi-degree (pi, p2) defined on
knot vectors of lengths p; 4+ 2 and p; + 2 on the parametric domain in the u and v
directions respectively. N; p, ,, are the tensor product B-splines multiplied with their
scaling factor.

The initial tensor-product mesh corresponding to the LR-mesh shown in Fig. 1 is
given by the knot vectors [uy, uy, uy, u, ug, ug, U7, U7, 7] and [vy, vy, vy, v3, Vs, Vg,
g, Vg]. It corresponds to a polynomial spline surface of degree two in both parameter
directions with multiple knots in the end parameters. The LR-mesh is constructed
by first inserting knots at v, and v4 covering a part of the surface domain, and next
inserting knots at u3 and us. The B-spline with support shown in red has the knot
mesh [uy, us, uq, ugl X [v2, V3, v4, vs]. Some lines of the LR-mesh intersecting the
support of such B-spline do not correspond to knotlines of its knot mesh as they do
not traverse the support completely.

The procedure for refining an LRB surface is the following:

1. Add anew line segment that triggers the refinement of at least one existing tensor-
product B-spline. It can be an extension of an existing line segment, can be
independent of existing line segments, or increase the multiplicity of an existing
the line segment. Thus, a line segment going from (us, v4) to (us, vs) is a legal
choice.

2. Subdivide all tensor product B-splines with support that is completely traversed
by the new line/extended line.

3. The tensor product B-splines are required to have minimal support. This means
that all line segments traversing the support of a tensor product B-spline are
required to be knotline segments of the B-spline taking the multiplicity of line
segments into account. After inserting a new line segment and performing the
subdivision in Step 2., there might still be tensor product B-splines that do not have
minimal support with respect to the LR-mesh. Consequently all such B-splines
must be refined. This process is continued until all tensor product B-splines have
minimal support.

LRB surface refinement is described in detail in [14]. If more than one new knotline
segment is defined simultaneously, the refinement process is applied to one segment
at the time.
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The LRB construction results in a sequence of nested spline spaces. LRB are non-
negative and have compact support. The scaling factors s; are computed during the
refinement process to ensure partition of unity. LRB are not guaranteed to be linearly
independent, but a dependency relation can be detected and resolved by dedicated
knot insertions. Linear dependency can only occur in a situation with overloaded
LR B-splines. An element is overloaded if it belongs to the support of more LRBs
than necessary to span the polynomial space over the element. An LR B-spline is
overloaded if all elements in its support are overloaded. Overloading can be detected
by the peeling algorithm [7]. Patrizi and Dokken address configurations that can lead
to a linear dependency relation in [18]. In a situation with local linear independence
over all polynomial elements all weights, s; i = 1, ..., L, will be equal to one [2].

2.1.4 Why the Focus on LRB?

THB refinement requires that a refinement region is defined that is wide enough to
contain the support of at least one B-spline on the refined level. LRB is more flexible
as asingle mesh line segment can be inserted thus allowing more targeted refinements.
Comparing T-splines and LRB refinement is not so simple, as T-splines refine in the
coefficient T-mesh, while LRB refines in the LR-mesh. The LR-mesh corresponds to
the extended T-mesh of T-spline. T-spline refinement has to be performed between
adjacent control points connected by an axis parallel line in the T-mesh, thus relating
to two B-splines. We focus on LRB refinement as refinement is allowed as long as
the support of one B-spline is split. It is thus less restrictive.

2.2 Scattered Data Approximation

The aim is to approximate a scattered data point cloud by an LRB surface. We
focus on data sets with projectable points that can be parameterized by their xy-
coordinates leaving the z-coordinate to be approximated by a height function. Also
non-projectable points being parameterized by some appropriate method can be
handled by the general algorithm used in this paper.

Algorithm 1 gives an overview of the iterative approximation algorithm. The
starting point is a tensor-product B-spline surface defining an initial spline space.

The focus of this article is to investigate the term “Refine the surface where
needed” of Algorithm 1. The elements of the surface mesh will, during the compu-
tation, keep track of the data points situated within their domain as well as some
accuracy statistics. This includes maximum and average distances between the sur-
face and the points in the element, and the number of points with a distance to the
surface that is larger than the specified tolerance. This information provides a basis
for selecting where and how new degrees of freedom shall be added.

Two surface approximation methods are applied during the iterative algorithm:
Least squares approximation with a smoothing term and multi-level B-spline approx-
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Data: Point cloud, maximum number of iterations, tolerance
Result: Approximating surface, information on approximation accuracy
Generate initial surface;
Compute accuracy;
while there exists points with larger distance than the given tolerance and the maximum
number of iterations is not reached do

Refine the surface where needed;

Perform approximation in the current spline space;

Compute accuracy;
end

Algorithm 1: Iterative algorithm for LRB surface generation

imation (MBA). Let x = (xx, yx, 2x), k = 1, ..., K be the projectable point cloud
we want to approximate. Least squares approximation with a smoothing term is a
global method where a minimization functional

K
minfeJ (F (x, y)) + a2 ) (F (e yi) — 220’
k=1

is differentiated leading to a sparse, linear equation system. Linear independence of
the B-splines is a prerequisite for a non-singular equation system. F(x, y), as defined
inEq. 1, denotes the LRB height function we wantto obtainand P = Py, ... P, arethe
coefficients of this function. The solution to this functional results in the best possible
approximation with the given degrees of freedom in a least squares sense. The actual
smoothing term J (F (x, y)) is described in [21] and other possible smoothing terms
can be found in [17]. Our focus is on the approximation. As the input points may or
may not represent a smooth surface, the weight «; on smoothing must be kept low.
Still the term is important to handle areas in the surface domain without points.

The multi-level B-spline approximation algorithm (MBA) was introduced by Lee
et. al. in [16] for scattered data interpolation, and is described in detail [23]. It is an
iterative, local method, where the coefficients are calculated individually. The result
is a hierarchical structure of tensor-product B-spline surfaces.

Assume that N; is a B-spline of the residual surface for which we want to calculate

the coefficient Q;,
Zf:l Ni ()Cc, yc‘)2¢i,c
Qi = c == )
Zc:] Ni (xcs yc)

Here the coefficients ¢; . are calculated by a local surface approximation of the resid-
vals, x, = (x¢, Y, 2¢), ¢ = 1, ..., C, that are inside the support of N;. All B-splines
that have a support that overlaps any of these residuals take part in the approximation.
The local approximation is formulated as an under-determined equation system

H,
Ze = Zd)h,cNh,c(xc, o), ¢=1,...,C.
h=1
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The equation for residual ¢ only involves the B-splines that are none zero at (x., y.).
Consequently which B-splines, N, ., h =1,..., H.,,c=1,...,C, are involved in
the equation is dependent on the residual addressed in the equation. The solution
selected for the under-determined system is

Nh,c(xcv yc)zc
¢h,c =

= — . h=1,...,H, c=1,...C.
Zké] Nk,c(xm yc)2

From the above coefficients we select ¢; ., c =1, ..., C, to be used in (2). This
equation is obtained by minimizing with respect to Q; the error

C
e(Q1) =Y (QiNi(xe, ye) — $i.eNi(xe, ye))*.

c=1

In the LRB setting, the residual surface is incorporated in the expression for the
approximating surface avoiding a hierarchical representation. The MBA method does
not require linearly independent LRB to find a solution.

Both approximation methods are in some sense minimizing the average distance
between the point cloud and the surface. Thus, neither the maximum distance nor the
number of points outside the tolerance can be expected to decrease monotonically.
The average distance will in general be steadily reduced, but temporary stagnation
may occur in particular in the context of outliers or if the elements have been refined
to the extent that we model noise. In general we expect the input point clouds to have
high data sizes and a varying degree of smoothness over the domain of the point
cloud, which makes the property of local refinement essential.

3 Refinement Strategies and Success Criteria

LRB surfaces are appropriate for approximation of large scattered data sets due to
the ability of increasing the data size in the areas where more degrees of freedom are
required while keeping the data size low in other areas. However, it is not obvious
how to decide where new mesh line segments should be inserted. There is a wide
range of possibilities in selecting these lines, and we will investigate the effect of
different choices.

Previous studies on refinement strategies for LRB have focused on the use of
LRB in isogeometric analysis or refinement strategies that ensure local or global
linear independence. Local linear independence ensures that a minimum amount of
the B-spline supports overlap each element of the mesh. Global linear independence
implies that a linear equation system originating from a least squares approximation
or finite element analysis is non-singular.
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Johannessen et. al. give an introduction to LRB in the context of isogeometric
analysis in [14] where a detailed description of the refinement basics is provided and
the effect on a number of test cases is investigated for the three following refinement
strategies:

Full span:  Given an element selected for refinement, all B-splines with a support
that overlaps this element are refined by adding a line traversing the element.
Minimum span:  The shortest possible line overlapping a chosen element that splits

the support of at least one B-spline, is selected. Several candidate B-splines can
exist and even if additional selection criteria are added, the candidate may not be
unique. The selected line is not necessarily symmetric with respect to the element.
Structured mesh:  Choose a B-spline and refine all knot intervals in this B-spline.

The sensitivity towards the different choices of refinement strategies were in [14]
found to be moderate. However, the authors also investigated the effect of different
knot multiplicity and found that meshes with low knot multiplicity tended to give less
error in the computation compared to meshes with higher multiplicity for the same
number of degrees of freedom. In [12] the structured mesh approach is analyzed
theoretically and numerically in a set of test cases.

Bressan and liittler [4] look at refinement of LRB surfaces from the perspective
of local linear independence and present a mesh construction where this property
is proved. Patrizi et. al. [19] propose a practical refinement strategy where local
linear independence is ensured. The strategy consists of a modified structured mesh
refinement where some of the splits are prolonged so the refined mesh satisfies the
so called non-nested support property, see [19] for a definition.

Other authors have focused on refinement of hierarchical B-spline surfaces or T-
spline surfaces. Bracco et al. define two classes of admissible meshes for hierarchical
B-splines and compare them for use in isogeometric analysis in [1]. A comparison
between two refinement strategies applied to hierarchical B-splines and T-splines in
the context of IgA is investigated in [13].

The applications of scattered data approximation and isogeometric analysis have
some fundamental differences. In the context of IgA, the refined meshes normally
belong to an intermediate stage in the computations. Thus, the possibly large locally
refined spline surfaces are not kept. Moreover, the need for refinement in an adaptive
isogeometric analysis computation is typically concentrated in localized areas. One
of the main motivations for approximating scattered data with alocally refined surface
is the need for a compact representation of data with a locally non-smooth behaviour.
Areas where extra degrees of freedom are required for an accurate approximation,
may be scattered around in the entire domain of the data set.

We restrict ourselves to polynomial LRB surfaces of bi-degree one, two and three
and place all new knotline segments in the middle of existing knot intervals. With
this configuration, no linear dependence relation has been encountered.

If there exist data points within an element with a distance to the surface larger
than the tolerance, there is either a need for more degrees of freedom corresponding
to the element, or the required accuracy cannot be met by a smooth surface due
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to outliers or a lack of smoothness in the data points. Any B-spline whose support
overlaps this element will give new degrees of freedom to the element, if refined.
This implies that there is a choice of how new degrees of freedom are defined. It is
also clear that all choices are not equally good.

We define some criteria for a good refinement strategy:

1. Best possible accuracy with the minimum degrees of freedom.
2. If supported by the data set, it should be possible to adapt the surface to the point
cloud within the prescribed tolerance.

3. Avoid a premature stop where the requested accuracy is not reached and the
maximum number of iteration steps is not performed.

. A steady improvement in accuracy when adding new degrees of freedom.

. Keep the execution time low.

. Keep the memory consumption low.

. Affected elements should preferably be split in the middle if a new mesh line is
positioned in the middle of some element.

8. Linear independence or local linear independence of B-splines.

N VN

We will mainly focus on the first five criteria. Critera 5 and 6 are to some extent
linked and also dependent on the previous ones. A lean surface will lead to lower
memory consumption and the part of the execution time spent in surface refinement
is connected to the number of coefficients. The execution time also depends on
the number of steps applied in the iterative algorithm and whether or not the knot
insertion at late iteration steps is focused in a few areas or spread out in the entire
surface domain.

The importance of linear independence is related to the use of the resulting sur-
face. The approximation algorithm outlined in Algorithm 1 does not rely on linear
independence. We will, thus, not focus on the last criterion.

We can now formulate two empirical rules for a good refinement strategy. They
are taken into account when the strategies to be tested are defined in the next section:

Rule 1: A gradual introduction of new degrees of freedom gives better approxi-
mation efficiency.

Rule 2:  An improved accuracy can be blocked by a failure to identify one or more
B-splines that need to be refined. A disproportionate high number of B-spline
supports overlapping an element is not desirable.

An important term in this discussion is approximation efficiency. It is defined as
the number of resolved points divided by the number of surface coefficients for
a particular refinement strategy and a particular iteration level. This figure will,
together with other criteria, be used to evaluate the success of one refinement strategy
compared to others.
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4 Applied Refinement Strategies

4.1 Main Categories

The selected data sets are approximated using a variety of refinement strategies. They
belong to four main categories: Full span, Minimum span and Structured mesh
as described in Sect.3 and an additional category named Restricted mesh. In the
full span and minimum span strategies an element is selected for refinement while in
the structured and restricted mesh strategies the refinement process is started from a
selected B-spline.

In the full span strategy all B-splines with a support that overlaps the selected
element are refined. The new mesh line splits the element in half in the direction of
refinement and it is sized to split the support of all associated B-splines.

In the minimum span strategy one B-spline with a support overlapping the element,
is selected. We will test three different minimum span strategies. They differ in how
the B-spline to be refined is chosen. The selection criteria are: the candidate B-spline
with largest support; the B-spline that has the highest number of unresolved points
compared to the total number of points in the support; and, a combination of the
two where the criteria are given equal weights. Several B-splines may fit the selected
criterion equally well. In case of doubt, the most centered B-spline with respect to the
initial element is selected. If there is still no unique B-spline satisfying the criterion,
one candidate is randomly chosen.

In the structured mesh strategy, the selected B-spline is refined in the middle of all
knot intervals. This is similar to the refinement strategy for hierarchical B-splines.
In the restricted mesh strategy, refinement is performed in knot intervals where the
corresponding elements contain significant points outside the tolerance with respect
to number and distance. Let the elements of one knot interval in one parameter
direction be denoted an element strip. The distances between the points and the
surface that exceed the tolerance are accumulated for all such strips and scaled with
respect to the element sizes. Furthermore the element strip measures are scaled with
the position of the strip in the B-spline thereby prioritizing the middlemost knot
intervals. Knot intervals with strips that have a measure larger than the average strip
or larger than half the maximum strip measure are refined. In addition, knot intervals
that exceed the average knot interval in the B-spline support by a factor of three are
refined. This implies that refinement can be performed in one or more knot intervals
in one or two parameter directions. The minimum span strategies and the restricted
mesh strategy are similar in the respect that they are both restrictive, but differ in
how the refinement selection is made. The effect of the strategies differ as can be
seen in Sect. 5.
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4.2 Restrictions to the Introduction of New Knots

We want to test the empirical rule that a gradual introduction of new degrees of
freedom will lead to a lean final surface with good accuracy. In strategies with
refinement in alternating parameter directions the surfaces are refined in the first
parameter direction at odd iterations levels and in the second parameter direction at
even levels. Thus, the number of potential new knot line segments is limited compared
to the case for strategies that perform refinement in both parameter directions at
each level.

A threshold can also be applied to restrict the number of new mesh line segments
at each step, possibly in addition to alternating parameter directions and/or restric-
tions inherent in the strategy itself. Thresholds can imply that only the elements
or B-splines with the most significant approximation errors, either with respect to
distance or number of unresolved points, are selected for refinement. The threshold
factor is set globally for each iteration level. In the restricted mesh strategy, thresholds
can be used to reduce the number of knot intervals that are refined in the selected
B-spline. A refinement strategy can be combined with zero, one or two different
types of thresholds as described in Sect. 4.4.

4.3 Modifications to Particularly Restricted Strategies

The restricted mesh strategy may fail to capture elements with significant points
outside the tolerance belt. This relates to situations where the corresponding element
strips of the B-spline support otherwise have few unresolved points, and refinement
in the associated knot interval is not performed. The situation occurs typically at the
border of the point set. To ensure refinement in such elements, an element exten-
sion to the strategy is applied. Elements with a significant approximation error that
are not already split, are identified at each iteration level and trigger an additional
refinement related to the full span strategy. However, refinement may be performed
in one parameter direction only, even if the main strategy imposes refinement in both
parameter directions.

In addition to the restricted mesh strategy, the various minimum span strategies
can lead to few new lines being inserted at each iteration level, in particular if the
strategy is combined with a threshold. We investigate the effect of combining these
strategies with a full span strategy as this is less restrictive in the introduction of new
mesh line segments. Line segments added by the full span strategy will most often be
longer than line segments added by the minimum span strategy. The two strategies,
which are combined, are applied with refinement in the same number of parameter
directions. The switch between strategies is performed when the fraction between
newly resolved points in the last iteration and the number of new coefficients drops
below 0.1.
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4.4 Components for Refinement Strategies

Each refinement strategy and each combination of strategy and threshold is given
a unique label. Each label is a compositions of letters. The following explains the
meaning of such letters:

Main category: Full span (F), Minimum span (M), Structured mesh (S) or
Restricted mesh (R).

Element extension to restricted mesh strategy ~ Select significant elements left out
in the B-spline refinement (L).

Minimum span selection criterion:  B-spline with largest support overlapping the
element (1), B-spline with a support that overlaps the element with most unresolved
points (u) or a combination (c).

Parameter direction: ~ Refine in both (B) or alternating (A) parameter directions at
each iteration level.

Threshold: ~ With respect to distance (td), the number of unresolved points in an ele-
ment (tn) or the number of unresolved points in a strip of elements corresponding
to a B-spline knot interval (tk).

Let maxdist denote the maximum distance between the surface and the point
cloud and let avdist be the average distance in out-of-tolerance points globally. Let
further nmb be the number of points situated in an element, nmb_out the number of
unresolved points in the element and avdist2 the average distance in these unresolved
points. We can now define the threshold factors as:

td=  (tolerance + maxdist + avdist)/3. An element or a B-spline is selected for
refinement if the maximum distance between the points in the support of this
B-spline or element and the surface exceeds the threshold.

tn=  factorx min(wgt) + (1-factor)x average(wgt) where wgt = nmb_out + scalex
avdist2 in each element with unresolved points. Early in the computation nmb_out
is large and this term will dominate the formula for wgt. Later the distance in the
points will dominate. The scale is introduced to make the expression independent
of the distance unit. It is set to one in the examples in this article. The weight scores
are used to rank the elements with respect to importance. The factor depends on
the range between the minimum and maximum score. If this range is small then
the importance of the elements cannot be distinguished and all elements lead to
refinement. If the range is large compared to the size of this score, only the highest
ranked elements trigger refinement.

tk =  max(average(nmb_out), 0.01 x average(nmb)) for all elements. The tk thresh-
old is only applied to the restricted mesh strategy. A knot interval in a selected
B-spline is refined only if the number of out-of-tolerance points in the correspond-
ing element strip exceeds this threshold factor.

The tk threshold is very strong as the number of points outside the tolerance in an
element strip is compared to the number of points in the entire B-spline support.
In general, the threshold types and associated factors are set experimentally. The
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aim is to get an impression of how different approaches influence the approximation
process. All threshold factors are reduced with successive iterations.

4.5 Composition of Refinement Strategies for the Tests

The refinement strategies are applied to a number of test cases. Each strategy is tested
with and without threshold and with different choices in the number of parameter
directions to refine at each iteration step. Table 1 shows how the strategy labels are
composed. Here the type specifies the strategy category as full span, minimum span,
structured mesh or reduced mesh. The sub type applies to the minimum span strategy
only. If several strategies are applied during the iterations, a second category (type2)
is specified. The two strategies can be applied simultaneously as in the case for the
element extended restricted mesh strategy, or one after the other. Two strategies or
thresholds that are applied to the same iteration level are combined with + in the
label, and with/if they are used at different levels. An extensive set of combinations
of strategies and threshold types are tested, but there are still possible combinations
that are not applied. We believe, however, that the results give a broad basis for
drawing conclusions on the suitability of the various strategies.

Table 1 Composition of strategy labels

Type Sub type Type2 Dir Threshold |E.g. Comment
F AorB None, td or | FA tn Full span
tn
M loruorc AorB None, td or | MIB Minimum
tn span
M lorc F AorB tn Mc/FA tn Combine
minimum
and full
span
S AorB Noneortd |SBtd Structured
mesh
R AorB None, td, tk | RA td+k Reduced
or td and tk mesh
R F AorB tk and tn R/FB tk/n | Combine
reduced
mesh and
full span
R L AorB None, td, tk | R+LA tk Element
or td and tk extended
reduced
mesh
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5 Refinement Study

Five geospatial data sets are used in the study. All data sets have points that are
projectable on the xy-plane, but are different in size and properties. The number
of points varies from 71888 to 131 160220. The regularity distribution varies from
completely regular to scanlines where the distances between scans are very large
compared to the distances between points in the scans. The smoothness also varies
from data set to data set. Two data sets contain known outlier points.

The point clouds are approximated using various combinations of refinement
strategies and thresholds. After defining a tensor-product spline surface using the
least squares method the approximation is continued with the least squares method
applied to an LRB surface before turning to the MBA. The swap is performed after five
iteration steps or earlier. The least squares method involves solving a linear equation
system. This is done by an iterative method, which may struggle with convergence
when the point distribution is very uneven. In such situation, the MBA method is a
better choice. Moreover, an early switch is made if the approximation accuracy is
not improved.

All data sets, but one, are tested with a tolerance of 0.5 m. The number of iterations
varies according to properties of the data set, and to some extent with regard to
whether alternating parameter directions are applied. Varying the tolerance and the
number of iterations for each data set could bring additional information to the range
of refinement strategies, but fall outside the scope of this article. The study is run
using bi-degrees (1,1), (2,2) and (3,3).

The information related to each data set includes measurements of execution time.
The recorded time includes all aspects of the approximation, but excludes reading
and writing to file. The computations are performed on a stationary desktop with 64
GB of DDR4-2666 RAM. It has a i19-9900K CPU with 8 cores and 16 threads, but
a single core implementation is used in the experiments. Approximation results are
collected at the final stage of the computations and at an intermediate stage. This
stage will be defined according to the properties of each data set.

The presentation of each data set follows the same pattern. First the data set is
introduced, then the range in execution time and number of surface coefficients is
presented, and finally some selected details. A table is also presented, showing results
from a number of strategies: strategies that have low execution time; strategies that
produce few coefficients; strategies that have an overall good behaviour; strategies
that have the highest number of unresolved points at the end of the computations; and
some additional strategies to complement the picture or unveil differences between
strategies.

For each strategy the following information is given: iteration level at the two
stages; the number of points with a distance larger than the tolerance; the corre-
sponding number of coefficients; the maximum distance; and the execution time.
Distances are given in meters. Refinement strategies having the best overall results
at the intermediate or final stage are highlighted using bold font and also single best
results for some criteria is shown in bold font. The worst result for a given crite-
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rion is highlighted using italic font. Graphs providing more continuous accuracy
information will complement the tabular entries.

Similar tabulated results on the accuracy of all refinement strategies and combi-
nations with threshold types will be made available in a separate report along with
more analysis of the results.

5.1 Banc du Four

5.1.1 Data Set

Figure 2a shows a sub sea data set representing sand dunes, (b) zooms in on a detail.
The data is obtained from the Banc de Four outside the coast of Brittany. The data set
consists of 5054 827 well distributed points. The elevation range is [-92.76, —54.84]
and the standard deviation is 8.08. Sand dunes have a relatively smooth shape and
the point cloud does not contain outliers. The approximating surface, Fig.2c, has
an accuracy of 0.2 m and is approximated using refinement strategy RB tk and bi-
quadratic splines. The approximation is in this case performed using least squares
approximation for two iteration steps before turning to MBA.

5.1.2 Experience Setup and Performance Ranges

We use a tolerance of 0.2 m for this data set. The approximation algorithm is allowed
to run for 40 iterations. The intermediate stage is defined as: At least 99.9% of
the points, are closer to the surface than the tolerance and the maximum distance
between the point cloud and the surface is less than 0.5 m. This implies that at most
5055 points are further away from the surface than the tolerance.

(a) (b)

Fig. 2 a Outline of point cloud. b A detail. ¢ Corresponding LRB surface, the surface is trimmed
to adapt to the point cloud domain
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Table 2 Computation time and number of coefficients. Performance ranges and associated strate-
gies for polynomial degrees one to three

Deg Min t. Strategy | Max t. Strategy |Mincf |Strategy |Maxcf |Strategy
Om2ls |SB 1Im32s |MuAtd [42503 |R+LAtk|91050 |SB

2 Om33s |FB,SB |2m58s |MuAtd 39366 |R+LAtk|111992 |SB
1m6s FB Sm46s |MuBtd |[45826 |RBtk 162972 |SB

The data set is well adapted for approximation with LRB surfaces and most com-
binations of refinement strategies and threshold types converge within the prescribed
number of iterations. Exceptions exist, some cases are referenced in Table 3. More-
over, the execution time and final number of coefficients differ. Table 2 presents the
minimum and maximum execution time at the end of the computations and the final
number of coefficients together with the corresponding refinement strategies. The
structured mesh strategy appears both as the strategy with the lowest execution time
and the highest number of coefficients. The minimum number of coefficients are
found for restricted mesh strategies while a minimum span strategy with threshold,
MuB td, has the highest computational time. This strategy also fails to converge
completely. In the bi-linear, bi-quadratic and bi-cubic cases respectively 3, 6 and 7
points remain with a larger distance to the surface than 0.5 m.

The execution time and number of coefficients increase with increasing polyno-
mial degree. Some strategies converge well for the bi-quadratic and bi-cubic cases
while they fail in the bi-linear case. One example is FA tn, see Table 3.

5.1.3 Selected Refinement Strategies

Table 3 shows the result for a set of selected strategies including the best performing
ones. Some strategy combinations provide both a low execution time and a lean
final surface. This is the case for FA, in particular when combined with threshold
tn for the bi-quadratic and bi-cubic cases. FB has lower computation times, but
results in surfaces with more coefficients. Refinement in both parameter directions
at every iteration level tends to result in fewer iterations, and to some extent in a lower
execution time. An exaggerated introduction of new mesh lines sometimes leads to
fast convergence, but for many cases also results in a high number of coefficients.
This is the case for the structured mesh strategy SB. Adding a threshold reduces only
to a limited extent the number of surface coefficients, see SB td in the bi-linear and
bi-cubic cases.

The restricted span strategy RB tk yields good results both at the intermediate
and final stage even though it has higher computation time than the fastest strategies
and a high number of iterations between the intermediate and final stage. RA tk also
performs well at the intermediate stage, but does not converge within the prescribed
number of iterations. Restricted mesh strategies tend to perform better at the inter-
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Table 3 Accuracy results of some selected strategies at the intermediate and final stage

Refine Intermediate stage Final results

Strategy | It ‘ Pt out ‘ No coef ‘ Max ‘ Time It ‘ Pt out ‘ No coef ‘ Max ‘ Time
Bi-linear

FB 7 104 62291 0.258 Oml18s |10 0 62532 |02 0m22s
RA tk 14 4385 36540 | 0.324 0m32s |40 4 42338 | 0.255 1mS5s
R+LA tk| 14 2640 38681 0.324 Om31ls |33 0 42503 0.2 0OmS55s
SB 7 26 90733 0.25 0m20s |8 0 91050 |0.2 0m21s
FA tn 13 3866 40472 | 0.465 0m27s |40 26 47047 |0.24 0m57s
McB 7 651 47442 | 0.353 0ml8s |15 0 49212 | 0.2 0m27s
RA 13 449 46733 0.443 0m29s |23 0 47430 | 0.2 0m40s
MuAtn |18 3922 43218 0.494 0m40s |40 73 56661 0.332 1m18s
MuA 13 2649 41503 0.456 0m27s |40 22 46411 0.305 Im
FA 13 434 47970 | 0.443 Om26s |23 0 48588 [0.2 0m37s
SB td 8 2104 75076 | 0.417 0m24s 11 0 83505 |0.2 0m29s
SA 13 240 68128 0.44 0m27s 17 0 68891 0.2 0m32s
RB tk 7 2539 45394 | 0.324 Om2ls |28 0 48636 | 0.2 0m45s
Bi-quadratic

FB 7 21 65475 | 0.225 0m31ls |8 0 65523 0.2 0m33s
RA tk 15 4435 30855 | 0.449 Iml10s |40 178 39799 | 0.288 2m18s
R+LA tk| 13 2444 35935 0.426 Im 31 0 39336 |02 1m39s
SB 7 0 111992 |0.2 0m33s |7 0 111992 |0.2 0m33s
RB tk 7 2501 39029 | 0.486 0m37s |32 0 44414 |02 1m34s
McA 13 1263 40328 0.367 OmS54s |20 0 41952 | 0.2 1m9s
RA td+k | 25 2481 31889 |04 Imd6s | 40 289 37994 | 0.309s | 2m25s
FA 13 258 50220 | 0.366 0m48s 19 0 50629 | 0.2 1m
FAtd 16 1470 40180 | 0.306 1ml10s |21 0 41751 0.2 1m20s
FA tn 14 1335 41305 0.411 0m53s |24 0 43067 0.2 Iml12s
MuB 7 659 47732 | 0.323 0m36s |30 3 50860 |0.216 1m27s
MuA 13 1725 39933 0.4 Om55s |40 7 45762 | 0.224 1m57s
R+LB tk | 7 1326 41928 0.441 0m37s 14 0 44232 0.2 Om51s
Bi-cubic

FB 7 23 81895 0.281 0m59s |9 0 82064 | 0.199 1mé6s
RA tk 24 2544 33015 | 0.379 3m47s | 40 296 39339 | 0.275 5m20s
RB tk 8 3674 38581 0.463 1Im25s |40 0 45826 | 0.2 3m58s
R+LB 7 1678 51047 0.499 Iml6s 13 0 55706 | 0.2 1mdls
tk

R+LA 13 1648 48549 | 0.497 1m42s 18 0 51488 | 0.2 2m3s
td

RA td+k | 29 3058 34625 0.409 4m20s | 40 604 40256 | 0.281 Sm4ls
SB 7 17 161779 |0.248 Imds 9 0 162972 | 0.199 Im13s
SBtd 8 223 137571 | 0.274 1m19s 10 0 142166 | 0.2 1m28s
FA 13 406 60346 | 0.443 1m32s 17 0 61084 |0.2 1m46s
FA tn 13 1327 51977 0.496 Im36s |23 0 54377 102 2m10s
R+LA tk| 14 1098 46508 0.381 2m9s 23 0 48120 [0.2 2m45s
MuA 13 2270 49786 | 0.455 2mé4s 40 32 59356 | 0.253 4m12s
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Fig.4 Approximation efficiency for selected well performing refinement strategies, all degrees. A
high efficiency is preferred, but must be coupled with the actual convergence of the strategy

mediate than the final stage, in particular when a threshold is involved. However,
extending the method with refinement based on elements, e.g., R+LA tk, speeds up
the convergence in the latter part of the computation.

Minimal span strategies do not always converge. In particular MuA struggles also
without a threshold. Note also that MuB quadratic has unresolved points at the end
of the computations without reaching the maximum number of iterations. One or
more critical mesh line segments are not inserted due to restrictions in the strategy.

A continuous picture of the performance of the selected best strategies at the
intermediate and final stage is given in Figs.3 and 4. Figure 3 relates the number
of coefficients to the number of points within the tolerance for a further reduced
set of strategies. RB tk bi-cubic has high approximation efficiency throughout the
computations and finishes with relatively few coefficients despite a large increase in
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Fig. 5 Number of coefficients with respect to the number of points within the tolerance

number after the stage where almost all points are resolved. However, the execution
time is more than the double of FB bi-cubic. RB tk with bi-quadratic splines has a
relatively poor performance in the first part of the computation, but reduces the max-
imum distance quickly after about 40 000 coefficients and has a good approximation
efficiency after 12 iterations.

The relative performance of the strategies with respect to approximation efficiency
is, with the exception of RB tk bi-cubic, mainly retained throughout the computations.
Typically the approximation efficiency is lower for strategies that refine in both
parameter directions simultaneously. The increase in the number of coefficients is
rapid and the corresponding decrease in the number of unresolved points is not
comparatively high. The ranking of the strategies with respect to the maximum
distance varies throughout the iterations. For instance the minimum span strategy
McB with bi-linear splines increases the maximum distance early in the computation.
It continues with a high distance until it drops below the distance of several other
strategies in the last part of the computation.

Minimal span strategy McA tn with bi-quadratic splines has the best performance
throughout the computation. The maximum distance is constant in the lower part of
the group and the approximation efficiency lies in the group with highest efficiency
if RB tk bi-cubic is kept out. Furthermore, it finishes well within the allowed number
of iterations and with an acceptable computation time, see Table 3.

The two bi-cubic strategies in Fig.5 can be found at both ends of the spectrum.
The strategies are both of the reduced mesh type, but differ with respect to the number
of parameter directions to refine at each level and threshold. The latter difference
is probably the main source of the difference in behaviour. In general a threshold
with respect to the number of out-of-tolerance points will lead to fewer coefficients
with regard to the number of points resolved. Figures 6 and 7 compare respectively
the evolution of the maximum distance between the surface and the point cloud, and
the approximation efficiency for the various full span refinement strategies in the
bi-quadratic case.
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We see in both Figures that the graphs of the refinement strategies fall into two
groups, however, the groups are different. The maximum distance (Fig. 6) is reduced
more quickly for strategies that are combined with the distance based threshold type
td. The evolution for other strategies diverge at a later stage of the computations.
Strategies with alternating parameter directions finish with fewer coefficients than
strategies that refine in both parameter directions at every iteration step. Figure 7
shows that strategies with alternating parameter directions have higher approximation
efficiency than the others. Within each group, the strategy that is combined with
threshold type td has the highest efficiency at each iteration level, but needs also
a high number of iterations to converge. This threshold may be beneficial if the
computation is stopped at an early stage, but not necessarily if a sufficient number
of iterations to reach convergence are allowed.



Scattered Data Approximation by LR B-Spline Surfaces ... 237

5.2 Gaustatoppen

5.2.1 Data Set

Figure 8a shows a completely regular point set containing 490 000 points. The cor-
responding surface in (b) is bi-linear and created with refinement strategy FA and
a tolerance of 0.5 m. Least squares approximation is used for the first five iteration
steps, then MBA is used. The points are extracted from a sparse raster approximating
measurement data from the mountain area Gaustatoppen in Norway. The elevation
range is [216.6, 1877.3] measured in meters and the standard deviation is 370.542.
The data set covers an area of 6 507 times 6 507 m”. The data set is regular, but very
sparse. It has already been processed and thinned considerably. Every point carries a
lot of information, thus an accurate approximation with a lean surface is not feasible.
However, the data set can still be used to distinguish between different refinement
strategies, and in particular evaluate the strategies with respect to robustness.

5.2.2 Experience Setup and Performance Ranges

The Gaustatoppen terrain is much more demanding than in the previous example.
The area has one high mountain peak and a valley with a river. There are also several
other peaks and valleys in the neighbourhood. We specify a tolerance of 0.5 m and
a maximum number of iterations of 40. The intermediate stage is defined as the
iteration level where the maximum distance between the point cloud and the surface
is less than two meters, 99% of the points are resolved meaning that the number of
points where the tolerance is not satisfied does not exceed 4900, and the average
distance in out-of-tolerance points is less than one meter.

(b)

Fig. 8 a Raster points from Gaustatoppen, Norway. b Corresponding LRB surface
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Table 4 Computation time and number of coefficients. Performance ranges and associated strate-
gies for polynomial degrees one to three

Deg Min t. Strategy | Max t. Strategy | Min cf Strategy |Max cf | Strategy
1m26s FA 29m40s MuBtd |270613 |R+LAtk | 1227085 |SB

2 Om31s FA 1h23m28s |MuBtd |195532 |RAtk 814295 |SB
Om52s SB 3h13m30s |MuBtd |233482 |RAtd+k |757012 |MuB td

Table 4 presents the ranges in computational time and number of surface coeffi-
cients for the bi-linear, bi-quadratic and bi-cubic cases. The range in execution time
is wide for this data set. A high number of surface coefficients and some distributions
of new mesh line segments cause the time spent in maintaining the data structure of
the surface to increase very rapidly during the iteration. The highest execution times
occur for MuB td strategy. The minimum execution times are obtained for the full
span strategy with alternating parameter directions and the structured mesh strategy
with refinement in both directions. The latter strategy occurs also as the one that
results in most coefficients, and opposite to the pattern found in the other test cases
bi-linear splines lead to the highest number of coefficients. The surfaces with fewest
coefficients are obtained for various restricted mesh strategies with threshold.

5.2.3 Selected Refinement Strategies

Table 5 presents selected results for the Gaustatoppen example. Several refinement
strategies fail to resolve all points and also to reach the intermediate stage. The
required maximum distance of less than two meters is most demanding.

Bi-linear approximation struggles if a threshold is applied. A restraint selection of
elements to refine leads to convergence failure also without additional thresholds. In
particular, most minimum span element based refinement strategies fail to reach the
required accuracy within the specified number of iterations. The full span strategies
converge in most cases, the exception is FA td. B-spline based strategies converge
more frequently, but also these strategies are unstable, especially when a threshold
is applied.

The bi-quadratic and bi-cubic approximation have similar convergence patterns
as in the bi-linear case, but less extreme. More strategies reach the intermediate stage.
The bi-cubic case results in more coefficients and shows higher execution times than
the bi-quadratic case.

The best performing strategies at the final stage refine in alternating parameter
directions. FA gets reasonably good numbers for all polynomial degrees and when
comparing with FB we see that FA results in fewer coefficients and comparable
execution times. The same relation can be seen for RA tk and RB tk degree two and
three.
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Table 5

239

Accuracy results of some selected strategies at the intermediate and final stage

Refine Intermediate stage Final results

Strategy | It ‘ Pt out ‘ No coef ‘ Max ‘ Time It ‘ Pt out ‘ No coef ‘ Max ‘ Time
Bi-linear

RA tk 39 1 265050 | 1.788 1m47s | 40 1 265054 | 1.786 1m54s
R+LA tk | 31 18 270465 | 1.667 1m29s 39 0 270613 | 0.5 Im51s
R+LA |30 15 265776 | 1.73 1m13s |40 1 265933 | 1.279 1m40s
FA 38 0 271450 | 0.5 1m26s | 38 0 271450 | 0.5 1m26s
FA tn 37 2 274141 | 1.588 1m38s |39 0 274150 |0.5 1m39s
MuA td 40 2481 429270 |6.293 14m20s
MuB td 40 499 595629 |4.522 29m40s
MCcA tn 40 564 325784 | 3.515 4m34s
SB 13 636 1230874 1.729 6m27s |31 0 1272085 0.5 10m18s
FB 20 57 493999 | 1.804 Im56s |29 0 494933 | 0.5 2m37s
RA td+k 40 146 315269 |5.539 3m9s
eFA td 40 31 310631 | 3.999 2m40s
Bi-quadratic

FB tn 6 2942 214016 | 1.452 0m13s 18 0 247540 |0.5 0m49s
FA 12 838 210068 | 1.159 Oml17s 18 0 213774 | 0.5 0m31s
FA tn 13 3127 181930 | 1.18 0m20s |22 0 198013 | 0.5 0m41s
RA tk 13 4006 171341 | 1.681 0m24s |22 0 195532 | 0.5 0m53s
R+LA |12 1672 | 193022 | 1545 | O0m2ls |19 0 199654 | 0.5 0m37s
td+k

MuA td 40 2125 429427 | 5.506 29m
MuB td 40 950 660319 |4.387 1h23m28s
SB 6 575 442656 | 1.452 0m25s | 40 18 814295 | 1.577 8mls
FB 6 669 293921 | 1.452 Oml17s 18 0 305672 | 0.5 0Om54s
R+LA tk | 12 2018 190310 | 1.349 0m23s | 20 0 201934 |0.5 0m45s
RB tk 13 17 234394 | 1.979 Om4ls |25 0 235108 | 0.5 1m19s
McAtn |15 2101 194789 | 1.642 Om43s | 40 3 211543 |2.527 2m20s
Mc/FA | 15 2101 194789 | 1.642 Om43s |29 0 211336 |0.5 1m40s
tn

RA td+k |20 1729 188638 | 1.132 0m48s | 31 0 200427 |0.5 1m24s
eFA td 19 3844 193220 |0.95 Om42s | 40 220853 | 0.5 1m50s
Bi-cubic

MIBtn |7 1953 261332 | 1.762 0m21s 18 0 292258 | 0.5 2mS5s
RB 7 152 354459 | 0.848 Om4ls |9 0 355993 | 0.499 0m52s
RA td+k |22 2238 204748 | 1.081 1m29s |35 0 233482 | 0.5 2m52s
RB tk 7 4797 193719 | 1.908 0m30s 13 0 261432 |0.5 Im19s
FA tn 13 2687 213500 | 1.451 0m32s |21 0 233552 | 0.5 1m7s
MuA td 40 2145 466088 | 4.325 1h3m25s
MuB td 40 1135 757012 | 2.716 3h13m30s
FB 7 92 381781 | 0.777 Om4ls 10 0 382654 | 0.5 0m57s
FA 13 566 259657 | 1.273 0m36s 19 0 262633 | 0.5 Imls
R+LA 13 870 238837 | 1.44 0m40s | 20 0 243719 |0.5 1m10s
td+k

RA tk 16 1469 207691 | 1.053 Imls 27 224220 | 0.5 2mls
SB 7 39 570533 | 0.641 1ml5s 18 579502 | 0.5 2m51s
eFAtd |20 3251 238037 | 0.971 1m28s | 30 271902 | 0.5 2m46s
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Maximum distances for well performing refinement strategies
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Fig. 9 Maximum distance for selected well performing refinement strategies, all degrees

The restricted mesh strategies in general perform well although there are some
exceptions in the bi-linear case, e.g. RA td+k. This strategy does well in the bi-
quadratic and bi-cubic case although the execution times are not among the best.
Introducing the element extension to these strategies does not make a big difference.

The full span strategy FA has good results, in particular at the final stage and
combined with threshold tn. The minimum span strategies Mu, and to some degree
Mc, struggle with convergence and do not always reach the intermediate stage. The
minimum and full span combination Mc/FA tn has the same results as McA tn at
the intermediate stage, but ensures convergence at the final stage for bi-quadratic
splines. In Fig. 11 we address combined strategies.

The structured mesh strategies lead to many surfaces coefficients and do not have,
in contrast to the case for the Banc du Four data set, particularly low computation
times. We will, based on the results for the two first data sets, omit further testing
of the structured mesh and the minimum span strategies with sub-type u. The first
approach produces surfaces with too much data and the second is too restrictive.

Figures 9 and 10 provide more information on the behaviour of the selected best
strategies throughout the entire computations. Figure 11 shows the approximation
efficiency for some combined refinement strategies. Figure 9 shows that the max-
imum distance decreases steadily for a while before it for most strategies starts to
oscillate. The oscillations are strongest in the bi-linear case and least profound for bi-
cubic splines. It is no correspondence between lack of oscillation and few coefficients
at the final stage.

The maximum distance is, over most of the computations, lowest with respect to
the number of coefficients for RA tk bi-quadratic. This strategy also has the highest
approximation efficiency, see Fig. 10. The best quadratic strategies have the least
overall number of coefficients in the final surfaces and the highest approximation
efficiency. RB tk bi-cubic has a steep descent in approximation efficiency, but ends
up at the same level as several of the other strategies and the resulting number of
coefficients (261462) is quite competitive compared to other bi-cubic strategies.
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Fig. 11 Approximation efficiency for selected combined refinement strategies with threshold type
tk or tn, bi-quadratic splines

Figure 11 compares the approximation efficiency of some minimum span strate-
gies with the corresponding combined strategy for the middle and last part of the
computation. We see that RA tk quadratic has the best efficiency. This strategy can
also be found in Fig. 10 and can thus support a comparison between the two graphs
along with the line marking an approximation efficiency of 2.2. R+LA tk finishes
second best, but has a lower efficiency in some part of the iterations. McA tn does not
converge completely alone, but does so when combined with a full span strategy. The
B-spline based strategies covered here have better execution times than the minimum
span strategies.
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5.3 Scan Lines

5.3.1 Data Set

Figure 12a shows a small data set of 71 888 points. The data set is obtained from the
English channel and the points are organized in scan lines with varying distances. A
detail can be seen in (b). The point set contains a number of outlier points situated off
the scan lines. These are inconsistent with the general trend of the data. The regular
points represent a smooth part of the sea bed. The data set covers about 23 km?,
the elevation range is [—47.8, —12.1] m and the standard deviation is 2.408. The
corresponding surface (c) is created with an accuracy of 0.5 m and is approximating
also the outlier points closely. The surface is bi-cubic and the applied refinement
strategy is FA. Least squares approximation is performed for two iterations before
the algorithm switches to MBA.

5.3.2 Experience Setup and Performance Ranges

The approximation is run with a tolerance of 0.5 m and the maximum number of
iterations is 30 and 40 for refinement strategies refining in both parameter directions
at every iteration level and with alternating parameter directions, respectively. An
intermediate stage is defined when 99% of the points are within the resolution. This
corresponds to 719 unresolved points. Due to the outliers, no condition is put on the
maximum distance at the intermediate stage.

The current test case contains few points and this is reflected in fast execution
times also for the strategies with the poorest performance as can be seen in Table 6.
FB is the fastest strategy while minimum span strategies are the slowest and do not
always converge within the given number of iterations.

N\
A\
\\\\\\\\\\\\\\\\ 7 4

(@) (b) (©)

Fig.12 aSubseascan line points, English channel. b Detail emphasizing outliers. ¢ Corresponding
surface
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Table 6 Computation time and number of coefficients. Performance ranges and associated strate-
gies for polynomial degrees one to three

Deg Min time | Strategy | Max Strategy |Mincf |Strategy |Maxcf |Strategy
time
Oml.3s |FB Om4.6s |McAtn 10593 |FAtd 11978 |RA
2 Om3.1s |FB Oml12.4s |[MIAtn |16453 |FAtd 23264 |R+LB tk
Om8.9s |FB 0m35.6s | McA 25331 |FAtn 35386 |RB td+k

5.3.3 Selected Refinement Strategies

Table 7 presents the results from a set of refinement strategies at the intermediate
stage and final stage. Several minimum and full span strategies obtain the same lowest
computational time at the intermediate stage for bi-linear splines. The increases in
iteration level and execution time from the intermediate to the final stage for these
strategies are systematically higher for the minimum span strategies than for full
span.

The combination strategy Mc/FA tn bi-linear performs identically to McA tn at
the intermediate stage, but converges in contrast to the pure minimum strategy at the
final stage. Similar pairs can be found for McB tn and Mc/FB tn in the bi-linear case,
and McA tn and Mc/FA tn in both the bi-quadratic and bi-cubic cases. The combined
strategy performs in all cases better than the pure one. Combinations including the
restricted mesh strategy also perform better than the pure restricted mesh strategy
Here the element extension in R+LA tk is better than R/FA tk/n in the bi-cubic case.
R/FA tk/n needs more iterations than specified to converge.

The full span strategy yields good results both with and without a threshold and
FA is superior to FB when it comes to the number of coefficients in the surface. FB
delivers the lowest computational time.

The strategies that perform best at the intermediate stage are not always those that
finish with the best result. Figures 13 and 14 give a more continuous picture of the
behaviour of the selected strategies. Approximation with bi-cubic splines results in
most coefficients, and RA tk and R/FA tk/n have low approximation efficiency in the
later part of the iterations. Early in the iterations these two strategies have a good
efficiency. Bi-linear approximation gives the least number of coefficients. McA tn
bi-linear does not converge in isolation, but changing to FA tn when the convergence
speed decreases results in convergence and a moderate number of coefficients. Most
strategies maintain a high maximum distance in the start before it starts decreasing
and in particular RA bi-linear has a very rapid decrease.

The maximum distance for FA td quadratic decreases fast and the approximation
efficiency is high for most of the iterations. In the bi-quadratic case FA td maintains
its lead on FA tn throughout the computation despite a high number of iterations,
while in the bi-cubic case FA td does not finish with all points resolved, see Table 7.
This pattern with a fast decrease in maximum distance, high approximation efficiency
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Table 7 Accuracy results of some selected strategies at the intermediate and final stage. * Con-
verges, but needs more than the specified iterations to finish

Refine Intermediate stage Final results

Strategy It ‘ Pt out ‘ No coef ‘ Max ‘ Time It ‘ Pt out ‘ No coef ‘ Max ‘ Time
Bi-linear

FB 5 587 11001 |25.235 |0m0.5s | 10 0 14678 | 0.5 0m1.3s
FB tn 6 604 7574 17.377 | 0m0.5s | 13 0 14106 |0.5 Oml.5s
MIB 6 617 6884 1822 | 0mO0.5s |15 0 13347 |05 Om?2.1s
McB 5 709 8792 25249 | 0mO0.5s | 14 0 13185 |0.5 Om1.9s
McB tn 6 658 6483 23.884 | 0mO0.5s | 30 3 13173 | 1.138 Om4s
Mc/FBtn |6 658 6483 23.884 | 0mO0.5s |30 0 13983 | 0.5 Om?2s
FA td 24 513 7411 1.358 Oml.2s |36 0 10593 |05 Om?2.4s
MCcA tn 13 672 6313 19.893 | 0m0.9s | 40 12 12010 | 1.337 Om4.6s
Mc/FAtn |13 672 6313 19.893 | 0m0.9s | 26 0 11836 |0.5 Om?2.8s
RA 10 583 9170 25.178 | 0m0.7s |18 0 11978 | 0.5 0m1.6s
FA 10 521 9270 25.178 | Om0.6s | 18 0 11728 0.5 Om1.4s
FA tn 12 620 6532 17.213 | 0m0.7s |25 0 11534 |05 Om2.1s
Bi-quadratic

FB 5 606 14422 | 23.663 | Omls 11 0 21058 |0.5 Om3.1s
FB tn 6 603 10074 | 18.220 |Omls 15 0 20902 | 0.5 Om4s
RB td+k 22 667 8235 13.404 | Om2.5s |30 0 22898 | 0.5 0m6.5s
FA tn 12 664 8848 18.153 | 0ml.3s |26 0 18101 |0.5 OmS5.3s
FA td 24 432 10969 | 1.644 |0m2.6s |35 0 16453 | 0.5 0m5.6s
MIB td 23 655 10071 |2.354 | 0m3.1s | 30 52% 22802 | 1.308 0m8.2s
MCcA tn 13 682 8785 22.079 | Om2s 36 0 18914 | 0.5 Oml1.5s
Mc/FAtn |13 646 8365 22.594 | Om2s 26 0 18248 | 0.5 0m6.5s
RA tk 15 656 9554 23.685 | O0m2.1s |30 0 19661 |0.5 Om?7.7s
R/FA tk/n |15 656 9554 23.685 | Om2.1s |29 0 18855 | 0.5 0m6.7s
R+LA tk 12 533 13448 | 18.159 |0m2.2s |22 0 20035 |05 Omé6.1s
FA 10 644 12709 |23.641 |0Oml1.3s |21 0 18050 |0.5 Om4.1s
Bi-cubic

FB 6 434 22420 |19.046 |Om3s 13 0 29908 |0.499 0m8.9s
FB tn 6 614 12387 |18.919 | 0ml8s |15 0 28715 |0.499 Om9s
RA tk 22 712 9994 23.505 | O0mS.1s |40 2% 30046 |0.576 0m22.9s
R/FA tkim | 22 712 9994 23.505 | O0mS.1s |40 2% 27328 |0.514 0m19.8s
FA tn 12 635 11231 |18.964 | 0m2.5s |24 0 25331 | 0.5 0m10.4s
R+LA tk 12 679 13997 |23.908 |0m3.6s |24 0 23396 | 0.5 0m15.9s
RA td+k 34 696 9955 17.748 | Om7s 40 289* 23321 |9.952 Oml2.1s
FA 12 448 20017 | 18.966 |0Om3.6s |21 0 25926 | 0.5 0m9.7s
FAtd 24 459 13281 | 1.405 O0m5.3s | 40 * 23216 |0.797 Om14.6s
McB tn 7 618 11816 |16.395 |0m2.9s |23 0 29385 | 0.5 0m23.7s
MCcA tn 14 587 12898 | 17.01 Om4.8s | 38 0 27803 |0.499 Om32s
Mc/FAtn | 14 587 12898 | 17.01 0m4.8s | 26 0 27002 |0.5 0m16.6s
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Fig. 14 Approximation efficiency for selected well performing refinement strategies, all degrees.
MCc/FA tn has polynomial degree one

and the need for many iterations to converge can be found also for other polynomial
degrees and refinement strategies when this threshold is applied.

The scan line data set is, despite the outlier points, approximated with good accu-
racy at the cost of surface smoothness. An alternative stop criteria for configurations
where particular points have a severe lack of convergence should be considered.

5.4 Sgre Sunnmgre, Sea Bed

5.4.1 Data Set

The point cloud, Fig. 15a, consists of 11 150 110 points obtained from a 881 100 m?
area at Sgre Sunnmgre in Norway. In (b) the points are scaled with a factor of 10,
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() (b) (©

Fig. 15 a Outline of point set from Sgre Sunnmgre, Norway. b Detail of scaled point cloud. ¢
Corresponding LRB surface

zoomed in and seen from the right corner to show some features. Itis a sub sea data set
in shallow waters, the depth ranges from —27.94 to —0.55 m. The point cloud is dense
with some holes representing land. It has some outliers, although less extreme than
for the scanline data set. At one position, two points with the same xy-coordinates
and differing depth with a distance of 2.38 m are given. Thus, the theoretical smallest
obtainable maximum distance between the point cloud and the surface is 1.19 m. In
contrast to the previous example, the outliers are situated close to other points in
the cloud. The point cloud has a standard deviation of 2.52 m. The surface in (c) is
bi-quadratic and created with strategy FA td. The approximation algorithm switches
from the least squares method to MBA after five iterations.

5.4.2 Experience Setup and Performance Ranges

Despite it being impossible to reach this resolution, we apply a tolerance of 0.5 m and
run with a maximum number of iterations of 30 for refinement strategies refining in
both parameter directions and 40 for strategies with alternating parameter directions.
The intermediate stage is where 99.0% of the points are within the tolerance, meaning
that at most 11 150 points have a larger distance to the surface than 0.5 m. In most
cases, the iteration runs the maximum allowed number of steps.

Table 8 presents the minimum and maximum execution times and the lowest and
highest numbers of coefficients in the final surfaces for the bi-linear, bi-quadratic
and bi-cubic cases. We see that the ranges between best and worst are large, both
with respect to time and size and for all polynomial degrees. The largest differences
can be found internal to each polynomial degree. Bi-linear splines lead in general to
lower execution times and less coefficients, while the bi-cubic splines give results at
the other end of the scale.

Due to outlier points, none of the refinement strategies converge with all points
within the resolution. The minimum number of out-of-tolerance points obtained is
469 for RA and RA td with bi-linear splines. We regard all results with less than
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Table 8 Computation time and number of coefficients. Performance ranges and associated strate-
gies for polynomial degrees one to three

Deg Min t. Strategy | Max t. Strategy | Mincf | Strategy | Maxcf | Strategy
1 8m47s | FA 29m26s Mc/FB | 282422 |FA 486106 |RB tk
tn
15m8s | FA 1h9m59s McBtd | 384488 |FA 785442 | RB td+k
36m7s | FA 3h13m39s |MIBtd |550034 |FA 1237194 | RB tk

480 points outside the tolerance and a maximum distance of 1.19 m as having an
accepted accuracy. The least possible maximum distance is reached by all strategies
except bi-quadratic McA td, which finishes with a maximum distance of 1.191 m.

5.4.3 Selected Refinement Strategies

Table 9 presents the results of some strategies at the intermediate and final stage.
Strategies with refinement in alternating parameter directions have, for this data set,
lower computation time than corresponding strategies that refine in both directions. A
complete convergence is not possible in this case, and the extra number of iterations
in the case of alternating directions does not account for the additional number of
possible knot insertions when refinement is performed in both directions. The least
number of coefficients is obtained with alternating parameter directions.

At the final stage, the full span strategy without threshold delivers the best results
for all polynomial degrees and evaluation categories. This result does not change
when observing the situation at the stage where the computation is regarded as
converged. Variations of the full span strategy dominate also at the intermediate
stage.

Several minimum span strategies finish with more than 480 points outside the
tolerance, Table 9 lists some occurrences. This occurs for strategies with alternating
parameter directions in particular. Minimum span strategies and some restricted mesh
strategies, both with threshold, are the strategies that have the highest computation
time and result in the surfaces with most coefficients.

Restricted mesh refinement strategies behave very similar with and without ele-
ment extension, see RA tk and R+LA tk in Table 9. The final number of coefficients
and the execution time are much higher than for corresponding full span strategies.
Combining RA tk with FA tn gives better results for the bi-linear and bi-quadratic
cases although it is not compatible with the pure full span strategy.

Most strategies continue several iterations after the stage where the number of
unresolved points and the maximum distance are regarded as satisfactory. The num-
ber of coefficients is increased, in some cases considerably, during these iterations.
The differences are typically largest for the strategies that refine in both parameter
directions and in particular for the restricted mesh strategies. For instance the num-
ber of coefficients for RB increases by 122418 during the last 13 iterations in the
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Table 9 Accuracy results of some selected strategies at the intermediate and final stage

Refine Intermediate stage Final results

Strategy It ‘ Pt out ‘ No coef ‘ Max ‘ Time It ‘ Pt out ‘ No coef ‘ Max ‘ Time
Bi-linear

FA 19 9183 220761 |2.177 2m52s | 40 473 282422 | 1.19 8m47s
FA td 19 11093 | 208656 |2.177 2m54s | 40 473 284022 | 1.19 9ml5s
FA tn 21 9967 205036 | 1.895 4m27s | 40 471 286189 | 1.19 12m21s
McA tn 22 10423 201216 | 1.679 7m32s | 40 636 299240 | 1.19 24m28s
McA 20 9087 212104 |2.118 5m39s | 40 642 289739 | 1.19 19m23s
RA 19 9037 262744 | 2.027 4m6s 40 469 350282 | 1.19 14m2s
RA tk 20 9561 261547 | 2.0 5m9s 40 472 363197 | 1.19 16m12s
RAtd+k |20 10571 251670 | 2.0 4m47s | 40 471 362604 | 1.19 16m39s
R/FA tk/n | 21 9937 214600 | 1.887 4m9s 40 472 289134 | 1.19 11m17s
R+LAtk |19 10930 255163 | 2.027 Sm2ls | 40 471 364468 | 1.19 17m33s
FB 10 6313 302982 | 2.118 2m59s | 28 473 382159 | 1.19 11m8s
RB 10 7052 348745 | 2.085 4ml5s | 30 473 470721 | 1.19 18m12s
Mc/FA tn |22 8776 227991 | 1.602 7m28s | 40 471 300277 | 1.19 16m42s
Bi-quadratic

FA 19 8756 298113 | 2.05 Sm2s 40 471 384488 | 1.19 15m8s
FA tn 20 11070 | 247881 | 1.717 5m57s | 40 471 390876 | 1.19 19m38s
MIA tn 22 10351 303734 | 2.101 16m4s | 40 595 502258 | 1.19 1h1m38s
RA tk 21 10996 345175 |2.533 7m37s | 40 479 614831 | 1.19 32m48s
R/FA tk/n | 22 10151 283088 | 2.5 Tmls 40 473 410131 | 1.19 18m31s
R+LAtk |19 11132 390101 | 2.05 9m57s | 40 474 619375 | 1.19 40m4s

FA td 19 10585 284391 |2.05 5m22s | 40 472 386719 | 1.19 15m59s
MCcA tn 22 9256 277757 | 2.315 16mlls | 40 560 436114 | 1.19 56m20s
Mc/FA tn |21 8760 292773 | 1.926 11m49s | 40 475 419197 | 1.19 31m20s
McB tn 11 10903 258016 | 1.554 10m9s | 30 474 504463 | 1.19 1hém51s
FB 10 5687 399843 | 1.7 5m6s 28 475 496494 | 1.19 18m34s
FB td 11 7065 368518 | 1.393 5m53s | 30 473 504523 | 1.19 24m16s
RB tk 11 7895 473178 | 2.523 8m34s | 30 472 783590 | 1.19 48m8s
McA td 21 8583 301687 | 1.805 16m43s | 40 559 425780 | 1.191 49m55s
Bi-cubic

FB 10 7738 523751 | 1.844 11m45s | 30 474 693975 | 1.19 45m34s
FA 20 7560 438026 | 1.816 13m45s | 40 473 550034 | 1.19 36m7s
FA tn 21 9047 375301 | 1.779 15m22s | 40 477 558671 | 1.10 46m50s
MCcA tn 22 10802 | 357114 | 2.673 34m51s | 40 725 643960 | 1.19 2h40m17s
MIA tn 23 9890 444465 | 2.462 41m57s | 40 742 740829 | 1.19 2h44m42s
RB tk 12 10219 613700 | 2.667 16m26s | 30 474 1237194 1.19 2h21m27s
Mc/FA tn | 21 9307 385652 | 1.779 21m2s | 40 475 576446 | 1.19 1hOm32s
FA td 20 8759 424838 | 1.816 14m48s | 40 475 554411 | 1.19 40m55s
RA 20 7182 657945 | 1.813 24ml0s | 40 474 880517 | 1.19 1h16m2s
FB tn 11 8760 410358 | 1.376 1Im57s | 30 474 683441 | 1.19 58m36s
RA tk 24 10028 527792 | 2.482 19m50s | 40 481 946074 | 1.19 1h20m10s
R+LAtk |20 9823 601843 | 1.813 27m3s | 40 474 917541 | 1.19 1h35m30s
R/FA tk/n | 25 9019 413007 | 1.813 16m54s | 40 510 585346 | 1.19 42m18s
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55 4 Maximum distances for well performing refinement strategies
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Fig. 16 Maximum distance for selected well performing refinement strategies, all degrees
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Fig. 17 Number of coefficients with regard to the number of unresolved points

bi-cubic case. Other examples are bi-quadratic FA tn that reaches 478 unresolved
points at level 37 and increases the number of coefficients with 2379 in the last three
iterations, and bi-linear FB that goes from 475 to 473 unresolved points and gets
8015 in new coefficients the last eight iterations. A more precise criterion for stop-
ping the iterations should be applied to avoid unnecessary data size and execution
time.

Figures 16 and 17 give a more continuous picture of the performance of the
strategies selected as best at the intermediate and final stage. Bi-cubic splines have the
slowest decrease in the maximum distance and most coefficients, and this behaviour
can be seen throughout the approximation process. Cases with bi-linear splines are
found at the other end of the spectrum, but FA tn bi-quadratic is compatible with the
bi-linear cases during most of the process.

The full span strategies give the best results for this data set as can be seen from
Table 9. However, some combinations of minimum span strategies and threshold
have good scores at the intermediate stage. Combinations of a minimum span strategy
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Fig. 19 Approximation efficiency, bi-quadratic splines

and a full span strategy turn in several cases the accuracy result from not accepted
to accepted. These combinations are only tested with threshold type tn. Figures 18
and 19 compare the performance of two full span strategies with two minimum
span strategies, MIA and McA, and combinations between minimum and full span
strategies. The maximum distance decreases most rapidly for FA tn and stays low
during the computation. This strategy also has a high approximation efficiency. FA
has a better total score at the finishing stage, but for most of the computations the
threshold improve the performance. Also the minimum span strategy Mc/FA tn has
a higher approximation efficiency during large parts of the computation. Combining
this strategy with the full span strategy leads to convergence with an acceptable
number of coefficients, see Table 9, but the execution time is higher than for full
span strategies also at the intermediate stage.
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5.5 Sea Bed, Large Point Cloud

5.5.1 Data Set

The final data set contains 131160220 well distributed points acquired from the
English Channel. The point cloud is relatively well behaved and represents an area
of mostly smooth sea bed, with some areas of reduced smoothness. Approximation
with an LRB surface should, thus be well adapted to the properties of the data set.
The data set covers about 285 km? of shallow waters including a few meters above
sea level. The elevation ranges from —32.46 to 3.26 m and the standard deviation is
8.04. The outline of the point cloud, a scaled version of the point cloud to visualize
some features and the surface created with strategy R+LA and bi-quadratic splines
are shown in Fig. 20a—c. The approximation uses the least squares method for three
iterations, then turns to MBA due to lack of convergence while solving the linear
equation system from the least squares approximation.

5.5.2 Experience Setup and Performance Ranges

We apply a tolerance of 0.5 m and we let the maximum number of iterations be 60
for alternating directions and 40 if we refine in both parameter directions at each
level. An intermediate stage is defined where either 99.9% of the points are within
the tolerance (this equals 131 160 points with a larger distance to the surface than
0.5 m), or the maximum distance is less than two meters.

The current point cloud has two complicating factors, the number of data points
and the fact that some points stand out as untypical compared to other points in
the neighbourhood. The maximum distance is for all combinations of refinement
strategies and thresholds quickly reduced to about five meters, then the distance is
kept at this level for a number of iterations before it decreases again, the effect can be
observed in Fig. 21 for some strategies. Most strategies converge within the specified
number of iterations, a few fail to reach the specified accuracy and some strategies
have a very slow reduction in the number of points outside the tolerance for the last
iterations, a few examples can be found in Table 10.

() (b) (©)

Fig. 20 a Outline of sea bed point cloud, b point cloud scaled by a factor of 20 and seen from the
left, ¢ LRB surface created from the full point cloud
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Fig. 21 Maximum distance for selected well performing refinement strategies, all degrees

Table 10 Computation time and number of coefficients. Performance ranges and associated strate-
gies for polynomial degrees one to three

Deg Min t. Strategy | Max t. Strategy | Mincf | Strategy | Maxcf | Strategy
16m31s |RB 1hl6m34s |RA td+k 235033 |RA 440917 |MIB td
30m39s | FB 2h31m52s |MIBtd |291753 |R+LAtd [729432 |MIBtd
56m59s | FB 37h44m5s | RA tk 374490 |FA 860910 | MIB td

The point cloud really distinguishes the strategies both with respect to the number
of coefficients, the execution time and whether or not the strategy converges.

Table 10 shows the ranges in execution time and number of coefficients in the
final surface for the various polynomial degrees applied. The difference between the
best and worst result is tremendous especially with regard to time. In the quadratic
case the minimum span strategy MIB td results in the surface with the maximum
number of coefficients and the highest execution time. In the linear and cubic case,
restricted mesh strategies have the poorest performance with regard to time. The
lowest computational time is, for both bi-degree two and three, obtained for FB.

5.5.3 Selected Refinement Strategies

Table 11 summarizes the results of some selected strategies. The strategies with the
least number of coefficients tend also to have a relatively low computational time.
Bi-cubic splines at the intermediate stage deviate from this trend, but the strategy
resulting in the least number of coefficients still has an execution time in the lower
range also in this case, see Table 10. Strategies that refine in both parameter directions
simultaneously tend to have the lowest computational time, while strategies with
alternating directions tend to result in the least number of coefficients. The difference
between the iteration levels at the intermediate and final stage differs between the
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Table 11 Selected strategies at the intermediate and final stage

Refine Intermediate stage Final results

Strategy | It ‘ Pt out ‘ No coef ‘ Max ‘ Time It ‘ Pt out ‘ No coef ‘ Max ‘ Time
Bi-linear

FB 8 42841 | 223855 | 5412 9m45s 29 0 334788 | 0.5 19m59s
RB 8 45344 | 213499 | 5473 10ml11s 19 0 325787 |1 0.5 16m31s
RA tk 16 119540 | 76349 | 5.438 17m45s 60 1658 359131 | 4.566 1h11m40s
RFA |16 119540 76349 | 5438 | 17mdls 47 0 255247 | 0.5 40m32s
tk/n

R+LB |8 79170 | 113003 | 5.441 11m43s 40 10 306673 | 0.772 34m39s
tk

RA 15 77436 144195 | 5.359 14m40s 37 0 235033 | 0.5 25mlls
R+LA 15 73579 145284 | 5.359 14m36s 38 0 235264 | 0.5 25m23s
FA td 21 107275 | 146793 | 4.679 23m36s 43 0 280494 | 0.5 37m44s
FA tn 15 123366 | 88414 |5.482 16md4s 45 0 254364 | 0.5 35m12s
RB td+k | 16 126755 | 147874 | 5.436 20m2s 40 3986 362681 |4.643 51mds
Bi-quadratic

FB 8 46144 | 274288 | 5.392 16m8s 22 0 412811 | 0.5 30m39s
R+LA |15 117818 | 100311 | 5.402 31m2l1s 42 0 291753 | 0.5 1h2m7s
td

RB tk 9 130965 | 97052 | 5.449 22mls 40 13811 373079 | 4.703 1h31m20s
FA 15 77438 | 180018 |5.399 26m18s 36 0 293853 | 0.5 44md7s
FA tn 15 115818 | 101492 | 5.432 30m15s 46 0 301098 | 0.5 1h5m40s
R+LA |15 79275 | 175492 | 5.398 27m56s 41 0 294369 | 0.5 50m24s
R+LA |16 83659 | 112329 |5.508 34m22s 55 0 292697 | 0.5 1h18m9s
td+k

RB td+k | 18 104638 | 176639 | 5.412 59m24s 40 16365 | 437539 | 5.302 1h59m10s
Bi-cubic

FB 8 71175 | 315679 |5.318 31m26s 21 0 518726 | 0.5 56m59s
McA tn | 16 126520 | 125691 | 5.374 1h10m34s 60 13 452751 | 0.598 4h2m38s
MCc/FA | 16 126520 | 125691 | 5.374 1h10m50s 48 0 435790 | 0.5 2h59m40s
tn

FB tn 8 106573 | 174903 | 5.338 34m27s 26 0 486144 | 0.5 1h24m34s
FA tn 16 84792 | 145020 | 5.482 58m53s 45 0 375612 | 0.5 2h7m22s
R+LB |8 130334 | 145641 | 5.488 35mlls 22 0 441405 | 0.5 1h11m29s
td

FA 15 116928 | 205512 | 5.435 48m57s 33 0 374490 | 0.5 1h24m20s
RA 15 130559 | 193111 | 5.438 54mdls 34 0 387211 | 0.5 1h32m48s
R+LA 15 121854 | 197582 | 5.438 54m7s 33 0 386891 | 0.5 1h28m17s
RB td+k | 20 118312 | 245578 | 5.326 7h42m3s 40 20740 | 550574 | 4.823 10h57m56s

strategies, but is in general high. This indicates slow convergence in the latter part
of the computation.

Various versions of the full span strategy stand out. Also some versions of the
restricted mesh strategy show good results at the intermediate stage, but fail in several
cases to converge in the end. Strategies with a very restrictive introduction of new
degrees of freedom can yield good results early in the computations, but may fail
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Fig. 22 Number of coefficients with respect to number of outside points, final stages, all degrees

to insert crucial new mesh line segments in the later stages and finish with a large
number of coefficients, high execution times and no convergence. RB td+k is a very
restrictive strategy that struggles already at the intermediate stage and finishes with
poor results for all polynomial degrees.

Table 11 includes some strategies that perform reasonably well without being
amongst the best. In the bi-linear case we compare some full span strategies with
alternating parameter directions and different thresholds. Threshold tn performs best,
which matches the normal threshold pattern. In the bi-quadratic case we see that the
threshold slows down the convergence for FA and the final number of coefficients is
only slightly lower. Applying a threshold has little effect for the element extended
restricted mesh strategy R+LA, but the version without a threshold performs slightly
faster. In the bi-cubic case we can compare the restricted mesh with and without
element extension. The difference is small for this data set.

Figure 21 shows the continuous development of the maximum distance between
the point cloud and the surface throughout the computation for some selected meth-
ods. The distance quickly reduces to about five meters, is maintained at that level for
several iterations while the number coefficients increases. Then the distance drops
again for most strategies. The exceptions are two restricted mesh strategies, RA tk bi-
linear and RB tk bi-quadratic. In the linear case, also the combination of this restricted
mesh strategy with a full span strategy is shown and results in few coefficients. The
corresponding numbers can be found in Table 10.

The bi-linear surfaces have the least number of coefficients, then come the bi-
quadratic surfaces and finally the bi-cubic ones. The difference in the number of
coefficients is large even for strategies with the same polynomial degree.

Figure 22 shows the number of coefficients given the number of out-of-tolerance
points for the same strategies. Only the last part of the computation is shown and
the development is from right to left. The number of coefficients increases rapidly
towards the end of the computation while the decrease in the number of points outside
the tolerance is slow. The ranking of the strategies is stable until less than 100000
points (less than 0.1% of the total number of points) are unresolved; then there is
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a shift. This indicates that whether or not we want to continue the computation to
a complete convergence must be taken into account when selecting the refinement
strategy.

6 Summary of Results

This section provides a summary of the results for the individual data sets. The full
span strategy and the structured mesh strategy are very clearly defined. All other
strategies have an element of choice and tuning included in them. Even for the
minimum span strategies Ml there might be more than one candidate B-spline of the
same size.

Bi-cubic approximation almost always results in more coefficients in the resulting
surface and higher execution times than corresponding strategies for lower order
polynomial degrees. The pattern regarding the relative performance of the strategies
for a given data set is quite similar in the bi-quadratic and the bi-cubic case. The
number of surface coefficients and execution time is often low in the bi-linear case, but
strategies with restrictions on the introduction of new mesh lines are more vulnerable
with respect to convergence for this degree.

Full span strategies have the most consistent behaviour throughout the data sets
and tend to have the lowest execution times. The resulting surfaces do not always
have the smallest number of coefficients, but the results are always among the best.

Minimum span strategies have a high risk of lack of convergence. The effect
is most pronounced for bi-linear splines and reinforced if thresholds are applied.
Minimum span strategies perform better in the first part of the computation than
for the final iterations. The combined strategy for selecting the B-spline to subdivide
performs better than focusing either on the size of the B-spline support or the number
of out-of-tolerance points in the support.

The execution time for the structured mesh strategy is low, but the number of
coefficients is very high for the tested versions of the strategy, which is omitted for
further testing after two data sets.

The restricted mesh strategy does not have a consistent behaviour for all data
sets. It often has a high approximation efficiency in the first and middle part of the
computation, but may need a back-up strategy to converge completely. Applying a
threshold most often reduces the number of surface coefficients, but increases the
risk of not converging. All variants of the restricted mesh strategy lead to a high
number of coefficients for the Sgre Sunnmgre data set.

Strategies with alternating parameter directions tend to lead to fewer coefficients
in the final surface. The execution time is often lowest when refinement is performed
in both parameter directions simultaneously, but the difference is moderate.

Applying a threshold in general reduces the number of surface coefficients and
increases the computation time, but is not always effective. The selected B-splines
are not always those that lead to the highest improvement in accuracy when refined.
The effect of applying a threshold depends on the type. Thresholding with respect
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to distance (td), tends to reduce the maximum distance quite rapidly, but has little
effect on the number of resolved points. These strategies will often result in more
coefficients than strategies without a threshold. This threshold type in general has
a more positive effect on the B-spline based strategies than on the element based
ones. A threshold with respect to the number of out-of-tolerance points (tn and tk)
often leads to good approximation efficiency, that is, it leads to few coefficients with
respect to the number of resolved points. The effect on the final surface size varies,
the surface can be more lean when applying a threshold, but this is not always the
case. It would probably be beneficial if applied thresholds are released more rapidly
than the case in this study.

Two partly conflicting rules were formulated in Sect.3. Both are confirmed. A
reduced pace in the introduction of new knots results in leaner surfaces, while a too
restrictive approach has the opposite result.

The convergence is typically rapid in the start of the approximation before it slows
down drastically towards the end. The cost of resolving the last data points is high
both with regard to data size and time consumption.

7 Conclusion

We have performed a study to find out how different strategies for knot selection
in adaptive refinement of LRB surfaces perform in the context of scattered data
approximation. The tests on the refinement strategies are applied to five different
geospatial data sets with a large variety of sizes and properties. It is not the case that
one size fits all. The various strategies perform differently on different data sets and
the performance of each refinement strategy varies throughout the computations.
The purpose of approximating a point cloud with an LRB surface is not always
to achieve an accurate approximation. It can also be to represent the smooth part
of the data points with a smooth surface in order to analyze the residuals. A very
accurate approximation of noisy data is also unattractive. The recommendation of
the refinement strategy to select depends on the goals for the approximation.

Bi-cubic splines should only be used if a surface with a continuous second deriva-
tive is required. A bi-linear surface is a good choice if no smoothness is needed.
However, in general, we recommend the use of bi-quadratic splines.

If the aim is to create very accurate surfaces with respect to the point data, the full
span strategy with alternating parameter directions should be applied. A threshold
with respect to the number of points outside the given tolerance should probably
be considered, but there is room for improvement regarding the actual composition.
Thresholding with respect to the maximum distance should not be applied in this
case.

If the aim is to get a smallest possible surface after a restricted number of iterations
or when applying a stop criterion different from complete convergence, also other
strategies are applicable. The restricted mesh strategy performs well for four out
of five test cases. Minimum span strategies are more seldom selected as the best
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choice, but the results for the best versions are good at the intermediate stage and
quite consistent with regard to the various data sets for bi-degree two and three. In
both cases a switch to the full span strategy should be applied when the convergence
slows down. The full span strategy is applicable also in this case.

Refinement in alternating parameter directions is recommended also for early
finalization of the computation. Threshold with respect to distance should be used
only if the most important aim is to reduce the maximum distance rapidly with
less focus on the number of out-of-tolerance points. A threshold with respect to the
number of points is recommended.

The applied study is extensive. More combinations are possible, but it is ques-
tionable whether or not they will provide more insight. The criteria used to define
thresholds and restricted strategies have room for improvement.

The study focuses on the number of surface coefficients, execution time and
approximation accuracy. The structure of the polynomial mesh is not considered,
although it may be of importance. Structured and restricted mesh strategies give
a more orderly mesh than the full and minimum span strategies. Furthermore, an
analysis of the level of the accuracy threshold and the best criterion to stop the
iteration would complement this study in a good way. A good refinement strategy
should not break down when pushed to the limits. However, the most accurate surface
does not necessarily give the best representation of the terrain or sea bed as the quality
of the point clouds may vary.
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