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Abstract
This paper introduces a novel and complete framework for solving different Internet of Things (IoT) applications, which

explores eXplainable AI (XAI), deep learning, and evolutionary computation. The IoT data coming from different sensors

is first converted into an image database using the Gamian angular field. The images are trained using VGG16, where XAI

technology and hyper-parameter optimization are introduced. Thus, analyzing the impact of the different input values in the

output and understanding the different weights of a deep learning model used in the learning process helps us to increase

interpretation of the overall process of IoT systems. Extensive testing was conducted to demonstrate the performance of our

developed model on two separate IoT datasets. Results show the efficiency of the proposed approach compared to the

baseline approaches in terms of both runtime and accuracy.
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1 Introduction

The Internet of Things (IoT) has been largely used in the

last decade in many instances from smart city applications

to multimedia applications [16, 24, 30]. Various types of

sensors deployed in IoT settings yields the generation of

massive data that needs to be analyzed. Deep learning

based solutions [1, 18, 32] performed well for solving IoT

problems such as intrusion detection, and prediction.

However, they suffer from two main challenges:

1. Hyper-parameter settings: the deep learning models

provide various hyper-parameters that can be tuned

such as the number of epochs, the activation function,

the loss function, the number of batches, and so on. To

achieve good performance of the deep learning models,

we need to find the optimal values for the different

hyper-parameters. Several strategies based on genetic

algorithms have been developed in the literature to

optimize the hyperparameters [3, 21, 31]. They trans-

form the possible combinations of the hyperparameter

values into the solution space and then intelligently

explore the solution space with the goal of finding the

best values of the hyperparameters that yield the best

accuracy of the deep learning model.

2. Interpretation: Deep learning architectures are black

box based models. These black-box models are created

by a training algorithm directly from data, which

means that humans, including those who develop them,

have no idea how the factors are combined to produce

the given results. Recently, a new class of artificial

intelligence solutions has emerged called eXplainable

Artificial Intelligence (XAI) [17, 29, 37]. It enables

efficient mapping between input features and model

results to make deep learning architectures understand-

able to industrial users.
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This paper presents a new framework for handling IoT

challenges. The framework explores different correlations

among the features of sensor data, and then applies deep

learning to learn both prediction, and intrusion detection

tasks (the most challenging problems in IoT applications).

In addition, XAI is used for better understanding the con-

tribution of each feature in both the prediction, and the

detection output. The main contributions of the presented

work can be summarized as follows:

1. We propose an adapted Gamian angular strategy to

convert the time series collected by the different

sensors into visual features that can then be easily

represented by a series of images. This allows us to

adopt the promising VGG16 architecture to learn the

various correlations of sensor data from a set of

images.

2. We introduce XAI for IoT applications by analyzing

the impact of input values on the output, understanding

the different weights of the deep learning model used

in the learning process, and calculating the contribution

of each feature to the model output. This is done by

studying the shape value and learning the deep

architecture hyperparameters using the genetic

algorithm.

3. We perform intensive experiments on two IoT collec-

tions for solving both prediction, and detection prob-

lems. According to a series of experiments, the

designed method outperforms the baseline algorithms

in both runtime and accuracy.

The following is the structure of the rest of the paper. An

overview of the most commonly used intrusion detection

and prediction methods are studied in Sect. 2. Our

approach is described in detail in Sect. 3. Section 4 con-

tains the performance evaluation. The paper is concluded

in Sect. 5.

2 Related work

Intrusion detection is one of the challenging problems in IoT

settings [15, 22]. Chaabouni et al. [6] study the existing

solutions for intrusion detection from IoT data. It suggested

an architecture of IoT system composed of perception, net-

work, and application layers. It also surveys both traditional

and deep learning works for intrusion detection. Wu et al.

[38] deal with heterogeneity issue in IoT, and develop a

federated learning based framework in cloud-edge system.

The global model is trained by aggregating the local models.

Alsaedi et al. [2] introduced a new dataset collection for both

industrial internet of things for evaluating intrusion detection

systems. It provides different anomalous events for various

industrial platforms. The authors also evaluated the well-

known machine and deep learning algorithms such as ran-

dom forest [7], support vector machine [23], and long-short

term memory [25] by selecting different views of the pro-

posed dataset. Khraisat et al. [20] proposed a taxonomy of

different intrusion detection systems applied on IoT envi-

ronments. It considers algorithms based on deployment

strategywhether the deployment is decentralized, distributed

or hybrid. It also considers algorithms with different vali-

dation strategy, whether the validation is done by simulation,

theoretical, or empirical. It groups the intrusion detection

algorithms on supervised and unsupervised models, rein-

forcement based solutions, and deep learning based solu-

tions. Ullah et al. [36] created a convolution neural network

for detecting anomalies in IoT traffic data. The solution is

able to identify outliers from 1D, 2D, and also 3D data.

Transfer learning is also integrated by using a pre-trained

convolution neural network based model for multi-classifi-

cation problem

Prediction from the IoT data is also a challenging

problem in recent decades [10, 42]. Dami et al. [9] pre-

dicted the arterial events captured in several months from

IoT devices. The authors used the long short term memory

with the deep belief network to learn the medical features.

The data were periodically collected from wearable heart

rate monitoring sensors, and stored as time series where the

values are separated by 5 min timestamps. Xu et al. [39]

developed prediction model for vehicular data deployed in

IoT settings. The Elman neural network with the improved

grey wolf optimization is investigated to ensure better

solution exploration. The grey wolf optimization is inte-

grated to derive the optimal parameters of the deep learn-

ing network used in the prediction process. Sharma et al.

[34] predict the situation of COVID disease in Saudi

Arabia from data captured by IoT devices. The novel

system consists of the study of the IoT variation and the

different kinds of symptoms for real COVID cases. Bhat

et al. [5] studied the correlation between indoor and the

outdoor sensors to predict the Asthma risk from IoT sensor

data. The convolutional neural network is trained to learn

the matching among both the indoor observation, the out-

door observation, and the prediction values.

However, the above algorithms ignore interpretation of

the results and only focus on the model output. This

reduces the deployment of such solutions in IoT settings.

This paper explores and studies the XAI in both intrusion

detection and prediction on IoT devices. The next section
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presents the new architecture and details about its main

components.

3 XD-IoT-based framework

3.1 Principle

This section presents our XD-IoT (eXplainable Deep

learning for Internet of Things) framework. The purpose is

to first solve IoT problems using deep learning technolo-

gies and then to understand in detail of the various com-

ponents that contribute greatly to IoT outputs. Both deep

learning and XAI technologies are used to determine which

features are involved in IoT outputs. As explained in Fig. 1,

the process begins by collecting data from various IoT

sensors. The extracted data is then converted into images

using the Gramian angular field. Deep learning, specifically

VGG16, is applied to the images created to solve IoT

problems such as intrusion detection and flow prediction.

Since VGG16 contains a large number of hyperparameters

to be optimized, the genetic algorithm is used to find the

best parameters of the VGG16 model. Explainability is

introduced throughout the process by calculating the

importance of each input function to the final output. In the

remaining of this section, we show how to use all these

concepts in the XD-IoT framework.

1. Gamian angular field: It is a strategy highly used to

convert time series data to the set of images in a non-

Cartesian system [19]. The sensor data can be viewed

as a set of time series, where the time is set to the

sensor acquisition period. The sensor is explored one

by one and transformed to the images by considering

the acquisition period as the pixel coordinates, and the

sensor value as pixel value.

2. Deep learning: Our deep learning approach uses the

images derived in the previous step, and learns the set

of features. To learn the collection of IoT features, we

employed VGG16. It is a well-known deep learning

architectures highly used in many applications

[8, 35, 41]. In order to extract the visual features from

the generated images depending on the location of

reference, VGG16 uses convolutional layers. Filters of

window sizes 3, 5, and 7 are applied in parallel to input

features in our network. Feature maps of three

convolutional blocks are combined and fed succes-

sively to the 1024 and 256 neurons in the hidden Fully

Connected (FC) layer. The softmax layer receives

the output of the FC layer. Overfitting is countered by

using dropout in both FC layers.

3. XAI: eXplainable AI (XAI) is introduced for IoT by

analyzing the impact of the input values in the output

and understanding the different weights of the deep

learning models used in the learning process as:

(a) Variable Explanation: The input IoT variables

are analyzed by extracting visual features of the

Fig. 1 Developed XDIoT Framework
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users. Correlation between the extracted features

from CNN, and the features trained by Word2-

VEc is determined. The obtained correlation is

transformed to the matrix, where it is fed it into

the layers. The Shapely value is also applied on

extracted features to compute the importance of

each feature in the output [27].

(b) Hyper-parameters-optimization: The network

generated requires high number of parameters

to be fixed, such as the number of epochs, the

learning rate, the activation functions of each

layers, and the dropout rate. Therefore, an

optimization strategy to set these parameters is

needed. The genetic algorithm [12] is success-

fully applied for the hyper-parameter optimiza-

tion in solving real world problems [13, 26].

Therefore, we adopt genetic algorithm in finding

the optimal parameters of the learning architec-

ture. The set of population is initialized, where

each individual is represented by the set of

values of each parameter of the learning archi-

tecture. Afterwards, the crossover, the mutation,

and the selection operators are applied on the

current population in order to generate more

relevant individuals. The evaluation of each

individual is determined using the fitness func-

tion. It calculates the accuracy of the generated

results. This depends on the particular IoT

problem. For example, if the problem is intrusion

detection, the fitness function gives the number

of intrusions correctly detected by the proposed

system. This process is applied for a maximum

number of generations iteratively until the

termination criteria is achieved.

Algorithm 1 presents the pseudo-code of the developed

XDIoT algorithm. The process starts by transforming the

sensor data into an image database (lines 4–11). We scan

all sensor data, for each value in the given sensor, we

associate its value to 1, in its corresponding image. A deep

learning model is designed by defining the convolution and

max pooling operators. Afterwards, the genetic algorithm

is applied to optimize the hyper-parameters of the deep

learning model by performing the training phase on the

transferred images. These two steps are then executed (li-

nes 13-15). The prediction phase is then launched on the

trained model in order to retrieve the IoT outputs (line 16),

which highly depends on the problem. For instance, if we

aim at solving the intrusion detection, the output will be the

set abnormal behaviours retrieved from the IoT sensors.

The XAI technology is finally performed to understand the

mapping between the IoT features and the derived outputs

(line 17). The output of the algorithm is the set of outputs

O with their explanation OXAI , which represent the con-

tribution value of each input in the output (line 18).

Algorithm 1 XDIoT Algorithm
1: Input: S = {S1,S2, . . . ,Sm}: the set of sensors.
2: Output: < O,OXAI >: the set of the IoT outputs with their explainability.
3: ************Gamian Angular Field*****************
4: I ← ∅;
5: for i=1 to m do
6: for j=1 to |T ime(Sm)| do
7: for k=1 to |V alues(Sj)| do
8: I ← I ∪ V alues(Sj);
9: end for
10: end for
11: end for
12: ************Deep Learning and XAI*****************
13: Batches ← CreatingBatches(I);
14: model ← V GG16();
15: Hyper Param ← GA(fit(model, Batches));
16: O ← Inference(Snew,model,Hyper Param);
17: OXAI ← XAI(Snew, O,model,Hyper Param);
18: return < O,OXAI >.
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4 Performance evaluation

4.1 Experimental environment

Extensive experiments have been carried out to evaluate

the performance of the proposed approach using bench-

mark IoT collections targeting two use cases flow predic-

tion, and intrusion detection. All algorithms have been

implemented in Python 3.7 using Keras library for deep

learning models. We also implement XAI library to visu-

alize XAI output. The implemented library is based on

Bioinfokit.1 Both computational time and accuracy are

calculated and evaluated in the experiments. The runtime is

measured in seconds, and the accuracy is determined by

prediction rate (PR) and intrusion detection rate (IR)

measures, which are respectively defined as:

PR ¼ CorrectedPredictedðfSi 2 StestgÞ
jStestj

ð1Þ

and,

IR ¼ DetectedðfSi 2 StestgÞ
jStestj

; ð2Þ

where CorrectPredictedðfSi 2 StestgÞ is the number of

corrected predicted sensor data in the testing sensors, and

DetectedðfSi 2 StestgÞ is the number of corrected detected

anomaly sensor data in the testing sensors.

Two IoT collections are used in the experiments as

follows:

1. IPFlow [33]: It contains 87 features for flow generated

by IoT network devices. It is collected over 6 days

(April 26, 27, 28 and May 9, 11 and 15) of 2017. A

total of 3, 577, 296 time series values are generated.

2. N-BaIoT [28]: This dataset deals with the IoT botnet

anomalies. It contains data collected from 9 IoT sensor

devices. It represents a set of 7, 062, 606 multivariate

time series with 115 features.

The baseline algorithms used in these experiments are

RNN-LF [4], and Tripres [40] for flow prediction, and

kNN-TF [11], and LOF-TF [14] for intrusion detection,

which are all the state-of-the-art models for comparisons.

4.2 Parameters setting

Intensive experiments have been carried to tune the best

parameters using the genetic algorithm of XD-IoT. We

varied the maximum number of iterations IMAX, and

population size is set from 10 to 200, and the best values

are given in Table 1. In the remaining experiments, the best

parameters described in Table 1 are used.

4.3 XD-IoT versus state-of-the-art flow
prediction solutions

This experiment compares the performance of XD-IoT

with the baseline algorithms for solving the flow prediction

problem, RNN-LF and Tripres, using the IPFFlow.

Figure 2 compares the runtime of XD-IoT with the

baseline flow prediction algorithms by varying both the

number of features and the number of time series values

respectively. The results shows the superiority of XD-IoT

against Tripres algorithm, and it is very competitive to the

RNN-LF. By varying the percentage of features from 20 to

100%, the runtime of the proposed solution is less than the

two baseline approaches, where a clear superiority against

Tripres is observed. For instance, with 100% of features,

the runtime of Tripres exceeds 4 seconds, whereas the

runtime of XDP-IoT does not exceed 2 seconds. In addi-

tion, XD-HR outperforms RNN-LF when varying the

number of features, and RNN-LF outperforms XD-IoT

while varying the number of time series values. These

results are achieved thanks to the efficient transformation,

and deep learning pattern strategies used to predict the

flow.

Figure 3 compares the accuracy of XD-IoT with the

baseline flow prediction algorithms by varying both the

number of features and the number of time series values

respectively. By varying the percentage of features and the

percentage of time series values from 20 to 100%, the

prediction rate of the proposed solution is greater than the

two baseline approaches. These results are achieved thanks

to the use of the genetic algorithm for finding the optimal

hyper-parameters of the deep learning architecture.

4.4 XD-IoT vs state-of-the-art intrusion detection
solutions

The next experiment aims at evaluating another XD-IoT

problem, which is intrusion detection. The baseline algo-

rithms are kNN-TF and LOF-TF for further comparisons.

Figures 4 and 5 compare both the runtime, and the

accuracy of XD-IoT with the baseline intrusion detection

algorithms by varying both the number of features and the

Table 1 Parameter setting of the genetic algorithm

IoT collection Maximum number of iteration The population size

IMAX |P|

IPFlow 86 140

N-BaIoT 45 165
1 https://github.com/reneshbedre/bioinfokit.
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number of time series values respectively. The results show

that the XD-IoT algorithm outperforms both baseline

algorithms in terms of runtime and accuracy. These results

confirmed again the applicability of the developed XD-IoT

for solving IoT applications.

4.5 Explainibility

The last experiment aims to show the interpretation of key

results obtained by the XAI process. Both prediction and

detection have been performed, and the importance of each

input feature is determined. Figures 6 and 7 present the

results of the XAI tool developed in the XD-IoT frame-

work. In Fig. 6, our XAI tool is able to visualize the

importance of 20 input features collected from the six

selected IoT sensors of the IPFlow data, and in Fig. 7, our

XAI tool is able to visualize the importance of 50 input

features collected from six selected IoT sensors of the

N-BaIoT data. These results show that the contribution of

the features varied from prediction task to detection task.

For instance, 20 important features are identified for the
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Fig. 3 XD-IoT vs state-of-the-art flow prediction solution: accuracy
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prediction task where 50 features are derived for the

detection task. This reveals that the detection task in IoT is

much more complicated than the prediction task. Thus, the

security issue in IoT is much more challenging than pre-

diction. From these results, we encourage companies and

stakeholders to investigate more on security and privacy

issues for IoT sensor devices.

5 Conclusion and future work

In this paper, we propose a novel approach that not only

processes IoT data using deep learning models, but also

improves the interpretation of the results. Initially, IoT data

is collected from various sensors. To efficiently process

IoT data, the Gamian angular field is used to transform the
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signal data into a set of images. The latter are trained by a

VGG16 model that incorporates XAI, and hyperparameter

optimization. Extensive experiments have been conducted

to thoroughly demonstrate the usefulness of our method in

two different use cases such as stream prediction and

intrusion detection. The experimental results show the

efficiency of the proposed approach compared to the

baseline approaches in terms of both runtime and accuracy.

In the future, we plan to investigate the processing of

signals represented by time series data. Therefore, the use

of a recurrent neural network with an attention mechanism

for processing time series data is crucial. Another per-

spective of this research is to investigate other genetic

algorithms for hyperparameter optimization. Optimizing

the shapely value of the whole XAI process is also on our

future agenda.

Fig. 6 XD-IoT: explainability on IPFlow Fig. 7 XD-IoT: explainability on N-BaIoT
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