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Abstract: Processing of aluminum alloys by wire arc additive manufacturing (WAAM) gained
significant attention from industry and academia in the last decade. With the possibility to create
large and relatively complex parts at low investment and operational expenses, WAAM is well-
suited for implementation in a range of industries. The process nature involves fusion melting of a
feedstock wire by an electric arc where metal droplets are strategically deposited in a layer-by-layer
fashion to create the final shape. The inherent fusion and solidification characteristics in WAAM are
governing several aspects of the final material, herein process-related defects such as porosity and
cracking, microstructure, properties, and performance. Coupled to all mentioned aspects is the alloy
composition, which at present is highly restricted for WAAM of aluminum but received considerable
attention in later years. This review article describes common quality issues related to WAAM of
aluminum, i.e., porosity, residual stresses, and cracking. Measures to combat these challenges are
further outlined, with special attention to the alloy composition. The state-of-the-art of aluminum
alloy selection and measures to further enhance the performance of aluminum WAAM materials
are presented. Strategies for further development of new alloys are discussed, with attention on the
importance of reducing crack susceptibility and grain refinement.

Keywords: wire arc additive manufacturing; WAAM; additive manufacturing; aluminum; columnar-
equiaxed-transition; alloy development; light alloys

1. Wire Arc Additive Manufacturing

The ASTM standard F2792 defines additive manufacturing (AM) as “The process of
joining materials to make objects from 3D model data, usually layer-upon-layer, as opposed to sub-
tractive manufacturing methodologies” [1]. AM is hence regarded as a bottom-up technology
as it creates a shape from zero, in contrast to carving from a block material or casting into
a preform. AM is capable of depositing metals, ceramics, polymers, and composites by
a wide range of different technologies. Metals and alloys are usually melted by a fusion
heat source and deposited on a build substrate. The metal feedstock may be in the form of
powder or wire, and available heat sources are laser, electron beam, plasma, and electric
arc. Comprehensive reviews of AM of metals are available in the open literature [2–4].

Layer-by-layer fusion of metallic wires by an electric arc is termed wire arc additive
manufacturing (WAAM). A WAAM assembly consists of several constituents. The feed-
stock for deposition is in the form of a wire. This material is melted by a heat source, i.e., the
electric arc. Plasma arc welding (PAW) and gas tungsten metal arc welding (GTAW), as
well as gas metal arc welding (GMAW) with its variants, are common fusion sources for
WAAM. The arc torch is connected to a welding apparatus for parameter control. Further,
the torch is mounted to a manipulator system, e.g., a robotic arm, or computer numerical
controlled (CNC) table. The manipulator system provides strategic displacement of the
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torch for layer-wise deposition. The material is deposited on a substrate, commonly a
metal plate.

WAAM exhibits attractive qualities for wide-spread use throughout several industrial
sectors. The inherent advantages of high deposition rate and virtually unlimited build
envelope enable production of larger structures with short lead times. The low investment
cost of WAAM is an enabling factor for small and medium-sized enterprises to utilize AM
to shorten the supply chain from production to operation.

Series production of metallic components by WAAM is suitable for most industries.
However, some sectors are to date less appropriate than others. For instance, the automotive
industry produces parts in large quantities with a constant focus on reducing cycle time.
WAAM is currently not efficient and profitable for large volume series production for
automotive vehicles. However, WAAM can be suitable for prototyping of new automotive
parts as a successor of rapid prototyping [5]. In applications where performance is of
utmost importance, e.g., in motorsports, racing, and luxury car segments, WAAM is
highly appropriate.

Several researchers pointed out the aerospace and aeronautic sectors as potential
markets for WAAM [6–8]. The annual production volumes are relatively low, which is
beneficial for WAAM. Weight reduction to suppress fuel consumption is highly important
in these sectors. This can be obtained by improved designs not attainable by milling
which enhance strength and fatigue resistance. This can again bring about slimmer and
lighter structures through topology optimization [9]. Several airplane parts are today
manufactured by milling from billets with cut-off ratios surpassing 90% [6]. Material
waste, and hence, cost, can be greatly reduced by combining near-net shaping by WAAM
and final surface milling. Given the fact that aerospace and aeronautic industries utilize
high-cost, high-quality materials, the cost savings can be massive. Similar cost savings
can be obtained in energy and nuclear industries of high-temperature resistant materials
and in production of fans and impellers for electronic applications [10,11]. The marine
industry faces increased competition and lower margins, pushing the adaption of additive
manufacturing into design and production. In this context, WAAM is regarded as being
highly suitable for production of large, complex structures such as bulbous bows, rudders,
and ship propellers [12].

WAAM has the potential to perform maintenance, repair, and spare part production,
although these possibilities have been less communicated. The possibility to maintain and
repair components instead of scrapping them induces major benefits in terms of cost and
environmental impact. Turbine blades were projected as a suitable recipient for WAAM
maintenance [13]. The Norwegian energy company Equinor initiated pipeline maintenance
with their WAAM system Weldar [14]. WAAM and AM can disrupt the supply chain and
storage of spare parts. Sectors vulnerable for operational downtime, e.g., marine, offshore
oil&gas and defense, are dependent on the rapid delivery of spare parts. The solution
today is extensive warehousing of spare parts. By shifting the focus from a ‘just-in-case’
to a ‘just-in-time’ philosophy, spare part warehousing may be eliminated. In summary,
operational down time, warehouse storage, and scrapping can be greatly reduced by proper
implementation of AM and WAAM into the industry.

WAAM is a versatile and low-cost technology compared to that of other AM processes.
Components can be made with a deposition rate up to several kg/h for aluminum, which
is orders of magnitude higher than that of powder based processes [15,16]. An electric arc
as heat source enables localized inert gas shielding; hence, inert build chambers used for
powder-and-laser AM can be omitted. The exception is reactive metals such as titanium
and Al-Li alloys, which require an inert build chamber. Localized gas shielding reduces
the cost and enable unlimited build volumes. The hardware needed for WAAM (robotic
arm, weld power source, feedstock wire) is relatively cheap compared to that of laser- and
electron-beam systems. Hardware can be bought ‘off the shelf’ from different suppliers
and tailored to the configuration needed.
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The use of wire feedstock for deposition brings several benefits. Wires are cheaper than
powder feedstock and are easier to store, transport, and handle. Powder feedstock may
also induce explosion hazard and impact on biological life. The energy efficiency of metal
arc deposition is high. Up to 90% of the energy is supplied to the workpiece [17]. This is in
strong contrast to laser- and electron-beam systems, where 2–20% of the energy is utilized
for deposition of aluminum alloys [18,19]. In conclusion, WAAM is especially appropriate
for production of large-volume parts made by costly materials where scrap metal savings
are important. As an example, Williams et al. [6] introduced material savings close to 500 kg
per part for aluminum wing ribs by WAAM compared to that of subtractive machining.
Bekker et al. [20] performed a life-cycle assessment (LCA) comparing the environmental
impact of CNC milling, green sand casting, and WAAM of 308L stainless steel from cradle
to gate. Sand casting and WAAM performed equally well in terms of environmental impact,
while outrunning CNC milling. However, the conclusions were shown to be vulnerable
to the selection of material and material waste from milling. Guo developed a cost and
carbon footprint assessment model for WAAM [21]. For low production volumes with
high complexity, WAAM was shown to be superior to casting and CNC milling in terms
of cost and greenhouse gas emissions. Thus, WAAM is considered a relatively green
manufacturing route for specific applications.

2. Aluminum Alloys

Aluminum is the most abundant metallic element in the Earth’s crust. The metal
possesses a range of desired properties, such as low weight, high specific strength, good
thermal and electrical conductivity, and excellent corrosion resistance and formability.
Pure aluminum has a density of 2.7 g/cm3 (one third of the density of steel) and is workable
due to the inherent face centered cubic (FCC) crystal structure with low resistance for
dislocation slip. The excellent corrosion resistance in oxidizing environments is due to an
instantaneous formation of a dense, self-restoring oxide film.

Properties such as strength, weldability, and formability of aluminum can be tai-
lored for specific applications through addition of alloying elements. Common solutes to
aluminum are copper, manganese, silicon, magnesium, and zinc. Aluminum alloys are
divided into two classes, i.e., wrought and cast alloys. The latter category is heavily alloyed
for improved castability and to obtain reasonable strength, and is seldom utilized as wire
consumables for arc deposition. Thus, wrought alloys are covered henceforth. Aluminum
wrought alloys are divided into eight categories, called series, based on their main alloying
elements. A short description of the series with their properties related to WAAM are given
in the following.

1000-series are commonly referred to as commercial pure aluminum with presence of
less than 1% of other elements. The minor presence of solute is often impurity elements
from the primary production process, such as iron and silicon. Commercial pure aluminum
finds no structural applications due to its softness. Thus, alloys from this series are seldom
utilized for WAAM. However, due to the excellent corrosion properties, the alloy series
may find applicability as cladding material.

2000-series aluminum-copper alloys possess high strength but poor corrosion resis-
tance. The sound mechanical properties originate from atomic clusters (GP zones) and
plate-shaped Al2Cu (θ′ and θ′′) precipitates formed during heat treatment. Wire consum-
ables of the 2319 alloy is commercially available, originally developed for joining with
2219 plates and forgings. The 2319 and 2219 alloys are well-suited for WAAM, as demon-
strated by several authors [22–29] together with the fatigue-resistant 2024 alloy [30,31].

3000-series contain manganese as main alloying element. These alloys are all-purpose
alloys for, e.g., beverage cans with intermediate strength levels and good formability.
3000-alloys were never processed by WAAM, and seldom utilized as filler for welding
applications [32].

4000-series aluminum alloys possess intermediate strength levels from solid solution
strengthening of silicon. Al-Si alloys are mostly used for casting purposes due to excellent
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flowability and decreased thermal shrinkage. For wrought applications, welding and
brazing applications are most widespread. 4043 is the workhorse for arc welding and is
used in a range of industries due to the excellent weldability towards a wide range of
aluminum alloys. 4043 is consequently heavily studied for WAAM [33–38]. The high-silicon
brazing alloy 4047 was also demonstrated for WAAM applications [39–41].

5000-series aluminum alloys have magnesium as main alloying element and trace
amounts of manganese for dispersion strengthening. The magnesium content increases
the corrosion resistance in marine environments and is commonly used in shipbuilding.
The strain hardening response of Al-Mg alloys is significant due to the Portevin–Le Chate-
lier effect [42]. The excellent properties of 5000-alloys in WAAM materials were frequently
demonstrated in later years, including 5087 [26,43], 5183 [44–47] and 5356 [48–50] with
commercial feedstock.

6000-series Al-Mg-Si alloys are heat-treatable through precipitation of semicoherent
Mg2Si β′ and β′′-precipitates for increased strength. These alloys have a wide range of
applications, especially as extruded profiles. The high cracking susceptibility of 6000-series
alloys during solidification makes these alloys difficult to process by additive manufactur-
ing [51]. Thus, commercial feedstock for WAAM and welding is scarcely available. To the
authors knowledge, the only Al-Mg-Si alloy available as weld filler is 6063 [52].

7000-series aluminum alloys have zinc as main alloying element, together with bal-
anced additions of copper and magnesium. Such alloys obtain remarkable mechanical
properties through precipitation of MgZn2 and Mg(Zn,Cu,Al)2 η-phases during artificial
heat treatment. In fact, the 7068 alloy is the strongest commercially available aluminum
alloy, and is commonly utilized for military aircraft applications [53]. 7000-series alloys are
to date not available as commercial feedstock for WAAM.

3. Challenges Related to Aluminium WAAM

The mechanical properties of aluminum alloys fabricated by WAAM show compa-
rable and even superior performance compared to that of their wrought counterpart [54].
However, WAAM parts exhibit defects, which limits their applicability in industrial service
and even the extent of available alloys. These challenges are related to the process stability
(path planning, parameter setup, melt pool shielding, etc.) and alloy chemistry. The most
prominent challenges related to WAAM of aluminum are covered in this section, namely
porosity formation, residual stresses, and cracking.

3.1. Porosity

Cavities are the most common defect in aluminum alloys processed by WAAM.
The cavities may be in the form of shrinkage pores or metallurgical porosity. The type
of void can be separated by their sphericity. Metallurgical pores have a sphericity close
to 1, while shrinkage pores have significantly lower values than 1 [55]. Shrinkage pores
are formed due to the large thermal shrinkage of aluminum upon cooling (∼23 µm/mK)
and the difficulties in ‘back-filling’ the cavity. Such defects are irregularly shaped, and
they are often found in vicinity of primary phases such as alpha-aluminum dendrites.
The shrinkage may also result in cracking, as covered in Section 3.3 of this review.

Vaporization of metallic elements during WAAM is a little discussed topic in literature.
Elements with high vapor pressure like Mg, Zn, and Li vaporize at elevated temperature
and leave porosity in the structure [56,57]. Up to 20% magnesium loss in 5000-alloys was
reported for WAAM, dependent on the supplied heat input [58]. However, the consequence
of elemental losses on mechanical properties received more attention than the correlated
porosity formation.

The most common cavity defect related to WAAM of aluminum is hydrogen porosity.
This defect is spherical in shape and is formed due to precipitation of supersaturated
hydrogen during the solidification stage. The large solubility difference of hydrogen in
liquid and solid state of aluminum is responsible for the ease of porosity formation [59].
The solid-state solubility of hydrogen in aluminum is virtually nonexistent, but it can be
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slightly increased by lithium in solid solution, and at dislocations, vacancies and certain
precipitates [60].

Due to the low solid-state hydrogen solubility, the remaining liquid during solid-
ification is enriched in hydrogen, which may supersede the solubility limit at a given
temperature. The pores are believed to form by nucleation and growth in the liquid,
and the topic was extensively researched and modeled [61]. Upon supersaturation, nu-
cleation of a pore is initiated when the gas pressure in the melt pool overcomes the
combined local fluid pressure and the surface tension of forming gaseous species [62].
Further pore growth is governed by diffusion, as modeled by Li and Chang [63]. In WAAM,
the formed pore either floats to the top of the melt pool by buoyancy or is trapped by the
advancing solidification front. A small fraction of hydrogen can also exist in supersaturated
state due to the rapid solidification in WAAM [64]. This hydrogen can be precipitated as
secondary pores under postdeposition heat treatments [65].

The presence of hydrogen is a prerequisite for forming porosity. There are numerous
sources to how hydrogen can be introduced to the final aluminum WAAM structure.
The internal hydrogen content is governed by the refining processes of the primary metal
in the casthouse, and any reaction between water, moisture, and hydrated oxide films with
aluminum. Further, the produced wire can adsorb moisture on its surface during storage.
Hydrocarbons in the form of grit, oil, or paint on the wire surface play a major role in
increasing the hydrogen content. At last, the hydrogen level in the shield gas and moisture
pickup from air during arc deposition induce hydrogen porosity.

Ryan et al. [66] proposed hydrocarbon contamination on the wire feedstock surface as
a considerable hydrogen source. Wires with poor surface quality trap grit and moisture in
cavities and cracks, which becomes free hydrogen when the wire is melted by an electric
arc. Aluminum is reactive with oxygen and humidity in air, even at room temperature.
Aluminum instantly produces a thin Al2O3 layer in contact with oxygen. The oxide layer
is further hydrated in contact with the humidity in air, creating an amorphous Al2O3 ·
3H2O phase [67]. Physisorbed and chemisorbed water molecules on the feedstock wire
decompose during WAAM into atomic hydrogen. This hydrogen source can be eliminated
by thermal treatment (decomposition of the hydrated layer) or by laser cleaning [68]. In-situ
resistance heating of the consumable wire shortly before deposition showed promising
results with reducing the porosity content in aluminum alloys [30].

3.2. Residual Stresses and Distortion

AM methods which involve melting of the input materials induce residual stresses
in the material. The high energy fusion source (e.g., arc, laser) rapidly heats the feedstock
material, thus expanding the material. Further, the feedstock is deposited and allowed
to solidify and cool. In the case of aluminum, cooling results in contraction of the mate-
rial. Because of the uneven solidification and cooling rate of the material, the deposited
material experiences uneven contraction [69]. Constraints from the base plate and al-
ready solidified material deny the last portion of material to contract, in which residual
stresses are developed. The stresses are usually tensile in nature, which lowers the fatigue
resistance of the whole component [70]. If the residual stress levels surpass the yield
strength, or the constraint (e.g., base plate) is removed, the material distorts. Distortions
are generally unwanted, as the geometrical accuracy of the component is aggravated.
Prominent actions to reduce distortions are parameter selection (heat input and dwell
times), path planning, and auxiliary processes such as heat treatment and high-impact
rolling [70,71]. As residual stresses were shown to be linearly related to the material hard-
ness of quenched aluminum alloys [72], the residual stresses are to some degree dependent
on alloy composition.

3.3. Cracking

Joining of materials by fusion-based methods can imply a range of cracking mech-
anisms in the as-solidified weld. Hot cracking in the partial melted zone is a common
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cracking mechanism in arc welding, but it was not reported for WAAM materials [73].
The most prominent mechanism for aluminum and its alloys in WAAM is solidification
cracking, which happens in the liquid melt pool. Cracks formed are intergranular and
irremediable when first formed. Solidification cracking was heavily studied for aluminum
castings [74].

The main factors affecting the solidification cracking susceptibility are related to the
grain morphology and solidification characteristics [75]. It is generally accepted that a
wide solidification range increases the crack susceptibility. A large difference between
the liquidus and the solidus temperature results in the formation of a well-established
solid network of primary phase where the remaining liquid has limited mobility close to
solidus. The cracking susceptibility is further enhanced when the primary metal solidifies
in a columnar dendritic manner. The mechanism is shown in Figure 1a. Close to the
solidus temperature, isolated liquid pockets strain the solid network due to shrinkage.
As remaining liquid is unable to ‘back-fill’ the pockets, tensile stresses are exerted on the
solid network. Cracking occurs if the tensile stresses exceed the tensile strength of the
material at the given temperature.

The two-phase temperature range is closely related to alloy composition. As shown
in Figure 1b for an arbitrary binary eutectic system, the cracking susceptibility increases
toward compositions with longer solidification ranges. This correlation is commonly
called the lambda curve [76]. Solidification cracking can therefore be depressed by proper
alloy selection. The thermal shrinkage and liquid viscosity of alloying elements are also
important factors for solidification cracking. The fact that silicon decreases the viscosity (i.e.,
better flowability) and expands upon cooling contributes to the low-crack susceptibility of
Al-Si alloys.

(a) (b)

Figure 1. Solidification cracking in materials as a consequence of microstructure and solidifica-
tion range. (a) Solidification regime in two-phase region of aluminum with a columnar dendritic
structure. An intergranular crack is shown in lower microstructure, marked in red. (b) Solidification
crack susceptibility as a function of alloy composition, and solidification range for an arbitrary binary
eutectic alloy. Reproduced with permission from Song et al., Journal of Magnesium and Alloys;
published by Elsevier, 2016 [76].

Several theories and models were developed to predict the solidification crack suscepti-
bility of metals, and in particular, aluminum alloys. One of the first well-predicting models
was presented by Clyne and Davies [77], which considered the fraction of time where the alloy
was susceptible to cracking. The resulting crack susceptibility coefficient CSC is presented
in Equation (1). tV refers to the time when the solid fraction during solidification is between
90–99%, which is the vulnerable stage where the solid network of the metal can disrupt
and produce solidification cracks. tR is the so-called relaxation time where the alloy can
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redistribute liquid without constraint, usually between 60–90% fraction of solid. The CSC
criterion is well-suited for development of Lambda-curves, as presented in Figure 1b.

CSC =
tV
tR

(1)

A more advanced approach to assess the cracking susceptibility was presented by
Rappaz et al. [78] through the Rappaz–Drezet–Gremaud (RDG) criterion. Instead of
time as basis for crack susceptibility, the mass balance and a critical strain rate were
considered. This involves the liquid flow at interdendritic areas to accommodate shrinkage
and deformation of the solid network of dendrites. The criterion is based on the initiation
of a void in the network, which grows when first formed into a crack. If the local pressure
supersedes a critical pressure, the void is created. The hot crack sensitivity (HCS) is a
function of the deformation rate in the solid phase ε̇p, Equation (2). The risk of cracking
increases with increasing value of HCS.

HCS = 1/ε̇p (2)

where factors like shrinkage β, solidification front velocity vT , liquid flowability vl and
fraction solid and liquid ( fs and fl , respectively) are taken into account, Equation (3) [74,78].

d flvl
dx

+ (1 + β) fs ε̇p − vT β
d fs

dx
= 0 (3)

4. Strategies to Mitigate Defects in WAAM

The mentioned challenges and defects related to WAAM of aluminum restrict the
mechanical properties and integrity of finished components. A wide range of measures to
mitigate these defects was proposed in the open literature. Although well-covered in other
comprehensive reviews, a short summary of proposed actions to enhance the quality of
WAAM components is given in the following.

4.1. Mechanical Impact

Several researchers examined the effect of striking the deposited layer with mechanical
forces to improve the material quality. Applying high pressure to every deposited layer was
shown to be efficient in pore closure and strength enhancement. The enhanced strength
is a result of grain refinement through recrystallization, enhanced dislocation density,
and dispersion of interdendritic phases. Notable strategies are postlayer rolling [79],
demonstrated for alloys such as 2319 [26] and 5087 [43]; pneumatic hammering [80];
hot isostatic pressing [81]; laser shock peening [82], and ultrasonic peening [83]. All
demonstration cases were performed on straight walls with one layer of thickness; the
applicability of each auxiliary process needs to be assessed for more complex designs.
In addition, the investment and operational costs need to be considered. An interlayer
process decreases the overall production efficiency and affects the total cost in production.

4.2. Hardware

Considerable efforts were devoted to assessing the most suitable hardware for suc-
cessful and high-quality WAAM. Deposition torches, shield gas composition, and substrate
tables were of special interest. The two common deposition principles for WAAM are
based on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW). Plasma
arc welding is also possible, but rarely utilized for WAAM of aluminum alloys. GTAW
utilizes an inert tungsten electrode to establish an electric arc where the feedstock wire is
introduced and transferred to the melt pool. The assembly with separate wire feeder and
electrode complicates the deposition strategy of complex shapes [84]. On the other hand,
several wires can easily be fed into the arc, increasing the deposition rate and enabling
in-situ mixing of alloys. The latter is covered in more detail in Section 5.3. GTAW has a
relatively high heat input [85], which may lead to bead overflow of the component [86].
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An alternative GTAW setup was developed by Rodrigues et al. [87], termed ultracold
WAAM (UC-WAAM). Unlike conventional deposition where the electric arc is established
between the electrode and workpiece, UC-WAAM establishes an arc between the electrode
and the feedstock wire. The short arc length provides a lower heat exposure to the already
deposited component, leading to a smaller melt pool. A demonstrator case with carbon
steel showed better forming possibilities and a higher cooling rate of the solidified material.

GMAW is more versatile for freeform fabrication, as the feedstock wire works as
the electrode. The main volume of WAAM literature focused on the GMAW principle.
From the early developments in the 1940s, GMAW saw continuous development into the
21st century. The most recent paradigm was set by the development of the cold metal
transfer (CMT) principle in 2004 [88]. By short-circuiting the arc through dipping the filler
wire into the melt pool, weld spatter was almost eliminated. Successful CMT of a range of
aluminum alloys was demonstrated in recent years [25,36,89].

CMT was further developed with alternative deposition regimes in recent years. This
includes a pulsing step (CMT-P) after short-circuiting [90], the possibility to exert alternating
polarity of current (CMT-ADV) [28], and a combination of both (CMT-PADV) [23]. Com-
parative studies of the mentioned arc modes on aluminum alloys in terms of porosity and
mechanical properties showed that the alternating current modes (CMT-ADV and CMT-
PADV) created porosity-free structures with a fine microstructure [27,45].

Other amendments related to the hardware input for WAAM include shield gas com-
position. Shield gas mixtures with higher thermal conductivity (Ar-He) yield a deeper
melt pool and higher cooling rates of the aluminum [91]. However, Ar-He shield gases
have higher costs than that of pure Ar shield gases. N2 shield gas was shown to be unsuit-
able for WAAM of aluminum due to the formation of AlN nitrides, which reverted the
mechanical properties [48]. The effect of oxygen impurities in the shield gas was explored
by da Silva et al. [92], where an oxygen content below 200 ppm was found acceptable.
Vibration of the substrate table was shown by Zhang et al. [93] to induce grain refine-
ment and enhanced properties of Al-6Mg WAAM components. Heating of the feedstock
wire prior to deposition was attempted to reduce porosity and increase production effi-
ciency [30]. The importance in selection of substrate build material was highlighted by
Eimer et al. [94].

Auxiliary control systems to ensure high-quality deposits are under continuous devel-
opment. Algorithms for layer slicing and path planning prior to WAAM deposition is a
research topic of considerable interest, as it may help with decreasing geometrical setoffs
and increase complexity [95–97]. Heat accumulation during continuous deposition can
deteriorate the WAAM design. Methods for in-line cooling of deposited material were
examined, e.g., water immersion and air jet impinging [98–100].

In-situ process monitoring provides information of the process stability and detection
of anomalies. Process information may be gathered by data from laser and IR sensors,
weld signallers, pyrometers, ultrasound, spectrometers, and charge-coupled device (CCD)
cameras to ensure the process quality [101–103]. Other hardware equipment include clamp-
ing fixtures to depress distortion, as well as in-situ or postmachining of the component to
obtain a smooth outer- and inner-surface finish [104–106].

4.3. Microstructure Control

Physical and mechanical properties of metals are strongly related to their microstruc-
ture. The grain morphology and grain size influence the degree of anisotropy, strength,
and ductility in aluminum alloys. A fine equiaxed grain structure was preferred for engi-
neering applications, as the aforementioned properties are greatly enhanced.
However, tight control of the microstructure evolution in melting-based processes such
as casting and welding is challenging. For additive manufacturing with multiple melting-
solidification cycles and steep thermal gradients, the situation is even more complex.
The unique building strategy of AM can provide tailored spatial variations in the mi-
crostructure if the solidification behavior can be controlled [107].
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The grain morphology in the solidified structure is highly influenced by the heat
conduction (i.e., temperature gradient G [K/m]) and the kinetics of mass transfer (i.e., solidifi-
cation rate R [m/s]). The product GR [K/s], i.e., cooling rate, determines the microstructure
fineness. The higher cooling rate, a finer structure is expected due to the decreased diffusion
length during solidification. The G/R [Ks/m2] ratio determines the interface morphol-
ogy of the growing solidification front. Hence, the growth front stability is governed by
G/R, which can be planar, cellular, or dendritic [108]. As seen in Figure 2 [109], equiaxed
dendritic structures are formed at low G/R ratios. The most common grain structure in
aluminum WAAM components is, however, columnar dendritic, due to the presence of a
relatively high temperature gradient G.

Figure 2. Effect of temperature gradient G and solidification rate R in the melt pool on solidification
morphology and microstructural fineness. Reproduced with permission from Lippold; published by
John Wiley & Sons, 2015 [110].

The grain structure can be precisely tailored by controlling the G/R ratio. The principle
was demonstrated by Dehoff et al. in powder-based AM for a nickel superalloy [111].
Columnar grains in Inconel alloys are highly textured along the <100> directions, while
equiaxed grains are randomly oriented. Consequently, a tailored pattern can be created
by the energy source. A similar approach was utilized by Yehorov et al. for WAAM of
aluminum alloys [107].

The solidification rate R of each individual grain is dependent on the scan speed v
of the deposition torch in WAAM, as shown in Equation (4) [112]. The growth velocity is,
however, uneven due to the nonuniform shape and heat conduction of the melt pool. This
is accounted for by the angle α between the deposition direction and normal to the melt
pool, as well as the angle β between deposition direction and actual solidification direction.
These angles are shown in top-view for a melt pool in Figure 3a. The solidification rate
is thus fastest parallel to the torch travel direction. The effect of torch speed v on the
grain morphology of an AA6082 weld is shown in Figure 3b. Due to the increased R
and corresponding decreased G/R ratio, the grain morphology in the center of the weld
changed from dendritic columnar to dendritic equiaxed. Controlling the temperature
gradient G can be obtained by increasing the heat input during deposition or by heating
of the build substrate [113]. The input parameters must, however, be within the process
window of stable WAAM deposition to avoid irremediable process faults.
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(a) (b)

Figure 3. Effect of process parameters on grain morphology and cracking in aluminum arc welding.
(a) Relationship between travel speed v and growth rate R. α is angle between torch travel direction
and melt pool normal. β is angle between torch travel direction and actual solidification direction.
Reproduced with permission from Kou; published by John Wiley & Sons, 2003 [85]. (b) Effect of
travel speed v on solidification rate R, grain morphology, and cracking in arc welding of AA6082.
An increased v induces equiaxed grain growth and suppresses cracking. Reproduced with permission
from Schempp et al., Welding Journal; published by the American Welding Society, 2014 [114].

R =
v cos α

cos(α− β)
(4)

4.4. Solidification in WAAM and CET

At present, only a fraction of the whole range of aluminum alloys is suited for WAAM.
Issues regarding the cracking susceptibility during solidification excludes whole series
of aluminum alloys. The limitations set by alloy selection establish a serious obstacle for
industrial adaption. Strategies to avoid cracking need to be developed and exploited by
metallurgists to present new alloys that are safe and reliable for use in WAAM.

As presented in Section 3.3, solidification cracking happens due to an increased
pressure drop and insufficient back-feeding of liquid metal in a rigid solidified network.
The rigid network is columnar in nature, which in certain cases (dependent on the solidifi-
cation progress) establishes isolated melt pockets that cannot accommodate the shrinkage
associated with final solidification. The melt distribution is highly increased when the
solidification happens in an equiaxed manner instead. Combined with powerful grain
refinement, the distribution distances are further decreased, leading to a significant re-
duction of the crack susceptibility. The effect of altering the grain growth mechanism is
often termed columnar-to-equiaxed transition (CET), and it is one of the most powerful
tools to reduce cracking and opens new alloys for WAAM. To understand the conditions
and measures that lead to CET, the underlying concepts related to CET for WAAM are
presented in the following paragraphs.

Consider a WAAM setup with layer-wise deposition of aluminum by an arc torch, as
shown in Figure 4a. The metal is transferred to the WAAM part as metal droplets that form
a liquid melt pool. When the liquid starts to solidify, the lower part of the melt pool is in
direct contact with the former layer. The former layer is in solid-state, and therefore holds a
lower temperature. For aluminum alloys, heat dissipation by radiation to the surrounding
atmosphere can be neglected. Heat is therefore conducted from the melt pool into the
solid layer. Consequently, solidification starts at the solid–liquid interface between the
former layer and the melt pool. The solid interface contains primary aluminum grains that
are perfect heterogeneous nucleation sites due to the exact lattice match with aluminum.
The melt starts to solidify on these grains, which is termed epitaxial growth, Figure 4b.
The solidification continues where the dissipation of heat is fastest, i.e., in the opposite
direction of the highest temperature gradient G, Equation (5). For the situation given in
Figure 4c, the largest heat dissipation is vertically downwards towards the solid substrate.
The high-thermal conduction of aluminum alloys sets up a strong heat sink towards the
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solid, i.e., a vertical G (( ∂T
∂z ) >> ( ∂T

∂x ) + ( ∂T
∂y )). The combined contributions from epitaxial

growth and directional heat sink stabilize the columnar dendritic structure.

Figure 4. Schematic of epitaxial growth, development of a constitutional undercooled zone and
heterogeneous nucleation during solidification of an alloy deposited by WAAM. (a) Illustration of
a WAAM structure. Last layer is still in liquid phase (marked yellow). (b) Newly formed dendrite
in the melt, epitaxially grown on the former layer. (c) Formation of a constitutional undercooled
zone ∆Tc due to solute redistribution. Undercooling is insufficient for heterogeneous nucleation.
(d) Heterogeneous nucleation of a new grain on a second-phase particle. (e) Growth of new grain
and a new nucleation event. Reproduced with permission from Bermingham et al., Acta Materialia;
published by Elsevier, 2019 [115].

G = ||∇T|| =

√(
∂T
∂x

)2
+

(
∂T
∂y

)2
+

(
∂T
∂z

)2
(5)

For alloys, the primary metal initially formed in the melt pool has a different com-
position to the bulk liquid. Solute is therefore redistributed into the melt, creating a
solute-enriched diffusional zone ahead of the solidification front. The extension of this so-
lute partition zone is dependent on the type and amount of alloying elements. The relation
was equated by Desnain et al. in Equation (6) and termed growth restriction factor Q [116].
Each element i is regarded additive to each other if the solute is solved in the liquid. mL is
the slope of the liquidus line, k is the partition coefficient (slope of the solidus line), and C0
is the concentration of the alloying element. A list of Q values per wt.% for common solute
elements in aluminum is given in Table 1. Note the high Q value of titanium, implying
creation of a large partition zone.

Q =
n

∑
i=1

mL,i · (ki − 1) · C0,i (6)
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Table 1. Growth restriction factor Q of elements in solution with aluminum. Input data are based on
binary phase diagrams [117].

Element i ki mL,i Q/C0,i

Si 0.11 −6.6 5.9
Mg 0.51 −6.2 3.0
Mn 0.94 −1.6 0.1
Cu 0.17 −3.4 2.8
Zn 0.88 −2.97 0.3
Fe 0.02 −3.0 2.9
Ti 7.8 33.3 220
V 4.0 10.0 30

Mo 2.5 5.0 7.5
Nb 1.5 13.3 6.6
Cr 2.0 3.5 3.5
B 0.067 1.0 3.2

The transient solute-enriched diffusion zone has a lower equilibrium melting tem-
perature Tl than that of the bulk liquid in hypo-eutectic alloys. The real temperature Tq
in the solute redistribution region is, however, governed by the temperature gradient G.
If the liquidus temperature gradient exceeds G (i.e. dTl

dz > G), a so-called constitutionally
undercooled zone is developed ahead of the solidification front, termed ∆Tc in Figure 4c.
The constitutional supercooling ∆Tc stabilizes dendritic growth over planar growth [108].
As most aluminum WAAM structures exhibit a dendritic microstructure, constitutional
supercooling (∆Tc > 0) is present. The constitutional supercooling is thus the driving
force for further growth of the columnar dendrite. The constitutional undercooled zone is
promoted by increasing the growth restriction (i.e. Q), as given by Equation (7) [118]. DL is
the diffusion coefficient of the solute in the liquid.

GL
R
≥ −∑n

i=1 mL,i · (ki − 1) · C0,i

kDL
=
−Q
kDL

(7)

If a solid surface (e.g., a particle) exist ahead on the solid/liquid interface as in
Figure 4d, it can serve as a heterogeneous nucleation point for a new grain. The particle is
activated as a nucleant if the constitutional supercooling ∆Tc surpasses the nuclei activation
temperature ∆TN . In other words, heterogeneous nucleation on the particle is stable if
∆Tc > ∆TN . A grain refining effect is thus established. If sufficient potent particles are
available in the melt, repeated nucleation events take place in the melt pool, Figure 4e.
The columnar growth is thus restricted, and the solidified structures appear as equiaxed
dendritic [115].

Thus, CET needs two prerequisities to be effective in WAAM: a sufficiently large,
undercooled zone ahead of the solid/liquid interface, and the presence of a nucleation agent.
The constitutional supercooling ∆Tc is dependent on alloy addition (through the relation of
Q) and temperature gradient G at the solid/liquid interface. ∆Tc increases with increasing
Q and decreasing G. Potent nucleation agents have a low activation supercooling ∆TN ,
as heterogeneous nucleation takes place at ∆Tc > ∆TN . ∆TN is related to the surface energy
that needs to be overcome for an aluminum atom to grow on the nucleant. Zhang et al. [119]
proposed that a high degree of crystallographic matching between the two constituents
determines the nucleation potency. CET is also a function of the nucleant density N0,
as shown in Equation (8) [120,121]. The maximum temperature gradient G to enable CET
is increased by increasing N0. Grain refinement is thus simplified by increasing the density
of potent nucleation points. Furthermore, a low nucleant activation supercooling ∆TN is
beneficial for CET.

G < 0.617N1/3
0

(
1−

∆T3
N

∆T3
c

)
∆Tc (8)
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5. Aluminum Alloys for WAAM
5.1. Commercial Selection

Available feedstock wires for WAAM are today mostly ordinary welding wires. A sup-
ply network of wires tailor-made for WAAM is emerging [122,123], but is still immature for
aluminum alloys due to low demand and low production volume [124,125]. The processes
of arc welding and WAAM are fundamentally similar, and the wire selection is therefore
identical at present. Aluminum alloys for welding are developed to meet a limited range
of operations, e.g., joining of sheets and extrusions. The alloy selection is therefore limited
to a few compositions, including the already mentioned 2319, 4043, 4047, 5087, 5183, and
5356 alloys. Other alloys available as feedstock wire but not demonstrated for WAAM
include 1070, 1450, 5554, 5754, and 6063 [52,126].

WAAM has the potential to create aluminum components with intelligent design and
superior mechanical properties. The basic prerequisite to obtain sound properties is closely
related to the alloy composition. As the commercial alloy assortment is narrow at present,
research and development is needed to expand the selection. This is essential for high-
strength aluminum alloys belonging to the 2000, 6000, and 7000 series. Strategies and recent
advancements of new alloys and compositions for WAAM are presented in the following.

5.2. Other Alloys for WAAM

The major restriction of new aluminum alloys for welding is the cracking susceptibility.
As stated in Section 3.3, several alloys crack in the final stages of solidification due to
contraction and an unfavorable microstructure. The contraction stresses are relatively high
in traditional welding due to the constraint of the base metal (sheets, extrusions, etc.).
For WAAM, only the former layer makes a mechanical constraint to the solidifying metal,
and the shrinkage is easier to accommodate. With this in mind, a few attempts of WAAM
with established alloys were demonstrated.

A comparative study by Haselhuhn et al. [127] involved the commercially pure 1100 al-
loy and the 4943 alloy. The 1100 alloy was as expected soft with relatively high ductility.
The 4943 alloy with high silicon content (5%) and trace amounts magnesium (0.50%) ex-
hibited no tendency of cracking, and was therefore successful for WAAM. The mechanical
properties of 4943 were comparable to the 4047 Al-12Si alloy. Addition of magnesium
to aluminum alloys with high silicon content enables the formation of the strengthening
β phase. The Al-7Si-0.6Mg (4220) alloy is suitable for melting-based processing without
tendency to crack [128]. Thus, these alloys are well-suited for WAAM combined with
artificial aging [129,130]. Yang et al. showed that 4220 in as-deposited state has a relatively
poor tensile strength of 130 MPa, but can be raised to 350 MPa in T6 state [131,132].

Preliminary studies on the applicability of the Al-Mg-Si alloy 6016 were performed by
Ünsal et al. [133]. T6 treatment of the deposited material exhibited comparable strength
to wrought material (238 MPa), however, with reduced ductility. The porosity con-
tent (<1%) and scattered cracking events were believed to cause the reduced ductility.
Similar performance was reported by Hauser et al. for 6060 [134]. A few studies regarding
established 2000-series alloys have been reported. Zhang et al. manufactured thin walls of
the Al-Cu-Mg alloy 2024 with no tendency of cracking [135]. The beneficial composition of
2024 to suppress solidification cracking in WAAM was first reported by Fixter et al. [31].
The Al-Li alloys 2196 and 2050 with high strength-to-weight ratio was successfully de-
posited by WAAM [136,137]. Artificial T6 treatment promoted formation of T1 Al2CuLi
precipitates, which accounted for a tensile strength reaching 439 MPa. The high vapor
pressure of lithium makes Al-Li alloys challenging to deposit due to elemental losses and
porosity formation.

5.3. Alloy Modifications

Hundreds of tailored aluminum alloys exist to meet specific end uses. The alloy com-
position is a fine-tuned balance between properties such as strength, ductility, extrudability,
forgeability, machinability, weldability, among others. In this context, the adaption of
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already existing wrought alloys for WAAM is suboptimal given the fact that WAAM is a
manufacturing route relying on fusion of the material. This contrasts with wrought alloys
that are commonly formed in solid state. This effect can be seen on the weldability (i.e.,
tendency to crack) and resulting mechanical properties. Scientists and engineers should
therefore focus on developing new alloy compositions tailored for WAAM.

The development of new alloy compositions for WAAM may be a tedious and re-
source demanding task. One approach utilized by several authors involves casting of a
billet with a given composition, followed by hot rolling and drawing to wire dimensions.
Then, the wire is deposited by WAAM, and the final properties are characterized. To ex-
amine a new or modified composition, the whole process chain must be repeated. In-
vestigations of new compositions from the 7000 series [138–141], 2000 series [142,143],
and 4000 series [144] using the casting route were reported in recent years. Experimental
screening of potential aluminum alloys through casting is therefore regarded impractical
and better suited for pilot experiments after screening.

An alternative method for screening potential alloy compositions is to mix different
alloy additions directly in the arc plasma. The strategy of so-called twin-wire or multiwire
WAAM emerged in recent years. The method involves multiple wire feeders leading
feedstock of different compositions into a GTAW arc where the droplets instantaneously
melt and mix. By changing the characteristics of each wire i (i.e., elemental composition
Ex, diameter Di, density ρi) coupled with the wire feeding rate WFSi, the resulting el-
ement composition E can be precisely tailored. Qi et al. [145] mixed commercial 2319
and 5087 wires to obtain the 2024 alloy, previously seen to be highly suitable for WAAM.
A similar approach to obtain 7050 WAAM deposits was demonstrated by Yu et al. [146] by
combining 2319, 5356, and pure Zn wires. The crack-susceptibility of 7050 was profound,
which limited the mechanical properties.

E =
(WFSiD2

i ρiEx)

(WFSiD2
i ρi)

(9)

The fast screening through multiwire deposition can be utilized to find alloy compo-
sition especially suited WAAM with reduced cracking susceptibility, sound mechanical
properties, and flowability, among others. An extensive screening of 27 different compo-
sitions of Al-Cu-Mg to evaluate the cracking tendency was performed by Gu et al. [16].
In fact, one half of the investigated alloys exhibited cracking post WAAM, highlighting the
importance of alloy additions. Similar activities were performed by Klein et al. [147] and
Qi et al. [148,149]. Eimer et al. [150] utilized laser assisted WAAM to mix pure zinc wires
with 2319 to create high-zinc 7000 alloys.

5.4. Microalloying

Minor additions (<1%) of elements to the alloy chemistry to alter the microstructure
and properties is termed microalloying. The art of microalloying was successfully imple-
mented in steelmaking, developing a whole class of steels relying on small additions of
Nb, V, Ti, Mo, Zr, and other elements to obtain sound mechanical properties and excellent
weldability. Microalloying is also implemented in other material systems, such as nickel,
titanium, and aluminum [151–153].

Microalloying elements are primarily used to refine the microstructure and enhance
mechanical properties. The microstructural refinement is obtained through heterogeneous
nucleation in the liquid-to-solid transition, and as obstacles for grain growth at elevated
temperatures. Small microalloying particles exert a pinning pressure to counteract the driv-
ing force for a migrating grain boundary, often referred to as Zener pinning. Further, certain
microalloying elements provide precipitation hardening by formation of semicoherent
intermetallics.

A range of microalloying elements were demonstrated to enhance strength, fatigue,
and creep resistance of aluminum alloys. This includes small additions of the transition
metals Sc [154], Zr [155], Cd [156], Nb [157], Ti [158] and the rare-earth elements Ce [159],
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Hf [160], Yb [161], and Er [162]. Scandium and zirconium were of particular interest due
to their grain refining effect. The excellent lattice match of the intermetallics Al3Sc, Al3Zr,
and Al3(Zr1−xScx) lead to heterogeneous nucleation upon solidification of the aluminum
alloy. Furthermore, the strength contribution of these phases are prominent due to the
formation of tiny L12 precipitates through heat treatment [163–165].

Microalloying of the wire chemistry for arc fusion was demonstrated numerous times
in the literature. Traditional fusion welding with 7000-alloys was enabled with additions
of Sc and Zr [166,167]. CET and the related grain refinement suppressed the cracking
susceptibility. For WAAM, Sc was of particular interest and added to various 5000-series
alloys [168–170]. The rapid solidification in WAAM supersaturated the Sc addition leading
to significant precipitation strengthening post-WAAM [171]. Zr is often used as a substitute
due to the high cost of Sc. The use of combined additions of Sc and Zr to an Al-6Mg alloy
for WAAM was recently demonstrated by Ponomareva et al. [172]. At optimum aging
conditions after WAAM, a high-strength material with ultimate tensile strength of 408 MPa
was developed.

Titanium creates the Al3Ti phase with aluminum which is regarded as a highly potent
nucleation site [119]. Titanium in solid solution also provide strong growth restriction of the
solid–liquid growth front during solidification, creating a large constitutional undercooling.
Both effects are important to refine the grain structure. This was utilized by Wang et al.
for deposition of the 5356 alloy in WAAM [173]. A titanium suspension was sprayed on
the hot aluminum metal after deposition, letting the organic suspension evaporate before
a new layer was made. The addition of Ti induced CET, and the average grain size was
reduced. Titanium does not provide precipitation strengthening in aluminum. The strength
enhancement was therefore modest, with an increase in tensile strength from 253 MPa
to 273 MPa.

Microalloying with titanium in high-silicon aluminum alloys is inefficient for grain
refinement. Titanium has a stronger affinity to silicon than aluminum, leading to the
formation of ternary Al-Si-Ti intermetallics. The grain refining effect of Al3Ti is thus
not utilized in high-silicon alloys from the 4000 series. This effect was experienced by
Li et al. [138] for WAAM deposition of an Al-7Si-0.6Mg alloy with up to 0.3 wt.% Ti.
The base alloy chemistry must therefore be considered upon microalloying.

Niobium provides a similar effect as Ti in terms of grain refinement. The formation of
the Al3Nb phase significantly refined the WAAM microstructure of an Al-6Mg alloy [174].
A coarse columnar was changed to a fine equiaxed structure, which increased the ultimate
tensile strength by 58 MPa. As Nb has little-to-no reactivity with Si, it works as a substitute
for Ti in high-silicon alloys [175]. Hypoeutectic additions of tin (<0.12 wt.% [176]) showed
the ability to grain refine Al-Cu alloys and increase the density of the strengthening θ′

phase. A combination of enhanced tensile strength and elongation was demonstrated with
proper WAAM parameter control [177,178].

5.5. Ceramic Particle Additions

Another strategy to enhance the performance of aluminum alloys for WAAM is
addition of a second phase material. By combining two or more materials with significantly
different properties, the resulting mixture exhibits characteristics from each individual
phase, e.g., the ductility of a metal and the hardness of a ceramic.

The driving forces of ceramic additions to aluminum alloys for additive manufacturing
are microstructural refinement and strength enhancement. Several ceramic compounds
show a grain refining effect in aluminum through heterogeneous nucleation. TiB2 has been
used as grain refiner for aluminum ingot casting for decades. The transmission of refining
welds with TiB2 did not find industrial application, although it was demonstrated to be
efficient at restricting solidification cracking [114]. The solution is directly transferable
to WAAM [179,180]. The use of the less costly TiC particles was also of interest for arc
welding [181] and WAAM [182]. In fact, the altered solidification progress of the Al-Cu
2219 alloy by addition of TiC hindered solute segregation of Cu on grain boundaries,
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keeping the atoms in solid solution after WAAM. The combined effects of hard TiC particles
and enhanced solid solution strengthening raised the tensile strength from 263 MPa to
403 MPa [182].

The grain refinement by addition of ceramic particles induces CET during solidifi-
cation in WAAM. The equiaxed grain morphology is more tolerant to shrinkage stresses
compared to the elongated columnar counterpart. CET thereby suppresses the cracking
tendency experienced by a range of aluminum alloys. Hard-to-deposit alloys can therefore
be made available for WAAM, as shown for 6063 [183] and 7075 [184].

The emerge of nanoparticle additions yield significant strength contributions to the
final material if the nanoparticles are finely dispersed in the aluminum matrix. Nanoparti-
cles are nonshearable for dislocations, which pin the dislocations and create Orowan loops
(bowing dislocations) around the particles. The increased dislocation density hardens the
material by the so-called Orowan strengthening mechanism. In addition, geometrically nec-
essary dislocations are generated due to the difference in coefficient of thermal expansion
(CTE) between aluminum and nanoparticles upon cooling. These effects were demon-
strated by the use of nanosized (<100 nm) TiC in arc welding [185,186]. Other ceramic
phases are believed to contribute in a similar manner to enhance the strength provided a
small particle diameter and fine dispersion in the aluminum matrix.

Viable processing routes are an important prerequisite for implementation of ceramic
reinforcements in aluminum alloys. Aluminum mixed with ceramics are manufactured
through a range of processing routes, including thermal spraying and electrochemical
deposition, but more commonly through powder metallurgy and stir casting principles.
Powder metallurgy routes are highly suited for powder-based additive manufacturing,
and several examples of Selective Laser Melting (SLM) with ceramic-reinforced aluminum
are demonstrated in the literature [187–190]. Composite wire production for arc or laser
deposition are commonly obtained through casting principles. The reinforcement phase
is commonly a ceramic with high melting point, and hence, present in solid-state in the
aluminum cast liquid. Settling and agglomeration of the reinforcement phase is therefore
a common challenge, and methods to agitate the aluminum melt are often necessary.
This is commonly achieved by mechanical stirring with rotor blades or ultrasonic vibration
of the crucible. Another consideration is the wettability of the reinforcement phase with
aluminum; if the reinforcements have a high interface energy towards the liquid, it will
agglomerate to reduce the total surface energy. The task becomes even more difficult
with decreasing particle size; nanoparticle additions are therefore considered challenging
to disperse by stir casting [191]. A workaround of this challenge was the use of fluxing
agents to make nanoparticles comfortable in the melt. This was demonstrated for TiC
nanoparticles by Liu et al. [192], where potassium tetrafluoaluminate (KAlF4) was used
as fluxing agent. Another consideration is the reactivity of the reinforcement with the
matrix melt, which greatly limits the selection of type of additives to aluminum alloys.
The aforementioned reactivity between Ti and Si and the instability of carbon nanotubes in
aluminum melts are some examples [193,194].

To avoid the mentioned challenges related to casting, Langelandsvik et al. examined
a new solid-state route for production of feedstock wires for WAAM. Based on the metal
screw extrusion principle [195], fragmented aluminum pieces were mixed with ceramic
nanoparticle powder into a ’mincer’ driven by an Archimedes screw. The individual
fragments were consolidated to a single volume, compressed, and extruded as a wire [196].
The torsional component of the screw motion dispersed the nanosized reinforcement phase
without excessive agglomeration. Addition of TiC nanoparticles to the wire resulted in
efficient grain refinement of the 5183 alloy [197].

Casting and extrusion principles rely on incorporation of the reinforcement phase into
the matrix material. However, issues regarding agglomeration, settlement, and chemical
instability may revert the performance of the reinforcements. The costs of screening
different alloy-reinforcement combinations are also unacceptably high. Methods to avoid
the relatively costly production routes for aluminum mixed with secondary phases are thus
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beneficial. A solution presented by several works involves coating the WAAM material
with the reinforcement phase dispersed in an organic suspension [180,198]. The suspension
is sprayed on the WAAM layer while it is still hot to obtain accelerated evaporation of the
organic species. The remnants are then incorporated into the melt pool when a new layer
is deposited. The electromagnetic stirring of the melt pool ensures a good mixture of the
reinforcement. Microcasting is another rapid process route to examine a wide range of
material combinations. The arc melting method is well-suited for such applications, where
a small powder addition is fused by an electrical arc in a controlled atmosphere. The lead
time from sample preparation to finished sample is short, and hence, is well-suited for
screening. With optimized process parameters, arc melting can mimic the thermal cycle of
WAAM and provide an insight of the resulting properties of the composite mixture.

6. Future Developments

Every aspect of the WAAM process needs further development to lower the threshold
of widespread industrial acceptance. WAAM is a disruptive technology, where increment-
based fusion and solidification of material is used to create a structure. This stands in
contrast to traditional manufacturing, which relies of solid-state forming, such as forging
or machining, or liquid-state forming such as casting. The materials and alloys available
for wire based additive manufacturing today are to a large degree designed for traditional
fusion-based welding and brazing. Materials tailored for WAAM are highly sought for the
development of a future additive industrial environment.

Each WAAM component needs to meet the specific properties for its end use, e.g., ten-
sile strength, stiffness, fatigue, or corrosion resistance, etc. The properties are related to
the microstructure, which is highly connected to the alloy composition. The chemical
composition of the feedstock wire must be tailored to yield the desired microstructure in
the end component. Several aspects are relevant in this respect.

The effect of grain morphology was pointed out in this review. Promotion of an
equiaxed, fine-grained structure is regarded as the single most important measure to avoid
the formation of solidification cracks, which pester several aluminum alloys.
Equiaxed grains also lower the anisotropy of the structure and can improve the mechanical
properties. Measures to effectively achieve desired grain structures were pointed out and
need to be implemented into future feedstock wires for WAAM. Of vital importance is the
work related to expanding the alloy selection including high-strength systems of the 2xxx-,
6xxx-, and 7xxx-series.

Deposition of feedstock wire by an electric arc implies a high-temperature melting
cycle of the aluminum alloy. Element losses of volatile elements are well-documented for
WAAM of aluminum, i.e., Mg, Zn and Li [58,136]. The degree of evaporation during the
process must be well-understood, and an ’overalloying’ strategy could be developed to
account for the element loss. Element vaporization favors the use of low-energy deposi-
tion torches.

As the feedstock wire is the ’building block’ in WAAM, the wire quality is of utmost
importance. The outer characteristics can highly influence the material quality after depo-
sition. The wire diameter needs to be even without fluctuations to avoid arc instabilities.
The wire surface must be smooth without dimples and scratches. Perturbations on the
wire surface is a trap site for grit and moisture during storage and handling. In general,
the impurity levels, especially hydrogen, must be kept to an absolute minimum to avoid
the formation of porosity.

WAAM is projected to become a vital contributor in the aerospace and aeronautical
industries. The safety regulations in these sectors are strict, with high demand for docu-
mentation and certification. Time and resources must be allocated for certification of new
and promising aluminum alloys suited for aerospace applications.
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7. Conclusions

WAAM is a promising manufacturing route for the next industrial generation. The high
deposition rate, low investment costs, and versatile application area make the process
highly suited for component production, repair, and refurbishment. WAAM of aluminum
alloys needs to overcome several metallurgical and structural challenges to raise the
material quality and attractiveness of the industry. This includes porosity formation,
residual stress generation, and crack formation. This review provided an insight into
these WAAM-related defects and presented viable solutions to overcome these obstacles.
Special attention was devoted to the alloy selection. A survey shows that nearly a dozen
aluminum alloys are commercially available as WAAM feedstock. A majority of these
materials are manufactured for traditional arc welding and are not tailored for WAAM.
A separate supply chain for WAAM feedstock is emerging, but is at present experiencing a
scarcity of aluminum. The adoption of WAAM into service is unattractive when desired
micostructures and properties are unattainable. Thus, future research and development
focusing on new aluminum alloys tailored for WAAM should be prioritized. Strategies
to combat the formation of cracking commonly seen in several aluminum alloys were re-
viewed. The importance of alloy composition and grain structure was of particular interest.
By altering the grain morphology from columnar to equiaxed, the cracking susceptibility
is greatly reduced. Screening methods to develop new ’WAAMable’ aluminum alloys
were described. Modeling of solidification progress, multiwire WAAM, and arc melting
are three efficient strategies for alloy development. The possibility of aluminum WAAM
materials with desired properties wide-spread industrial operation is attainable by proper
implementation of these strategies.
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CCD Charge-coupled device
CET Columnar-equiaxed-transition
CNC Computer numerical control
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CMT-ADV Cold Metal Transfer Advanced
CMT-P Cold Metal Transfer Pulse
CMT-PADV Cold Metal Transfer Pulse Advanced
CTE Coefficient of Thermal Expansion
FCC Face-centered cubic
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LCA Life-cycle assessment
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SLM Selective Laser Melting
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