Software and Systems Modeling
https://doi.org/10.1007/510270-022-01006-z

SPECIAL SECTION PAPER r')

Check for
updates

Model-based fleet deployment in the loT-edge—-cloud continuum

Hui Song' . Rustem Dautov’ - Nicolas Ferry? - Arnor Solberg? - Franck Fleurey3

Received: 23 February 2021 / Revised: 31 January 2022 / Accepted: 28 March 2022
© The Author(s) 2022

Abstract

With the increasing computing and networking capabilities, [oT devices and edge gateways have become part of a larger [oT—
edge—cloud computing continuum, where processing and storage tasks are distributed across the whole network hierarchy,
not concentrated only in the cloud. At the same time, this also introduced continuous delivery practices to the development of
software components for network-connected gateways and sensing/actuating nodes. These devices are placed on end users’
premises and are characterized by continuously changing cyber-physical contexts, forcing software developers to maintain
multiple application versions and frequently redeploy them on a distributed fleet of devices with respect to their current
contexts. Doing this correctly and efficiently goes beyond manual capabilities and requires an intelligent and reliable automated
solution. This paper describes a model-based approach to automatically assigning multiple software deployment plans to
hundreds of edge gateways and connected IoT devices implemented in collaboration with a smart healthcare application
provider. From a platform-specific model of an existing edge computing platform, we extract a platform-independent model
that describes a list of target devices and a pool of available deployment plans. Next, we use constraint solving to automatically
assign deployment plans to devices at once with respect to their specific contexts. The result is transformed back into the
platform-specific model and includes a suitable deployment plan for each device, which is then consumed by our engine to
deploy software components not only on edge gateways but also on their downstream IoT devices with constrained resources
and connectivity. We validate the approach with a fleet deployment prototype integrated into a DevOps toolchain used by the
partner application provider. Initial experiments demonstrate the viability of the approach and its usefulness in supporting
DevOps for edge and IoT software development.

Keywords Software deployment - IoT - Model-based software engineering - Device fleet - DevOps - Constraint solving

1 Introduction

The Internet of things (IoT) is characterized by the ubiquitous
presence of embedded devices and network gateways at the
very edge of the network. Due to bandwidth limitations and

Communicated by S. Abrahao, E. Syriani, H. Sahraoui, and J. de Lara.

X Hui Song . . ; .)
Hui.Song @sintef.no strict latency requirements, as well as increasing computing
capabilities and hardware miniaturization, more and more
Rustem Dautov . .
Rustem.Dautov @sintef.no data processing takes place closer to the source. This process
Nicolas Ferry is underpinned by the emergence of Edge C qmputmg, where
nicolas.ferry @univ-cotedazur.fr software components are deployed on devices at the edge
of the network, such as gateways, routers and small base
Arnor Solberg . { o :
Arnor.Solberg@tellu.no stations. An edge computing application may comprise tens
Franck Fleurey to thousands of distributed devices, collectively referred to
Franck.Fleurey @tellu.no as a fleet.
Edge application providers are essentially software devel-
1 o : . .
SINTEF Digital, Forskningsveien 1, 0373 Oslo, Norway opers and typically need to follow the modern DevOps
2 I3S/INRIA Kairos, Université Cote d’ Azur, Sophia Antipolis, practice to reduce the time between committing a change
France to a system and the change being placed into production

3 Tellu IoT AS, Lensmannslia 4, 1386 Asker, Norway

Published online: 03 May 2022 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01006-z&domain=pdf

H.Song et al.

[7]. The practical challenge is how to automatically assign
and deploy the updated software to the many distributed
edge devices after each DevOps iteration. Unlike the central-
ized cloud model, where computing resources are relatively
homogeneous, an edge fleet consists of distributed and het-
erogeneous devices, which have different cyber-physical
contexts in terms of hardware capacity, network connec-
tion, user preferences, etc. [21]. Developers need to maintain
multiple variants of the software to fit such different device
contexts, e.g. some devices require a variant of the software
optimized to the specific hardware capacity, while some oth-
ers with lower network bandwidth may need a variant with
low communication cost. This raises the main problem for the
automatic deployment of edge computing applications, i.e.
how to assign m deployment plans (each ‘deployment plan’
represents a unique variant of the whole software product)’
to n devices, so that each device is assigned with a proper
deployment plan that matches its context. At the same time,
the whole system is required to meet its global goals, e.g.
keep the software diversity in the fleet or select a designated
number of devices for software preview.

The start-of-the-art deployment tools automate the instal-
lation of one application on one device, or a pre-defined
set of devices, but lack the support for distributing multi-
ple variants across a large fleet. They also do not provide
sufficient automated support for updating devices with con-
strained resources and limited (or none) Internet connectivity
[42]. Such embedded and microcontroller-enabled devices
traditionally have been flashed with ‘one-off” firmware not
intended to be updated in the future. Until recently, they
have not been seen as active contributors to the common
pool of shared computing resources, which can be iteratively
assigned and deployed with updated firmware. This situa-
tion has changed with the emergence of the [oT-edge—cloud
computing continuum, where computing and storage tasks
are distributed across all three levels. Even though the main-
stream [oT/Edge fleet management platforms offer tools to
keep track and maintain multiple deployments, devices, and
their contexts, developers still need to manually designate
which deployment goes to which device.

! Throughout the paper, we use the terms ‘deployment plan’ and ‘vari-
ant’ interchangeably. Both terms represent the software to be deployed
on a device, whereas the former represents the perspective of deploy-
ment and the latter refers to the perspective of development. That is,
a software variant represents a unique way of deploying the software,
including the actual code to deploy, the ways the code is built, and how
it is supposed to be configured during deployment. A similar term ‘ver-
sion’ is reserved to represent a development iteration in the software
life cycle. As further discussed below, different versions of software
may be deployed as different variants, but they are not the only source
of emerging variants.

@ Springer

The lack of fleet deployment support, i.e.the lack of sup-
port for deploying many variants on the fleet as a whole
instead of individual devices, has become a bottleneck for
DevOps teams of IoT and edge applications. Developers have
to either deploy the application on the devices one by one,
or manually maintain a complicated mapping between vari-
ants and devices. This significantly increases the time and
effort spent on deployment and make continuous deploy-
ment impossible even for relatively small number of variants
or devices. Moreover, for many IoT applications, the set
of devices is not static and can dynamically change over
time—i.e. new devices may join the fleet at any time, some
devices may be unavailable for some periods, or move around
causing the change in their context. Such changes often
require redeployment on some devices. Without automatic
fleet deployment, developers will be distracted by these
deployment tasks, which can be a heavy burden hindering
the continuous deployment pace.

Aiming at this challenge, this paper presents an industrial
research that applies model-based techniques to achieve auto-
matic fleet deployment, by assigning multiple deployment
plans to many devices in a fleet, without human interac-
tion. The approach takes as input a platform-specific model
(PSM) from a fleet management platform and transforms
it into a platform-independent model (PIM) that represents
deployment plans, devices and their context. After that, the
approach applies constraint solving techniques to the PIM to
map deployment plans to devices, guided by a set of hard and
soft constraints based on the domain knowledge. The result-
ing PIM is then transformed back into the PSM, which will be
used by the platform to actually deploy the software. In many
cases, software is deployed not only to edge devices, but
also to associated downstream devices such as sensors and
microcontrollers. These leaf devices typically have neither
a full-fledged operating system, nor an independent Internet
connection. To automate such ‘last-mile deployment’—i.e.
firmware updates on IoT devices—we integrate a general
modelling language for software deployment on heteroge-
neous devices, and the corresponding deployment engine.

We implemented the approach as a fleet deployment tool
and integrated it into the DevOps toolset currently adopted by
the partner Tellu, which is an eHealth application provider.
An experimental scenario using the tool through a series of
DevOps iterations shows that the approach is able to produce
valid assignments and to provide valuable feedback for plan-
ning the subsequent development. In addition, we present
a production-based use case to demonstrate how the fleet
deployment tools can be used by DevOps teams. Accord-
ingly, the contribution of this paper is threefold:

— A novel approach to automatically deploy multiple soft-
ware variants to a fleet of edge and IoT devices, with
respect to device contexts and global goals of the fleet.

Model-based fleet deployment in the loT-edge-cloud continuum

— A set of hard and soft constraints used to correctly assign
software variants and evenly distribute them across the
available matching devices (i.e. to what we refer as even
distribution).

— A research pilot on an industrial use case, demon-
strating how the proposed model-based approach with
meta-modelling and constraint solving can automate key
DevOps activities and increase the development produc-
tvity.

As an extension to our previous publication [51], this ver-
sion extends the original scope of assigning multiple software
variants to a device fleet and also addresses the deployment
of the assigned software on edge devices and its associated
resource-constrained IoT devices with no direct Internet con-
nection. We combine the tools that implement these two
approaches into a complete fleet deployment bundle. This
way, we aim to support software assignment and deployment
across the whole IoT-edge—cloud computing continuum. We
practically demonstrate how the entire fleet deployment con-
cept and the tool bundle support the DevOps practices.

The rest of the paper is organized as follows. Section 2
describes the fleet deployment problem via a motivating
example. Section 3 presents the modelling languages and
the engine for software deployment on one edge device and
its associated downstream devices. Section 4 presents our
proposed model-based approach, and Sect. 5 details the use
of constraint solving for fleet assignment. Section 6 presents
the tool implementation and demonstrates its viability in an
established DevOps process. Section 7 introduces the tech-
nical implementation of the fleet deployment tools and a
production-level use case to show how they are used by devel-
opers. Section 8 compares the approach with the existing
related works, and Sect. 10 concludes the paper by discussing
some limitations of the current work and the future steps.

2 Problem statement
2.1 Motivating example

Throughout this paper, we will focus on a remote patient
monitoring (RPM) scenario offered by the partner eHealth
service provider Tellu,2 with whom two coauthors of this
paper are affiliated. For each of their customers (typically
elderly people living at their own residences), they provide a
healthcare gateway—a small single-board computer similar
to Raspberry Pi—together with a set of medical sensors, cam-
eras and wearable emergency beepers. Each gateway collects
measurements such as blood pressure, glucose and oxygen
levels, via Bluetooth, processes and aggregates the data, and

2 https://www.tellucloud.com/.

sends them to the cloud back-end. The patients and their
nurses have access to the data via a web interface and a
mobile App. For some patients, Tellu sends their technicians
to mount the gateway on the wall, while other patients can
opt for having the gateway delivered from the manufacturer
and installing it themselves. Some patients choose battery-
powered portable gateways to have a possibility to carry them
with the essential sensors whenever they are outside their
houses, e.g. for walking, taking medical examinations, or
travelling. A recent feature under development by Tellu is
fall risk detection based on image processing, which com-
bines live gesture detection via cameras together with other
real-time physiological and environmental data to continu-
ously assess the risk of patient falling down shortly.

Since all the devices can be purchased off the shelf, Tellu
is essentially a software vendor. Their main effort and focus
is on developing the front-end and back-end software com-
ponents, running on the IoT/Edge gateway and the cloud,
respectively. The development team continuously adds new
features to the software and patches issues, following a
DevOps practice. During this process, they produce and
simultaneously maintain multiple variants of the front-end
software, which conceptually may be separated into verti-
cal and horizontal ones. Vertically, they have development
versions with the most recent features running on staging
devices and released versions with mature features running
on production-ready devices already used by patients. They
also regularly deploy preview versions with new features to
a small set of selected patients, in order to collect feedback
from real users. Horizontally, they maintain software vari-
ants that fit gateways with different set-ups and contexts. For
example, if a variant has a machine learning (ML) module for
fall detection running in the back-end, then it only fits those
gateways that are connected to a WiFi network, not 4G, since
they need to send images to the cloud. Alternatively, the vari-
ant with the ML module running fully on the edge only fits the
gateways that are mounted on the wall, since the heavy com-
putation load implies risks of overheating the self-installed
gateways (which usually do not have proper cooling/venti-
lation facilities). As an option, some patients may choose
to buy an additional hardware accelerator (typically in the
form of a pluggable USB dongle, such as Google Coral®),
which can reduce the computation load on the gateway, but
requires an application variant with a pre-compiled ML mod-
ule). Moreover, as Tellu offers their services in a multi-tenant
way, where some tenants (normally institutes or companies
providing healthcare services) may require customized fea-
tures involving new software and hardware. For example,
one tenant requires a wearable alarm button, with receivers
connected to the gateway, used to alert supervising nurses on
sudden health deterioration and temporarily elevating access

3 https://coral.ai/.

@ Springer

https://www.tellucloud.com/
https://coral.ai/

H.Song et al.

rights in such situations. A corresponding software variant
has to be deployed on the gateways belonging to this tenant to
implement the authentication and operation of the alarm but-
tons. Since no variant fits every device, Tellu has to maintain
multiple variants (i.e. deployment plans) and assign them to
the devices according to their contexts.

In summary, Tellu maintains a fleet of about 500 gate-
ways for their patients, and additional 10 local installations
on their own premises. The gateways have different contexts
in terms of network connection, mounting, hardware accel-
eration, etc. The development team maintains around 3-10
different variants of the front-end software. The Tellu team
expects to conduct DevOps cycles on a daily basis, retiring
parts or all of the active variants and introducing new ones.
However, since there is (i) a mass redeployment after each
cycle involving many or sometimes all the devices, and (ii)
it is not fully automatic at the moment, they cannot achieve
such high frequent DevOps cycles. Automatic fleet deploy-
ment becomes a bottleneck for the development team.

2.2 Fleet deployment: the concepts

Fleet deployment is a problem of automatically deploying
software on many functionally similar devices (or groups
of devices), while the actual software deployed may vary
from one device to another, depending on the current con-
text. Therefore, the main objective of fleet deployment is
to exempt developers from the requirement to care about
the specific deployment on individual devices, but instead
allow them to deploy software on the fleet as a whole. To
achieve this goal, we need automated tools to identify match-
ing devices and actually deploy the software variants on these
target devices.

Figure 1 illustrates the conceptual architecture of a fleet
deployment framework, with three main components:

— Fleet monitoring, which overlooks the life cycle of all
the devices and collects the context* for each device;

— Fleet assignment, which maintains active candidate
deployment plans and assigns one to each device.

— Device deployment, which enacts the assigned deploy-
ment plan on each device, by installing software modules
on the edge gateway itself and its associated [oT devices.

There are several commercial IoT/edge cloud platforms
providing rich fleet monitoring support, such as AWS IoT
Greengrass,5 Balena Cloud,® and Azure IoT Edge.7 They

4 For example, hardware capacity or development environment. Please
see Fig. 4 for more examples.

3 https://aws.amazon.com/greengrass/.
© https://www.balena.io/cloud/.

7 https://azure.microsoft.com/en-us/services/iot-edge/.

@ Springer

are typically able to maintain a list of all registered devices
and perform continuous monitoring and status tracking of
each device. They also provide cloud-device communication
channels for implementing custom run-time status and con-
text data collection from each device in the managed fleet.
However, as opposed to fleet monitoring, device deployment
and fleet assignment are still open questions for software
applications across the whole IoT-edge—cloud continuum.
In the following, we detail the challenges associated with
device deployment and fleet assignment.®

2.3 Device deployment

Device deployment can be seen as an infrastructure as code
(IaC) problem, extended to the context of edge computing,
where target nodes are not cloud-based virtual machines, but
rather heterogeneous and often resource-constrained devices.
There are mature model-based IaC solutions for cloud envi-
ronments, where developers provide a model specifying
where to obtain software modules and how to install and
configure them. The corresponding IaC engine will read
the model and deploy the modules accordingly on the tar-
get nodes. Mainstream IaC solutions’ have recently started
providing support for edge devices. However, the current
solutions rely on the assumption that all target resources have
a functional operation system (mostly Linux) and are directly
accessible by the IaC engine. This assumption is valid in the
cloud, but when extended to edge and IoT devices, the het-
erogeneity of resources considerably increases, and many
types of devices have no proper operating system and are not
directly connected to the Internet.

Taking the RPM system as an example, for some users,
it is required to deploy ML models on Al accelerators, or a
button control logic on the microcontrollers serving as button
signal receivers. These devices have neither own operating
system nor an independent Internet connection. Furthermore,
even though edge gateways host fully functional Linux dis-
tributions, their Internet connectivity might be hindered, i.e.
when connected via WiFi, it is hidden behind the router and
is not directly accessible by an [aC server at the developers’
side. At the same time, since devices can leave and join the
network and switch the connection method, the IP address is
not easily predictable.

All these limitations result in the main challenge to be
addressed to achieve proper fleet deployment—how to pro-
vide a consistent way of deploying software components on

8 Itis worth noting that here we show only the edge devices (gateways),
whereas in practice each of them may also be connected with a num-
ber of downstream sensor- or actuator-enabled IoT devices (e.g. blood
pressure meters, alarm buttons, LCD screens).

9 Please refer to Sect. 8 for more details.

https://aws.amazon.com/greengrass/
https://www.balena.io/cloud/
https://azure.microsoft.com/en-us/services/iot-edge/

Model-based fleet deployment in the loT-edge-cloud continuum

Fig.1 Main components for

managing a fleet of edge devices Deployment plan 1

Deployment plan 2

map deployment
plans to devices,

Device deployment

install, config and update
software modules

devicel device2

across heterogeneous resources in the loT-edge—cloud con-
tinuum?

2.4 Fleet assignment

In a global perspective, fleet assignment can be abstracted
as a problem of finding the function d : Dv — Dp U {1}
where Dv is the set of all devices and Dp is the set of active
deployment plans. If no proper plan can be found for a cer-
tain device dv € Duv, then d(dv) = L. This function d is
the main output of fleet assignment, indicating what software
should be deployed to each device. In addition, the assign-
ment may also involve a set of functions for the configuration
of deployment plans on each device: ¢y : Dv — Vx, which
passes some additional parameters to each assigned deploy-
ment plan. For example, ¢;.(dvi) = T means the device dv;
is configured in the way that a ML module learning is running
on the gateway (where ie means Intelligence on Edge)
Fleet assignment is challenging, because it must satisfy
the following requirements for all devices, at the same time:

R1. Match hardware capacity The software modules that
are assigned to a device must match the particular device
capabilities, including CPU architecture, memory vol-
ume, hardware accelerator, etc.

R2. Fit software development pipeline A deployment plan
that is still under development can be only assigned to
staging devices. At the same time, developers may want
to deploy the preview version on a designated number
of production-ready devices for direct feedback.

R3. Align the resource usage A deployment plan assigned to
a device should have reasonable resource consumption,
e.g. low CPU usage for a device powered by battery.
Note that the same deployment plan may have differ-
ent consumption on different devices, influenced by
offloading, hardware acceleration, etc.

R4. Achieve global objectives for deployment distribution
A typical objective is software diversity, i.e. even dis-

/ Legend \

Connection to
deployment objects

Fleet assignment

provide the list of devices
and their contexts

Information flow
among components

Components / steps of
fleet deployment

Fleet monitoring

Objects in deployment,
i.e., devices or
deployment plans

device3 deviced

=/

tribution of deployment plans among the devices for the
sake of resilience, robustness and security.

3 Modelling language and engine for device
deployment

This section presents our model-based approach for device
deployment to address the fleet deployment problem. It
provides a consistent way of automatic deployment across
the IoT-edge—cloud continuum, covering different types of
devices. The approach is called Generation and Deployment
of Smart IoT Systems (GeneSIS), which includes a GeneSIS
modelling language for software deployment and a deploy-
ment engine behind the language. Our main design principle
behind the approach is to use the minimal set of concepts to
model different types of deployment problems, while using
extensible engines to support the actual deployment activi-
ties.

GeneSIS is a generic solution for the automatic deploy-
ment of JoT-edge—cloud applications. In this section, we first
briefly summarize the main concepts of the language and the
engine (more details can be found in our earlier publication
[31]), with the help of the motivating RPM example, and
then focus on the features specific to the device deployment
problem in the fleet deployment context.

3.1 The GeneSIS modelling language for device
deployment

The GeneSIS modelling language inspires from cloud mod-
elling languages, which can be seen as refinements of the
UML deployment language, which is generic and does not
natively support cloud, edge or IoT deployment models [10]
and typically needs to be refined to ultimately carry out
the application provisioning [10]. More precisely, GeneSIS
extends our former work on CloudMF [30] (both the language
and its supporting execution engine) towards the edge and

@ Springer

H.Song et al.

IoT spaces, in particular enabling the deployment of software
components on devices with no direct access to Internet. As
aresult, similar to most cloud modelling languages [9], Gen-
eSIS follows a component-based approach and a deployment
model can be regarded as a component assembly. GeneSIS
is extensible, meaning that further sub-types can be added
to the modelling language, and new plug-ins can be dynam-
ically loaded into the engine.

Figure 2 shows the GeneSIS meta-model, which specifies
the main concepts of the modelling language and the relations
between the concepts. The complete description of the meta-
model can be found in [31].

A DeploymentModel consists of GeneSISElements. They
can all be associated with a list of properties in the form of
key—value pairs. The two main types of GeneSISElements
are Components and Links. A Component represents a
reusable type of node that will compose a Deployment-
Model. A Component can be a SoftwareComponent rep-
resenting a piece of software to be deployed on a host
(e.g. an Arduino sketch). A SoftwareComponent can be
an InternalComponent meaning that it is managed by Gen-
eSIS, or an ExternalComponent meaning that it is either
managed by an external provider (e.g. an IoT middleware
offered as a service) or hosted on a blackbox device (e.g. a
Z-Wave transceiver). A SoftwareComponent can be associ-
ated with Resources (e.g. scripts, configuration files) adopted
to manage its deployment life cycle (i.e. download, config-
ure, install, start, and stop). An InfrastructureComponent
provides hosting facilities (i.e. it provides an execution
environment) to SoftwareComponents. The property need-
Deployer depicts that a local connection is required to deploy
a SoftwareComponent on an InfrastructureComponent via
a PhysicalPort (e.g. an Arduino board may only be accessi-
ble locally via serial port). This property is typically used
for devices with no direct access to the Internet, which
can only be reached indirectly via other devices, them-
selves configured by GeneSIS. Components are connected
through two kinds of Ports: (i) a communication port rep-
resents a communication interface of a component—namely
ProvidedCommunicationPort provides a feature to another
component (e.g. MQTT on port 1883), while a Required-
CommunicationPort consumes a feature; (ii) an execution
port represents the execution environment offered by a com-
ponent to other components (i.e. ProvidedExecutionPort), or
the required by a component (i.e. RequiredExecutionPort).

@ Springer

As in most other cloud modelling languages [9,12,30], the
rationale for using ports not only for communications but
also for hostings lies in the need to specify the capabilities
offered by a component and the requirement for such capa-
bilities. Capabilities can be attached to both communication
and execution ports, indicating that a component provides
or requires a specific feature. They are used to validate that
one component is fulfilling the requirements of another. For
instance, to be deployed, a SoftwareComponent may require
a specific ExecutionCapability from its host (e.g. a specific
execution environment or a feature is required for the com-
ponent to execute). By contrast, a provided Port may offer
a Capability. For a deployment model to be valid, all the
required capabilities must match a provided capability. There
are two main types of Links: Hostings and Communications,
connecting execution ports and communication ports, respec-
tively. A Hosting depicts that an InternalComponent will
execute on a specific host. This host can be any component,
meaning that it is possible to describe the whole software
stack required to run an InternalComponent. A Commu-
nication represents a communication binding between two
SoftwareComponents.

Listing 1 shows an excerpt of the GeneSIS model for
the RPM example. It describes the devices (infrastructure
components) in a sub-system for one user, and the software
(internal components) running on these devices. This part
of the deployment model includes two infrastructure compo-
nents, one for the gateway (main_gateway) and the other for
the attached Al accelerator, such as a tensor processing unit
(TPU—tpu). Both devices provide execution ports to host
software components. The tpu device is the instance of an
extended type named coral_usb_tpu, which has a dedicated
extension to the deployment engine. One internal component,
inference, represents the Docker container that collects data
and executes an ML model for inference. The other com-
ponent, infer_model, represents the ML model. Two links
connect the internal components to the devices using ports.
It is worth noting that in practice the ML model is stored
on the gateway and flushed into the TPU at run-time by the
inference component. Therefore, in our deployment model,
the relation between infer_model and tpu is logical, but not
physical. The deployment engine for the type coral_usb_tpu
will be running on the gateway and will check if the tpu com-
ponent is attached to the gateway, but will not physically write
any code to tpu.

Model-based fleet deployment in the loT-edge-cloud continuum

l

Depioymentiodel Property GeneSiSElement

S name : Estring £ Vaive : EString S 1a: Eswing

(0.4 popertien 10.1) properties

0.+] providedExecutionPorts

[softwareComponent

[1..1] nostedsy]

11..1] postes
10.1] requireHardwareCapablity

£ porthumber : Eint
7 IsMandatory : EBoolean = false

‘ ’ ‘ ’ - x SecuntyCapaiity

Fig.2 Core concepts in the GeneSIS modelling language meta-model

Listing 1 An excerpt of the GeneSIS model for the eHealth example 3.2 GeneSIS deployment engine
{
"_type": "deployment_model", . .

"mame": "eHealthSubSystem", From a deployment model specified in GeneSIS language,
rolamonEa e (Y , the GeneSIS deployment engine is responsible for: (i) provi-
"_type": "infrastructure/linux", L.

"name": "main_gateway", sioning infrastructure resources when feasible, (ii) deploying
, '{'pmndedfe"ecfp“t '8 {"EXXIOPE "EeELEcEs) the SoftwareComponents, and (iii) setting up communica-
"_type": "infrastructure/coral_usb_tpu", tiOIl between COl’IlpOIleIltS.
D0 DEEmT S
ol N N The GeneSIS deployment engine 1mplement§ the. Mod-
"provided_exec_port": {'name": "fac81d77"} els@run.time pattern for dynamic deployment with minimal
Bol . . .
" type": "internal", impact on the running system. Models @run.time [13] lever-
"name": "inference", ages models as executable artefacts that can be applied
"resource": [{ . .
1 el OEEEROn ROCEREREa to support the execution of the system. A run-time model
. HEREEONB ooa provides abstract representations of the underlying running
"required_exec_port": ("name’: "70274e28"} system, which facilitates reasoning, analysis, simulation, and
} , {
5 e S AmEeEmed o, adaptatlofl. A change in th.e runmng. syst<.am is aut.omatlcall.y
"name": "infer_model", reflected in the model, while a modification to this model is
" ":[{"_type": "ml_model_tpu", . .
espures il typer: Imimodel_teut, % enacted on the running system on demand. This causal con-
"required exec_port": ("name": "Oelclec7"} nection enables the continuous evolution of the system with
Bol . . . X ..
" type": "hosting", no strict boundaries between design- and run-time activi-
, (neEEAEl"s F70274c28%, "lyTs "eablesBs” ties. Following the Models @run.time pattern, when a target
"+ _typer: "hosting", model is provided to the GeneSIS engine, it is compared
- hectoats “ledeleer®, "Bwts ©Eactleryt with the original model representing the running system.
} Then, the engine converts the difference between the two

models into a sequence of deployment actions, such as pro-
visioning resources and instantiating software components.
Further details of these actions can be found in [31]. After

@ Springer

H.Song et al.

the deployment, the engine synchronizes the current Gene-
SIS model with the actual deployment result.

3.3 GeneSIS for device deployment

It is not always possible for the GeneSIS deployment engine
to directly deploy software on all hosts. For instances, embed-
ded devices and microcontrollers do not always have direct
access to the Internet or even the necessary facilities for
remote access (in such case, the access to the Internet is typi-
cally granted via a gateway). Also, in many cases for specific
reasons (e.g. security), the deployment of software compo-
nents can only be performed via a local connection (e.g. a
physical connection via a serial port or Bluetooth). In such
cases, the actual deploying of firmware on a device has to
be delegated to the gateway, to which the device is locally
connected.

To address this issue, GeneSIS relies on a deployment
agent, which is generated dynamically by GeneSIS based on
the artefact to be deployed and its target host. It is imple-
mented as a Node-RED'? application, with the following
four types of nodes:

1. Code generation nodes, which generate the code or arte-
fact for a target device from source code or specification
languages. Code generation nodes consume as input a
start compilation message to launch the compiling. Once
the compilation is successfully completed, they send a
generation success message that includes the location of
the generated code. If the compile on start property is
set to true, compilation will be triggered when the node
is instantiated.

2. Deployment configuration nodes, which prepare the actual
deployment of a software component. This typically
involves in generating configuration files, such as a
docker-compose file. Once this process is completed, it
generates a message containing the location of configura-
tion files together with the artefact to be deployed.

3. Deployment nodes which enact the deployment of a
software component on a target resource. These nodes
consume messages from the configuration nodes. When
required, they are also in charge of removing the software
they formerly deployed (e.g. killing a Docker container
or deploying an empty firmware sketch).

4. Communication nodes, which, after deployment, are used
to communicate (i) with the deployed software if required
(e.g. sending an initialization message), and (ii) with the
GeneSIS engine to inform about the status of the deploy-
ment.

10 https://modered.org/.

@ Springer

The GeneSIS engine generates an agent at run-time and
deploys it to the target edge device (such as a gateway).
The agent then acts as a broker, which generates the con-
figurations and further deploys the software components on
the resource- or network-constrained devices attached to the
edge device via dedicated local communication channels
such as USB cables and Bluetooth. The local communica-
tion channels are specific to the devices and hard-coded in
the GeneSIS engines for the different types of devices. The
GeneSIS engine itself can be deployed either on a dedicated
operation machine or on the edge device. Developers can use
the GeneSIS GUI to edit the deployment model and launch a
deployment action. At the same time, third-party tools (such
as continuous delivery pipelines) can invoke the REST APIs
provided by the engine to send models and start deployment.

4 Model-based fleet assignment

We employ a model-based approach to automate the assign-
ment part of the fleet deployment problem using meta-
modelling and model transformation to bridge the gap
between the abstract constraint solving theory and the con-
crete edge computing platforms. Figure 3 illustrates the
overall architecture of the approach.

From the platform, we obtain a PSM (platform-specific
model) that represents the available devices and deploy-
ment plans. We transform the PSM into a PIM (platform-
independent model), which represents the essential informa-
tion, such as devices, deployment plans and their attributes,
using a simple and standard notation, agnostic to the plat-
form. This initial PIM, essentially representing the informa-
tion from fleet monitoring, is not a complete model yet, since
the mapping between devices and deployment plans is miss-
ing, together with some run-time configurations. We apply
constraint solving on this PIM to automatically search for the
missing part. The solution provided by the constraint solver
is anew PIM’ with the missing part completed. We then trans-
form PIM’ into a new PSM’, which will be finally used by the
platform to install the software modules. Transforming back
into PSM is necessary since it is the format that the fleet man-
agement platform understands. The concepts of PIM, PSM
and model transformation comply with the classic definition
in model-driven architecture [37].

The approach itself is generic across multiple edge com-
puting platforms, i.e. for different platforms, we need to
define different PSMs and the model transformation, while
the PIMs and the constraint solving approach (which assigns
deployment plans to devices, as further elaborated in Sect. 5)
remain the same. As reported below, in the context of this
paper, we use Azure IoT Edge as the target platform to imple-
ment a fleet deployment tool and demonstrate the viability
of the proposed approach.

https://nodered.org/

Model-based fleet deployment in the loT-edge-cloud continuum

constraint solving

DivEnact PIM

fleet

assigner model transformation

PSM

Azure

IoT . devicel

Edge deploy. plan 1 evice
deploy. plan 2 device3

Fig.3 Model-based fleet deployment: overall architecture

Device

-name: string

-env: [staging, production]
-acchw (vac): [tpu, gpu, none]
-network (nf): [wifi, 4g, 3g, off]
-mount (m?): [fixed, ac, battery]
-intledge (ie): Boolean

deploy (d)

0.* 0.1

PIM'
4 Legend N
Information flow
between models and
PSM' deployment objects

Model
edit / transformation

device2 models

device4 Objects in deployment

Deployment

-name: string

-vsn: [develop, preview, release]
-acchw (pac): [tpu, gpu, none]

-comp (cp): [1-3]

-comm (cm): [1-3]

-intlmodu (im): [edge, cloud, flex, none]

PI-Meta-Model -~ Legend N
, PS-Meta-Model
- instanceof] *
module Modulelnstance — L. .
1 relation between
o classes
Device Deployment
-id: string I % inheritance
*
7'y 0. 0..* l 1
1.%] Tag < —
B I Condition I ‘_'_> composition
NG
I | Class
AccHw Env TagCondition | IdCondition I -
; - attribute (short name)
tpu, gpu, none staging, prdct -and, or, =, 1=, ...
id . %

Fig.4 The meta-models for the PIM (upper half) and PSM (lower half)

4.1 Meta-models

Figure 4 shows the meta-models we defined for the
motivating example (Sect. 2.1). The platform-specific meta-
model (PSMM) in the lower half of Fig. 4 reflects how
the Azure IoT Edge platform manages the device fleet and
deploys software modules. The platform maintains a set of
Devices and a set of Deployments. Both devices and deploy-
ments are accompanied by a set of attached Tags. A tag
can carry numeric, Boolean or enumerated values, which are
either manually added by the application developers, or auto-

matically collected by the platform from the environment at
run-time. Each deployment contains a set of Modules. A
Module is a software artefact, such as a Docker image. If a
device is assigned with a deployment plan, then for each mod-
ule in the plan, the platform will create one Docker container
using the image. This container is represented as a Moduleln-
stance. The IoT Edge platform manages each device through
an agent deployed on the device. The agents communicate
with the hub in a ‘pull’ manner, i.e. reporting the context of
the devices and obtain deployment commands. Therefore, in
our approach, we do not need to know the IPs of any devices.

@ Springer

H.Song et al.

The mapping between devices and deployment plans are
defined indirectly through the Conditions of deployment
plans. Each plan contains a condition, defining to which
devices it will apply. Azure IoT Edge supports two types
of conditions. Developers can define a conditional expres-
sion using tags, which means all devices with a certain tag
will be covered. Alternatively, developers can also directly
refer to device IDs in the condition. In this paper, we use the
ID-based conditions to represent the solving result.

The platform-independent meta-model (PIMM) in the
upper half of Fig. 4) contains two simple classes, i.e. Device
and Deployment. Each class contains a set of attributes,
and there is one relationship, deploy, between them. What
attributes are needed depends on the problem domain, and in
this paper, we define them according to the RPM example.
For a Device, env specifies whether it is used for staging
or production; acchw specifies what hardware accelerator
is used for the device; mount specifies whether the device
is mounted to the wall, simply plugged to an A/C socket
(installed by the patient themselves), or powered by batter-
ies; and network specifies the network used primarily by the
device. These attributes are used as input for fleet assign-
ment. In addition, intlege tells whether the ML modules will
be executed on the edge device, which is used to carry the fleet
assignment result. On the deployment side, vsn specifies the
development phase of the software behind this deployment;
acchw specifies the type of hardware accelerator, against
which the ML module was compiled; comp and comm esti-
mate the levels of computation and communication resources
required by the software; intlmodu defines where the ML
model can be executed. In Fig. 4, some attribute names are
followed by shortcuts, which will be used for defining con-
straints in the next section.

4.2 Transformations between PIM and PSM

The approach employs forward (from a PSM to a PIM) and
backward (from a PIM to a PSM) transformations, main
aspects of which are described below.

In the forward transformation, PSM elements of types
Device and Deployment are mapped bijectively to homony-
mous PIM elements of devices and deployments, respec-
tively. Tags on the PSM elements are transformed to
attributes, where tag names are mapped to attribute names,
and tag values to attribute values. If an element does not
carry an optional tag, such as acchw, the attribute value will
be assigned with a default value, such as none. Attribute
intledge and reference deploy in PIM’ are left.

The backward transformation takes PIM’ and the original
PSM as input and yields a new PSM’. For each Device in
PIM’ (e.g. dv1), we find the homonymous Device in PSM,
and propagate the values of intlege and deploy. For intlege,
we create a new tag for the PSM device. For deploy, we find

@ Springer

the corresponding deployment plan in the PSM, and append
‘orid =dv1’ toits IdCondition (or create a new IdCondition
if there is none). The backward transformation takes the orig-
inal PSM as an addition input and only complements it with
the missing relations and attributes. This way, the round-trip
transformation does not lose any information.

4.3 Sample models

Figure 5 illustrates sample PSM and PIM in the context
of the considered example. According to the PIM, the sys-
tem comprises six devices. The second device (dv2) has a
TPU as an Al accelerator, connected by 4G and powered by
A/C. Together with dv1, the two devices are used for stag-
ing. The other four devices are used in production. We have
four deployment plans under maintenance: dp1 is still under
development and supports TPU and flexible offloading. The
worst-case computation and communication levels are both
medium (2 out of 3). dp2 is a preview version, which hosts
the ML module on the edge, and supports TPU. The worst-
case computation is high, but communication requirement is
low, since the analytics is on the edge. Attributes (intledge)
and reference (deploy) in red do not exist in PIM, but will
be added in PIM'. In the figure, we only show the partial
assignment for the first two devices.

Due to the space limitation, we only show part of PSM,
with one device and one deployment plan with attached
attributes represented as tags. In PSM’ (the original elements
in PSM as well as the additional ones marked in red in the
same figure), one new tag is created, and the deploy reference
is represented as IdCondition.

5 Fleet assignment using constraint solving

We employ SMT constraint solving and an existing imple-
mentation, Z3 solver [26], to achieve automatic fleet assign-
ment. To do so, we transform the PIM into an SMT problem
and define a set of hard and soft constraints. The solver
will automatically search for the missing values in the PIM,
according to the constraints.

5.1 Representing the PIM as an SMT problem

An SMT problem is a decision problem for logical formu-
las on a combination of background theories. It extends SAT
(Boolean satisfiability theory) with a set of higher-level the-
ories, such as first-order logic (FOL), set theory and algebra.

A basic built-in theory for SMT is the uninterpreted func-
tion theory [16]. An uninterpreted function is a function that
is defined with only domain and co-domain, without an inter-
pretation on how the domain is mapped to the co-domain. The
building blocks of an SMT problem are a series of such unin-

Model-based fleet deployment in the loT-edge-cloud continuum

dp1: Deployment dp2: Deployment

-vsn = develop -vsn = preview

-acchw = tpu -acchw = tpu
-intlmodule = flex -intlmodule = edge
-comp =2 -comp =3

-comm = 2 -comm = 1

1
| |

dvl: Device dv2: Device

dv3: Device

dp3: Deployment dp4: Deployment
-vsn = release
-acchw = none
-intlmodule = none
-comp =1

-comm = 2

-vsn = release
-acchw = none
-intlmodule=cloud
-comp =2

-comm = 3

dv4: Device dv5: Device dv6: Device

-env = staging -env = staging -env = prdct -env = prdct -env = prdct -env = prdct
-acchw = none -acchw = tpu -acchw = none -acchw = tpu -acchw = none -acchw = none
-network = wifi -network = 4g -network = wifi -network = 4g -network = 3g -network = wifi
-mount = fixed -mount = ac -mount = fixed -mount = ac -mount=battery -mount = ac
-intledge=false -intledge = true -intledge = -intledge = -intledge = -intledge =
PIM and PIM’
PSM and PSM’
dv1: Device IdCondition < dpl: Dployment
id=dv1 or id=dv2
| 1
2 2 2 v 2 2 2 L 2
Env network Mount Intledge Vsn AccHw IntiModule comp comm
staging || wifi fixed false develop tpu flex 2 2

Fig.5 Sample PIM and PSM for the motivating example

terpreted functions, on which we can define FOL formulas
as constraints.

We transform a PIM into an uninterpreted function theory
problem based on the following rules, explained using the
sample PIM in Fig. 5.

— All devices form a set Dv = {dvy, ...,dvg}, and all
deployment plans form a set Dp = {dp1, ..., dpa}.

— The deploy relation is represented by a function d :
Dv — Dp U {1}, as discussed in Sect. 2.

— Attributes in primitive types are represented as functions
to the corresponding types, e.g. cp : Dp — N and ie :
Dv — B, for comp and intledge, respectively.

— The attributes whose values are within a particular set,
are represented by functions with co-domains as the set
of all the valid choices. For example, the version attribute
is a function vsn : Dp — {develop, preview, release}.

A constraint solver can automatically search for an inter-
pretation for each of the uninterpreted functions that we
defined above. The interpretation of function d (i.e. giving a
dp forevery dv € Dv) and the interpretation of i e (assigning
either true or false for every dv € Dv) are the result for fleet
assignment. The searching process will be guided by a set of
constraints from (i) the current model status, i.e. the existing

attribute values, (ii) the domain-specific knowledge, and (iii)
global optimization objectives. In the rest of this section, we
will present the three types of constraints, respectively.

5.2 Constraints representing the current model state

In the current PIM, the devices and deployment plans already
have existing attribute values, which serve as the basis for
fleet assignment. Therefore, we translate all the current
attribute values into hard constraints. The example below
shows how we generate the constraints from the current state
of dp1:

vsn(dpl) = develop A pac(dpl) = tpu
Aie(dpl) =flex A ¢cp(dpl) =2 A cm(dpl) =2 (1)

The shortened function names are defined in the meta-model
in Fig. 4. We generate the constraints automatically by iter-
ating over all the devices and deployment plans in the PIM,
reading the attribute values, and generating the equations
accordingly.

@ Springer

H.Song et al.

5.3 Domain-specific constraints

We define a set of hard constraints based on the domain
knowledge about software deployment on edge devices.
These constraints are related to the requirements R1-R3 in
Sect. 2. To simplify the constraint definition, we first intro-
duce 3 auxiliary functions.

acc:Dv — B; vep: Dv— N; vem : Dv — N 2)

Here, acc indicates whether the hardware accelerator will be
used on a device, and vcp and vem are the actual levels of
computation and communication resource consumption on
the device, which is determined not only by the levels defined
in the deployment plan, but also by the configuration of the
device, such as whether the ML module is executed on the
edge device or in the cloud (ie) and whether the accelerator
is used (acc).

We start from the constraint related to the development
stage (R2): any deployment with software under develop-
ment should be only deployed on a staging device:

Ydv € Dv,dp € Dp : d(dv)=dp A vsn(dp)=develop
— env(dv) = staginglabeleq : 5 3)

The next set of constraints requires that the resource con-
sumption of a deployment plan should match the capacities
of its target device (R1 and R3).

The first step is to define how the actual consumption of
each device is determined by the theoretically worst-case
consumption defined by the developers.

VYdv € Dv,dp € Dp : d(dv) =dp —

cm(dp) —1 im(dp) = flex Aie(dv)
vem(dv) = .

cm(dp) otherwise

cp(dp) —1 im(dp) = flex A —ie(dv)
vep(dv) = { ep(dp) — 1 acc(dv) “4)

cp(dp) otherwise

For communication, if a deployment plan allows flexible
offloading of the ML model, then running the model on the
edge device would reduce the requirement on communica-
tion, since the raw data will be consumed locally without
being transferred to the cloud. For computation, there are
two cases that the actual computation requirement on the
gateway will be reduced: (i) When offloading is supported,
and the model is not executed on the edge, the computa-
tion requirement will be reduced, since the computation task
is offloaded to the cloud; (ii) When hardware accelerator is
used, the computation requirement is reduced, since the task
is offloaded to the accelerator.

@ Springer

The second step is to regulate when we can offload the
ML module to the cloud or the hardware accelerator.

acc(dv) <= ie(dv) A vac(dv) = pac(dp) # none
ie(dv) = im(dp) € {flex, edge}
ie(dv) <= im(dp) = edge 5)

Offloading to the accelerator happens (i.e. acc(dv) = T),
if and only if the ML module is allocated to the device (i.e.
ie(dv)) and the type of accelerator supported by the deploy-
ment plan match the accelerator attached to the device. The
equivalence statement means that whenever it is possible,
we will opt for acceleration, which is the most reasonable
for our use case. The ML module is executed on the edge
(i.e. ie(dv) = T), only if in the deployment plan the ML
module is defined as flexible or running on the edge. On
the other hand, if in the deployment plan the ML module is
defined to be only running on the edge, then ie(dv) must be
on. It is worth noting that when im(dp) = flex, ie(dv) can
be either true or false, which is a decision to be made by fleet
assignment.

The last set of constraints describes how the device con-
texts determine what level of resource assumption is allowed.

VYdv € Dv :

nw(dv) =49 — vem(dv) <3

nw(dv) =39 = vcem(dv) <2

mt(dv) = ac = vcp(dv) <3

mt(dv) = battery — cvp(dv) = vem(dv) = 1 (6)

The rationale behind these constraints in the sample domain
is threefold. First, the worse network a device has, the lower
communication level it can support. Second, if the device is
not mounted professionally, it should not run software mod-
ules with the highest computation requirement. Finally, if a
device is powered by a battery, it should opt for the lowest
computation and communication consumption.

5.4 Soft constraints to optimize the distribution

In addition to the hard constraints that must be satisfied by the
assignment, we also define a set of soft constraints to guide
the assignment towards optimized global distribution (R2
and R4). The solver can choose to violate a soft constraint
with an agreed penalty (i.e. the weight of the constraint) aim-
ing at the minimal total penalty for the solving result. In our
case, we used the following three groups of soft constraints.

The first group of software constraints suggests each
device to be assigned with a deployment plan. For each
device, we generate a soft constraint for its deployment plan
to be not empty with a penalty of 50. So far, the penalties

Model-based fleet deployment in the loT-edge-cloud continuum

we used for the soft constraints are based on our subjective
judgement of the importance of different constraints. More
thorough design and evaluation of the penalty framework is
seen as one of the future work directions.
(d(dvy) # J—penalty=50 , eny d(dvg) # J—)penalty:SO @)
The second group consists of only one soft constraint,
which instructs the solver to select 20% of all production
devices to trial the preview deployment plans (see R2 in
Sect. 2). The left side of the equation counts all the devices
assigned with a preview deployment plan, while the right
side counts all the devices in production and multiplies it by
0.2.

(|{dv € Dv|vsn(d(dv)) = preview}|
=[0.2- |{dv € Dv|env(dv):production}ﬂ)penalty:mo
®

The third group of soft constraints aims to evenly dis-
tribute the deployment plans in order to maintain the diversity
of deployment plans in the whole group (R4). In the two
constraints defined below, we count the number of devices
assigned with each deployment plan, and suggest the number
to be close to the average number of devices per deployment
plan (i.e. within the scope of £20% of the average number).

(|{dv € Dvld(dv) = dp:}|
(|{dv € Dvld(dv) = dp:}|

> 0.8 - [Dv|/|Dp|)penalty=20

<1.2- |DU|/|DP|)penalty=20
9

This is a relatively low-cost way to achieve even distribution,
compared to other complex methods, such as minimizing the
total variance (i.e. min » (7; — 7)%/n, where t; is number of
devices for dp;).

5.5 Implementation using the Z3 constraint solver

We use the Z3 SMT solver [26] to automatically search for a
solution for the uninterpreted functions under the constraints.
We define the SMT problem in Z3Py (the Python interface
of Z3), feed the defined constraints into the solver as input,
and extract the results.

Listing 2 demonstrates a simplified example to illustrate
the whole process. We first define an enumerated type Dp
to represent the set of all deployment plans (Line 1), fol-
lowed by an uninterpreted function d for deploy (Line 3).
The definition for Dv is similar, and is therefore omitted in
this example. Function env links Device to another enumer-
ated type representing the environment choices (Lines 4-5),
and cp is a function from deployment plans to integer. After
defining the functions, we instantiate a solver (Line 7), and

Listing 2 Sample SMT problem in Z3Py.

1 Dp, dps =

2 EnumSort('Dp’, ['dp1’,'dp2’, 'dp3’, 'dp4’, 'nodp’])
3 d = Function('deploy’, Dv, Dp)

4 Env, [staging, prod] = EnumSort('EnV’, ['staging’, '‘prod’])
5 env = Function('env’, Dv, Env)

6 ¢p = Function('comp’, Dp, IntSort())

7 solver = Optimize()

8 solver.add(ForAll([dv, dp], Implies(

9 And(d(dv) == dp, vsn(dp) == develop),
10 env(dv) == staging)))
11 foriin dvs:
12 solver.add_soft(Sum([If(d(j)==i, 1, 0) for j in dps]))
13 < len(dv)*1.2/len(dp), 20)
14 solver.check()
15 assert dp2 == solver.model().eval(d(dv4))

add constraints to it. We give two examples to show how to
program the constraints that we presented earlier. The first
one is a hard constraint indicating that a ‘develop’ deploy-
ment plan can only be deployed on a ‘staging’ device (Lines
8-10). The second example is a group of soft constraints.
For each deployment plan, we generate a constraint stating
that the total number of devices assigned with it should not
be more than 120% of the average number (Lines 11-13).
After populating the solver with all constraints, we launch
the solving procedure (Line 14), and then, as an example,
check for a deployment plan assigned to device dv4.

6 Application and evaluation of fleet
assignment

This section puts theory into practice by presenting how the
fleet assignment approach was applied to the RPM use case
of Tellu and demonstrating its effectiveness in their DevOps
routine. The section evaluates the fleet deployment concept
and approaches guided by the following research questions:

Q1 Is it feasible to apply the approach to real DevOps teams
working on IoT applications?

Is the approach capable of generating deployment assign-
ments that are useful for the DevOps process?

Is the approach beneficial to the DevOps team?

Is the approach scalable to real-life IoT applications?

Q2

Q3
Q4

We answer these research questions by integrating the
solution into a prototype fleet management tool, applying
it to the Tellu DevOps practices, and observing how the tool
works in a scenario simplified from the daily DevOps routine
at Tellu.

@ Springer

H.Song et al.

Fig.6 The DevOps process
enhanced by automatic fleet
assignment. The three arrows
pointing to the Fleet Assignment
component indicate the three
different situations within a
DevOps life cycle which trigger
fleet assignment

Testing

Releasing

6.1 Implementation and integration

To address the question Q1, we implemented the proposed
approach as a prototype tool named DivEnact,!! which was
integrated into the current DevOps toolset of Tellu.

Figure 6 illustrates Tellu’s new DevOps pipeline. Except
for the fleet assignment tool (depicted as a green box), all the
other steps and associated tools are the same as the currently
used in production. At present, the team is using Ansible for
device deployment and Azure IoT Edge for fleet monitoring.
The process is driven by the Jenkins continuous integration
engine. In each Dev loop, after coding and testing the new
changes, Tellu releases a new version of their application,
and creates a number of new deployment plans which con-
tain the new version. These deployment plans vary in terms
of configurations and dependencies on other components,
libraries and/or services. They label the new deployment
plans with different tags, occasionally update the tags of
existing deployment plans, and retire some old deployment
plans. With the current tools, after each release, they need to
manually update the mapping between devices and deploy-
ment plans in the form of several Ansible Inventory files,
each of which records a list of IP addresses for the devices
targeted by a deployment plan (which in turn is in the form
of an Ansible Playbook).

The fleet assignment tool replaces this manual task. After
each release, the tool will be automatically triggered, and
will provide a mapping between the current devices and the
active deployment plans (i.e. Ansible inventory files). The
device deployment tool receives the new assignment and
enforces redeployment of each individual device at a pre-
defined timeslot (e.g. the nearest available midnight when
the device is online). During run-time, the monitoring sys-
tem will keep track of the device context and update the
list of devices maintained by the Fleet Assignment tool. The
device provisioning tool continuously adds new devices into
the device list, e.g. after new patients join the service or exist-

I Diversity-oriented fleet deployment enactor. All source code avail-
able in the open-source repository: https://github.com/SINTEF-9012/
divenact.

@ Springer

Coding

adding, labelling, and
retiring deployments

Device
deployment
Fleet et
" Monitoring
assignment
updating device
adding and contexts
removing devices
Device
provisioning

ing patients switching to new devices. Such changes will also
trigger the fleet assignment action.

The fleet assignment tool itself is implemented as a web
service. The main backend service is composed of the three
modules for PSM, PIM and the transformation between them,
as described in Sect. 4. The PSM module invokes the exter-
nal fleet management and device deployment tools through
REST API, while the PIM module invokes the constraint
solving logic, as presented in Sect. 5, implemented as a sin-
gle Python script SMT.py. The back-end service also exposes
its own REST API for other tools to check the status of
deployment plans and devices, edit the labels, add additional
constraints and trigger the assignment process. More details
about the tool can be found in our earlier publication [23],
which describes the general fleet management support with-
out the assignment approach based on constraint solving.

6.2 Application scenarios

We evaluate the effectiveness of the approach by applying it
to a DevOps scenario that simulates the development activ-
ity at Tellu. This scenario answers the research questions Q2
and Q3 by demonstrating that assignment generated automat-
ically from the constraints fulfill the developers’ expectation
during the DevOps cycle.

The scenario involves a series of DevOps iterations, each
of which yields a new version of the application, changes
the status of the existing versions and/or retires some old
versions. Through these iterations, the developers gradually
create, test and release 6 versions of the RPM application, in
order to introduce and improve the new fall detection feature
with a ML module. Table 1 summarizes these versions and
their resource consumption. Each version corresponds to one
deployment plan.

Table 2 summarizes the automatic assignment result after
each iteration. The first column lists the set of deployment
plans maintained by the developers after each iteration. We
use the vertical bar sign | to divide the deployment plans into
three groups, according to the different development phases
(or vsn as we named it in the model). For example, AB|C|D
means deployment A and B are released to production, C is

https://github.com/SINTEF-9012/divenact
https://github.com/SINTEF-9012/divenact

Model-based fleet deployment in the loT-edge-cloud continuum

Table 1 Application variants after each DevOps iteration

Dep. Summary of features

A Base version, no ML (comm:1, comp: 1)

B ML running on cloud (comm: 3, comp: 1)

C ML running on gateways (comm: 1, comp: 3)

D Flexible ML offloading (comm: 3, comp: 3)

E Improve C by supporting accelerator (comm: 1, comp: 3)
F Improve D, offloading + accelerator (comm: 3, comp: 3)
G Improve E with lighter model (comm: 1, comp: 2)

under preview and D is under development. As iterations go
on, more deployment plans are released and go into preview
or deployment phases.

The rest of the table schematically illustrates how the pro-
posed tool automatically assigns the deployment plans after
each iteration to a fleet of 25 devices, including 4 staging and
21 production devices. The devices have different contexts
in terms of physical mounting, networking, and accelerator,
based on sampling with the actual devices maintained by the
company. We omit the actual profile of each device, since the
important part is to evaluate how the approach provides valid
assignments as a whole, rather than to check if each single
assignment satisfies all the constraints.

We go through the assignment results during the entire
scenario, step by step, to show how the automatic fleet
deployment benefits its users, i.e. the developers of edge
applications. For each step, we give a brief description of
the development purpose, followed by how the automatic
assignment results support this purpose.

1. Baseline deployment In the beginning, A is the only valid
deployment and has the lowest resource requirements,
and therefore all devices are assigned with this deploy-
ment.

2. First attempt with ML Developers first implement B with
the ML module running in the cloud, which requires
devices with WiFi due to the high communication con-
sumption. Two staging devices (1 and 3) were selected
after iteration 1 to test B internally, but afterwards only
3 devices were picked for preview in #2 (expected to
be 20%, or 4 devices) and the same 3 devices after B is
released (#3), since WiFi is not widely used by patients,
since most of them would skip configuring WiFi and keep
using the default 4G network. The developers get the
feedback that running ML only in the cloud has limited
usage among their users.

3. Migrating ML to the edge Deployment C with ML run-
ning on the edge (tested, previewed and released through
steps #2—#4) is complementary to B. It requires fixed
mounted devices but not necessary WiFi. Comparing

steps #2 and #3, C is deployed to devices that B was not
assigned to, which is in line with the developers’ expec-
tations.

4. Support cloud—edge offloading The next version D allows
flexible offloading. Due to the networking overheads, it
has some extra cost,!? and is therefore not a complete
substitution to B and C. The developers choose to keep
all the three deployment plans. They would expect an
even distribution of A-D among the production devices
at #4, but the assignment result has too many A’s (10
devices in total), which indicates that there are still many
devices that cannot run B, C or D.

5. Utilize hardware accelerators Deployment plans E and
F add accelerator support to C and D, respectively, by
adding an ML module compiled for an edge TPU. E and
F still keep the original ML module, so that they can also
run on devices that do not have a TPU (in that case, the
computation consumption would not be lowered), This
means that E can completely replace C. Therefore, when
releasing F (step #6), the developers also retire C. The
new assignment result does not increase the number of
A’s, which makes the developers hypothesize that the
remaining 10 devices with A could not run any of the
current deployment plans with ML.

6. Try to retire the base version To confirm the hypothesis,
the developers attempts to retire A (#7), and, as expected,
8 production devices end up with no deployment plans,
and so is one staging device (Device 4). They go on to
retire B, based on an observation back at step #5 that when
the assignment tool tried to recruit a sufficient number of
devices to preview E, it removed B completely, which
means B is replaceable by the subsequent versions. The
result at step #8 also confirms this, as the number of
un-deployed devices is the same. As a trial, the devel-
opers run assignment without executing the subsequent
device deployment at steps #7 and #8, to avoid production
devices having no deployment plans.

7. Optimize ML module By examining the profile of un-
deployed devices, the developers realize that the com-
putation power is the key problem, and therefore they
simplify the ML module and produce G with lower com-
putation requirement. By releasing G (at step #9, we
skip the iterations for testing and previewing G, for the
sake of space limitation), only four devices remained
un-deployed. This can be further solved by sending accel-
erators to these devices, so that eventually all the devices
can be equipped with the new ML feature.

In summary, the scenario demonstrates the following ben-
efits for developers, which answers the research question Q3.

12 For example, if ML is offloaded to the cloud, the computation cost

is down to 2 compared to 1 in B.

@ Springer

H.Song et al.

Table 2 Assignment in demonstration scenarios

Deployments Staging devices Production devices

—_
(=]

1 2 3 4 56 7 8 9

—_
—

._.
¥
—_
w
—_
~
—_
W
—_
(@)}
—_
~
—_
)
—_
O
)
(=]
S}
—_
(3%
[\
[N
w
[\
=

All

AllB
AlIBIC
ABICID
ABCIDIE
ABCD | EIF
ABDEFII
BDEF | |
DEF ||
DEFGI |

O 0 N N LK WD~ O
OO0 woO™OUOOQw >
M T mmm o> > >
TmMmwW YU wWwWww

> > > > > > P>
wissIvilvIIvEI v O S A s
mTomw QO ww >

> > > > > > P>
omgogomoga» > >
omogmogoga» > >
™ T T W > W W W > >

> > > >

Q

> > > > > >
> > > > >
> > > > > > >
> > > > > > >
> > > > > > >

[
[

I

I

I
s liles Bile s Bl R0 N @ N @ T SN~ =

OmT™TUoOwWWwWw > »
mm g mm o QR >
mmmma Q> > >
UTmoOwHn®®®w >
mmmm oo Q> > »
mmommmoe e > >
jeo e Bile s s Bl e I O i e

Q
Q
Q

— Automation After each iteration, developers do not need
to manually select matching devices for preview and
release.

Handling complexity Maintaining multiple deployment
plans in parallel often needs to reassign already existing
plans to make space for new ones. Taking the transition
from #4 to #5 as a simple example, the assigner has to
change Device 12 from B to D, in order to release Device
13 to preview E. With more devices involved, such re-
arrangement would become too complex and challenging
for manual work.

Testing Running fleet assignment without the device
deployment step is an efficient way to test the composi-
tion of deployments, as is shown by the attempt to retire
A and B.

Feedback Since the automatic assignment will guarantee
that the number of devices assigned to different devices
will be balanced, if a particular deployment plan is not
assigned, no devices can host this deployment plan. This
is valuable feedback to the developers to examine the
problematic deployment plans.

6.3 Performance and scalability

As a first step, it was required to evaluate the performance
of the approach to check whether it can be further used by
Tellu in the current set-up. We conducted a series of experi-
ments to test this, by selecting 5 out of the 10 compositions
of deployment plans in Table 2, and trying to assign them to
a fleet of varying size (from 25 to 400 devices) with gener-
ated profiles. We conducted the experiments on a MacBook
Pro laptop with 3.1 GHz Intel Core i5 processor and 16GB
Memory. This experiment addresses the research question
Q4. It demonstrates that the approach is usable in the con-
text of small- and medium-sized IoT application systems, and

@ Springer

Table 3 Time spent (in seconds) on assigning deployment plans

Dep. Number of devices

25 50 100 200 400
2 A|B|C 0.32 0.61 2.53 10.69 59.52
4 ABC|DIE 0.33 0.94 4.62 31.17 121.31
5 ABCDIE|F 0.77 1.91 8.44 92.52 606.63
6 ABDEF|| 0.19 1.28 4.79 16.60 101.55
9 DEFG]| 0.16 0.78 3.14 15.22 170.50

also reveals that scalability is still an important future work
direction. Noteworthy, the experiments only reveal the time
for fleet assignment. The time used for actual deployment
may vary significantly depending on the size of deployment
plans, available devices and connectivity.

Table 3 lists the average time spent on fleet assignment
after each iteration applied to different numbers of devices
in a fleet. For each iteration, we start with the same 25
devices as used in the last section, run assignment for 10
times and record the average time in seconds. After that,
we double the number of devices and repeat it until reach-
ing the total number of 400 devices, which is close to the
actual number of devices managed by Tellu. The time for
assignment increases significantly as the number of devices
or deployment plans increases. The composition of deploy-
ment plans also has an impact: Comparing #4 and #6, the one
with simpler composition is marginally faster to assign. The
experiments confirm the feasibility of the current approach:
assigning 6 deployment plans to 400 devices in 10 minutes,
albeit not perfect, is still acceptable for developers, since
other automated DevOps steps, such as building, testing and
device deployment takes comparable time, i.e. ranging from
several minutes up to an hour.

Model-based fleet deployment in the loT-edge-cloud continuum

The experiments also show the limitation in terms of
scalability. Considering 1 hour as the upper limit, when
the application system scales out to even more devices, we
would need to divide the whole fleet into multiple sub-fleets
and conduct the assignment separately. We also foresee that
developers may add new attributes to the meta-model and
new constraints, making it somewhat more computationally
complex. In such cases, we may need to carefully design the
constraints, limit the size of sub-fleets, etc. Further experi-
ments and guidelines for performance optimization is part of
the future work.

7 Model-based fleet deployment bundle for
smart loT systems

This section introduces a complete fleet deployment bundle
that comprise the tools that implement the two model-based
approaches for device deployment and fleet assignment, pre-
sented in Sects. 3, 4 and 5. We further extend the use case
based on Tellu’s production scenario to demonstrate how
the fleet deployment concept and the tool bundle are used
together to support the DevOps practice of applications in
the ToT-edge—cloud continuum.

The implementation and application of the full fleet
deployment bundle answers the following two additional
research questions.

Q5. Can the global deployment assignment lead to final and
concrete deployment on all individual gateways?

Q6. Is the complete fleet deployment approach beneficial
to multiple stakeholders, not only the DevOps team of
the IoT application?

7.1 Fleet deployment bundle: the concepts

We implemented the model-based automatic deployment
approach as a prototype deployment bundle comprising
two tools, i.e. GeneSIS and DivEnact, supporting automatic
deployment at the level of individual devices and the fleet as a
whole, respectively. The twofold bundle further demonstrates
the feasibility of the fleet deployment approach, addressing
the question Q5.

Figure 7 illustrates how the deployment bundle can be
usedin a typical smart IoT system. The illustrative system has
several sub-systems, each of which is in charge of a particular
business task, e.g. serving contents to the user, monitoring
a room, etc. Such a sub-system is usually composed of at
least one edge gateway and several connected IoT devices
such as sensors and actuators.'? These sub-systems form the
fleet of this system, and because each sub-system includes an

13 For the sake of simplicity, we do not show all the IoT devices.

edge device as the main contact point, i.e. a gateway with the
back-end service, we also refer to such fleet as an edge fleet.
A fleet is normally distributed, with edge gateways (together
with its associated IoT devices) serving different customers
or tenants, and deployed in different physical locations. Also,
the developers often maintain one or several edge devices on
their own premises for testing or trial purposes.

GeneSIS supports automatic deployment within a local
sub-system, e.g. the deployment on the devices located on
the developers’ side. In such case, the developers can directly
interact with the GeneSIS engine hosted on the local edge
device, and use it as the bridge to further deploy required
code to the associated [oT devices. At the development phase,
developers define a GeneSIS deployment model, specify-
ing which software artefacts should be deployed on which
devices. Next, at the deployment phase, the same deployment
model will be provided to the GeneSIS deployment engine,
running either on a local machine or on the edge device. The
engine will install or update the software artefacts according
to the newly received deployment model.

The situation gets more complicated and challenging
when the developers want to release a new version of their
application to production. In such case, they need to deploy
software artefacts to all the devices on the users’ sites. They
cannot extend the deployment model to include every device
in the fleet, because such a huge model is not maintainable,
especially when the devices keep joining and exiting the
fleet. DivEnact addresses this automatic deployment chal-
lenge at the fleet level. Since each user has a sub-system
similar to the one at the developers’ side, instead of han-
dling every single device individually, the developers can
provide the deployment models they developed at the previ-
ous phase to DivEnact. It maintains the list of all sub-systems
and sends the deployment model to the devices before invok-
ing the GeneSIS engine running on the edge gateway of
the sub-system, to eventually deploy the software artefacts
according to the deployment model. As already discussed,
within a fleet, the sub-systems have different contexts, such
as device capabilities, connectivity and user preferences and
the developers need multiple variants of their software to
fit different contexts. DivEnact accepts multiple deployment
models representing different software variants and config-
urations, generated as a series of releases, and automatically
assigns them to the target sub-systems.

7.2 Instantiating the fleet deployment bundle in
practice

Figure 8 shows how to instantiate the deployment bundle on
a fleet of IoT/Edge devices step by step.

To manage all the devices as a fleet, developers need to
first create an Azure loT Hub, which provides a cloud service
to register devices and to manage their life cycles. Creating

@ Springer

H.Song et al.

O)

Developers

' fleet

©IO)]

GitHub
Action

©

Users

Fig. 7 Deployment bundle for a Smart IoT System. In this bundle, we use our own GeneSIS tool for device deployment (see Fig. 1) to provide a

complete solution for Fleet Deployment

Install Linux Install Azure
and Docker loT Edge
agent

Instantiate Azure

deploy deploy
GeneSIS applications process
engine on gateways
A automatic
process

gateways

loT Hub Service

' ™

. . Provide
instantiate deployment
DivEnact ploy

) models

{ for next application or release

—
- parallel
fleet 3 processes
assignment =

legend

Fig.8 Steps to instantiate the fleet deployment bundle

an IoT Hub is straight-forward, and can be done as simple as
one command line, according to Azure’s tutorial 4

After creating the IoT Hub, developers can install a DivE-
nact instance, either on a cloud virtual machine or on a
local machine. During the installation, they need to provide
a unique connection string for the newly created IoT Hub.
After the installation, developers can use the DivEnact ser-
vice through a web-based GUI from any devices, as long as
the host machine of the DivEnact service is reachable from
these devices. Through the GUI, developer can manage the
fleet, which at this stage is still empty.

A gateway must go through a bootstrap step to be able
to join the fleet. Starting with an empty gateway, develop-
ers need to install a Linux operating system and the docker

14 https://docs.microsoft.com/en-us/azure/iot-edge/quickstart-linux?
view=iotedge-2020- 1 I#create-an-iot-hub.

@ Springer

engine. After that, they need to install Azure IoT Edge agent,
which is a Linux system service plus two Docker containers.
We provide a pre-defined shell script to automate this boot-
strap step.'> Every gateway has a unique identification (the
device connection string), which can be obtained from the
IoT Hub.

The deployment of application is done through DivEnact.
Developers need to provide the deployment models, includ-
ing the GeneSIS models and the DivEnact model as presented
in Sects. 3.1 and 4, respectively. After receiving the model,
DivEnact will automatically assign the GeneSIS models to
the gateways and then instruct the gateway to install appli-
cation components. If there is no GeneSIS engine installed

15 https://gitlab.com/enact/divenact/-/blob/master/edge/bootstrap/
setup.sh.

https://docs.microsoft.com/en-us/azure/iot-edge/quickstart-linux?view=iotedge-2020-11#create-an-iot-hub
https://docs.microsoft.com/en-us/azure/iot-edge/quickstart-linux?view=iotedge-2020-11#create-an-iot-hub
https://gitlab.com/enact/divenact/-/blob/master/edge/bootstrap/setup.sh
https://gitlab.com/enact/divenact/-/blob/master/edge/bootstrap/setup.sh

Model-based fleet deployment in the loT-edge-cloud continuum

on a gateway, the local deployment will start with installing
it first.

The workflow in Fig. 8 contains two loops, i.e. the gate-
way enrolment and the continuous application deployment.
The two loops happen independently, and the developers
can keep deploying new applications (or new releases of
applications), while new gateways can join the fleet at
the same time. The two activities are normally overlooked
by different stakeholders, i.e. gateway administrators and
applications developers. The decoupling between the two
activities ensures that the two stakeholders can work inde-
pendently, which is a major advantage of fleet deployment.

7.3 Use case of the fleet deployment bundle

We introduce a second use case in the real Tellu production
set-up to illustrate how the fleet deployment bundle works in
the DevOps process and what it means to the involved stake-
holders. For the current RPM product, Tellu has distributed
400 gateways, each of which is used by a single patient. Tellu
operates all the gateways, on behalf of different customers,
i.e. nursing service providers running by either private com-
panies or local municipalities. All the gateways collectively
form a large and geographically distributed fleet. The use
case shows that the fleet deployment concept and approach
not only benefits the application developers, but also other
stakeholders such as device administrators and end users,
and is useful for different stages of application development.
This addresses the research question R6.

The use case is based on areal scenario when a new access
control mechanism is introduced into the RPM fleet. The
RPM service monitors the real-time status of a patient, and
thus requires sufficient access control to maintain patient data
privacy. Among all the available sensors, the camera is used
for the most sensitive data. In the current system, the access
control strategy is strict and static, and only the personal
nurse can access the live video stream of the patient at spe-
cific time slots during the day. Recently, one tenant raised a
new requirement for a more flexible access control strategy—
i.e. upon emergency, e.g. when the patient accidentally falls
down, the nurse on duty should be granted with an elevated
temporary access rights to the camera to be able to remotely
assess the patient’s current situation. The DevOps team at
Tellu decided to implement this feature gradually, starting
from a basic emergency situation when the patient presses
an alarm button. The button hardware includes a microcon-
troller board (Arduino Uno) connected to the gateway via a
USB port, and a remote Bluetooth-connected button that the
patient has to wear as a necklace. The software part includes:
(i) C code running on the Arduino board to listen for remote
button events, (ii) an updated version of gateway software to
associate the button with the patient and to upload the but-
ton press events to the access control service in the cloud,

and (iii) an upgraded access control back-end service that
considers both the user role and the current emergency level.

Tellu has started to distribute the button hardware to vol-
unteering patients, and now needs to deploy the updated
software (i and ii above) to the gateways that belong to the
requesting tenants and have the button hardware already con-
nected. This is a typical fleet deployment problem—i.e. the
software variant with new access control exists together with
the previous version, and should only be assigned to a sub-set
of the gateways depending on the tenant and hardware con-
texts. Such ‘last-mile’ deployment of the assigned software to
the gateway involves software deployment on heterogeneous
devices, including microcontroller boards [25].

Figure 9 shows how the fleet deployment bundle is used to
realize this scenario. In the diagram, the corner-folded boxes
represent the input artefacts, and the rounded rectangles are
the activities. The arrows represent the causal links between
activities, i.e. the target activities happens as a result of the
source one. The vertical spatial relationship between activi-
ties roughly indicate their temporal relation, i.e. the activities
placed higher in the diagram happens before the lower ones.
We now describe the usage from three different, yet closely
related perspectives—namely the DevOps team, the compo-
nents inside the bundle and the end users.

From the DevOps team’s perspective The development
phase for this scenario yields three artefacts: (i) source code
running on the gateways and microcontrollers, which are
further packaged as a Docker image and a code package,
respectively, (ii) GeneSIS deployment model describing how
to deploy the Docker container and the code package on
abstract gateways and microcontrollers, similar to the snippet
in Listing 1, and (iii) fleet deployment models and con-
straints. The important constraints are:

— The new deployment should only apply to the gateways
from the specific tenant;

— It should not be deployed to gateways without the button
hardware.

The first two software artefacts will be committed to the Git
repository, while the third one is the input for the DivE-
nact tool to configure the fleet assignment activity. Once
the artefacts are ready, the DevOps team will launch fleet
deployment action, and after that, they will keep receiving
notifications about specific devices impacted and the deploy-
ment status. It is worth noting that during the whole process,
the DevOps team does not need to know explicitly which
concrete devices belong to the tenant, and whether and when
the patients plugged the button hardware. They only view the
entire fleet as a whole.

Inside the fleet deployment tools The components within
the fleet deployment tools are running in two different
places—cloud and gateways. The agents in the gateways keep

@ Springer

H.Song et al.

DevOps team

cloud service

code
Git
GeneSIS model Commit
update
DivEnact model deploy to device
and constraints fleet context
assign
deployment
trigger
device
deployment
fleet state
fleet state updated
notified

Fig.9 Activities implementing the access control use case

detecting new hardware, and update the context of the gate-
way managed by the cloud service. Once fleet deployment
is triggered by the DevOps team, it will first perform fleet
assignment to decide which gateways should be provisioned
with the new software. Next, the cloud service will instruct
these gateways to trigger the deployment of the GeneSIS
model within the gateway. Fleet assignment does not impact
all the edge devices at the same time, and the DivEnact tool
will re-evaluate the assignment in a pre-defined interval (5
minutes in this case). That is, whenever new devices join the
fleet, previously inactive devices are back online, or the con-
text of some devices changes, the tool will re-evaluate the
assignment and trigger device deployment if needed. The
result of the gateway deployment will be sent back to the
DevOps teams as feedback.

From the end-users’ perspective Two types of end-users
are involved in this scenario, i.e. the patients and the nurses.
From the patients’ point of view, they will be informed about
the new feature, and provide consent to obtain the alarm but-
ton devices. After receiving the hardware, they can plugitinto
the gateway at any time. When the new software is deployed
on the gateway and the connected button’s microcontroller,
the LCD screen on the button will blink, reminding the patient
to go through an enrollment process, i.e. login to their mobile
app and type in the code shown on the LCD screen, to ver-
ify that the patient him-/herself owns and controls the button.
After that, in case of emergency situations, they can press the

@ Springer

Fleet deployment bundle

End user
gateway patient nurse
no access to
camera
detect
connect
button
. button
connection
trigger
local
deployment
GeneSIS
deployment
enroll
button
press access
button granted

button to initiate video communication with the supervising
nurse.

From the nurse’s point of view, the only change intro-
duced by the newly assigned and deployed software is that
some of them (i.e. the ones supervising patients who have
been provisioned with an alarm button) will have access to
the camera when a patient presses the emergency button—a
feature that is otherwise restricted in less critical circum-
stances.

It is worth noting that during the entire process, the
only manual work required from the developers is to define
the GeneSIS and DivEnact models, as well as the con-
straints. All the subsequent assignment and deployment work
takes place automatically. The models can be defined in
the graphical and textual editors provided by our tools. To
use them, developers are expected to have relevant knowl-
edge on software deployment, edge computing and [aC
mechanisms. Therefore, the target users of this approach
are not traditional developers focusing only on coding, but
rather DevOps engineers who are also in charge of deploy-
ment. Basic knowledge of model-driven engineering would
also help them use the tool in an more convenient way,
but is not mandatory. On the other hand, writing com-
plex constraints may be challenging for developers with
little background on logical programming (especially FOL).
Therefore, another potential direction for future work will

Model-based fleet deployment in the loT-edge-cloud continuum

investigate more intuitive interfaces for constraint specifica-
tion.

8 Related work

Managing software updates across a large fleet of devices
has been a key challenge for the mobile OS providers,
such as Apple and Google. At present, their adopted over-
the-air update mechanism implements a publish—subscribe
model, where mobile devices first get notified and then
fetch available updates through the centralized marketplace.
Since smartphone fleets are rather homogeneous (i.e. mod-
ern smartphones are equipped with more or less the same
resources and capabilities), there is no challenge of multi-
criteria software assignment as such, and the compatibility
check is performed only once, upon the initial installation.
Furthermore, in a fleet of smartphones there are typically no
global system goals, such as even distribution of components
or A/B testing.

Deploying software applications on hardware platforms
with respect to heterogeneous contexts is not a new problem,
and has been studied for several decades now. In partic-
ular, the software communication architecture (SCA) [32]
describes how properties of waveform software components
are mapped to heterogeneous device characteristics, thus
enabling software-defined radio (SDR) systems. Another rel-
evant reference architecture for deploying component-based
applications into heterogeneous distributed target systems
is described in [44]. In particular, the proposed architecture
includes the concept of Planner—a component responsible
for matching software requirements to available platform
resources and deciding whether a component is compat-
ible with a device. These existing specifications remain
implementation-agnostic and only describe the high-level
concepts, whereas our approach attempts to provide a con-
crete solution with tool supports, for a specific use case.

Automatic deployment is a key challenge to adopt the
DevOps practices. 1aC tools, such as Ansible!® [33] and
Chef!” can be used to support the installation of software
modules on devices, while edge computing frameworks such
as the already mentioned Azure IoT Edge and AWS IoT
Greengrass provide online services to maintain device fleets
throughout the whole device life cycle. Our approach is com-
plementary to these tools, and provides the missing capability
of assigning multiple deployment models to many devices in
a reliable automated manner.

As far as firmware (low-level executable code deployed on
microcontroller-enabled IoT devices) updates are concerned,
the situation has only started to change recently. Tradition-

16 https://www.ansible.com/.

17 https://www.chef.io/products/chef-infra/.

ally, embedded IoT devices have been flashed with ‘one-off’
firmware not subject to be updated in the future. This was due
to hardware and connectivity constraints, as well as security
considerations, which limited consequent manipulation of
embedded code once a device leaves the production line and
is shipped to a customer. Delivering new firmware via an
Internet-connected gateway or a smartphone was a natural
fit [35,39,43]. This way, IoT devices connected to a gateway
via a non-TCP/IP network interface supporting a firmware
flashing protocol (e.g. Bluetooth or a serial port) can receive
updates. A considerable subset of these existing approaches
focuses on the security and trustworthiness of firmware
updates [6,18,29,38,49,55]. In the absence of a central-
ized gateway for delivering firmware updates. Some recent
research works also investigated how narrow-bandwidth net-
works can be used to enable firmware over-the-air (FOTA)
of battery-powered devices [1,2]. Comparing with these
approaches, our approach on device deployment targets a
general deployment support to different types of devices and
attempts to use edge devices as delegates to achieve automatic
deployment on resource- and network-constrained devices.

Another relevant research attempt to assign firmware to
relevant devices focuses on the distributed and hierarchical
nature of IoT infrastructures and aims to implement soft-
ware assignment in a scalable and time-efficient manner.
In their works [4,20,36], to encode and query device con-
text properties and available services, the authors employed
Bloom filters—space-efficient data structures with fixed time
of writing and querying. These properties make Bloom fil-
ters especially suitable for memory-constrained devices. In
this approach, each device in a fleet is expected to main-
tain a Bloom filter representation of its current context and
match it with an incoming assignment query (i.e. whether or
not it matches the requested parameters), upon receiving one
from an upstream gateway. Albeit extremely scalable, this
approach is limited by the requirement to run queries on the
constrained devices and the increased data exchange between
devices and gateways. Moreover, with the distributed nature
of the Bloom filter-based approaches, it is impossible to
perform assignment following global fleet goals (e.g. distri-
bution of firmware for A/B testing), since there is no global
overview of the whole fleet. Finally, a Bloom filter is prob-
abilistic data structure, where false negatives are possible
when querying, which reduces the accuracy of firmware soft-
ware assignment.

An approach combining the scalability and centralized
assignment is described in [24]. The authors treat the chal-
lenge of allocating software components to edge and IoT
devices as a generalized assignment problem and demon-
strate how it can be solved using simple, yet efficient
combinatorial optimization techniques. The approach is
lightweight and scalable, but suffers from reduced expres-

@ Springer

https://www.ansible.com/
https://www.chef.io/products/chef-infra/

H.Song et al.

sivity, since it intentionally does not rely on modelling
techniques.

In general, the assignment problem frequently appears in
ICT scenarios, where some resources need to be allocated
to available nodes, often taking into consideration various
context-specific characteristics [45,46]. The research com-
munity has come up with multiple algorithms, ranging in
their computational complexity, completeness, preciseness,
etc. Many of these approaches treat assignment as a collec-
tion of constraints, which need to be satisfied in order to
find an optimal solution in the given circumstances [3,14].
The SMT-based approaches are specifically popular and effi-
cient due to their expressively and rich modelling language
[15]. In this respect, a relevant approach that also makes
use of SMT and Z3 Solver is described by Pradhan et al.
[48]. The authors introduce orchestration middleware, which
continuously evaluates available resources on edge nodes
and redeploys software accordingly. Similar goal is pursued
by Vogler et al. in [53], where authors report on a work-
load balancer for distributing software components on the
edge. Multiple approaches specifically focus on the auto-
nomic and wireless nature of IoT devices and contribute to
energy-efficient resource allocation, where the primary cri-
terion for software deployment is energy efficiency [56]. The
main obstacle for using SMT in practice is the gap between
real platforms and the mathematical model, and our approach
uses model-based techniques to bridge this gap.

Our work is also related to variability management in
software engineering. Research works on software product
lines (SPLs) [47] seek for systematic management of soft-
ware variability throughout the software life cycle. Feature
models are widely used in these approaches to capture the
commonality and variability of a product line [11] as a tree
of product features. Developers select required features to
derive a configuration of a feature model as a description of
a concrete product. Many approaches use constraint solving
to verify the derived configurations from various perspec-
tives [8] or to automatically fix the inconsistencies [54]. The
fleet assignment part in our work follows a similar approach
to transform a high-level model into a constraint satisfaction
problem to apply constraint solving. However, instead of a
general feature model, our transformation works on a spe-
cific model for IoT deployment, which is essentially about
mapping between two groups of elements. Our work would
benefit from SPL approaches that facilitate developers in
creating variant deployment plans, but this part far beyond
the scope of this paper. In addition, a future extension to
our work is to use feature models instead of simple tags in
order to describe deployment plans and device choices, which
will significantly increase the expressive power of the mod-
elling language and thus support more complex systems. The
planned direction is related to approaches on using feature
models for software deployment [34].

@ Springer

In general, model-based techniques are often used to sup-
port DevOps. Combemale et al. [19] present an approach to
use a continuum of models from design to run-time to speed
up the DevOps processes in the context of cyber-physical
systems. Artavc et al. [5] uses deployment models on multi-
ple cloud environments, which is a promising way to support
the smooth transition of software from testing to production
environments. Our previous approaches use model-based
engineering to engineer the diversity of software deploy-
ment within the entire application [41,50,52]. Looking at
approaches targeted at particular application domains, Buc-
chiarone et al. [17] use multi-level modelling to automate
the deployment of gaming systems. In [27,28], the authors
apply model-driven design space exploration techniques to
the automotive domain and demonstrate how different vari-
ants of embedded software are identified as more beneficial
in different contexts, depending on the optimization objec-
tive and subject to multiple constraints in place. To solve
this optimization problem, the authors also employ the SMT
techniques and the Z3 solver implementation. As opposed to
these works, our approach focuses on a particular problem in
the DevOps of IoT applications, and it goes beyond merely
providing models as an effective interface for developers to
conduct manual work, but aims at the full automation of a
particular task, i.e. fleet deployment.

9 Discussion
9.1 Threats to validity

The discussion of the proposed approach would not be com-
plete without a critical analysis of the threats to validity.
With the current size of the edge fleets managed by Tellu,
it would not be realistic to perform the experiments on real
physical devices, and therefore we opted for evaluating the
proposed approach based on simulation, which, nevertheless,
reflects the real operations and business requirements faced
by the company. Besides, this way, for clarity purposes we
managed to omit some trivial and non-relevant details and
demonstrated what is really novel and important.

Another potential limitation of the approach is that under
the current setting, developers need to clearly know upfront
what exactly every context means to the assignment, in order
to design the effective constraints. However, under some cir-
cumstances, the potential effect of certain characteristics on
the assignment may be fuzzy or not be so evident from the
beginning. For example, if the objective is to maximize the
chance of receiving good feedback on a preview version, we
may need to consider a series of contexts, for example, how
often the patient uses the application, how actively they pro-
vide feedback, how useful the feedback has been so far, etc.

Model-based fleet deployment in the loT-edge-cloud continuum

In such case, defining precise and unambiguous constraints
and their effect on such context characteristics is a challenge.

We foresee two possible directions to address this issue.
One possibility is to apply semantic web techniques to
the meta-models, by providing a common unambiguous
ontology—i.e. a shared standard vocabulary for describing
device contexts. Another possible direction is to combine
constraint solving with machine learning. We use constraint
solving only to ensure that the assignment does not violate
hard and soft constraints currently being in place. At the
same time, we can also allow the tool to learn from historical
records (i.e. what assignments have already been computed,
and what feedback has been collected) in order to lead to a
good assignment.

9.2 Lessons learned on tool development

The main output from this research work is the fleet deploy-
ment bundle comprising two open source tools.

A lesson learned for such tool-building research is to have
the target users involved in the development process. Our
industry partner, Tellu, has been involved in the development
process from the beginning, participating in the requirement
analysis, tool design, and the evaluation planning. This not
only ensures the usefulness of the tools to the company, but
also allows the company to prepare for the transition to the
new DevOps methods based on the fleet deployment concept.
From technical point of view, using widely adopted platforms
available in the market (such as Azure IoT Hub in our case)
helps to minimize the cost of applying the tools to the industry
cases.

Our ambition behind the tool building is to create
community-driven open-source tools, so that eventually the
tools will be overtaken and maintained by an open-source
community. This is a practical route to maximize the impact
of the fleet deployment research in the industry, consid-
ering the fact that the authors are either researchers or
domain-oriented application developers. Therefore, main-
taining software development tools is not part of our interest.
The progress towards an active open-source community
around the tools is still ongoing. One possible reason for the
slow growth is that the whole development process is heav-
ily coupled to one particular company and therefore lacks the
generality to attract sufficient interest from a wider commu-
nity. Thus, an important future work direction is to engage
other users to generalize the tools.

9.3 Generality of the approach

The fleet deployment approach is motivated and evaluated in
the frame of a use case in the eHealth domain. However, the
concepts, methods and tools are generic to edge computing
applications in other domains, such as manufacturing and

smart cities, where edge computing will be widely used. For
example, in the manufacturing domain, more and more facto-
ries are employing edge devices to aggregate and pre-process
the real-time data from machinery before sending them for
global analysis to the server or to the cloud. Similarly, in
the smart city domain [22], some data sets are processed
on edge devices close to the citizens and deleted afterwards
for the sake of preserving privacy. For these edge applica-
tions, it is important to keep updating the software on the
edge for data processing and other emerging business logic,
and different devices may need different software variants,
depending not only on the device profiles but also on their
cyber-physical environments, including the factory machin-
ery that they monitor or device geo-location within a smart
city. This is the type of problems that fleet deployment is
targeting at.

10 Conclusion and future work

This paper described an industry-driven research, undertaken
in collaboration with the edge application provider Tellu,
aiming to enable the automatic assignment and deployment
of software components to a fleet of edge and IoT devices. We
implemented an architecture where software updates match-
ing specific device contexts are pushed down from the cloud
to intermediate edge gateways and terminal IoT devices. This
way, the proposed approach supports the software assign-
ment and deployment activities in the whole loT-edge—cloud
continuum and contributes to wider re-usability of hard-
ware infrastructure across multiple IoT scenarios. Such fleet
deployment not only accelerates the deployment of software
updates for the developers, but also supports the adaptation
to run-time changes. New devices joining the fleet trigger
the fleet reassignment action, which will eventually deploy
the required software components to the new devices with-
out human intervention. We addressed the problem using
model-based techniques including meta-modelling, transfor-
mation and constraint solving and integrated the prototype
tool into the existing DevOps toolchain currently used by
Tellu. An initial demonstration with simulated DevOps iter-
ations showed that the approach is useful in the DevOps
process, by generating correct assignment results and trig-
gering actual deployment, as well as providing valuable
feedback for further DevOps iterations.

As an industry-driven research, the approach is specific
to the concrete problem faced by Tellu, and the early-stage
application of the approach to Tellu’s DevOps teams has
already shown observable benefits. As an initial and infor-
mal evaluation, comparing their DevOps routines before and
after applying the fleet deployment tools, Tellu developers
expect to see an increase in their DevOps pace by approxi-
mately three times, with roughly five times lower effort on

@ Springer

H.Song et al.

integration, after the approach is fully embedded into their
production processes. This will be achieved through easier
delivery of devices to their patients, and a higher automation
level for continuous deployment. More details can be found
in arecent report by Tellu [40]. As part of an ongoing research
project, future work also includes a formal empirical study
to follow up the adoption of our tools by Tellu’s development
team, and an evaluation of the effectiveness of using the fleet
deployment approach.

Acknowledgements This work is partially funded by the European
Commission’s H2020 Programme under Grant Agreement 780351
(ENACT), 101020416 (ERATOSTHENES) and the Norwegian Research
Council’s BIA-IPN Programme No. 309700 (FLEET)

Funding Open access funding provided by SINTEF.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abdelfadeel, K., Farrell, T., McDonald, D., Pesch, D.: How to
make firmware updates over LoRaWAN possible. In: 2020 IEEE
21st International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), pp. 16-25. IEEE (2020)

2. Anastasiou, A., Christodoulou, P., Christodoulou, K., Vassiliou,
V., Zinonos, Z.: 10T device firmware update over LoRa: The
blockchain solution. In: 2020 16th International Conference on
Distributed Computing in Sensor Systems (DCOSS), pp. 404—411.
IEEE (2020)

3. Ansétegui, C., Bofill, M., Palahi, M., Suy, J., Villaret, M.: Satis-
fiability modulo theories: an efficient approach for the resource-
constrained project scheduling problem. In: Ninth Symposium of
Abstraction, Reformulation, and Approximation (2011)

4. Antonini, M., Cirani, S., Ferrari, G., Medagliani, P., Picone, M.,
Veltri, L.: Lightweight multicast forwarding for service discovery
in low-power IoT networks. In: 2014 22nd International Confer-
ence on Software, Telecommunications and Computer Networks
(SoftCOM), pp. 133—138. IEEE (2014)

5. Arta¢, M., Borovsak, T., Di Nitto, E., Guerriero, M., Tamburri,
D.A.: Model-driven continuous deployment for quality DevOps.
In: Proceedings of the 2nd International Workshop on Quality-
Aware DevOps, pp. 40-41 (2016)

6. Asokan, N., Nyman, T., Rattanavipanon, N., Sadeghi, A.R., Tsudik,
G.: ASSURED: architecture for secure software update of realis-
tic embedded devices. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 37(11), 2290-2300 (2018)

7. Bass, L., Weber, 1., Zhu, L.: DevOps: A Software Architect’s Per-
spective. Addison-Wesley Professional (2015)

@ Springer

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of

feature models 20 years later: a literature review. Inf. Syst. 35(6),
615-636 (2010)

. Bergmayr, A., Breitenbiicher, U., Ferry, N., Rossini, A., Solberg,

A., Wimmer, M., Kappel, G., Leymann, F.: A systematic review
of cloud modeling languages. ACM Comput. Surv. (CSUR) 51(1),
1-38 (2018)

Bergmayr, A., Breitenbiicher, U., Kopp, O., Wimmer, M., Kap-
pel, G., Leymann, F.: From architecture modeling to application
provisioning for the cloud by combining UML and TOSCA. In:
CLOSER (2), pp. 97-108 (2016)

Beuche, D., Dalgarno, M.: Software product line engineering with
feature models. Overload J. 78, 5-8 (2007)

. Binz, T., Breitenbiicher, U., Haupt, F., Kopp, O., Leymann, F.,

Nowak, A., Wagner, S.: Opentosca—a runtime for TOSCA-
based cloud applications. In: International Conference on Service-
Oriented Computing, pp. 692-695. Springer (2013)

Blair, G., Bencomo, N., France, R.B.: Models@ run. time. Com-
puter 42(10), 22-27 (2009)

Bofill, M., Palahi, M., Suy, J., Villaret, M.: Solving constraint sat-
isfaction problems with SAT modulo theories. Constraints 17(3),
273-303 (2012)

Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Satisfiability
modulo theories and assignments. In: International Conference on
Automated Deduction, pp. 42-59. Springer (2017)

Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying
systems using a logic of counter arithmetic with lambda expres-
sions and uninterpreted functions. In: International Conference on
Computer Aided Verification, pp. 78-92. Springer (2002)
Bucchiarone, A., Cicchetti, A., Marconi, A.: Exploiting multi-level
modelling for designing and deploying gameful systems. In: 2019
ACM/IEEE 22nd International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), pp. 34-44. IEEE
(2019)

Choi, B.C., Lee, S.H., Na, J.C., Lee, J.H.: Secure firmware valida-
tion and update for consumer devices in home networking. IEEE
Trans. Consum. Electron. 62(1), 39-44 (2016)

Combemale, B., Wimmer, M.: Towards a model-based DevOps
for cyber-physical systems. In: Software Engineering Aspects of
Continuous Development (2019)

Dautov, R., Distefano, S.: Targeted content delivery to IoT devices
using Bloom filters. In: International Conference on Ad-Hoc Net-
works and Wireless, pp. 39-52. Springer (2017)

Dautov, R., Distefano, S.: Stream processing on clustered edge
devices. IEEE Transactions on Cloud Computing (2020). https:/
doi.org/10.1109/TCC.2020.2983402

Dautov, R., Distefano, S., Merlino, G., Bruneo, D., Longo, F.,
Puliafito, A.: Towards a global intelligent surveillance system. In:
Proceedings of the 11th International Conference on Distributed
Smart Cameras, pp. 119-124 (2017)

Dautov, R., Song, H.: Towards IoT diversity via automated fleet
management. In: MDE4IloT/ModComp@MoDELS, pp. 47-54
(2019)

Dautov, R., Song, H., Ferry, N.: A light-weight approach to
software assignment at the edge. In: 2020 IEEE/ACM 13th Inter-
national Conference on Utility and Cloud Computing (UCC), pp.
380-385. IEEE (2020)

Dautov, R., Song, H., Ferry, N.: Towards a sustainable IoT with
last-mile software deployment. In: 2021 IEEE Symposium on
Computers and Communications (ISCC), pp. 1-6. IEEE (2021)
De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 337-340. Springer (2008)

Eder, J., Bahya, A., Voss, S., Ipatiov, A., Khalil, M.: From deploy-
ment to platform exploration: automatic synthesis of distributed
automotive hardware architectures. In: Proceedings of the 21th

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TCC.2020.2983402
https://doi.org/10.1109/TCC.2020.2983402

Model-based fleet deployment in the loT-edge-cloud continuum

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

ACMV/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, pp. 438-446 (2018)

Eder, J., Zverlov, S., Voss, S., Khalil, M., Ipatiov, A.: Bringing
DSE to life: exploring the design space of an industrial automotive
use case. In: 2017 ACM/IEEE 20th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
pp. 270-280. IEEE (2017)

Falas, S., Konstantinou, C., Michael, M.K.: A Modular End-to-End
Framework for Secure Firmware Updates on Embedded Systems.
arXiv preprint arXiv:2007.09071 (2020)

Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M.,
Solberg, A.: Cloudmf: model-driven management of multi-cloud
applications. ACM Trans. Internet Technol. (TOIT) 18(2), 1-24
(2018)

Ferry, N., Nguyen, PH., Song, H., Rios, E., Iturbe, E., Martinez,
S., Rego, A., et al.: Continuous deployment of trustworthy smart
IoT systems. J. Object Technol. 19(2), 1-23 (2020)

Gonzilez, C.R.A., Dietrich, C.B., Reed, J.H.: Understanding
the software communications architecture. [IEEE Commun. Mag.
47(9), 50-57 (2009)

Hall, D.: Ansible Configuration Management. Packt Publishing
Ltd. (2013)

Hochgeschwender, N., Gherardi, L., Shakhirmardanov, A., Kraet-
zschmar, G.K., Brugali, D., Bruyninckx, H.: A model-based
approach to software deployment in robotics. In: 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.
3907-3914. IEEE (2013)

Jain, N., Mali, S.G., Kulkarni, S.: Infield firmware update: chal-
lenges and solutions. In: 2016 International Conference on Com-
munication and Signal Processing (ICCSP), pp. 1232-1236. IEEE
(2016)

Jo, H.J., Kwon, J.H., Ko, L.Y.: Distributed service discovery in
mobile IoT environments using hierarchical bloom filters. In: Inter-
national Conference on Web Engineering, pp. 498-514. Springer
(2015)

Kleppe, A.G., Warmer, J.B., Warmer, J., Bast, W.: MDA Explained:
The Model Driven Architecture: Practice and Promise. Addison-
Wesley Professional (2003)

Lo, N.W,, Hsu, S.H.: A secure IoT firmware update framework
based on MQTT protocol. In: International Conference on Informa-
tion Systems Architecture and Technology, pp. 187-198. Springer
(2019)

McGrath, W., Etemadi, M., Roy, S., Hartmann, B.: Fabryq: using
phones as gateways to prototype internet of things applications
using web scripting. In: Proceedings of the 7th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, pp.
164-173 (2015)

Anton Gonzalez, M.A., et al.: Final evaluation and validation
report. Technical Report, The ENACT Consortium (2021)

Morin, B., Hggenes, J., Song, H., Harrand, N., Baudry, B.:
Engineering software diversity: a model-based approach to sys-
tematically diversify communications. In: Proceedings of the 21th
ACMI/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, pp. 155-165 (2018)

Nguyen, P., Ferry, N., Erdogan, G., Song, H., Lavirotte, S., Tigli,
J.Y., Solberg, A.: Advances in deployment and orchestration
approaches for JoT—a systematic review. In: 2019 IEEE Interna-
tional Congress on Internet of Things (ICIOT), pp. 53-60. IEEE
(2019)

Nikolov, N.: Research firmware update over the air from the
cloud. In: 2018 IEEE XXVII International Scientific Conference
Electronics-ET, pp. 1-4. IEEE (2018)

OMG: Deployment and Configuration of Component-based Dis-
tributed Applications Specification, v4.0. Technical Report, Object
Management Group, Inc. (2006). https://www.omg.org/spec/
DEPL/4.0/PDF

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Oncan, T.: A survey of the generalized assignment problem and its
applications. INFOR Inf. Syst. Oper. Res. 45(3), 123-141 (2007)
Pentico, D.W.: Assignment problems: a golden anniversary survey.
Eur. J. Oper. Res. 176(2), 774-793 (2007)

Pohl, K., Bockle, G., Van Der Linden, F.: Software Product Line
Engineering: Foundations, Principles, and Techniques, vol. 1.
Springer (2005)

Pradhan, S., Dubey, A., Khare, S., Nannapaneni, S., Gokhale, A.,
Mahadevan, S., Schmidt, D.C., Lehofer, M.: Chariot: goal-driven
orchestration middleware for resilient IoT systems. ACM Trans.
Cyber-Phys. Syst. 2(3), 1-37 (2018)

Sahlmann, K., Clemens, V., Nowak, M., Schnor, B.: MUP: simpli-
fying secure over-the-air update with MQTT for constrained IoT
devices. Sensors 21(1), 10 (2021)

Song, H., Chauvel, F., Solberg, A.: Deep customization of multi-
tenant SaaS using intrusive microservices. In: Proceedings of the
40th International Conference on Software Engineering: New Ideas
and Emerging Results, pp. 97-100 (2018)

Song, H., Dautov, R., Ferry, N., Solberg, A., Fleurey, F.: Model-
based fleet deployment of edge computing applications. In: Pro-
ceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, pp. 132-142
(2020)

Song, H., Elgammal, A., Nallur, V., Chauvel, F,, Fleurey, F., Clarke,
S.: On architectural diversity of dynamic adaptive systems. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, vol. 2, pp. 595-598. IEEE (2015)

Vogler, M., Schleicher, J.M., Inzinger, C., Dustdar, S.: A scalable
framework for provisioning large-scale IoT deployments. ACM
Trans. Internet Technol. (TOIT) 16(2), 1-20 (2016)

Xiong, Y., Hubaux, A., She, S., Czarnecki, K.: Generating range
fixes for software configuration. In: 2012 34th International Con-
ference on Software Engineering (ICSE), pp. 58-68. IEEE (2012)
Yohan, A., Lo, N.-W., Achawapong, S.: Blockchain-based firmware
update framework for internet-of-things environment. In: Pro-
ceedings of the International Conference on Information and
Knowledge Engineering (IKE), pp. 151-155. The Steering Com-
mittee of the World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp) (2018)

You, C., Huang, K., Chae, H., Kim, B.H.: Energy-efficient resource
allocation for mobile-edge computation offloading. IEEE Trans.
Wirel. Commun. 16(3), 1397-1411 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

HuiSong s a Senior Research Sci-
entist with SINTEF Digital. His
research interest is in software
development methods and tools,
and their applications on IoT, edge
and cloud systems. He received
his Ph.D. on computer science
from Peking University, China. He
has worked on many EU and nati-
onal research projects related to
software engineering in cloud and
IoT systems and was the coordi-
nator of the H2020 project ENACT,
which investigated DevOps for IoT.

@ Springer

http://arxiv.org/abs/2007.09071
https://www.omg.org/spec/DEPL/4.0/PDF
https://www.omg.org/spec/DEPL/4.0/PDF

H.Song et al.

Rustem Dautov is a Research Sci-
entist at SINTEF Digital, based in
Oslo, Norway. His work focuses
on applied research in the areas
of the Internet of things, edge
computing, and cloud computing,
applying model-driven engineer-
ing and semantic web techniques.
In the current position, Rustem
has been involved in multiple natio-
nal and international research and
innovation projects, both as a resea-
rcher and as a coordinator. He
received his Ph.D. degree in com-
puter science from The University

of Sheffield, UK. Before joining SINTEF, he had worked in several
academic and software engineering positions in Greece and Russia.
Rustem has co-authored 40+ publications and is actively serving as a
reviewer for multiple international conferences and journals.

Nicolas Ferry is an Associate Pro-
fessor at University Cote d’Azur.
Prior, he was a Senior Research
Scientist at SINTEF. He holds a
Ph.D. degree from the Univer-
sity of Nice. His research interest
includes model-driven engineer-
ing, domain- specific languages,
Internet of things, cloud comput-
ing, self-adaptive systems, and
dynamic adaptive systems. He has
actively contributed to various
national and international research
projects such as the REMICS, CITI-
SENSE, MC-Suite and MODA-

Clouds EU projects and was the technical manager of the H2020
ENACT project. He has also served as a program committee member
of international conferences and workshops.

@ Springer

Arnor Solberg s the Chief DevOps
Officer at Tellu. He is part of the
leader team developing the com-
pany strategy at both the techni-
cal and business level and is lead-
ing the DevOps Business Unit at
Tellu. Tellu provides TeleHealth
and TeleCare services. These ser-
vices are provided as software as
a service (SaaS). Tellu also pro-
vides a comprehensive eHealth plat-
form for building and operating
advanced eHealth services that com-
putes distributively across the IoT,
edge and cloud space. This enables

Tellu to provide complete end-to-end solutions including integra-
tion with third-party systems such as electronic health records and
response centres. Tellu operates in domains where information secu-
rity and trustworthiness is significant. Arnor was responsible for get-
ting Tellu certified according to the ISO 27001 (Information Security
Management).

Franck Fleurey is the Chief Tech-
nical Manager at Tellu. His resea-
rch interests include model-driven
software engineering, embedded
systems and dynamic adaptive sys-
tems. Dr. Fleurey received a Ph.D.
in computer science from the Uni-
versity of Rennes 1.

	Model-based fleet deployment in the IoT–edge–cloud continuum
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Motivating example
	2.2 Fleet deployment: the concepts
	2.3 Device deployment
	2.4 Fleet assignment

	3 Modelling language and engine for device deployment
	3.1 The GeneSIS modelling language for device deployment
	3.2 GeneSIS deployment engine
	3.3 GeneSIS for device deployment

	4 Model-based fleet assignment
	4.1 Meta-models
	4.2 Transformations between PIM and PSM
	4.3 Sample models

	5 Fleet assignment using constraint solving
	5.1 Representing the PIM as an SMT problem
	5.2 Constraints representing the current model state
	5.3 Domain-specific constraints
	5.4 Soft constraints to optimize the distribution
	5.5 Implementation using the Z3 constraint solver

	6 Application and evaluation of fleet assignment
	6.1 Implementation and integration
	6.2 Application scenarios
	6.3 Performance and scalability

	7 Model-based fleet deployment bundle for smart IoT systems
	7.1 Fleet deployment bundle: the concepts
	7.2 Instantiating the fleet deployment bundle in practice
	7.3 Use case of the fleet deployment bundle

	8 Related work
	9 Discussion
	9.1 Threats to validity
	9.2 Lessons learned on tool development
	9.3 Generality of the approach

	10 Conclusion and future work
	Acknowledgements
	References

