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Abstract: The quantum approximate optimization algorithm/quantum alternating operator ansatz
(QAOA) is a heuristic to find approximate solutions of combinatorial optimization problems. Most
of the literature is limited to quadratic problems without constraints. However, many practically
relevant optimization problems do have (hard) constraints that need to be fulfilled. In this article, we
present a framework for constructing mixing operators that restrict the evolution to a subspace of the
full Hilbert space given by these constraints. We generalize the “XY”-mixer designed to preserve the
subspace of “one-hot” states to the general case of subspaces given by a number of computational
basis states. We expose the underlying mathematical structure which reveals more of how mixers
work and how one can minimize their cost in terms of the number of CX gates, particularly when
Trotterization is taken into account. Our analysis also leads to valid Trotterizations for an “XY”-mixer
with fewer CX gates than is known to date. In view of practical implementations, we also describe
algorithms for efficient decomposition into basis gates. Several examples of more general cases are
presented and analyzed.

Keywords: quantum algorithms

1. Introduction

The quantum approximate optimization algorithm (QAOA) [1], and its generalization,
the quantum alternating operator ansatz (also abbreviated as QAOA) [2], is a meta-heuristic
for solving combinatorial optimization problems that can utilize gate-based quantum
computers and possibly outperform purely classical heuristic algorithms. Typical examples
that can be tackled are quadratic (binary) optimization problems of the form

x∗ = arg min
x∈{0,1}n , g(x)=0

f (x), f (x) = xTQ f x + c f , g(x) = xTQgx + cg (1)

where Q f , Qg ∈ Rn×n are symmetric n× n matrices. For binary variables x ∈ {0, 1}, any
linear part can be absorbed into the diagonal of Q f and Qg. In this article, we focus on the
case where the constraint is given by a feasible subspace as defined in the following:

Definition 1 (Constraints given by indexed computational basis states). LetH = (C2)⊗n be
the Hilbert space for n qubits, which is spanned by all computational basis states |zj〉, i.e., H =
span{|zj〉, 1 ≤ j ≤ 2n, zj ∈ {0, 1}n}. Let

B =
¶
|zj〉, j ∈ J, zj ∈ {0, 1}n

©
, (2)

be the subset of all computational basis states defined by an index set J. This corresponds to

g(x) = ∏
j∈J

n

∑
i=1

Ä
xi − (zj)i

ä2
, (3)
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which is a quadratic constraint.

There is a well-established connection of quadratic (binary) optimization problems
to Ising models, see, e.g., [3], that allows one to directly translate these problems to the
QAOA. The general form of QAOA is given by

|γ, β〉 = UM(βp)UP(γp) · · ·UM(β1)UP(γ1)|φ0〉, (4)

where one alternates the application of phase separating and mixing operator p times. Here,
UP(γ) is a phase separating operator that depends on the objective function f . As defined
in [2], the requirements for the mixing operator UM(β) are as follows

• UM does not commute with UP, i.e., [UM(β), UP(γ)] 6= 0, for almost all γ, β ∈ R;
• UM preserves the feasible subspace as given in Definition 1, i.e., Sp(B) is an invariant

subspace of UM,
UM(β)|v〉 ∈ Sp(B), ∀|v〉 ∈ Sp(B), ∀β ∈ R; (5)

• UM provides transitions between all pairs of feasible states, i.e., for each pair x, y
∃β∗ ∈ R and ∃r ∈ N∩ {0} , such that

|〈x|UM(β∗) · · ·UM(β∗)︸ ︷︷ ︸
r times

|y〉| > 0, ∀ comp. basis states |x〉, |y〉 ∈ B. (6)

If both UM and UP correspond to the time evolution under some Hamiltonians HM, HP,
i.e., UM = e−iβHM and UP = e−iγHP , the approach can be termed “Hamiltonian-based
QAOA” (H-QAOA). If the Hamiltonians HM, HP are the sum of (polynomially many) local
terms, it represents a sub-class termed “local Hamiltonian-based QAOA” (LH-QAOA).

In practice, it is not possible to implement UM or UP directly. It is necessary to decom-
pose the evolution into smaller pieces, which means that instead of applying e−it(H1+H2),
one can only apply e−itH1 and e−itH2 . This process is typically referred to as “Trotterization”.
As an example, the simplest Suzuki–Trotter decomposition, or the exponential product
formula [4,5] is given by

ex(H1+H2) = exH1 exH2 +O(x2) (7)

where x is a parameter and H1, H2 are two operators with some commutation relation
[H1, H2] 6= 0. Higher-order formulas can be found for instance in [4].

Practical algorithms need to be defined using a few operators from a universal gate
set, e.g., {U3, CX}, where

U3(θ, φ, λ) =

Ç
cos
(
θ/2
) −eiλ sin

(
θ/2
)

eiφ sin
(
θ/2
)

ei(φ+λ) cos
(
θ/2
)
å

, CX =

Ü
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ê

. (8)

A good (and simple) indicator for the complexity of a quantum algorithm is given by the
number of required CX gates. Overall, the most efficient algorithm is the one that provides
the best accuracy in a given time [6].

Remark 1 (Repeated mixers). If UM is the exponential of a Hermitian matrix, the parameter r in
Equation (6) does not matter, as it can be absorbed as a re-scaling of β. However, if UM is Trotterized,
this can lead to missing transitions. In this case, r > 1 can again provide these transitions. It
is therefore suggested in [2] to repeat mixers within one mixing step. For this reason, we will
consider the cost of Trotterized mixers including the necessary repetitions to provide transitions for
all feasible states.
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2. Related Work

The QAOA was introduced by [1] where it was applied to the Max-Cut problem. The
authors in [7] compared the QAOA to the classical AKMAXSAT solver extrapolate from
small instances to large instances and estimate that a quantum speed-up can be obtained
with (several) hundreds of qubits. A general overview of variational quantum algorithms,
including challenges and how to overcome them, is provided in [8,9]. Key challenges are
that it is in general hard to find good parameters. It has been shown that the training
landscapes are in general NP-hard [10]. Another obstacle is so-called barren plateaus,
i.e., regions in the training landscape where the loss function is effectively constant [9]. This
phenomenon can be caused by random initializations, noise, and over-expressablity of the
ansatz [11,12].

Since its inception, several extensions/variants of the QAOA have been proposed.
ADAPT-QAOA [13] is an iterative, problem-tailored version of QAOA that can adapt to
specific hardware constraints. A non-local version, referred to as R-QAOA [14], recursively
removes variables from the Hamiltonian until the remaining instance is small enough to be
solved classically. Numerical evidence shows that this procedure significantly outperforms
standard QAOA for frustrated Ising models on random three-regular graphs for the Max-
Cut problem. WS-QAOA [15] takes into account solutions of classical algorithms to a
warm-starting QAOA. Numerical evidence shows an advantage at low depth, in the form
of a systematic increase in the size of the obtained cut for fully connected graphs with
random weights.

There are two principal ways to take constraints into account when solving Equation (1)
with the QAOA. The standard, simple approach is to penalize unsatisfied constraints in the
objective function with the help of a so-called Lagrange multiplier λ, leading to

x∗ = arg min
x∈{0,1}n

(
f (x) + λg(x)

)
. (9)

This approach is popular, since it is straightforward to define a phase-separating Hamilto-
nian for f (x) + λg(x). Some applications include the tail-assignment problem [16], the Max-
k-cut problem [17], graph coloring problems, and the traveling sales person problem [18]. A
downside of this approach is that infeasible solutions are also possible outcomes, especially
for approximate solvers such as QAOA. This also makes the search space much bigger
and the entire approach less efficient. In addition, the quality of the results turns out to
be very sensitive to the chosen value of the hyperparameter λ. On one hand, λ should be
chosen large enough such that the lowest eigenstates of HP correspond to feasible solutions.
On the other hand, too large values of λ mean that the resulting optimization landscape
in the γ has very high frequencies, which makes the problem hard to solve in practice.
In general, it can be very challenging to find (the problem-dependent) value for λ that best
balances the tradeoff between optimality and feasibility in the objective function [19].

For QAOA, a second approach is to define mixers that have zero probability to go
from a feasible state to an infeasible one, making the hyperparameter λ of the previous
approach unncessary. However, it is generally more challenging to devise mixers that
take into account constraints. The most prominent example in the literature is the XY-
mixer [2,18,19], which constrains evolution to states with nonzero overlap with “one-hot”
states. One-hot states are computational basis states with exactly one entry equal to one.
For instance, |0001〉 and |010000〉 are one-hot states, while |00〉 and |110〉 are not. The name
XY mixer comes from the related XY-Hamiltonian [20]. The mixers derived in the literature
follow the intuition of physicists to use “hopping” terms. A performance analysis of the
XY-mixer applied to the maximum k-vertex cover shows a heavy dependence on the initial
states as well as the chosen Trotterization [21].

QAOA can be viewed as a discretized version of quantum annealing. In quantum
annealing, enforcing constraints via penalty terms is particularly “harmful”, since they
often require all-to-all connectivity of the qubits [22]. The authors in [23] therefore intro-
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duce driver Hamiltonians that commute with the constraints of the problem. This bears
similarities with and actually inspired the approaches in [2,18].

The main contributions of this article are:

• A general framework to construct mixers restricted to a set of computational basis
states; see Section 3.1.

• An analysis of the underlying mathematical structure, which is largely independent
of the actual states; see Section 3.2.

• Efficient algorithms for decomposition into basis gates; see Sections 3.3 and 3.5.
• Valid Trotterizations, which is not completely understood in the literature; see Section 3.5.
• We prove that it is always possible to realize a valid Trotterization; see Theorem 3.
• Improved efficiency of Trotterized mixers for “one-hot” states in Section 5.1.
• Discussion of the general case, exemplified in Section 5.2.

We start by describing the general framework.

3. Construction of Constraint Preserving Mixers

In the following, we will derive a general framework for mixers that are restricted
to a subspace, given by certain basis states. For example, one may want to construct a
mixer for five qubits that is restricted to the subspace Sp(|01001〉, |11001〉, |11110〉) of C25

,
where Sp(B) denotes the linear span of B. In this section, we will describe the conditions
for a Hamiltonian-based QAOA mixer to preserve the feasible subspace and for providing
transitions between all pairs of feasible states. We also provide efficient algorithms to
decompose these mixers into basis gates.

3.1. Conditions on the Mixer Hamiltonian

Theorem 1 (Mixer Hamiltonians for subspaces). Given a feasible subspace B as in Definition 1
and a real-valued transition matrix T ∈ R|J|×|J|. Then, for the mixer constructed via

UM(β) = e−iβHM , where HM = ∑
j,k∈J

(T)j,k|xj〉〈xk|, (10)

the following statements hold.

• If T is symmetric, the mixer is well defined and preserves the feasible subspace, i.e., condition (5)
is fulfilled.

• If T is symmetric and for all 1 ≤ j, k ≤ |J|, there exists an r ∈ N∪ {0} (possibly depending
on the pair) such that

(Tr)j,k 6= 0, (11)

then UM provides transitions between all pairs of feasible states, i.e., condition (6) is fulfilled.

Proof. Well definedness. Almost trivially HM is Hermitian if T is symmetric,

H†
M = ∑

j,k∈J
(T)j,k|xk〉〈xj| = ∑

j,k∈J
(T)k,j|xk〉〈xj| = HM. (12)

Since HM is a Hermitian (and therefore normal) matrix, there exists a diagonal matrix D,
with the entries of the diagonal as the (real valued) eigenvalues of HM, and a matrix U,
with columns given by the corresponding orthonormal eigenvectors. The mixer is therefore
well defined through the convergent series

e−itHM =
∞

∑
m=0

(−it)m Hm
M

m!
= Ue−itDU†. (13)

Reformulations. We can rewrite HM in the following way

HM : |y〉 7→ ∑
j,k∈J

(T)j,k〈xj|y〉|xk〉 = ETET |y〉, |y〉 ∈ C2n
, (14)
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where the columns of the matrix E ∈ R2n×|J| consist of the feasible computational basis
states, i.e., E = [xj]j∈J ; see Figure 1 for an illustration.
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C2n C2n

C|J| C|J|

HM,B

ET
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E
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©
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everything outside Sp(B) to 0 and Sp(B) onto
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Figure 1. Illustration of properties of Hamiltonians constructed with Theorem 1.

We can rewrite HM in the following wayHM : |y⟩ 7→ ∑
j,k∈J

(T)j,k⟨xj|y⟩|xk⟩ = ETET |y⟩, |y⟩ ∈ C2n
, (14)

where the columns of the matrix E ∈ R2n×|J| consistsFF of the feasible computational
basis states, i.e., E = [xj]j∈J E = {

∣∣xj
∂
}j∈J

FF, see Figure 1 for an illustration. Using that

ETE = I ∈ R|J|×|J| is the identity matrix, we have that

Hm
M = ETmET = ∑

j,k∈J
(Tm)j,k|xj⟩⟨xk|, m ∈ N, (15)

and Equation (13) can be written as

e−itHM = E

Ç
∞

∑
m=0

(−it)mTm

m!

å
ET . (16)

Preservation of the feasible subspace. 117

Let |v⟩ ∈ Sp(B). Using Equation (15) we know that

Hm
M|v⟩ = ∑

j,k∈J
(Tm)j,k|xj⟩⟨xk|v⟩ = ∑

j∈J
cj
∣∣xj
∂
∈ Sp(B),

with coefficients cj ∈ C. Therefore, also e−itHM |v⟩ ∈ Sp(B), t ∈ R, since it is a sum of these 118

terms. 119

Transition between all pairs of feasible states. 120

For any pair of feasible computational basis states
∣∣xj∗
∂

, |xk∗⟩ ∈ B we have that

f (t) =
¨

xj∗
∣∣UM(t)|xk∗⟩ =

¨
xj∗
∣∣

∞

∑
m=0

(
(−it)m

m! ∑
j,k∈I

(Tm)j,k|xj⟩⟨xk|
)
|xk∗⟩

=
∞

∑
m=0

(−it)m

m!
(Tm)j∗ ,k∗

(17)
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Figure 1. Illustration of properties of Hamiltonians constructed with Theorem 1.

Using that ETE = I ∈ R|J|×|J| is the identity matrix, we have that

Hm
M = ETmET = ∑

j,k∈J
(Tm)j,k|xj〉〈xk|, m ∈ N, (15)

and Equation (13) can be written as

e−itHM = E

Ç
∞

∑
m=0

(−it)mTm

m!

å
ET . (16)

Preservation of the feasible subspace. Let |v〉 ∈ Sp(B). Using Equation (15), we
know that

Hm
M|v〉 = ∑

j,k∈J
(Tm)j,k|xj〉〈xk|v〉 = ∑

j∈J
cj
∣∣xj
∂
∈ Sp(B),

with coefficients cj ∈ C. Therefore, also e−itHM |v〉 ∈ Sp(B), t ∈ R, since it is a sum of
these terms.

Transition between all pairs of feasible states. For any pair of feasible computational
basis states

∣∣xj∗
∂

, |xk∗〉 ∈ B, we have that

f (t) =
¨

xj∗
∣∣UM(t)|xk∗〉 =

¨
xj∗
∣∣

∞

∑
m=0

(
(−it)m

m! ∑
j,k∈I

(Tm)j,k|xj〉〈xk|
)
|xk∗〉

=
∞

∑
m=0

(−it)m

m!
(Tm)j∗ ,k∗

(17)

It is enough to show that f (t) is not the zero function. Since f (t) : R→ C is an analytic
function, it has a unique extension to C. Assume that f is indeed the zero function on R;
then, the extension to C would also be the zero function, and all coefficients of its Taylor
series would be zero. However, we assumed the existence of an r ∈ N ∪ {0} such that
|(Tr)j∗ ,k∗ | > 0, and hence, there exists a nonzero coefficient, which is a contradiction to f
being the zero function.

A natural question is how the statements in Theorem 1 depend on the particular
ordering of the elements of B.



Algorithms 2022, 15, 202 6 of 23

Corollary 1 (Independence of the ordering of B). Statements in Theorem 1 that hold for a
particular ordering of computational basis states for a given B hold also for any permutation
π : {1, · · · , |J|} → {1, · · · , |J|}, i.e., they are independent of the ordering of elements. For each
ordering, the transition matrix T changes according to Tπ = PT

π TPπ , where Pπ is the permutation
matrix associated with π.

Proof. We start by pointing out that the inverse matrix of Pπ exists and can be written as
P−1

π = Pπ−1 = PT
π .

The resulting matrix HM is unchanged. Following the derivation in Equation (14),
we have that HMπ = EπTπET

π , where the columns of the matrix E ∈ R2n×|J| consist of the
permuted feasible computational basis states, i.e., Eπ = {xπ(j)}j∈J . Inserting T = PT

π TPπ ,
we have indeed HMπ = EπTπET

π = (Eπ PT
π )T(PπET

π) = ETET = HM.
Tπ is symmetric if T is. Assuming that TT = T, we have that also

(Tπ)T = (PT
π TPπ)T = PT

π TT Pπ = PT
π TPπ = Tπ .

If the condition in Equation (11) holds for T, then it also holds for Tπ . Using Tr
π = PT

π TrPπ ,
we can show that Equation (11) holds for the permuted index pair (π(j), π(k)) for Tπ if it
holds for (j, k) for T.

In the following, if nothing else is remarked, computational basis states are ordered
with respect to increasing integer value, e.g., |001〉, |010〉, |111〉.

Apart from special cases, there is a lot of freedom to choose the transition matrix T
that fulfills the conditions of Theorem 1. The entries of T will heavily influence the circuit
complexity, which will be investigated in Section 3.3. In addition, we have the following
property which adds additional flexibility to develop efficient mixers.

Corollary 2 (Properties of mixers). For a given feasible subspace Sp(B), let UM,B be the mixer
given by Theorem 1. For any subspace Sp(C) with Sp(B)∩ Sp(C) = {0} or equivalently B ∩ C =
∅, also UM = UM,BUM,C is a valid mixer for B satisfying the conditions of Equations (5) and (6);
see also Figure 2.

Proof. Any |v〉 ∈ B is in the null space of HM,C, i.e., HM,C|v〉 = 0 and hence UM,C|v〉 = I.
Therefore, UM,BUM,C|v〉 = UM,B|v〉 ∈ B, and UM,CUM,B|v〉 = UM,C|w〉 = |w〉with |w〉 ∈ B
which means the feasible subspace is preserved. Condition (6) follows similarly from the
fact that UM,C|v〉 = I for any |v〉 ∈ B.
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C2n

Sp(C)

Sp(B)

C2n

Sp(B)
HM,B + HM,C

Figure 2. Corollary 2 shows that adding a mixer with support outside Sp(B) is also a valid mixer for
B.

An examplesFF illustrating Corollary 3 is provided by the transition matrix T ∈ R4×4

with zero diagonal and all other entries equal to one. A unit eigenvector of T, which
fulfills Theorem 1, is v = 1/2(1, 1, 1, 1)T . For any B = {|z1⟩, |z2⟩, |z3⟩, |z4⟩} the uniform
superpositions of these states is an eigenvector, since

1
∥v∥2

Ev =
1
2

(|z1⟩, |z2⟩, |z3⟩, |z4⟩)(1, 1, 1, 1)T =
1
2

(|z1⟩+ |z2⟩+ |z3⟩+ |z4⟩).

This result holds irrespective of what the states are and which dimension they have. 170

Theorem 2 (Products of mixers for subspaces). Given the same setting as in Theorem 1. For
any decomposition of T into a sum of Q symmetric matrices Tq, in the following sense

T =
Q

∑
q=1

Tq, (Tq)i,j = (Tq)j,i =

{
either (T)ij,
or 0,

(18)

we construct the mixing operator via

UM(β) =
N

∏
n=1

qn∈{1,2,··· ,Q}

e−iβTqn . (19)

If all entries of T are positive, then UM provides transitions between all pairs of feasible states, i.e.
condition (6) is fulfilled, if for all 1 ≤ j, k ≤ |J| there exist rm ∈ N ∪ {0} (possibly depending on
the pair) such that

Ä M

∏
m=1
qm∈Q

Trm
qm

ä
j,k

̸= 0. (20)

Proof. Combining Equations (15) and (16) we have thatFF

¨
xj
∣∣UM(β)|xk⟩ =

∞

∑
j1=0,j2=0,··· ,jM=0

(−it)j1+j2+···+jm (T j1
q1 T j2

q2 · · · T jM
qM )j,k

j1!j2! · · · jm!

=
∞

∑
j=1

(−it)j

j! ∑
j1,··· ,jM s.t.

Ä
∑M

m=1 jm
ä
=j

(T j1
q1 T j2

q2 · · · T jM
qM )j,k.FF

(21)

Using that T only hFFas positive entries and the condition in Equation (20),FF the same 171

argument as in Theorem 1 can be used to show that UM(β) is not the zero function and 172

therefore we have transitions between all pairs of feasible states. 173

Figure 2. Corollary 2 shows that adding a mixer with support outside Sp(B) is also a valid mixer
for B.

Corollary 2 naturally holds as well for any linear combination of mixers, i.e., HM,B +

∑i ai HM,Ci is a mixer for the feasible subspace Sp(B) as long as Sp(Ci)∩ Sp(B) = {0}, ∀i. At
first, it might sound counterintuitive that adding more terms to the mixer results in more
efficient decomposition into basis gates. However, as we will see in Section 5, it can lead to
cancellations due to symmetry considerations.

Next, we describe the structure of the eigensystem of UM.
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Corollary 3 (Eigensystem of mixers). Given the setting in Theorem 1 with a symmetric transition
matrix T. Let (λ, v) be an eigenpair of T, then (λ, Ev) is an eigenpair of HM and (e−itλ, Ev) is an
eigenpair of UM, where E = {

∣∣xj
∂
}j∈J as defined in Equation (14).

Proof. Let (λ, v) be an eigenpair of T. Then, HMEv = ETETEv = ETv = λEv, so (λ, Ev)
is an eigenpair of HM. The connection between HM and UM is general knowledge from
linear algebra.

An example illustrating Corollary 3 is provided by the transition matrix T ∈ R4×4

with zero diagonal and all other entries equal to one. A unit eigenvector of T, which
fulfills Theorem 1, is v = 1/2(1, 1, 1, 1)T . For any B = {|z1〉, |z2〉, |z3〉, |z4〉}, the uniform
superpositions of these states is an eigenvector, since

1
‖v‖2

Ev =
1
2

(|z1〉, |z2〉, |z3〉, |z4〉)(1, 1, 1, 1)T =
1
2

(|z1〉+ |z2〉+ |z3〉+ |z4〉).

This result holds irrespective of what the states are and which dimension they have.

Theorem 2 (Products of mixers for subspaces). Given the same setting as in Theorem 1. For
any decomposition of T into a sum of Q symmetric matrices Tq, in the following sense

T =
Q

∑
q=1

Tq, (Tq)i,j = (Tq)j,i =

{
either (T)ij,
or 0,

(18)

we construct the mixing operator via

UM(β) =
N

∏
n=1

qn∈{1,2,··· ,Q}

e−iβTqn . (19)

If all entries of T are positive, then UM provides transitions between all pairs of feasible states,
i.e., condition (6) is fulfilled, if for all 1 ≤ j, k ≤ |J| there exist rm ∈ N∪ {0} (possibly depending
on the pair) such that

Ä M

∏
m=1
qm∈Q

Trm
qm

ä
j,k
6= 0. (20)

Proof. Combining Equations (15) and (16), we have

¨
xj
∣∣UM(β)|xk〉 =

∞

∑
j1=0,j2=0,··· ,jM=0

(−it)j1+j2+···+jm (T j1
q1 T j2

q2 · · · T
jM
qM )j,k

j1!j2! · · · jm!

=
∞

∑
j=1

(−it)j

j! ∑
j1,··· ,jM s.t.

Ä
∑M

m=1 jm
ä
=j

(T j1
q1 T j2

q2 · · · T
jM
qM )j,k.

(21)

Using that T only has positive entries and the condition in Equation (20), the same
argument as in Theorem 1 can be used to show that UM(β) is not the zero function, and
therefore, we have transitions between all pairs of feasible states.

As Theorem 1 leaves a lot of freedom for choosing valid transition matrices, we will
continue by describing important examples for T.

3.2. Transition Matrices for Mixers

Theorem 1 provides conditions for the construction of mixer Hamiltonians that pre-
serve the feasible subspace and provide transitions between all pairs of feasible computa-
tional basis states, namely
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1. T ∈ R|J|×|J| is symmetric; and
2. for all 1 ≤ j, k ≤ |J| there exists an rj,k ∈ N∪ {0} such that (Tr)j,k 6= 0.

Remarkably, these conditions depend only on the dimension of the feasible subspace
|J| = dim(Sp(B)) = |B|, and they are independent of the specific states that constitute B. In
addition, Corollary 1 shows that these conditions are robust with respect to reordering of
rows if in addition columns are reordered in the same way. Moreover, Equation (17) shows
also that the overlap between computational basis states

∣∣xj
∂

, |xk〉 ∈ B is independent of
the specific states that B consists of and only depends on T, since the right-hand side of
the expression

¨
xj
∣∣UM(t)|xk〉 =

∞

∑
m=0

(−it)m

m!
(Tm)j,k, (22)

is independent of the elements in B. This allows us to describe and analyze valid transition
matrices by only knowing the number of feasible states, i.e., |B|. What these specific states
are is irrelevant, unless one wants to look at what an optimal mixer is, which we will come
back to in Section 3.4. Figure 3 provides a comparison of some mixers described in the
following with respect to the overlap between different states.
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different T show that there exists a β such that the overlap is nonzero, except for T2↔3 which, as
expected, does not provide transitions between |z0⟩ and |z3⟩.
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specific states are is irrelevant, unless one wants to look at what an optimal mixer is, 184

which we will come back to in Section 3.4. Figure 3 provides a comparison of some mixers 185

described in the following with respect to the overlap between different states. 186

In the following, we denote the matrix for pairs of indices whose binary representation
have Hamming distance equal to d as

THam(d), with (THam(d))i,j =

{
1, if dHamming(bin(i), bin(j)) = d,
0, else,

(23)

Figure 3. Examples of the squared overlap between two states for the case |B| = 4. The squared
overlap is independent of what the states in B = {|z0〉, |z1〉, |z2〉, |z3〉} are. The comparison for
different T shows that there exists a β such that the overlap is nonzero, except for T2↔3 which,
as expected, does not provide transitions between |z0〉 and |z3〉.

In the following, we denote the matrix for pairs of indices whose binary representation
have a Hamming distance equal to d as

THam(d), with (THam(d))i,j =

{
1, if dHamming(bin(i), bin(j)) = d,
0, else,

(23)

Examples of the structure of THam(d) can be found in Figure 4.
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equal to one, representing pairs with the specified Hamming distance.

Furthermore, it will be useful to denote the matrix which has two nonzero entries at
(k, l) and (l, k) as

Tk↔l , with (Tk↔l)i,j =

{
1, if (i, j) = (k, l) or (i, j) = (l, k),
0, else.

(24)

Before we start, we point out that the diagonal entries of T can be chosen to be zero,
because |(T0)j,j| = 1 6= 0 for all j ∈ J. Although trivial, we will repeatedly use that
v = 1√

|J| (1, 1, · · · , 1)T is an eigenvector of a matrix F ∈ C |J|×|J| if the sum of all rows are a

multiple of v.

3.2.1. Hamming Distance One Mixer THam(1)

The matrix THam(1) ∈ R|J|×|J| fulfills Theorem 1 when |J| = 2n, n ∈ N. The symmetry
of THam(1)) is due to the fact that the Hamming distance is a symmetric function. Using
the identity

THam(k)THam(1) = THam(1)THam(k) = (n− (k− 1))THam(k−1) + (k + 1)THam(k+1) (25)

it can be shown that

Tk
Ham(1) =

k−1

∑
j=1

ckTHam(j) + k!THam(k), (26)

where ck are real coefficients. Therefore, it is clear that Tk
Ham(1) reaches all states with

Hamming distance K. Furthermore, v = 1√
2n (1, 1, · · · , 1)T is a unit eigenvector of THam(1)

since the sum of each row is n. This is because there are exactly n other states with a
Hamming distance of one for each bitstring.

3.2.2. All-to-All Mixer TA

We denote the matrix with all but the diagonal entries equal to one as

TA, with (TA)i,j =

{
1, if i 6= j,
0, else.

(27)

Trivially, TA ∈ R|J|×|J| fulfilles Theorem 1 and v = 1√
|J| (1, 1, · · · , 1)T is a unit eigen-

vector of TA since the sum of each row is |J| − 1.
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3.2.3. (Cyclic) Nearest Integer Mixer T∆/T∆,c

Inspired by the stencil of finite-difference methods, we introduce T∆, T∆,c ∈ R|J|×|J| as
matrices with off-diagonal entries equal to one

T∆, with (T∆)i,j =

{
1, if i = j + 1∨ i = j− 1,
0, else,

T∆,c, with (T∆,c)i,j =

{
1, if i = (j + 1) mod n ∨ i = (j− 1) mod n,
0, else.

(28)

Both matrices fulfill Theorem 1. Symmetry holds by definition, and it is easy to see
that the k-th off-diagonal of Tk

∆ and Tk
∆,c is nonzero for 1 ≤ k ≤ |J|.

For the nearest integer mixer T∆, it is known that

vk = (sin(c), sin(2c), · · · , sin
(|J|c)), c =

kπ

|J|+ 1
(29)

are eigenvectors for 1 ≤ k ≤ |J|. For the cyclic nearest integer mixer, we have that the sum
of each row/column of T∆,c is equal to two (except for n = 1 when it is one). Therefore,
v = 1√

|J| (1, 1, · · · , 1)T is a unit eigenvector.

3.2.4. Products of Mixers and TE, TO

In some cases, it will be necessary to use Theorem 2 to implement mixer unitaries.
When splitting transitions matrices into odd and even entries, the following definition is
useful. Denote the matrix with entries in the d-th off-diagonal for even rows equal to one

TE(d), with (TE(d))i,j =

{
1, if i = j + d ∨ i = j− d, and i even,
0, else,

(30)

and accordingly TO(d) for odd rows. In addition, we will use TO(1),c to be the cyclic version
in the same way as in Equation (28). As an example, this allows one to decompose
T∆,c = T1 + T2 ∈ Rn×n with T1 = TO(1) + TO(n−1) = TO(1),c and T2 = TE(1).

3.2.5. Random Mixer Trand

Finally, the upper triangular entries of the mixer Trand are drawn from a continuous
uniform distribution on the interval [0, 1], and the lower triangular entries are chosen such
that T becomes symmetric. Since the probability of getting a zero entry is zero, such a
random mixer fulfills Theorem 1 with probability 1.

3.3. Decomposition of (Constraint) Mixers into Basis Gates

Given a set of feasible (computational basis) states B =
¶∣∣xj
∂

, j ∈ J, xj ∈ {0, 1}n
©

,
we can use Theorem 1 to define a suitable mixer Hamiltonian. The next question is how
to (efficiently) decompose the resulting mixer into basis gates. In order to do so, we first
decompose the Hamiltonian HM into a weighted sum of Pauli-strings. A Pauli-string P is
a Hermitian operator of the form P = P1 ⊗ · · · ⊗ Pn where Pi ∈ {I, X, Y, Z}. Pauli-strings
form a basis of the real vector space of all n-qubit Hermitian operators. Therefore, we
can write

HM =
4

∑
i1,··· ,in=1

ci1,··· ,in σi1 ⊗ · · · ⊗ σin , ci1,··· ,in ∈ R, (31)
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with real coefficients ci1,··· ,in , where σ1 = I, σ2 = X, σ3 = Y, σ4 = Z. After using a standard
Trotterization scheme [4,5] (which is exact for commuting Pauli-strings),

UM(t) = e−itHM ≈
4

∏
i1,··· ,in=1
|ci1,··· ,in |>0

e−itci1,··· ,in σi1
⊗···⊗σin , (32)

it is well-established how to implement each of the terms of the product using basis gates;
see Equation (33). We will discuss the effects of Trotterization in more detail in Section 3.5,
as there are several important aspects to consider for a valid mixer.

e−itP = . . . . ..U U†

Rz(2t)

, (33)

Ui =





H, if Pi = X,
SH, if Pi = Y,
I, if Pi = Z,

(U†)i =





H, if Pi = X,
HS†, if Pi = Y,
I, if Pi = Z.

Here, S is the S or Phase gate and H is the Hadamard gate. The standard way to
compute the coefficients ci1,··· ,in is given in Algorithm 1.

Algorithm 1: Decompose HM given by Equation (10) into Pauli-strings via trace
Data: Feasible states B and transition matrix T fulfilling Theorem 1
Result: Coefficients ci1,··· ,in of Pauli-strings, Equation (31)
for i1 = 1, . . . , 4 do

. . .
for in = 1, . . . , 4 do

ci1,··· ,in = 1
2n Tr σi1 ⊗ · · · ⊗ σin HM

end
...

end

For n qubits, this requires to compute 4n coefficients, as well as the multiplication
of 2n × 2n matrices. However, most of these terms are expected to vanish. We therefore
describe an alternative way to produce this decomposition, using the language of quantum
mechanics [24]. In the following, we use the ladder operators used in the creation and
annihilation operators from the second quantization formulation in quantum chemistry
defined by

a† =
1
2

(X− iY), a =
1
2

(X + iY). (34)

Since a|0〉 = 0, a|1〉 = |0〉, where 0 is the zero vector, we have that |0〉〈1| = a.
Since a†|0〉 = |1〉, a†|1〉 = 0, we have that |1〉〈0| = a†, and finally a†a|0〉 = 0, a†a|1〉 =
|1〉, aa†|0〉 = |0〉, a a†|1〉 = 0, means that |0〉〈0| = aa† and |1〉〈1| = a†a. Note that

a†a =
1
2

(I − Z), aa† =
1
2

(I + Z). (35)
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As an example, consider the matrix M = |01〉〈10| = |0〉〈1| ⊗ |1〉〈0|, which can be
expressed with ladder operators as M = a1a†

2. Another example is given by M = |01〉〈11| =
a1a†

2a2. This approach clearly extends to the general case and leads to Algorithm 2.

Algorithm 2: Decompose HM given by Equation (10) into Pauli-strings directly
Data: Feasible states B and transition matrix T fulfilling Theorem 1
Result: Non-vanishing coefficients ci1,··· ,in of Pauli-strings, Equation (31)
S=0
for all 1 ≤ j, k ≤ |J|, s.t. (T)j,k 6= 0 do

Define xL = xJj , xR = xJk

for 1 ≤ i ≤ n do

(Pj,k)i =





1
2 (X + iY), if (xL)i = 0∧ (xR)i = 1,
1
2 (X− iY), if (xL)i = 1∧ (xR)i = 0,
1
2 (I + Z), if (xL)i = 0∧ (xR)i = 0,
1
2 (I − Z), if (xL)i = 1∧ (xR)i = 1.

end
S = S + (T)j,kPj,k

end
simplify S (e.g., using a library for symbolic mathematics)
this defines the non-vanishing coefficients ci1,··· ,in

A comparison of the complexity of the two algorithms is given in Table 1. The
naive algorithm needs to perform a matrix–matrix multiplication with matrices of size
2n × 2n for each of the 4n coefficients. This quickly becomes prohibitive for larger n. The
algorithm based on ladder operators requires resources that scale with the number of
nonzero entries of the transition matrix T, which is much more favorable. In the end, a
symbolic mathematics library is used to simplify the expressions in order to create the list
of nonzero Pauli-strings.

Table 1. Comparison of the complexity of the two algorithms for n qubits. Here, γ is the number of
nonzero entries of T.

Algorithm 1 Algorithm 2 Algorithm 3

runtime O(25n) O(nγ) O(nγ)
memory O(22n) O(nγ) O(nγ)

3.4. Optimality of Mixers

On current NISQ devices, the noise level of two-qubit gate (CX) times and error rates
are one order of magnitude higher than for single qubit gates (U3). In addition, most
devices lack all-to-all connectivity. The CX gates between these require SWAP operations,
which consist of additional CX gates. An optimal mixer will therefore contain as few CX gates
as possible. Since Pauli-strings are implemented according to Equation (33), we define the
cost to implement e−itHM as

Cost(HM) =
4

∑
i1,··· ,in=1
|ci1,··· ,in |>0

len(σi1
⊗···⊗σin )>1

2(len(σi1 ⊗ · · · ⊗ σin )− 1), (36)

where len(P) is the length of a Pauli-string P defined as the number of literals that are not
the identity. For instance, P = IXI IY = I1X2 I3 I4Y5 = X2Y5 has len(P) = 2. The Cost(HM)
specifies the number of CX gates that are required to implement the mixer. A lower cost
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means fewer and/or shorter Pauli-strings. There are four interconnected factors that
influence the cost to implement the mixer for a given B.

3.4.1. Transition Matrix T

The larger |B|, the more freedom we have in choosing the transition matrix T that
fulfills Theorem 1. The combination of T and the specific states of B define the cost of
the Hamiltonian. Unless one can find a way to utilize the structure of the states of B
to efficiently compute an optimal T, we expect this problem to be NP-hard. In practice,
a careful analysis of the specific states of B is required to determine T such that the cost
becomes low. We will revisit optimality for both unrestricted and restricted mixers in
Sections 4 and 5.

3.4.2. Adding Mixers

Corollary 2 allows one to add mixers with a kernel that contains Sp(B). In general,
also, this is a combinatorial optimization problem which we do not expect to solve exactly
with an efficient algorithm. However, we will provide a heuristic that can be used to reduce
the cost of mixers in certain cases. We will provide more details in Section 5 where we
discuss constrained mixers on some examples in detail.

3.4.3. Non-Commuting Pauli-Strings

Depending on the mixer—which depends on the transition matrix and addition of
mixers outside the feasible subspace—one can influence the commutativity pattern of the
resulting Pauli-strings. This is an intricate topic, which we discuss next.

3.5. Trotterizations

Algorithms 1 and 2 produce a weighted sum of Pauli-strings equal to the mixer
Hamiltonian HM defined in Theorem 1. A further complication arises when the non-
vanishing Pauli-strings of the mixer Hamiltonian HM do not all commute. In that case,
one can not realize UM exactly but has to find a suitable approximation/Trotterization; see
Equation (32). Two Pauli-strings commute, i.e., [PA, PB] = PAPB − PBPA = 0 if, and only if,
they fail to commute on an even number of indices [25]. An example is given in Figure 5.
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Figure 6. In the commutation graph (middle) of the terms of the mixer given in Equation (47) an edge
occurs if the terms commute. From this we can group terms into three (nodes connected by green
edge) or two (nodes connected by red/blue edges) sets. Only the left/green grouping preserves the
feasible subspace.

and inspires further improvement of the algorithms aboveabove algorithmsFF with respect 364

to the optimality of the mixers, described in Section 3.4, by (possibly) reducing the length 365

of Pauli-strings. For this case, we will analyze TA, T∆, and T∆,c only. THam(1) only makes 366

sense when n is a power of two, and Trand has in general high cost, see Table 2. 367

5.1. “One-hot" aka “XY"-mixer 368

We are concerned with the case given by all computational basis states with exactly 369

one “1", i.e., B = {|x⟩, xj ∈ {0, 1}n, s.t. ∑ xj = 1}. These states are sometimes referred to as 370

“one-hot". We have that n = |B| is the number of qubits. After some motivating examples 371

we present the general case for constructing mixers for any n > 2. 372

5.1.1. Case n = 2 373

The smallest, non-trivial case is given by B = {|01⟩, |10⟩}. For any b ∈ R, |b| > 0 the
transition matrix T =

Ä
d b
b d

ä
fulfills Theorem 1 and leads to the mixer HM = b

2 (XX +YY)+
d
2 (I I − ZZ). Since we want to minimize Cost(HM) given in Equation (36), we set d = 0,
which results in the Cost(HM) = 4. However, by using Corollary 2 there is room for further
reducing the cost. We can add the mixer for C = {|00⟩, |11⟩} since B ∩ C = ∅. Using the
same T (setting d = 0) gives

HM,B + HM,C = bXX, (45)

which has Cost(HM) = 2. No Trotterization is needed in this case. 374

5.1.2. Case n = 3 375

We continue with B = {|001⟩, |010⟩, |100⟩}. For the transition matrix T = aT1↔2 +
bT2↔3 + cT1↔3, a, b, c ∈ R this results in the mixer

HM,B =
a
4

(XX + YY)(I + Z) +
b
4

(I + Z)(XX + YY) +
c
4

(X(I + Z)X + Y(I + Z)Y), (46)

with associated cost Cost(HM) = 24 + 12c for a = b = 1, c ∈ {0, 1}. In this case Corollary 2
allows us to add the mixer for C = {|110⟩, |101⟩, |011⟩} since B ∩ C = ∅. The mixer

HM = HM,B + HM,C =
a
2

(XXI + YYI) +
b
2

(XIX + YIY) +
c
2

(IXX + IYY), (47)

has cost Cost(HM) = 8 + 4c for a = b = 1, c ∈ {0, 1}. However, this mixer can not 376

be realized, since not all terms of HM commute. Figure 6 shows two ways to put the 377

graph into commuting Pauli-terms, with only one way to preserve the feasible subspace, 378

as discussed in Section 3.5. For the Trotterization according to T = Tk1
1↔2 + Tk2

2↔3 we 379

have that (T)3,1 = (T)1,3 = 0, ∀k1, k2 ∈ N. To fulfill Theorem 2 we need to include 380

Figure 5. In the commutation graph (middle) of the terms of the mixer given in Equation (47), an
edge occurs if the terms commute. From this, we can group terms into three (nodes connected by
green edge) or two (nodes connected by red/blue edges) sets. Only the left/green grouping preserves
the feasible subspace, the right one does not.

This problem is similar to a problem for observables: how does one divide the Pauli-
strings into groups of commuting families [25,26] to maximize efficiency and increase
accuracy? In order to minimize the number of measurements required to estimate a given
observable, one wants to find a “min-commuting-partition”; given a set of Pauli-strings
from a Hamiltonian, one seeks to partition the strings into commuting families such that the
total number of partitions is minimized. This problem is NP-hard in general [25]. However,
based on Theorem 3, we expect our problem to be much more tractable.



Algorithms 2022, 15, 202 14 of 23

For our case, it turns out that not all Trotterizations are suitable as mixing operators;
they can either fail to preserve the feasible subspace, i.e., Equation (5), or fail to provide
transitions between all pairs of feasible states, i.e., Equation (6). An example is given by
B = {|001〉, |010〉, |100〉} with the mixer HM = 1

2 (XIX + YIY) + 1
2 (XXI + YYI) associated

with T∆ = T1↔2 + T2↔3; see Section 5.1. Looking at Figure 5, these terms can be grouped
into commuting families in two ways, which represent two (of many) different ways to
realize the mixer unitary with basis gates.

1. The first possible Trotterization is given by U1(β) = e−iβ(XXI+IXX) and U2(β) =

e−iβ(YYI+IYY). However, it turns out that ∃β ∈ R such that |〈111|U1(β)U2(β)|z〉| > 0
for all |z〉 ∈ B. This means that this Trotterization does not preserve the feasible subspace
and does not represent a valid mixer Hamiltonian. The underlying reason for this is
that the terms XXI and YYI are generated from the entry T1↔2, but are split in this
Trotterization. The same holds true for IXX and IYY, which are generated via T2↔3.

2. The second possible Trotterization is given by U1(β) = e−iβ(XIX+YIY) and U2(β) =

e−iβ(XXI+YYI), which splits terms with respect to T1↔2 and T2↔3 In this case, we have
that |〈100|U1(β)U2(β)|001〉| = 0, so it does not provide an overlap between all feasible
computational basis states. This can be understood via Theorem 2. We have that
(Tn1

1↔2Tn2
2↔3)3,1 = 0 for all n1, n2 ∈ N, so one can not “reach” |100〉 from |001〉. The

opposite is not true; we have that (T1↔2T2↔3)1,3 = 1, so ∃β such that |〈001|U1(β)U2(β)
|100〉| > 0.

We have just learned that it is a bad idea to Trotterize terms that belong to a nonzero
entry of T, i.e., to Tj↔i. Therefore, we need to show that all non-vanishing Pauli-strings
of
∣∣xj
∂
〈xi|+ |xi〉

¨
xj
∣∣ commute; otherwise, there might exist subspaces for which we can

not realize the mixer constructed in Theorem 1. Luckily, the following theorem shows
that it is always possible to realize a mixer by Trotterizing according to nonzero entries of
T = ∑i,j∈J,i<j Tj↔i.

Theorem 3 (Pauli-strings for Tj↔i commute). Let |z〉, |w〉 be two computational basis states in
C2n

. Then, all non-vanishing Pauli-strings σi1 ⊗ · · · ⊗ σin of the decomposition

|z〉〈w|+ |w〉〈z| =
4

∑
i1,··· ,in=1

ci1,··· ,in σi1 ⊗ · · · ⊗ σin , ci1,··· ,in ∈ R, (37)

commute.

Proof. We will prove the following more general assertion by induction. Let P1+,1, P1+,2 be
two non-vanishing Pauli-strings of the decomposition of |z〉〈w|+ |w〉〈z|, and Pi−,1, Pi−,2
be two non-vanishing Pauli-strings of the decomposition of i(|z〉〈w| − |w〉〈z|). Then, [P1+,1,
P1+,2] = 0, [Pi−,1, Pi−,2] = 0 and [P1+,·, Pi−,·] 6= 0. We will use that two Pauli-strings
commute if, and only if, they fail to commute on an even number of indices [25].

For n = 1, we have the following cases.

A1 = |z〉〈w|+|w〉〈z| =





I + Z, if (z,w)=(0,0),

X, if (z,w)=(0,1),

X, if (z,w)=(1,0),

I − Z, if (z,w)=(1,1),

B1 = i(|z〉〈w|−|w〉〈z|) =





0, if(z,w)=(0,0),

−Y, if(z,w)=(0,1),

+Y, if(z,w)=(1,0),

0, if(z,w)=(1,1).

(38)

It is trivially true that [P1+,1, P1+,2] = 0 and [Pi−,1, Pi−,2] = 0, since the maximum
number of Pauli-strings is two, and in that case, one of the Pauli-strings is the identity.
Moreover, Pi−,· is nonzero only when z 6= w. In that case, [P1+,·, Pi−,·] = [X,±Y] 6= 0.
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n→ n + 1. We assume the assumptions hold for two computational basis states
|z〉, |w〉 ∈ C2n

. Then, there are the following four cases

An+1 = |wx〉〈zy|+ |wx〉〈zy| =1
2





An ⊗ (I + Z), if (x, y) = (0, 0),
An ⊗ X + Bn ⊗Y, if (x, y) = (0, 1),
An ⊗ X− Bn ⊗Y, if (x, y) = (1, 0),
An ⊗ (I − Z), if (x, y) = (1, 1),

Bn+1 = i(|wx〉〈zy| − |wx〉〈zy|) =1
2





0, if (x, y) = (0, 0),
Bn ⊗ X− An ⊗Y, if (x, y) = (0, 1),
Bn ⊗ X + An ⊗Y, if (x, y) = (1, 0),
0, if (x, y) = (1, 1),

(39)

where An = (|z〉〈w|+ |w〉〈z|), Bn = i(|z〉〈w| − |w〉〈z|).
Case x = y. According to our assumptions that all non-vanishing Pauli-strings for

An commute, the same holds for An+1 = An ⊗ (I ± Z). Since Bn+1 = 0, the rest of the
assertions are trivially true, as there are no non-vanishing Pauli-strings.

Case x 6= y. Our assumptions mean that non-vanishing Pauli-strings of An fail to
commute on an odd number of indices with non-vanishing Pauli-strings of Bn. Therefore,
non-vanishing Pauli-strings of An+1 = An⊗X± Bn⊗Y fail to commute on an even number
of indices, and, hence, commute. The same argument holds for Bn+1 = Bn ⊗ X± An ⊗Y.
Finally, we prove that non-vanishing Pauli-strings of An+1 and Bn+1 do not commute.
Either Pauli strings P1+,· and Pi−,· stem from An ⊗ X and Bn ⊗ X, respectively, or they stem
from ±An ⊗Y and ∓Bn ⊗Y, respectively. In both cases, the number of commuting terms
does not change, so non-vanishing Pauli-strings of An+1 and Bn+1 do not commute.

The proof in Theorem 3 inspires the following algorithm to decompose HM into Pauli-
strings. For each item in the list S that the algorithm produces, all Pauli-strings commute.

We can illustrate the difference between Algorithms 2 and 3 for B = {|01〉, |10〉} and
T1↔2. With Algorithm 2, we have P1,2 = 1

4 (X− iY)(X + iY) and P2,1 = 1
4 (X + iY)(X− iY),

which can be simplified to S = P1,2 + P2,1 = 1
2 (XX + YY). With Algorithm 3, we have

A1 = X, B1 = Y and S = A2 = 1
2 (A1X + B1Y) = 1

2 (XX + YY) without the need to simplify
the expression.

Algorithm 3: Decompose HM given by Equation (10) into Pauli-strings directly
Data: Feasible states B, transition matrix T (zero diagonal) fulfilling Theorem 1
Result: Non-vanishing coefficients ci1,··· ,in of Pauli-strings, Equation (31)
S=[ ]
for all 1 ≤ j < k ≤ |J|, s.t. (T)j,k 6= 0 do

Recursively compute An and Bn for |w〉 =
∣∣∣xJj

∂
and |z〉 = xJk via Equation (39)

Append (T)j,k An to S
end
check for cancellations and return S

As shown above, Trotterizations can also lead to missing transitions. It is suggested
in [2] that it is useful to repeat mixers within one mixing step, which corresponds to r > 1
in Equation (6). However, as we see in Figure 6, there can be more efficient ways to obtain
mixers that provide transitions between all pairs of feasible states. One way to do so is to
construct an exact Trotterization (restricted to the feasible subspace) as described in [19].
However, the ultimate goal is not to avoid Trotterization errors, but rather to provide
transitions between all pairs of feasible states. We will revisit the topic of Trotterizations in
Section 5 in more detail for each case and show that there are more efficient ways to do so.
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Figure 5. Valid (white) and invalid (black) transitions between pairs of states, as defined in Theorem 2
for Trotterized mixer Hamiltonians. The first row shows that for T1 = TO(1),c and T2 = TE(1), the
mixer U = e−iβT1 e−iβT2 does not provide transitions between all pairs of feasible states, although
U = e−iβ(T1+T2) does.

3.2.3. (Cyclic) Nearest integerFF mixer T∆/T∆,c 199

Inspired by the stencil of finite-difference methods we introduce T∆, T∆,c ∈ R|J|×|J| as
theFF matrices with off-diagonal entriesFF equal to one

T∆, with (T∆)i,j =

{
1, if i = j + 1 ∨ i = j − 1,
0, else,

T∆,c, with (T∆,c)i,j =

{
1, if i = (j + 1) mod n ∨ i = (j − 1) mod n,
0, else.

(28)

Both matrices fulfill Theorem 1. Symmetry holds by definition and it is easy to see that the 200

k-th off-diagonal of Tk
∆ and Tk

∆,c is nonzero for 1 ≤ k ≤ |J|. 201

For the nearest integer mixer T∆ it is known that

vk = (sin(c), sin(2c), · · · , sin
(|J|c)), c =

kπ

|J|+ 1
(29)

are eigenvectors for 1 ≤ k ≤ |J|. For the cyclic nearest integer mixer, we have that the sum 202

of each row/column of T∆,c is equal to two (except for n = 1 when it is one). Therefore, 203

v = 1√
|J| (1, 1, · · · , 1)T is a unit eigenvector. 204

3.2.4. Products of mixers and TE, TO 205

In some cases, it will be necessary to use Theorem 2 to implement mixer unitaries.
When splitting transitions matrices into odd and even entries the following definition is
useful. DenoteLetFF the matrix with entries in the d-th off-diagonal for even rows equal to
one

TE(d), with (TE(d))i,j =

{
1, if i = j + d ∨ i = j − d, and i even,
0, else,

(30)

and accordingly TO(d) for odd rows. In addition, we will useneedFF TO(1),c to be the cyclic 206

version in the same way as in Equation (28). As an example, this allows oneFF to decompose 207

T∆,c = T1 + T2 ∈ Rn×n with T1 = TO(1) + TO(n−1) = TO(1),c and T2 = TE(1). 208

Figure 6. Valid (white) and invalid (black) transitions between pairs of states, as defined in Theorem 2
for Trotterized mixer Hamiltonians. The first row shows that for T1 = TO(1),c and T2 = TE(1),
the mixer U = e−iβT1 e−iβT2 does not provide transitions between all pairs of feasible states, although
U = e−iβ(T1+T2) does.

4. Full/Unrestricted Mixer

We start by applying the proposed algorithm to the case without constraints, i.e., for
the case g = 0 in Equation (1), in order to check for consistency and new insight. We will see
that the presented approach is able to reproduce the “standard” X mixer as one possibility,
but it provides a more general framework. For this case, B = {|xj〉, j ∈ J, xj ∈ {0, 1}n},
J = {i, 1 ≤ i ≤ 2n}, which means that Sp(B) = H. Furthermore, using Equation (14), we
have that HM,B = T, since E is the identity.

4.1. THam(1) aka “Standard” Full Mixer

The Hamiltonian of the standard full mixer for n qubits can be written as

HM = ∑
j∈J

Xj

= ∑
j∈J

(|0〉〈0|+ |1〉〈1|)⊗(j−1) ⊗ (|0〉〈1|+ |1〉〈0|)⊗ (|0〉〈0|+ |1〉〈1|)⊗(n−j)

= ∑
j,k∈J

(
THam(1)

)
j,k|xj〉〈xk|.

(40)

The last identity in Equation (40) shows that HM is created by the transition matrix
given by THam(1). This assumes that the feasible states in B are ordered from the smallest to
the largest integer representation.

4.2. All-to-All Full Mixer

For |J| = 2n, the full mixer TA can be written as TA = ∑n
j=1 THam(j). For the case

THam(2), the resulting Hamiltonian HM does not provide transitions between all pairs of
feasible states, but we observe that HM = ∑j,k∈J(THam(2))j,k|xj〉〈xk| = ∑n

j1 ∑n
j2=j1+1 Xj1 Xj2 ,

i.e., HM consists of all
Å

n
2

ã
possible pairs of Pauli-strings, which contain exactly two Xs. For

m ≤ n, this can be further generalized to

HM = ∑
j,k∈J

(
THam(m)

)
j,k|xj〉〈xk| =

n

∑
j1=1

n

∑
j2=j1+1

· · ·
n

∑
jm=jm−1+1

Xj1 · · ·Xjm , (41)
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which consists of all
Å

n
m

ã
possible pairs of Pauli-strings with exactly m Xs. The resulting

mixer Hamiltonian is therefore given by

HM =
n

∑
j1=1

Å
Xj1 +

n

∑
j2=j1+1

Å
Xj1 Xj2 + . . . +

n

∑
jn=jn−1+1

Xj1 · · ·Xjn

ãã
. (42)

This means that the mixer consists of the standard mixer plus
Å

n
k

ã
applications of

Pauli X-k strings for k from 2 to n, which is a large overhead compared to the standard
X-mixer.

4.3. (Cyclic) Nearest Integer Full Mixer

The resulting mixer for T∆/T∆,c involves exponentially many Pauli-strings with in-
creasing n. The following shows T∆ for 1 ≤ n ≤ 4.

Hn=1
M = X1,

Hn=2
M = I1 ⊗ Hn=1

M +
1
2

(X1X2 + Y1Y2),

Hn=3
M = I1 ⊗ Hn=2

M +
1
4

(X1X2X3 − X1Y2Y3 + Y1X2Y3 + Y1Y2X3),

Hn=4
M = I1 ⊗ Hn=3

M +
1
8

(X1X2X3X4 − X1X2Y3Y4 − X1Y2X3Y4 − X1Y2Y3X4

+ Y1X2X3Y4 + Y1X2Y3X4 + Y1Y2X3X4 −Y1Y2Y3Y4).

(43)

4.4. Comparison and Optimality of Full Mixers

It would be convenient to have a condition on the transition matrix for the optimality
of the resulting mixer. We define the total Hamming distance of T to be

Ham(T) =
|J|
∑

j,k=1
|(T)j,k |>0

dHamming(bin(i), bin(j)), (44)

where bin(i) is the binary representation of an integer i. As a first instinct, one might suspect
that the mixer with minimal Hamming distance also minimizes the cost. However, this
turns out to be false because of cancellations when more terms in T are nonzero. Table 2
gives a comparison of the total Hamming distance and cost for different full mixers. The
standard full mixer has a total Hamming distance Ham(T) = (n− 1)2n, as there are 2n

states each with n− 1 states that have a Hamming distance of 1. The all-to-all full mixer has
Ham(T) = 2n ∑n

k=1 k
Ä

n
k

ä
. For the rest of the transition matrices, it is not that straightforward

to derive a general formula for Ham(T), but the table gives an impression. Table 2 shows
a dramatic difference between the different mixers with regard to resource requirements.
The standard mixer is the only one that does not require CX gates and is the most efficient
to implement. Furthermore, as the resulting Pauli terms for the full mixers given by THam(1)
and TA consist only of I and X and therefore commute, they can be implemented without
Trotterization. For the mixers given by T∆,c, T∆, and Trand, on the other hand, not all Pauli-
strings commute, which results in the need for Trotterization. We continue with the case of
constrained mixers.
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Table 2. Full/unrestricted mixer case for n qubits, i.e., |B| = 2n. Comparison of the total Hamming
distance of the transition matrix T as well as resulting requirements for implementations in terms of
single- and two-qubit gates for different T.

n 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Ham(T) #U3 #CX = Cost(HM)
THam(1) 2 8 24 64 160 384 1 2 3 4 5 6 0 0 0 0 0 0

TA 2 16 96 512 2560 12,288 1 2 3 4 5 6 0 2 10 34 98 258
T∆,c 2 12 28 60 124 252 1 1 1 1 1 1 0 2 12 44 132 356
T∆ 2 8 22 52 114 240 1 1 1 1 1 1 0 4 20 68 196 516

Trand 2 16 96 512 2560 12,288 2 4 6 8 10 12 0 10 86 552 3260 17,650

5. Constrained Mixers

We start by describing what is known as the “XY”-mixer [2,17,19] before we explore
more general cases. Our framework provides additional insights into this case and inspires
further improvement of the algorithms above with respect to the optimality of the mixers,
described in Section 3.4, by (possibly) reducing the length of Pauli-strings. For this case,
we will analyze TA, T∆, and T∆,c only. THam(1) only makes sense when n is a power of two,
and Trand has in general high cost; see Table 2.

5.1. “One-Hot” Aka “XY”-Mixer

We are concerned with the case given by all computational basis states with exactly
one “1”, i.e., B = {|x〉, xj ∈ {0, 1}n, s.t. ∑ xj = 1}. These states are sometimes referred to as
“one-hot”. We have that n = |B| is the number of qubits. After some motivating examples,
we present the general case for constructing mixers for any n > 2.

5.1.1. Case n = 2

The smallest, non-trivial case is given by B = {|01〉, |10〉}. For any b ∈ R, |b| > 0,
the transition matrix T =

Ä
d b
b d

ä
fulfills Theorem 1 and leads to the mixer HM = b

2 (XX +

YY) + d
2 (I I − ZZ). Since we want to minimize Cost(HM) given in Equation (36), we set

d = 0, which results in the Cost(HM) = 4. However, by using Corollary 2, there is room
for further reducing the cost. We can add the mixer for C = {|00〉, |11〉}, since B ∩ C = ∅.
Using the same T (setting d = 0) gives

HM,B + HM,C = bXX, (45)

which has Cost(HM) = 2. No Trotterization is needed in this case.

5.1.2. Case n = 3

We continue with B = {|001〉, |010〉, |100〉}. For the transition matrix T = aT1↔ 2 +
bT2↔3 + cT1↔3, a, b, c ∈ R, this results in the mixer

HM,B =
a
4

(XX + YY)(I + Z) +
b
4

(I + Z)(XX + YY) +
c
4

(X(I + Z)X + Y(I + Z)Y), (46)

with associated cost Cost(HM) = 24 + 12c for a = b = 1, c ∈ {0, 1}. In this case, Corollary 2
allows us to add the mixer for C = {|110〉, |101〉, |011〉} since B ∩ C = ∅. The mixer

HM = HM,B + HM,C =
a
2

(XXI + YYI) +
b
2

(XIX + YIY) +
c
2

(IXX + IYY), (47)

has cost Cost(HM) = 8 + 4c for a = b = 1, c ∈ {0, 1}. However, this mixer can not
be realized, since not all terms of HM commute. Figure 5 shows two ways to put the
graph into commuting Pauli-terms with only one way to preserve the feasible subspace,
as discussed in Section 3.5. For the Trotterization according to T = Tk1

1↔2 + Tk2
2↔3, we
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have that (T)3,1 = (T)1,3 = 0, ∀k1, k2 ∈ N. To fulfill Theorem 2, we need to include
the term T1↔3 as well. The Trotterized mixer with minimal cost is therefore given by
T = T1↔2 + T2↔3 + T1↔3.

5.1.3. The General Case n > 2

We start with the observation that for any symmetric T ∈ Rn×n with zero diagonal,
we have

HM,B =
n

∑
j=1

n

∑
k=j+1

(T)j,k P̂j,k, (P̂j,k)l =
1
2n

{
(X + Y), if l ∈ {j, k},
(I + Z), if xl = zl = 0

(48)

The cost for implementing one of the entries, i.e., e−iβP̂j,k
is given by the recursive formula

Cost(P̂j,k) =
n

∑
l=2

2(l − 1) f l
n, n > 2, f l

n = f l
n−1 + f l−1

n−1, f l
2 =

{
2, if l = 2,
0, else,

(49)

where f l
n is Pascal’s triangle starting with 2 instead of 1. Examples of the resulting costs for

different transition matrices can be seen in Table 3.

Table 3. Comparison of the cost #CX = Cost(HM) of mixers constrained to “one-hot” states. The
Trotterized versions we define T1 = TO(1),c and T2 = TE(1). All Hamiltonians need to be Trotterized.

n 3 4 5 6 7 8 9 10 15

HM,B
T∆ 12 · 2 32 · 3 80 · 4 192 · 5 448 · 6 1024 · 7 2304 · 8 5120 · 9 245,760 · 14

T∆,c 12 · 3 32 · 4 80 · 5 192 · 6 448 · 7 1024 · 8 2304 · 9 5120 · 10 245,760 · 15
TA 12 · 3 32 · 6 80 · 10 192 · 15 448 · 21 1024 · 28 2304 · 36 5120 · 45 245,760 · 105

HM,B + ∑i HM,Ci
T∆ 4 · 2 4 · 3 4 · 4 4 · 5 4 · 6 4 · 7 4 · 8 4 · 9 4 · 14

T∆,c 4 · 3 4 · 4 4 · 5 4 · 6 4 · 7 4 · 8 4 · 9 4 · 10 4 · 15
TA 4 · 3 4 · 6 4 · 10 4 · 15 4 · 21 4 · 28 4 · 36 4 · 45 4 · 105

The cost of the mixers can be considerably reduced by adding mixers generalized
from case n = 3. If the entries (T)i↔j of T are nonzero, we can add mixers for each of the
2n−2 pairs of states x ∈ {0, 1}n that fulfill that (xi = 0 ∧ xj = 1) ∨ (xi = 1 ∧ xj = 0). We
can enumerate them with 0 ≤ l ≤ 2n−2 − 1 by B̃l

i,j = {|x〉, x ∈ {0, 1}n, s.t. x−i,−j = bin(l)},
where x−i,−j removes the indices i and j of x. We have that B ∩ B̃l

i,j = ∅. We observe that
for n ≥ 2, let |x〉, |z〉 with Ham(x, z) = 2, i.e., the strings x, z differ at exactly two positions
we have that

|x〉〈z|+ |z〉〈x| = 1
2n−1





(X + Y), if xl 6= zl ,
(I + Z), if xl = zl = 0,
(I − Z), if xl = zl = 1.

(50)

Adding these mixers for each nonzero entry Tj↔k of T has the effect of summing over

all possible combinations of (I ± Z)⊗2n−2
, which is equal to the identity. Therefore, we

obtain the mixer

HM,B + ∑
i,j∈J

2n−2

∑
l=0

HM,Bl
i,j
=

n

∑
j=1

n

∑
k=j+1

(T)j,kPj,k, Pj,k = XiXj + YiYj, (51)

which reduces the cost of one term to Cost(Pj,k) = 4.

5.1.4. Trotterizations

Not all Pauli-strings of the mixer in Equation (51) commute. This necessitates a suitable
and efficient Trotterization. We will use Theorems 2 and 3 to identify valid Trotterized



Algorithms 2022, 15, 202 20 of 23

mixers. As pointed out in [19], when n is a power of two, one can realize a Trotterization,
which is exact in the feasible subspace B. Termed simultaneous complete-graph mixer, this
involves all possible pairs (i, j) corresponding to a certain Trotterization of mixer for TA.
We will see that there are more efficient mixers that provide transitions between all pairs of
feasible states.

Another possibility is to Trotterize T∆,c or T∆ according to odd and even entries as
described in Section 3.2.4. This is what is termed a parity-partitioned mixer in [19]. However,
fewer and fewer feasible states can be reached as n increases, as we have seen in Figure 6.
Repeated applications (r > 0 in Equation (6)) are necessary, and r increases with increasing
n. Figure 7 shows a comparison of different Trotterizations. As the cost of the mixer is
dictated by the number of nonzero entries of the transition matrix, it is more efficient to add
mixers for off-diagonals according to ∑i∈I(TO(i)+TE(i)) for some suitable index set I.
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Figure 7. Comparison of different Trotterization mixers restricted to “one-hot" states. All markers
represent cases when the resulting mixer provides transitionsFF for all pairs of feasible states, see
also Figure 5. All versions can be implemented in linear depth. The most efficient Trotterizations are
achieved by using sub-diagonal entries. The cost equals 4 times # (XX+YY)-terms.
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5.2. General Cases

In this section, we analyze some specific cases that go beyond unrestricted mixers and
mixers restricted to one-hot states.

5.2.1. Example 1

We start by looking at the case B = {|100〉, |010〉, |011〉}. Using T∆ = c1,2T1↔2 +
c2,3T2↔3 and T∆,c = T∆ + c3,1T3↔1, this results in the mixer

HM,B = c1,2
1
4

(XX + YY)(I + Z)

+ c2,3
1
4

(I + Z)(I − Z)X

+ c3,1
1
4

(XXX + YXY + YYX− XYY)

(52)

with Cost(HM) = 12c1,2 + 8c2,3 + 16c3,1. Here, (c1,2, c2,3, c3,1) = (1, 1, 0) corresponds to T∆
and (1, 1, 1) to T∆,c. There is a lot of freedom adding mixers, which is summarized in Table 4.
Adding more terms only increases the cost for this case. Overall, the most efficient mixers
for B are given by

HM =
c1,2

2

ï
XXI + XXZ or
XXI + YYZ

ò
+

c2,3

2

ï
(I + Z)IX or
I(I − Z)X

ò
+

c3,1

2

ï
XXX− XYY or
XXX + YXY

ò
, (53)
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with associated cost Cost(HM) = 6c1,2 + 2c2,3 + 8c3,1. A valid Trotterization is given through
splitting according to Ti↔j.

Table 4. Comparison of the Cost(HM,B + HM,C) for different added mixers C for the case B =

{|100〉, |010〉, |011〉}. All 10 possible pairs are shown. We see that the cost can be both reduced
and increased.

C = T1↔2 T2↔3 T3↔1

{} 12 8 16
{|000〉, |001〉} 20 2 24
{|000〉, |101〉} 24 20 28
{|000〉, |110〉} 6 20 28
{|000〉, |111〉} 28 24 8
{|001〉, |101〉} 20 16 24
{|001〉, |110〉} 28 24 8
{|001〉, |111〉} 6 20 28
{|101〉, |110〉} 24 20 28
{|101〉, |111〉} 20 16 24
{|110〉, |111〉} 20 2 24

5.2.2. Example 2

Finally, we investigate the case B = {|10010〉, |01110〉, |10011〉, |11101〉, |00110〉, |01010〉},
which restricts to six of the total 25 = 32 computational basis states for 5 qubits. It is not
clear a priori if for any (distinct) pair Ti1,j1 and Ti2,j2 , all pairs of non-vanishing Pauli strings
commute. In order to fulfill Equation (6) for r = 1, this means that one needs to Trotterize
according to all pairs of TA, as shown in Table 5. The resulting cost for this Trotterized
mixer is Cost(HM) = 1360. Since H ∩ B is spanned by k = 2n − |B| = 26 computational
basis states, there are

Å
k
2

ã
= 325 different pairs to add to each Ti↔j. As Table 5 shows, this can

reduce the cost of the resulting mixer to Cost(HM) = 568. Of course, there is the possibility
to reduce the cost even further by adding more mixers for states in the kernel of HM,B.
However, this quickly becomes computationally very demanding, when all possibilities
are considered in a brute-force fashion.

Table 5. Comparison of the Cost(HM,B + HM,C) for different added mixers C for the case B =

{|10010〉, |01110〉, |10011〉, |11101〉, |00110〉, |01010〉}. There are 325 possible pairs in total. We see that
the cost can be both reduced and increased.

C = T1↔2 T1↔3 T1↔4 T1↔5 T1↔6 T2↔3 T2↔4 T2↔5 T2↔6 T3↔4 T3↔5 T3↔6 T4↔5 T4↔6 T5↔6

{} 96 64 112 80 80 112 96 64 64 96 96 96 112 112 80
{|00010〉,|00011〉} 160 24 176 144 144 176 160 128 128 160 160 160 176 176 144
{|00010〉,|01101〉} 208 176 48 192 192 224 208 176 176 208 208 208 224 224 192
{|00010〉,|10001〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
{|00010〉,|10101〉} 208 176 224 192 192 224 208 176 176 208 208 208 224 48 192
{|00010〉,|11001〉} 208 176 224 192 192 224 208 176 176 208 208 208 48 224 192
{|00011〉,|01101〉} 192 160 208 176 176 208 192 160 160 40 192 192 208 208 176
{|00011〉,|10000〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
{|00100〉,|01000〉} 176 144 192 160 160 192 176 144 144 176 176 176 192 192 32
{|00100〉,|01100〉} 160 128 176 144 144 176 160 24 128 160 160 160 176 176 144
{|00100〉,|10000〉} 176 144 192 32 160 192 176 144 144 176 176 176 192 192 160
{|00100〉,|10001〉} 192 160 208 176 176 208 192 160 160 192 40 192 208 208 176
{|00100〉,|10111〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
{|00101〉,|10110〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
{|00111〉,|01011〉} 176 144 192 160 160 192 176 144 144 176 176 176 192 192 32
{|00111〉,|01111〉} 160 128 176 144 144 176 160 24 128 160 160 160 176 176 144
{|00111〉,|10100〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
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Table 5. Cont.

C = T1↔2 T1↔3 T1↔4 T1↔5 T1↔6 T2↔3 T2↔4 T2↔5 T2↔6 T3↔4 T3↔5 T3↔6 T4↔5 T4↔6 T5↔6

{|01000〉,|01100〉} 160 128 176 144 144 176 160 128 24 160 160 160 176 176 144
{|01000〉,|10000〉} 176 144 192 160 32 192 176 144 144 176 176 176 192 192 160
{|01000〉,|10001〉} 192 160 208 176 176 208 192 160 160 192 192 40 208 208 176
{|01000〉,|11011〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
{|01001〉,|11010〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
{|01011〉,|01111〉} 160 128 176 144 144 176 160 128 24 160 160 160 176 176 144
{|01011〉,|11000〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
{|01100〉,|10000〉} 40 160 208 176 176 208 192 160 160 192 192 192 208 208 176
{|01100〉,|10001〉} 208 176 224 192 192 48 208 176 176 208 208 208 224 224 192
{|01100〉,|11111〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
{|01101〉,|11110〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
{|01111〉,|11100〉} 192 160 208 176 176 208 48 160 160 192 192 192 208 208 176
{|10000〉,|10001〉} 160 24 176 144 144 176 160 128 128 160 160 160 176 176 144
{|10110〉,|10111〉} 160 24 176 144 144 176 160 128 128 160 160 160 176 176 144
{|10110〉,|11010〉} 176 144 192 160 160 192 176 144 144 176 176 176 192 192 32
{|10110〉,|11110〉} 160 128 176 144 144 176 160 24 128 160 160 160 176 176 144
{|11010〉,|11011〉} 160 24 176 144 144 176 160 128 128 160 160 160 176 176 144
{|11010〉,|11110〉} 160 128 176 144 144 176 160 128 24 160 160 160 176 176 144

· · ·
{|00000〉,|11111〉} 224 192 240 208 208 240 224 192 192 224 224 224 240 240 208

· · ·

6. Conclusions and Outlook

While designing mixers with the presented framework is more or less straightforward,
designing efficient mixers turns out to be a difficult task. An additional difficulty arises
due to the need for Trotterization. Somewhat counter-intuitively, the more restricted the
mixer, i.e., the smaller the subspace, the more design freedom one has to increase efficiency.
More structure/symmetry of the restricted subspace seems to allow for a lower cost of the
resulting mixer. For the case of “one-hot” states, we provide a deeper understanding of
the requirements for Trotterizations. Compared to the state of the art in the literature, this
leads to a considerable reduction of the cost of the mixer, as defined in Equation (36). The
introduced framework reveals a rigorous mathematical analysis of the underlying structure
of mixer Hamiltonians and deepens the understanding of those. We believe the framework
can serve as the backbone for the further development of efficient mixers.

When adding mixers, in general, the kernel of HM,B is spanned by k = 2n − |B|
computational basis states. Therefore, one can add

k

∑
i=2

Å
k
2

ã
(54)

different mixers for each nonzero entry Ti↔j of T. Out of all these, one wants to find
the combination leading to the lowest overall cost. Clearly, brute-force optimization is
computationally not tractable, even for a moderate number of qubits n when |B| � 2n.
Further research should aim to carefully analyze the structure of the basis states in B in
order to develop efficient (heuristic) algorithms to find low-cost mixers through adding
mixers in the kernel of HM,B.
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