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Abstract
Partial discharges (PD) in the high voltage insulation
systems are both a symptom and cause of terminal
and impending failures. The use of data-driven
methods based on PD measurements will enable
predictive strategies to replace traditional maintenance
strategies. This paper employs machine learning-
based classification models to identify and characterize
PD signals originating from lab-made artificial defects
in epoxy-mica material samples. Three different
PD sources were studied: surface discharges in air,
corona discharges, and discharges caused by internal
cavities/delaminations. To generate high-quality datasets
for the training, validation, and testing of classification
models, Phase-Resolved PD (PRPD) data for each test
object was obtained at room temperature under 50 Hz AC
excitation at 10 % above the PD inception voltage (PDIV)
of each sample. Relevant statistical and deterministic
features were extracted for each observation and were
labeled based on the defect type (supervised learning).
Finally, the trained and validated machine learning
(ML) models were used to identify PD sources in the
service-aged stator winding insulation. Support vector
machines (SVM), ensemble, and k-nearest neighbor
(kNN) algorithms achieved significantly high accuracy
(≥ 95 %) of defect identification.

1. Introduction
Intermittent power generation causes stator winding
insulation of hydrogenerators, which were designed
for primarily continuous operation 50 years back, to
experience damaging and frequent service failures,
resulting in long downtimes, and costly repairs, thus,
significant economic losses [1, 2]. Reliable and accurate
condition monitoring of stator winding insulation has
been widely performed using both off-line and on-line
partial discharge (PD) measurements. PD measurements
are a vital tool for assessing and monitoring the condition
of power equipment. Different sources of PD have
different effects on the insulation performance and thus
reliability of the power apparatus. Therefore, identifying
various PD sources at different locations is of great
importance for the health assessment of stator winding
insulation [3].
Data-driven methods employing artificial intelligence,
such as machine learning (ML) algorithms, are now
more feasible due to increasing computation power

and accessible tools, and a growing interest in
such quantitative and predictive methods is expected.
Developing such models for generator lifetime/condition
qualification and estimation will accelerate the transition
from traditional strategies toward predictive strategies,
such as upgrading insulation components before they are
estimated to fail [4].
Human experts usually perform a condition assessment
of generator insulation with experience and qualitative
judgment of data. The identification of PD sources
(and their severity) is usually done using Phase-Resolved
PD (PRPD) analysis, where each PD event is resolved
into the apparent discharge magnitude (Qa), phase angle
(ϕ), and the number of the PDs (n). The use of ML-
based data-driven models as a decision support tool
can maximize the reliability and accuracy of the defect
identification by unlocking hidden correlations.
ML-based PD diagnostics have been receiving increasing
attention in the literature to handle the growing amount
of data, reduce the human labor for feature engineering
and tap the full potential of the data [5]. However, most
of these studies employ similar fundamental features and
are limited to specific test setups, whose experimental
conditions do not explicitly state systematical details.
These limitations inhibit comparative analysis and
reproducibility. To further develop robust ML-based
models, different statistical and deterministic PD features
and due details for data acquisition and feature extraction
techniques should be introduced.
The primary purpose of this study is to employ novel
features (predictors) extracted from the obtained PRPD
datasets and generate high-quality datasets for the
training, validation, and testing of classification models
based on various ML algorithms (classifiers). To that end,
lab-made artificial defects are made to represent the most
common defect types. Then, the qualified classification
models (trained and tested) are used to predict possible
defect types in the service-aged stator winding insulation.

2. Methodology
2.1. Test Objects
Test samples with known defects were made to emulate
the most common discharge sources encountered in
practice, which are classified into three main groups:

i. corona discharges in the air (e.g., semiconductor-field
grading paint (or tape) junction at the end windings),
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ii. surface discharges (e.g., slot discharges),
iii. internal discharges (e.g., internal cavities and delami-

nations).

Fig. 1(a) illustrates the arrangement to induce corona
discharges in an air gap (4 cm) between an energized
piece of thin aluminum wire (with a tip diameter of 1
mm) and a flat ground electrode. To induce surface
discharges, a similar thin wire was attached to the
electrically grounded semiconductive coating and was
extended towards the high voltage (HV) copper strands
of a real hydrogenerator stator bar (≈ 2 cm gap), as
depicted in Fig. 1(b). In this work, stator bar is used
interchangeably with stator winding insulation. Also,
three service-aged stator bars (similar to the one shown
in Fig. 1(b) without the wire) were used to predict PD
sources associated with them.
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Fig. 1 – Illustration of the lab-made samples as artificial PD
sources. (a) Corona discharges (rod to plane). (b) Surface
discharges. (c) Void discharges: c1. Center void: 10 mm void
diameter and 1 mm void gap distance, c2. Delamination closer
to the bottom electrode, and c3. Large void delamination near
end-windings (voids/delaminations with unstressed walls).

We made laboratory objects from resin-rich
mica/epoxy/glass-fiber tape to emulate internal
discharges originating from voids and delaminations.
The object dimensions were 100 mm × 100 mm × 3 mm.
1-mm of sheet/plate thickness was formed by stacking
six tape layers half-overlapped. We cured the test objects
at 160 ◦C for one hour under pressure. Metal spacers
were used to create cylindrical voids during the curing
process. Upon pressing cured plates together, a test
object with a definite void dimension was formed.
Three different test objects with a total insulation
thickness of 3 mm incorporating different void types were
made, as exhibited in Fig. 1: (c1) 10 mm void diameter
and 1 mm void gap distance, (c2) 5 mm void diameter
and 0.5 mm void gap distance with round edges, and
(c3) 40 mm void diameter and 1 mm void gap distance.
The main difference between the voids in (c1) and (c3)
is that the void in (c3) has electrically unstressed walls
and represents large delaminations and voids. In (c2),
the void was created only on one plate while the other
plate was void-free, i.e., the void is slightly closer to the
bottom electrode, representing an asymmetrical void in
the insulation. The diameter of the HV electrode was
30 mm.

2.2. Test Setup
We generated high-quality PD datasets (free of crosstalk
and noise above a selected threshold value of 1 pC)
for the training, validation, and testing of various ML
algorithms using a commercial PD acquisition unit
(Omicron MPD 600) along with a 100-pF coupling
capacitor. Fig. 2 illustrates the HV PD setup used for
data generation, and test object stands for the lab-made
samples with artificial defects. Desired voltage amplitude
and frequency were set by a digital to analog converter
(DAQ) and amplified to HV by an HV amplifier (TREK
20/20C–20 kV, 20 mA) in series with an RLC-low-pass
filter with a cut-off frequency at 5 kHz. Measurements
were performed according to IEC 60270, [6] where
the amplitude spectrum was integrated with a center
frequency of 250 kHz and a bandwidth of 300 kHz.
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Fig. 2 – Illustration of the experimental PD measurement setup.

2.3. Test Procedure and Data Acquisition
The test objects were subjected to voltage precondi-
tioning before the data collection activity to preempt
the so-called “memory effect”, and thus, the same
test sample could be tested multiple times to achieve
reliably extensive training and testing datasets. PD
inception voltage (PDIV) of each test object had
been experimentally determined in accordance with
the definition in IEC 60270, and test objects were
subjected to voltage preconditioning at 10% above their
corresponding PDIV at 50 Hz for 5 minutes before each
test was performed (data collection activity). Given the
stochastic nature of the PD phenomenon, generating data
using the same test sample should be performed at least
five times for acceptable statistical significance [7] as
well as to generate an extensive and reliable dataset.
For this purpose, each sample was subjected to HV
for 600 s at 50 Hz AC voltage. Each measurement
(also referred to as “observation”) incorporated 1000 AC
cycles at 50 Hz (20 s), allowing for up to a total of 30
separate data windows (30 observations) for the same
test sample (30 × 20 s = 600 s). Fig. 3 presents the
steps followed for data and feature extraction, training,
validation (fraction of training data used during training
for tuning hyperparameters), testing, and prediction.
MATLAB’s inherent functions and Classification Learner
Toolbox were used for the entire data analysis and ML
tasks. Critical remarks are listed below.
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1. Employing the obtained PRPD data, statistical and
PD quantities were extracted using 20 observations
for each test sample out of 30 available observations:
i.a., PD inception/extinction voltage, pulse repetition
rate, phase angle, average discharge current, discharge
power, quadratic rate, kurtosis, skewness. The
generated parameters were labeled based on the defect
type (class). The complete list of extracted features
is shown in Table 1. The reasons for the selection of
features are given in the next section.

2. The extracted features for each observation were
labeled based on the artificial defect type (supervised
learning). It should be highlighted that observations
belonging to c1–c3 type defects were grouped/labeled
together as ”void discharge.” The entire dataset was
then split into training and testing sets using the hold-
out method, where 80 % of the data was allocated for
training, and the remaining 20 % of the data was used
for testing. In addition, “k-fold cross-validation” was
used on the training dataset where the dataset was
arbitrarily divided into “k” groups. In this work, 5-
fold cross-validation was used. One of the groups was
used as the validation set, and the rest were used as the
training set, as illustrated in Fig. 3. Then, the chosen
model was trained on the training set and was evaluated
on the test set. The procedure continued until each
unique group was used as the test set.

3. Selected machine learning classifiers, such as support
vector machines (SVM), k-nearest neighbor (kNN),
ensemble, and decision tree, including their various
subtypes, were trained by optimizing their hyperpa-
rameters. Then, predictions were made based on the
defect type (label or class). Based on the training and
test accuracies, the best models were chosen.

4. The qualified ML models were then used to
predict/identify PD sources in service-aged (50
years) stator bars. Following the test procedure
performed for the lab-made artificial defects, the same
predictors/features were extracted from the obtained
PRPD data of the stator winding insulation for each
observation. The observations were then fed into the
selected ML models, and possible PD sources were
predicted based on the three training classes/labels.

The end-windings of these bars were removed due to
the presence of asbestos, and then the semiconductive
coating was removed at the ends, and field stress grading
paint was applied by following the manufacturer’s
instructions. Thus, PD sources related to end-windings
were eliminated. Also, the semi-conductive and field
grading coating on the bars were checked against any
abrasion or damage; only the undamaged bars were
tested. Therefore, any PDs arising from the stator bars
were expected to originate from internal discharges in
the mainwall insulation represented by one or more void
classes defined in c1–c3. However, the dataset was not
labeled due to the uncertainty of unknown defects that
might be present in the winding insulation. A detailed
discussion of the predicted classes is given in the results.

2.4. Data Preprocessing and Feature Extraction
Firstly, the entire dataset was separately grouped for
the positive and negative half-cycles as a reference to
a sinusoidal AC voltage waveform to account for the
asymmetrical PD events based on the defect type. The
superscript (+) for the positive half cycle and (−)
for the negative half cycle were used, respectively.
Subsequently, numeric features (deterministic) such
as number of charges, average, median, maximum
(99th percentile employed to eliminate outliers) charge
magnitudes, and discharge power were calculated for the
positive and negative half-cycles (see Table 1) using the
de-noised ϕ−Qa − n data exported from MPD 600.
Secondly, statistical post-processing of the ϕ−Qa − n
data was performed in addition to the above-mentioned
deterministic parameters. For the statistical analytics,
PRPD data were characterized by using Hn(ϕ)–phase
distribution of the number of PDs and Hqn(ϕ)–phase
distribution of mean discharge amplitude. An example of
such distributions extracted from the training database is
shown in Fig. 4(a). Similarly, each feature was extracted
separately for the positive and negative half-cycles using
the corresponding Hn(ϕ) and Hqn(ϕ), respectively.
We employed Weibull distribution, kurtosis (Ku), and
skewness (Sk) analysis for the statistical analytics. The
distribution of the obtained discharge amplitudes (Qa)
follows an S-shape-like trajectory on the cumulative
distribution function (cdf) plot, as presented in Fig. 4(b),
indicating the existence of more than one active
discharge mechanism [8]. The plot shows that a five-
parameter mixed Weibull distribution (with two separate
mechanisms) fitted the diffused discharge data well. A
mixed Weibull distribution based on the sum rule is given
by:

F (q) = pF1(q) + (1− p) F2(q) , (1)

where q is the discharge magnitude (Qa in our case),
F1(q) and F2(q) are the cdfs of each discharge
mechanism, p is the probability of occurrence of the sub-
population F1(q) with 0 ≤ p ≤ 1 [8]. Below are five
parameters; α1, β1, α2, β2, and p, shown explicitly:

F (q) =p

{
1− exp

[
−
(

q

α1

)β1
]}

+

(1− p)

{
1− exp

[
−
(

q

α2

)β2
]}

,

(2)

where α is the scale parameter, and β is the shape
parameter of each cdf. It is assumed that p = 0.5.
The shapes of Hn(ϕ) and Hqn(ϕ) have characteristic
features for different PD sources [9]. Skewness and
kurtosis have widely been used for the quantitative
classification of PDs in artificial defects [9,10] and hydro
generators [11]. In relation to a normal distribution,
skewness refers to the degree of asymmetry of a
distribution: Sk is positive (negative) for a leftward
(rightward) shift of a normal distribution. On the other
hand, kurtosis stands for the degree of the sharpness of
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Fig. 3 – Flowchart showing the steps of data preparation, feature extraction, model training, testing, and tuning.

a distribution in relation to a normal distribution, and Ku
is positive (negative) for a pointier (flatter) distribution
compared to a normal distribution. Lastly, feature scaling
was applied to the data to equalize their influence on the
model. In this work, each feature column in the vector
containing the entire observations (DATA∗ as delineated
in Fig. 3) was scaled to limit its range in the interval [0, 1].

3. Results and Discussion

The obtained PRPD plots for 1000 AC cycles (50 Hz)
for each defect type and winding insulation are shown
in Fig. 5. The algorithms were then trained and tested
based on the extracted features from the PRPD data
to distinguish different PD sources under AC voltage.
The input data consisted of the standardized 32 features

(Table 1). The predicted classes were rod to plane
(Rod2plane), surface discharge (surfaceDischarge), and
internal discharges (Void).

3.1. Cluster Analysis and Feature Selection

A quick way to check if the classes can be grouped based
on their extracted features is to visualize the data on a
scatter plot and see if there are any obvious patterns or
groups. For this purpose, chosen features were plotted
against each other on a 3D scatter plot, as shown in
Fig. 6. The selected features in the plot are closely
related to most of the other features; hence similar
patterns were observed among the classes. The scatter
plot suggests that the extracted features can be useful
to differentiate between the PD sources because the
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Table 1 – Features (predictors) extracted from the experimentally obtained PRPD datasets.

No. Type Feature (predictor) Notation
1 Deterministic (PD) Total number of pulses nPulse
2 Deterministic (PD) Number of positive charges nPosCh
3 Deterministic (PD) Average positive charge magnitude avgPosCh
4 Deterministic (PD) Median positive charge magnitude medPosCh
5 Deterministic (PD) Maximum positive charge magnitude maxPosCh
6 Deterministic (PD) Number of negative charges nNegCh
7 Deterministic (PD) Average negative charge magnitude avgNegCh
8 Deterministic (PD) Median negative charge magnitude medNegCh
9 Deterministic (PD) Maximum negative charge magnitude maxNegCh

10 Deterministic (PD) Number of pulses per cycle ChRepRate
11 Deterministic (PD) Average discharge current avgCur
12 Deterministic (PD) Total discharge magnitude per cycle sumQa

13 Deterministic (PD) Average discharge power avgP
14 Deterministic (PD) Quadratic rate D
15 Statistical (Weibull) 63.2% positive discharge magnitude Qpos63
16 Statistical (Weibull) 63.2% negative discharge magnitude Qneg63
17 Statistical (Weibull) Scale parameter 1 (+) ScalePos1
18 Statistical (Weibull) Scale parameter 2 (+) ScalePos2
19 Statistical (Weibull) Shape parameter 1 (+) ShapePos1
20 Statistical (Weibull) Shape parameter 2 (+) ShapePos2
21 Statistical (Weibull) Scale parameter 1 (−) ScaleNeg1
22 Statistical (Weibull) Scale parameter 2 (−) ScaleNeg2
23 Statistical (Weibull) Shape parameter 1 (−) ShapeNeg1
24 Statistical (Weibull) Shape parameter 2 (−) ShapeNeg2
25 Statistical (Kurtosis) Phase distribution of number of discharges (+) Ku (H+

n )

26 Statistical (Kurtosis) Phase distribution of mean discharge amplitude (+) Ku (H+
qn)

27 Statistical (Kurtosis) Phase distribution of number of discharges (−) Ku (H−
n )

28 Statistical (Kurtosis) Phase distribution of mean discharge amplitude (−) Ku (H−
qn)

29 Statistical (Skewness) Phase distribution of number of discharges (+) Sk (H+
n )

30 Statistical (Skewness) Phase distribution of mean discharge amplitude (+) Sk (H+
qn)

31 Statistical (Skewness) Phase distribution of number of discharges (−) Sk (H−
n )

32 Statistical (Skewness) Phase distribution of mean discharge amplitude (−) Sk (H−
qn)
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Fig. 4 – (a) Example of extracted Hn(ϕ) and Hqn(ϕ) distributions from the PRPD data of void discharge. (b) Fitted mixed Weibull cdf
plots for positive and negative half-cycles retrieved from the PRPD data of void discharge.

data points belonging to each class form distinguishable
clusters. Also, using a box plot to compare classes after a
statistical Weibull parameter, viz. ShapeNeg2 (β2 of the
negative half cycle data) suggests discernible differences,
as presented in Fig. 7.

3.2. Classification Analysis
The performances of the trained and tested algorithms
are usually interpreted using a confusion matrix, which
depicts the amount of correctly classified instances in the

major diagonal and the wrong predictions in the minor
diagonal. Also, “accuracy” is a useful parameter showing
the overall performance and is defined as the value
obtained by dividing the number of correct predictions
by the number of total predictions.

Table 2 shows a list of selected classifiers that were
trained and validated along with their accuracies.
Optimized versions for each classifier stand for the
performed hyperparameter optimization (model tuning),
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Fig. 5 – Obtained PRPD from the lab-made samples. (a) Rod to
plane. (b) Surface discharge. (c) Void discharge. (d) Discharges
in the stator winding insulation.
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as illustrated in Fig. 3. As an example, Fig. 8 presents
the confusion matrices for validation and test results of
the tuned kNN-classifier. As depicted, the accuracy was
100 % both for the training (i.e., validation in training–
222 observations) and testing (55 observations) data.
As the next step, selected validated ML models were
used to predict/identify PD sources in the service-aged
(50 years) stator winding insulation. The same data

Table 2 – Summary of the accuracies of selected ML classifiers.
k: no. of neighbors, γ: Kernel scale.

Classifier Hyperparameters Accuracy

Coarse kNN k=100, metric: euclidean, weight:
equal 69.8 %

Cosine kNN k=10, metric: cosine, weight:
equal 97.7 %

Fine kNN k=1, metric: euclidean, weight:
equal 99.5 %

Optimized kNN k=1, metric: spearman, weight:
squared inverse 100.0 %

Coarse Gaussian
SVM

multiclass method: one-vs-one,
γ= 23 82.0 %

Fine Gaussian
SVM

multiclass method: one-vs-one,
γ= 1.4 94.1 %

Linear SVM multiclass method: one-vs-one,
γ: auto 99.1 %

Optimized SVM Function: Cubic, multiclass
method: one-vs-one, γ=18 100.0 %

Boosted tree
Ensemble

method: AdaBoost, max. splits:
20, no. of learners: 30 69.8 %

Bagged tree
Ensemble

method: bag, max. no. of splits:
221, no. of learners: 30 97.7 %

Optimized
Ensemble

method: bag, max. no. of splits:
49, no. of learners: 11 100.0 %

Fine tree max. splits: 100, split criterion:
Gini‘s div. index 96.4 %

Optimized tree max. no. of splits: 5, split
criterion: max. dev. reduction 97.3 %
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Fig. 8 – Confusion matrix for the optimized kNN-classifier for
training (validation) and test.

extraction methodology (de-noising, feature extraction,
and data normalization/standardization) was followed
before feeding the model with the data. PRPD data
from three different service-aged winding insulation was
acquired at their rated voltage (7.4 kV). 25 observations
from each bar were obtained, amounting to a total of
75 observations where each measurement/observation
incorporated 1000 AC cycles at 50 Hz (20 s). As
previously mentioned, the stator bars did not contain
any visible damage, nor did they have end-windings.
Thus, a human expert would expect to observe PDs
reminiscent of internal voids and delaminations. And
based on the PRPD plots of the winding insulation, as
shown in Fig. 5(d), they would label the PD source as
internal discharge. However, we had not labeled the
observations as ”void” but as ”unknown.” Table 3 shows
the predicted PD classes in the winding insulation by the
selected models. The tuned SVM model classified 74/75
observations as ”void,” which was the expected response.
Only one observation seems to be misclassified. The
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optimized ensemble model yielded similar results, while
the rest of the models predicted fewer voids.
As a caveat, ideally, a well-defined PD source in a
different experimental setting would have been more
assuring to test the model’s accuracy, even though the
initial results seem to be promising and indicate that
the identification of different PD sources within a test
object is viable. In future work, further tests will be
performed on winding insulations with other types of
known defects to endorse the models’ accuracies more
reliably. Then, the selected models will be tested with the
unseen labeled experimental data representing each PD
class. Moreover, not all the 32 features used in this work
are likely to have the same importance for the trained
models because some of them are close descendants
of each other, and some may have random values that
might mislead the training procedure and cause over-
fitting problems. After further endorsing the models
using labeled unseen data, feature selection methods
(i.a., neighborhood component analysis, MRMR, Chi2,
ANOVA), dimensionality reduction techniques (i.a.,
principle component analysis, multidimensional scaling),
and seeking different features will be performed to see
if the models can be represented with fewer features
without compromise in the overall accuracy. An
overview of various qualified models will also be given
based on the selected features. All pertinent ML
classifiers, including neural networks, will be tested.
Last but not least, new classes to represent other types
of PD sources will be included as well as defining
different types of voids studied in this work as separate
classes, and then the classifiers will be tested under those
circumstances.

Table 3 – Predicted PD sources in the stator bars (25
observations from each of three winding insulation).

Model Rod2plane Void surfaceDischarge
Optimized SVM 1 74 0
Optimized Ensemble 3 72 0
Optimized kNN 7 68 0
Optimized Tree 49 24 2
Boosted tree Ensemble 49 13 13

4. Conclusions
The main aim of this work was to test out several
ML-based models to classify different PD sources
accurately, investigate the benefit of analytics for
condition monitoring of HV insulation, and address
challenges and knowledge needs for future studies. Lab-
made artificial defects were used to generate ϕ−Qa − n
datasets from which novel features were extracted.
The generation of high-quality training datasets was a
success, and they will be extended to incorporate more
PD sources, especially those arising in stator winding
insulation. Several ML classifiers were trained based on
the extracted features, and validation accuracies thereof
were benchmarked. Several types of SVM, ensembles
and kNN models achieved significantly high accuracies

of PD defect identification (≥ 95 %). Then, the selected
classification models were used to predict possible defect
types in service-aged winding insulations. The chosen
models predicted the dominating PD source in the stator
winding insulation to be of void discharge type, agreeing
with the initial expectation. However, further tests should
be performed on winding insulations with other known
defects to more reliably verify the models’ accuracy.
This study has laid the groundwork for the future
investigation of feature selection and reduction, as well
as the introduction of novel statistical features that are
fingerprints of PD data. Finding the right features that
adequately define and classify different PD sources is
still ongoing for further improvement. In particular, five
parameter Weibull fit approach yielded promising results
and deserves further attention to identify simultaneously
active PD mechanisms, e.g., slot discharges and internal
discharges in the winding insulation.
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“Improvement of a Hydrogenerator Prognostic Model by using
Partial Discharge Measurement Analysis,” Aug. 2018.

[5] S. Lu, H. Chai, A. Sahoo, and B. T. Phung, “Condition Monitoring
Based on Partial Discharge Diagnostics Using Machine Learning
Methods: A Comprehensive State-of-the-Art Review,” IEEE
Transactions on Dielectrics and Electrical Insulation, vol. 27,
no. 6, pp. 1861–1888, Dec. 2020.

[6] International Electrotechnical Commission, “IEC
60270:2000+AMD1:2015 CSV — High-voltage test techniques -
Partial discharge measurements,” Tech. Rep., 2015.

[7] “IEC/IEEE Guide for the Statistical Analysis of Electrical
Insulation Breakdown Data (Adoption of IEEE Std 930-2004),”
IEC 62539 First Edition 2007-07 IEEE 930, pp. 1–53, 2007.

[8] M. Cacciari, A. Contin, and G. Montanari, “Use of a Mixed-
Weibull Distribution for the Identification of PD Phenomena
[Rotating Machines],” IEEE Transactions on Dielectrics and
Electrical Insulation, vol. 2, no. 4, pp. 614–627, Aug. 1995.

[9] T. Tanaka and T. Okamoto, “Analysis of q-n and φ-q
characteristics of partial discharge in several electrode systems,”
in 1980 IEEE International Conference on Electrical Insulation.
IEEE, 1980, pp. 190–193.

[10] E. Gulski, “Computer-aided measurement of partial discharges
in HV equipment,” IEEE Transactions on Electrical Insulation,
vol. 28, no. 6, pp. 969–983, 1993.

[11] E. Eberg, T. G. Aakre, G. Berg, and S. Hvidsten, “Comparison of
Offline VLF PD Measurements and Online PD Measurements on
a 50-Year-Old Hydrogenerator Stator in Norway,” in 2018 IEEE
Electrical Insulation Conference (EIC), Jun. 2018, pp. 542–546.

NordIS-22, Trondheim, Norway, June 13-15 2022




