
Applied Soft Computing 128 (2022) 109533

(
t
d
n
i
o
i
m
m
c
U

g

a
o

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Combining physics-based and data-driven techniques for reliable
hybrid analysis andmodeling using the corrective source term
approach
Sindre Stenen Blakseth a,1, Adil Rasheed b,d,∗, Trond Kvamsdal c,d, Omer San e

a Department of Physics, Norwegian University of Science and Technology, Norway
b Department of Engineering Cybernetics, Norwegian University of Science and Technology, Norway
c Department of Mathematical Sciences, Norwegian University of Science and Technology, Norway
d Department of Mathematics and Cybernetics, SINTEF Digital, Norway
e School of Mechanical and Aerospace Engineering, Oklahoma State University, United States of America

a r t i c l e i n f o

Article history:
Received 31 January 2022
Received in revised form 7 July 2022
Accepted 13 August 2022
Available online 19 August 2022

Keywords:
Deep neural networks
Reliable hybrid analysis and modeling
Physics-based modeling
Data-driven modeling

a b s t r a c t

Upcoming technologies like digital twins, autonomous, and artificial intelligent systems involving
safety–critical applications require accurate, interpretable, computationally efficient, and generalizable
models. Unfortunately, the two most commonly used modeling approaches, physics-based modeling
(PBM) and data-driven modeling (DDM) struggle to satisfy all these requirements. In the current work,
we demonstrate how a hybrid approach combining the best of PBM and DDM can result in models
that can outperform both of them. We do so by combining partial differential equations based on
first principles describing partially known physics with a black box DDM, in this case, a deep neural
network model compensating for the unknown physics. The novelty of the work is in the theoretical
contribution of presenting a sound mathematical argument for why the approach should work. The
argument is backed by an array of experiments involving a two-dimensional heat diffusion problem
with unknown source terms. The hybrid approach demonstrates the method’s superior performance
in accuracy and generalizability. Additionally, it is shown how the DDM part can be interpreted within
the hybrid framework to make the overall approach reliable. The approach, as we see, will be a door
opener for underutilized DDMs in high stake applications.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The development and industrial utilization of digital twins
DTs) is an important trend facilitated by the increased digitaliza-
ion following Industry 4.0, in addition to recent advances within
ata processing, computational infrastructure and big data cyber-
etics. DTs [1] can be defined as virtual representations of phys-
cal assets and their applications include real-time prediction,
ptimization, monitoring, control, and improved decision mak-
ng. For DTs to be successful in these applications, high-quality
odeling techniques are paramount. In particular, DTs require
odels which are generalizable, trustworthy, self-evolving and
omputationally efficient while maintaining good accuracy [2].
nfortunately, it has proven difficult to attain all four of these
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modeling characteristics using either of the two traditional mod-
eling paradigms: physics-based modeling (PBM) and data-driven
modeling (DDM).

PBM (Fig. 1) generally describes the system to be modeled
using a set of governing equations representing known and un-
derstood physical phenomena. However, the governing equations
generally do not reflect the complete physics of the system, as
some relevant physics may be unobserved, not understood, or
neglected as a simplifying assumption. In addition, further loss
of physics may result from solving the governing equations using
numerical methods with finite precision. As such, PBM gener-
ally does not capture the complete physics of the system being
modeled. However, they are still considered trustworthy because
we know exactly which physical phenomena are included in the
model and can bound their numerical errors. PBM also tends
to generalize well, as it is typically not fine-tuned for specific
applications. However, solving the governing equations can be
computationally expensive. Another disadvantage of PBM is that
it is generally static in the sense that it does not automatically get
updated to account for new scenarios encountered after model
deployment.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

BC Boundary Condition
CoSTA Corrective Source Term Approach
DDM Data-Driven Model(ing)
DNN Deep Neural Network
DT Digital Twin
FC Fully Connected
FVM Finite Volume Method
HAM Hybrid Analysis and Modeling
MSE Mean Squared Error
MMS Method of Manufactured Solutions
NN Neural Network
PBM Physics-Based Model(ing)
PDE Partial Differential Equation
PGNN Physics-Guided Neural Network
PINN Physics-Informed Neural Network
ROM Reduced-Order Model
T Temperature
T ref Reference temperature field
T p/T d/T h Temperature field predicted by

PBM/DDM/CoSTA
Te, Tw , Tn, Ts Boundary temperatures
�̂ /�̂nn Reference/DNN-generated corrective

source term
�̂P /�̂k Source term correcting error in model-

ing of P/k
N
 /N@
 Operators defining general PDE
f /g Right-hand-side functions defining gen-

eral PDE
u True solution of general PDE
k Thermal conductivity
P Internal heat generation rate
cV Specific heat capacity at constant vol-

ume
� Density
� General system parameter
x/y/t Spatial and temporal coordinates
Ep/Ed/Eh Relative ‘2-errors of PBM/DDM/CoSTA
�P /�k Error in modeling of P/k
� Convenience function (see Eq. (26))
˜/ˆ̃ Approximation/Corrected

approximation
j;i/n Grid cell indices/Time level
DNN� /DNNT DNN predicting �̂ /T
Nt Maximum time level

DDM (Fig. 2) exhibits the opposite traits of PBM, as DDM is
enerally inexpensive to run and can be continuously updated
sing new data even after deployment. Furthermore, the fact that
bservations may include neglected/unknown physics means that
DM, if tuned and trained perfectly, can reflect the complete
hysics. However, under realistic (imperfect) conditions, DDM
ill be biased towards the data samples on which the model

s trained. This limits the models’ generalizability, especially to
xtrapolation scenarios. Additionally, even with recent research
ocused on increasing the explainability of DDM, it can be chal-
enging to establish precisely what physics are modeled by a DDM
2

Fig. 1. PBM: black part corresponds to unknown/unmodeled physics, orange
ellipse corresponds to observed physics, purple ellipse corresponds to actually
modeled physics while red ellipse signifies the actual physics solved for.

Fig. 2. DDM: It is assumed that since data is a manifestation of both known
and unknown physics, models trained on the data will implicitly captured full
physics.

approach. This black-box-like nature greatly hurts the trustwor-
thiness of DDM and is the primary barrier keeping DDM from
entering high-stakes and safety–critical applications.

From an analysis of the strong and weak points of PBM and
DDM as described above, it is clear that neither modeling ap-
proach is ideal for use in DTs. However, we see that all four
modeling characteristics identified by San et al. [2] can be at-
tained by combining PBM and DDM in a way that retains their
strengths while eliminating their weaknesses. This is exactly the
philosophy behind the emerging Hybrid Analysis and Modeling
(HAM) paradigm. As shown in Fig. 3, HAM utilizes PBM to the
maximum extent possible, and only compensates for the unmod-
eled/unknown physics using DDM. Recent works have explored
many interesting approaches to HAM, most of which falls into
one of the following categories:

1. PBM embedded inside neural networks (NNs): Examples of
these are embedding a differentiable convex optimization
solver [3] or a rigid body simulator [4] in a neural network.
A common challenge with these methods is that they are
computationally expensive not only for training but also for
inference.

2. Reduced Order Model (ROM): The ROM approach [5] in-
volves projecting complex partial differential equations
(PDEs) onto a reduced dimensional space based on the
singular value decomposition of the offline high fidelity
simulation snapshots resulting in a set of ordinary differ-
ential equations which are fast to solve. Xiang et al. [6]
applied ROM to model heat transfer in a battery pack of
an electric vehicle, while Georgaka et al. [7] applied it
to model turbulent heat transfer problems, and Li et al.



S.S. Blakseth, A. Rasheed, T. Kvamsdal et al. Applied Soft Computing 128 (2022) 109533
Fig. 3. Hybrid analysis and modeling: It maximizes the utilization of the well
known PBM while correcting for the unknown using DDM. In the CoSTA, PBM
is described by partial differential equations and DDM is a DNN.

[8] modeled steady-state and transient heat transfer in
fractured geothermal reservoir. A recent review conducted
by Ahmed et al. [9] gives a detailed overview of the various
ROM approaches. Despite the huge potential ROM holds,
their development requires knowledge of the equation
governing the process to be modeled.

3. Physics-informed neural networks (PINN): The work of
Raissi et al. [10] involves penalizing the cost function of the
neural network with the residual of governing equations
representing physical laws. Penwarden et al. [11] propose
a particular multifidelity approach applied to PINNs that
exploits low-rank structure. In the context of heat transfer,
PINN has been used by He et al. [12] for solving both direct
and inverse heat conduction problems. The penalization of
the cost function can result in challenges during the op-
timization process due to the increased complexity of the
cost function. Moreover, the exact form of the governing
equations is a prerequisite for the method to work well.

4. Data-driven equation discovery: Sparse regression based
on l1 regularization [13,14] and symbolic regression based
on gene expression programming have been shown to be
very effective in complex equation discovery directly from
data [15]. Xu et al. [16] demonstrated deep-learning based
discovery of partial differential equations in integral form
from sparse and noisy data. However, the limitations of
this approach are that either large number of additional
features are required to be handcrafted (in case of sparse
regression) based on prior knowledge or the resulting mod-
els are unstable and prone to overfitting (in case of sym-
bolic regression based on gene expression programming).
In the case of using deep learning, interpretability remains
elusive.

5. Physics-guided neural network (PGNN): This concept has
been recently introduced to improve the training and pre-
dictions of deep neural networks (DNN). Partial knowledge,
prior information, or results from highly simplified (and
hence incomplete) models are injected into an intermedi-
ate hidden layer of the neural network [17]. The injection
helps in improving accuracy, reducing model uncertainty
and enabling more robust training. The approach has been
used to combine information from simplified analytical
models or low-fidelity models with noisy data obtained ei-
ther from experiments or high-fidelity simulations through
a neural network. It has been shown that this multi-fidelity
information fusion framework produces physically consis-
tent models that achieve better generalizability than purely
DDM [18,19]. However, since PGNN is just a special kind of
3

Fig. 4. CoSTA combines PBM and DDM into a unified model by adding a
DNN-generated corrective source term to the governing equation of the PBM.

NN, misbehavior of the neural network in unseen condi-
tions and lack of interpretability may still be an issue in
high-stakes application.

A more comprehensive list of hybrid modeling approaches
and their applications can be found in [20–22]. From a careful
evaluation of these modeling approaches it becomes apparent
that most of the HAM approaches mentioned above have some
shortcomings. Some of the approaches, like PBM embedded inside
NNs, tend to be computationally expensive. Others, such as ROM
and PINN, require the exact form of the equations governing
the physics to be modeled. Data-driven equation discovery based
on symbolic regression can be unstable and not fit for interpre-
tation, while PGNN also offers limited interpretability and few
opportunities for NN sanity checks. Another observation in our
literature survey was that a disproportionately large percentage
of work on hybrid modeling was found in more physics and engi-
neering oriented journals and lesser in the data-driven machine
learning journals. These observations have motivated our recent
work [23] on a different HAM approach – the Corrective Source
Term Approach (CoSTA) – where a PBM is augmented with a data-
driven component. More specifically, a DNN-generated corrective
source term is added to the (discretized) governing equation(s)
of the PBM such as to correct any errors present in the original
PBM, as illustrated in Fig. 4. These errors may e.g. stem from
partial knowledge, discretization, and/or inaccurate parameter
estimation. An important difference between CoSTA and the other
HAM approaches discussed above is that CoSTA utilizes PBM to
the greatest extent possible.

In [23], CoSTA was demonstrated to work for simple, one-
dimensional heat transfer problems. In the current work we
extend the work to two dimensions and take a closer look at
the interpretability of the DNN-generated source term. The main
contribution of this work can be enumerated as follows:

• Provide a brief presentation of the approach’s underlying
mathematical foundation

• Apply the approach to model a wide variety of two-
dimensional heat diffusion phenomena

• Demonstrate and discuss how the DNN-generated correc-
tion term can be interpreted in a physics context, thereby
increasing the explainability and reliability of the approach.

In Section 2, we present a profound mathematical founda-
tion of the approach. We then continue with a discussion on
heat diffusion modeling and its importance in Section 3. Physics-
based and data-driven heat diffusion models are presented in
Sections 3.2 and 3.3, respectively. In Section 3.4, we explain in
detail how to combine these models using the proposed hybrid
approach, as illustrated in Fig. 4.

Section 4 is devoted to explaining the setup of our numerical
experiments — including the manufactured solutions considered,
our DNN architecture and hyperparameter choices, and our data
generation, training and testing procedures. Our experimental
results are presented and discussed in Section 5 before the article
is concluded in Section 6 with a brief summary and an outlook on
future work.
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. Theory

This section briefly presents the mathematical justification
f the hybrid approach, henceforth called the Corrective Source
erm Approach (CoSTA), originally introduced in [23,24] for mod-
ling systems governed by linear partial differential equations
PDEs). The presentation largely follows Blakseth [24].

First, suppose we want to solve the following general problem,
efined on a domain 
 with boundary @
:

N
u = f in 
; (1)

N@
u = g on @
: (2)

Here, u is the unknown of the problem, N
 and N@
 are linear
operators2 acting on u, and f and g are some functions. With this
formulation, we also capture scenarios where there are multiple
governing equations. In such scenarios, u is a vector, and f and g
are vector-valued functions.

Assume now that we have a PBM designed to predict u, and
let ũ denote the PBM’s prediction of the true solution u.

If ũ ̸= u, there is some error in the PBM, and this error must
stem from one or more of the following sources:

1. The true function f in Eq. (1) is unknown, so it is approxi-
mated by f̃ .

2. The true operator N
 in Eq. (1) is unknown, so it is approx-
imated by eN
 .

3. The true function g in Eq. (2) is unknown, so it is approxi-
mated by g̃ .

4. The true operator N@
 in Eq. (2) is unknown, so it is
approximated by eN@
 .

5. A combination of the above.
6. The true governing equation (1) and the true boundary

conditions (2) are known, but cannot be solved analyti-
cally. To obtain a prediction ũ, we must therefore solve
some approximation of the true system constituted by
Eqs. (1) and (2), which effectively puts us in one of the
other cases. For example, one could approximate the true
operator N
 with some numerical operator Nnum e.g. based
on finite-difference approximations, which is equivalent to
Case 2.

We observe that Cases 3 and 4 are analogous to Cases 1 and 2
because N@
 and g play exactly the same roles in Eq. (2) as N


and f do in Eq. (1).
Since Case 6 is also mathematically equivalent to one of the

other cases, it suffices to consider Cases 1 and 2, and combina-
tions thereof.

Suppose now that the PBM-predicted solution ũ is given as the
solution of the following system:eN
 ũ = f̃ in 
; (3)

N@
 ũ = g on @
: (4)

This formulation encompasses both Case 1 (for eN
 = N
 and
f̃ ̸= f ), Case 2 (for eN
 ̸= N
 and f̃ = f ), and combinations
thereof (for eN
 ̸= N
 and f̃ ̸= f ). Furthermore, suppose we
modify the system above by adding a source term �̂ to Eq. (3),
and let the solution of the modified system be denoted ˆ̃u. Then,
the modified system readseN


ˆ̃u = f̃ + �̂ in 
; (5)

N@

ˆ̃u = g on @
: (6)

and the following theorem holds.

2 For u to be uniquely defined, N@
 must be the unity mapping along a
ortion of @
 of length greater than zero.
 o

4

Theorem. Let ˆ̃u be a solution of Eqs. (5) and (6), and let u be a
solution of Eqs. (1) and (2). Then, for all operators eN
 , N
 , eN@
 and
@
 and all functions f , f̃ , g and g̃ such that ˆ̃u and u are uniquely
efined, there exists a function �̂ such that ˆ̃u = u.

roof. Define the residual r of the PBM’s governing equation (3)
s3

= eN
u − f̃ : (7)

f we set �̂ = r in Eq. (5), we then obtaineN

ˆ̃u = f̃ + �̂

= f̃ + eN
u − f̃
= eN
u

H⇒ ˆ̃u = u �

The theorem above proves that, for any error in the PBM’s
overning equation (3), there always exists a corrective source
erm �̂ which we can add to that equation such that the so-
ution ˆ̃u of the modified governing equation (5) is equal to the
rue solution u. Furthermore, any error in the PBMs boundary
onditions (Eq. (4)) can be corrected analogously, since Eqs. (5)
nd (4) have the same functional form. Thus, the true solution
of the true governing equations can always be retained by
odifying an erroneous PBM with a corrective source term. This
bservation is the principal theoretical justification of CoSTA. It is
orth pointing out that, so far, we have not made any assumption
egarding the operators N
 and N@
 except that they are linear.
ence, the approach should be applicable across a wide array
f physical problems that can be cast in the form of the above
quations.
The broad applicability of the approach is not to be con-

used with its generalizability, which is its ability to provide accu-
ate predictions for previously unseen states of some particular
ystem. The case study presented in the following is aimed at
emonstrating the approach’s generalizability.

. Heat diffusion modeling

To demonstrate the potential of CoSTA, we choose to study
wo dimensional heat diffusion problems. The main motivation
or choosing such problems is two-fold. Firstly, temperature can
ive insight into a wide variety of physical phenomena.4 Sec-

ondly, cost-effective and non-intrusive measurement techniques
(e.g. based on thermal cameras) exist to make high-resolution
spatio-temporal temperature measurements. In real-world appli-
cations, such techniques can be used to obtain the reference data
needed for training the DNN used by CoSTA.

In this following sections, we describe the PBM, DDM and
CoSTA models used in our numerical experiments on 2D heat
diffusion. These models are presented in Sections 3.2, 3.3 and 3.4,
respectively. But first, we shall briefly describe the heat equation
in Section 3.1.

3 Note that our definition is in some sense opposite of common practice; we
ave defined the residual by inserting the true solution into the approximate
quation rather than inserting the approximate solution into the true equation.
he latter is the conventional approach, and is used e.g. in truncation error
nalysis [25, chapter 8]. The reason for our choice is two-fold: (1) It yields
he simplest proof of the theorem. (2) When observing a real-world system, it
s often easier to measure its state than to find the exact governing equation
escribing said state.
4 Trivial examples include using temperature to evaluate the power output
f a heater, or to indicate an impending malfunction due to overheating.
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.1. The heat equation

The heat equation, which describes heat conduction through
olid materials, can be written as

V
�cV

@T
@t

dV =

Z
@V
.k∇T / · n̂ dA +

Z
V
P dV (8)

for a stationary system with volume V , surface @V , surface unit
normal n̂, density �, specific heat capacity at constant volume cV ,
conductivity k, internal heat generation rate P and temperature T .
We take Eq. (8) to be the true governing equation for all systems
considered in the present work. Comparing with the general
formulation used in Section 2, Eq. (8) corresponds to Eq. (1) with

u = T ; N
u =

Z
V
�cV

@T
@t

dV −

Z
@V
.k∇T / · n̂ dA (9)

and

f =

Z
V
P dV : (10)

To have a complete formulation of the system at hand, we also
eed to formulate the boundary conditions (BCs) of the system.
n this work, we only consider Dirichlet BCs, which means that
he temperature at the domain boundary is specified by some
unction(s). For the 2D systems considered in this work, the
irichlet BCs can be formulated as
(xe; y; t) = Te(y; t); T (xw; y; t) = Tw(y; t);
T (x; yn; t) = Tn(x; t); T (x; ys; t) = Ts(x; t);

(11)

where the subscripts e, w , n and s denote quantities evaluated at,
respectively, the eastern (right), western (left), northern (upper)
and southern (bottom) domain boundaries, and Te, Tw , Tn and
Ts are the functions specifying the boundary temperature. Again
comparing with Section 2, we see that Eq. (11) is equivalent
to Eq. (2) with u = T , N@
 as the unity operator, and g being
equal to Te, Tw , Tn or Ts depending on whether we are on the
eastern, western, northern or southern part of @
 .

3.2. Physics-based modeling

We now want to obtain a PBM for Eqs. (8) and (11). By limiting
ourselves to 2D systems and assuming k, � and cV to be constant,5
we are able to rewrite Eq. (8) asZ yn

ys

Z xe

xw

@T
@t

dxdy = �

��
@T
@x

�
e
−

�
@T
@x

�
w

+

�
@T
@y

�
n
−

�
@T
@y

�
s

�
+

Z yn

ys

Z xe

xw
� dxdy;

(12)

here � = k=(�cV ) and � = P=(�cV ). Eq. (12) can be solved
umerically using the Implicit Euler FVM, which can be expressed
n the following matrix form for two successive time levels n and
+ 1:

T n+1
p = b

�
T n

p

�
: (13)

or a domain that is discretized with Nj grid cells in the x-
irection and Ni grid cells in the y-direction, A is a banded
NjNi × NjNi)-matrix with five non-zero diagonals, while T p and
are NjNi-dimensional vectors. The components of T p describe

5 In our numerical experiments, we consider scenarios where the assumption
f constant k does not hold. Assuming constant k thereby allows us to synthesize
odeling error in the PBM.
 i

5

the temperature at the grid cell centers, as predicted by the PBM.
The components are ordered such that the first Nj components
describe the temperature at bottom-most row of cell centers
(from left to right), the subsequent Nj components correspond
to the second row from the bottom (still from left to right),
and so on. Precise definitions of A and b can be found in [24].
Here, we highlight that A depends on the conductivity k, while b
depends on the heat generation rate P and the system’s boundary
conditions (cf. Eq. (11)) in addition to the predicted temperature
distribution at the old time level n, T n

p. Comparing with Section 2,
we see that Eq. (13) is equivalent to Eq. (3) with

ũ ↔ T n+1
p ; Ñ
 ũ ↔ AT n+1; and f̃ ↔ b: (14)

In our numerical experiments, we use the LAPACK routine
‘?gesv’’ (accessed through the SciPy library) to solve the sys-
em (13). However, using a specialized solver for sparse, banded
ystems is advised for problems that are more computationally
emanding than those considered herein.

.3. Data-driven modeling

The crux of DDM is to learn physics directly from observational
ata. For transient systems, this can be done by training a DNN
o learn a mapping between two subsequent observations of the
ystem state. For the heat diffusion problems considered herein,
e take an observed state to be a vector T n

ref describing the true
emperature at the center of the grid cells used to define the PBM,
s described in Section 3.2. The mapping we want the DNN to
earn is then given by

NNT : R(Nj+2)(Ni+2)
→ RNjNi such that T n+1

d = T n+1
ref ; (15)

T n
d ↦→ T n+1

d

here T n+1
d refers to the temperature profile predicted by the

DM at time level n + 1. The dimensionality of the DNN output
is lower than that of the DNN input because the input vector
contains boundary temperatures while the output vector does
not. Since we consider Dirichlet BCs where the boundary tem-
peratures are known, we need not have the DNN predict the
boundary temperatures. However, it is still potentially useful to
include them as DNN input with the aim of making the DNN’s
learning task easier. In an effort to reduce notational complexity,
we use the same notation to denote both vectors with and with-
out boundary information. Furthermore, we will use the notation
DNNT to refer to both the mapping defined by Eq. (15) and any
DNN trained to approximate that mapping.

Our reason for choosing DNN-based DDM over other applica-
ble DDMs is that DNNs have the ability to approximate any non-
linear mapping, as guaranteed by the universal approximation
theorem. Notice also that if we know the true initial condition
of a system, i.e., if we can set T 0

d = T 0
ref, then we will have

n
d = T n

ref ∀n ≥ 0 if the mapping (15) is learnt perfectly.6
To summarize, the DDM used in this work is a DNN denoted

NNT which is trained to predict T n+1
ref given T n

ref for any time
evel n. During testing, the output of DNNT at time level n is used
s its input at time level n + 1, i.e. T n+1

d = DNNT (T n
d). Since we

se T 0
d = T 0

ref, we will have T n
d = T n

ref ∀n ≥ 0 if DNNT is perfectly
rained.

6 It should be noted that, depending on the discretization used, Eq. (15)
ay not constitute a well-defined mapping. Particular care should be taken

or systems governed by so-called hyperbolic PDEs which permit discontinuous
olutions. However, Eq. (15) is a well-defined mapping for the cases considered
n our numerical experiments.
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.4. Hybrid analysis and modeling with CoSTA

In this section, we will briefly explain how we use CoSTA
o model 2D heat diffusion. The PBM on which we base our
oSTA model is the Implicit Euler FVM described in Section 3.2. In
ection 2, we established that the ideal corrective source term is
iven generally as the residual defined in Eq. (7). For the Implicit
uler FVM, we recall that Ñ
 ↔ A and f ↔ b. Moreover, we

have u ↔ T n+1
ref , such that the ideal corrective source term for the

Implicit Euler FVM reads

�̂
n+1

= AT n+1
ref − b

�
T n

ref

�
: (16)

As in Section 2, we use the corrective source term to define a
modified governing equation whose solution is exactly equal to
the reference solution at all grid nodes and at all time levels. We
use a subscript h (for ‘‘hybrid analysis and modeling’’) to denote
the solution of the modified system, and we write the modified
system as

AT n+1
h = b

�
T n

h

�
+ �̂

n+1
: (17)

For a posteriori analyses, these equations can be used directly.
However, for a priori predictions, T n+1

ref is unknown. We therefore
use a DNN-generated corrective source term �̂

n+1
nn to approxi-

mate the true corrective source term �̂
n+1. As input to the DNN

enerating �̂n+1
nn , we use a predictor T̃

n+1
h defined by

T̃
n+1
h = b

�
T n

h

�
; (18)

ith A and b defined as in Eq. (12). Our choice of DNN input
as inspired by predictor–corrector schemes used for numerical

ntegration. We make no claim that this choice is optimal, but
bserve that it has worked well in our numerical experiments.
ith this choice of input, we want to train the DNN of the CoSTA
odel to approximate the following mapping:

NN� : R(Nj+2)·(Ni+2)
→ RNj·Ni such that �̂

n+1
nn = �̂

n+1
: (19)eT n+1

h ↦→ �̂
n+1
nn

As for the DDM mapping (15), the dimensionality reduction orig-
inates from the use of Dirichlet BCs. Furthermore, we use the
notation DNN� to refer to both the mapping (19) and any DNN
trained to approximate that mapping.

4. Experimental setup and procedures

4.1. Data generation

We use the method of manufactured solutions (MMS) to gen-
erate data for our numerical experiments. Our motivation for
using synthetic data generated using MMS instead of real data,
is to make the analysis of CoSTA’s accuracy and interpretability
as rigorous as possible. Real data inevitably contains some noise,
which would make it difficult to differentiate the models’ accu-
racy in scenarios where several models perform well. Moreover,
when the reference data is noisy, the true corrective source term
�̂ (as defined by Eq. (5)) is not known precisely. This would
make it difficult to assess our hypothesis that the DNN-generated
corrective source term �̂nn can be interpreted to obtain useful
information. In the present work, we feel it was important to keep
the number of error sources to a minimum, such as to keep the
analysis as straight-forward as possible.

The main concept of MMS is to prescribe some convenient
but otherwise arbitrary function as the solution of the governing
equation (the heat Eq. (8) in our case). All of the parameters
of the equation except for one (typically the heat generation
rate P for the heat equation) are also prescribed. The final pa-

rameter is then calculated by inserting the prescribed solution b

6

Fig. 5. The fully connected DNN architecture used in the numerical experiments
of the present work. Temperatures at both the domain interior and the boundary
are given as model input. The data is processed by a number of fully connected
layers with LeakyReLU activation functions. A fully connected layer without
activation functions is used to generate the final output. For DDM, the output is
the temperature in the domain interior7at the subsequent time level. For CoSTA,
the output is the corrective source term �̂

n+1
nn .

Source: Adapted from [23].

and parameters into the governing equation. This way, it is easy
to obtain analytical solutions for any governing equation. Thus,
MMS is a powerful tool for generating synthetic data for numer-
ical experiments without the use of any expensive high-fidelity
solvers.

Due to the integrals, Eq. (8) is not convenient for use with
MMS. Therefore we use instead the so-called differential form
of the heat equation when generating data for our numerical
experiments. For smooth temperature profiles, the differential
form is equivalent to Eq. (8), and it reads

�cV
@T
@t

=
@

@x

�
k
@T
@x

�
+

@

@y

�
k
@T
@y

�
+ P : (20)

t is clear from the equation that given any P independent of
he third dimension (which is the case for all the cases at-
empted), the heat transfer phenomena will be completely two-
imensional. Therefore, from here onwards, we will assume that
he third dimension is of unit thickness. Our data generation
rocedure is then to prescribe T , k, � and cV in the equation above
nd calculate the P required for the equation to be satisfied. For
implicity we always prescribe � and cV to unity in this work.
We consider a total of four different manufactured solutions

ref as listed in Table 1. The corresponding chosen k and calculated
are also included in the table. All the manufactured solutions

re parametrized by a parameter � which allows us to generate
everal time series using the same manufactured solutions. We
onsider a total of 22 different �-values, such that we get 22
nique time series for each manufactured solutions. We empha-
ize that this way of choosing uniformly spaced values of � is not
ptimal. If we were to use resource-intensive experimentation for
ate generation then a better approach would have been to use
oncepts from Design of Experiments to minimize the number of
xperiments while still generating informative data.
As shown in Table 2, 16 of these were used for DNN training,
were used for DNN validation, and 4 were used for model

esting. Each time series was discretized using Nt = 5001 time
evels on the temporal domain [0 s; 5 s] and 20 × 20 grid cells on
he spatial domain [0m; 1m] × [0m; 1m]. Furthermore, a unit
hickness for the plate has been assumed. All models operate on
lattened data, meaning that any discretized 2D temperature field
s represented by a 1D vector in the models.

.2. DNN setup and training routines

The fully-connected DNN architecture we use is illustrated in
ig. 5, and our hyperparameter choices are listed in Table 3. To be

7 We assume the BCs are known, so there is no need for the DNN to predict
oundary temperatures.
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Table 1
Manufactured solutions Tref used for our experiments Each solution is taken to be defined on the spatial domain [0m; 1m] × [0m; 1m] and the temporal domain
0 s; 5 s]. P and k are given in their respective SI units, while T is given in degrees Celsius.
Label Tref(x; y; t;�) P(x; y; t;�) k(x; y; t;�)

2P1 t + 0:5�(x2 + y2) + x (1 − 2�) 1
2P2 1 + sin (2� t + �) cos (2�x) cos (2�y) 2� cos (2�x) cos (2�y) .cos (2� t + �) + 4� sin (2� t + �)/ 1

2k1 t + �x + y2 −(1 + � + 2x + 4y) 1 + x + y
2k2 � + (t + 1) cos (2�x) cos (4�y) cos (2�x) cos (4�y)

�
1 + 40�2(t + 1) .1 + sin (1�x) sin (4�y)/

�
2 + sin (2�x) sin (4�y)
c
i
q

Table 2
Parametrization: Selection of �-values corresponding to the training, validation
nd testing time series used in our experiments. Note that in the test set Atest ,
wo values of � = −0:5 and 2.5 correspond to extrapolation scenarios while
= 0:7 and 1.5 correspond to interpolation scenarios.
Purpose Set of �-values Symbol

Training {0:1; 0:2; : : : ; 2:0}\{0:7; 0:8; 1:1; 1:5} Atrain
Validation {0.8, 1.1} Aval
Testing {−0:5; 0:7; 1:5; 2:5} Atest

Table 3
The DNN hyperparameters used in our experiments.
Parameter Value

Loss function MSE
Learning rate 1e−5
Optimizer Adam
Batch size 32
# hidden FC layers 4
Hidden FC layer width 80
LeakyReLU slope 0.01
Validation period 1e2
Overfit limit 20

compatible with our chosen spatial discretization, the DNN input
and output layers must consist of 484 and 400 nodes respec-
tively.8 The training procedures for the DNNs of DDM and CoSTA
are illustrated in Fig. 6(a) for a single data example (T n

ref; T n+1
ref ).

.3. Testing

In each of our numerical experiments, we consider one of the
anufactured solutions listed in Table 1, and attempt to replicate

he four time series corresponding to � ∈ Atest. For each time
eries, we inform the models of the true initial condition and the
rue boundary conditions.

To synthesize modeling error in the PBM, we set P = 0 in
the PBM when modeling Systems 2P1 and 2P2. However, for
Systems 2k1 and 2k2, we inform the PBM of the true P . In these
cases, modeling error is instead synthesized by the assumption
of constant k. More specifically, we set k = 1 in PBM for all the
numerical experiments considered herein. Our hypothesis is that
the corrective source term in the CoSTA model will correct for
the modeling error synthesized in the PBM, irrespective of the
whether the error stems from an incorrect P or an incorrect k.

e highlight that no modeling error is synthesized in the DDM
odel.
For assessing the quality of the three models’ predictions, we

se the relative ‘2-norms

Ep =



T n
p − T n

ref




2

T n

ref




2

; Ed =



T n
d − T n

ref




2

T n

ref




2

;

h =



T n
h − T n

ref




2

T n

ref




2

;

(21)

8 For our chosen discretization, the number of grid cells is 400, and the
umber of boundary nodes is 84. Since the boundary conditions are known
n advance they are omitted from the output layers.
 i

7

where

∥v∥2 =

 
DX

i=1

v2i

!1=2

(22)

for any D-dimensional vector v. The training and testing proce-
dures are illustrated in Fig. 6. Algorithmic representations of the
training and testing are given in Algorithms 1 and 2 of Blakseth
et al. [23].9

5. Results and discussion

In this section, we present and discuss the results of our four
numerical experiments. The experiments concerning solutions
2P1 and 2P2, where modeling error due to an unknown P is the
dominant error source in the PBM, are considered in Section 5.1.
The experiments concerning solutions 2k1 and 2k2, where an
incorrectly modeled k is the primary PBM error source, are con-
sidered thereafter in Section 5.2. Finally, the section is concluded
by a discussion on the interpretability of the corrective source
term in Section 5.3.

In Sections 5.1 and 5.2, the results are grouped in interpola-
tion scenarios � ∈ {0:7; 1:5} and extrapolation scenarios � ∈

{−0:5; 2:5}. We make a distinction between the interpolation
and extrapolation scenarios during testing because data-driven
models tend to do relatively better in interpolation compared
to the extrapolation scenarios. This is due to the fact that the
test data corresponding to interpolations are better represented
by the training data. Since by design, PBMs do not differentiate
between the two scenarios, it is expected that a hybrid approach
will inherit this strength of the PBM, and consequently perform
better than pure DDM in the extrapolation scenarios.

Both result sections begin with a discussion on the interpola-
tion scenarios, while the extrapolation scenarios are considered
thereafter. For each �-value and each manufactured solution, we
display the temporal development of the ‘2-errors Ep, Ed and
Eh defined in Eq. (21) (cf. Figs. 7, 12, 17 and 22). Additionally,
we also display the relative error fields (TNt−1

p − TNt−1
ref )=TNt−1

ref ,
(TNt−1

d − TNt−1
ref )=TNt−1

ref , and (TNt−1
h − TNt−1

ref )=TNt−1
ref , where all

subtractions and divisions are applied component-wise.10

5.1. Experiments with unknown source term

In this section, we consider two experiments where the source
term P of the heat equation is assumed unknown. From a physical
point of view, this can be interpreted as some unknown heating
within the system. For example, P can correspond to an unknown
power output of a heater in a room, to heat generated from
electrical resistance in a system influenced by electrical currents,
or to heat generated by friction inside a system with moving

9 Keep in mind that, while the procedures used here and in [23] are
ompletely analogous, there are some technical difference. An obvious example
s the definitions of the temperature vectors. Moreover, Blakseth et al. [23] use
ˆ to refer to the heat generation rate P which we here denote P .
10 For these illustrations, we use the imshow function of Matplotlib, which
nterpolates the discrete differences to produce smooth error fields.
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Fig. 6. Training and time stepping procedures for the three modeling approaches PBM (red), DDM (blue) and HAM (green). Note that PBM is not included in (a)
because it does not require any training.
Source: Figure adapted from [23].
Fig. 7. Solutions 2P1 and 2P2, interpolation: Relative ‘2-errors for � ∈ {0:7; 1:5} (— PBM, — DDM, — HAM).
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omponents. The manufactured solutions studied in this section
re Solutions 2P1 and 2P2 (cf. Table 1). We discuss the results
or the interpolation scenarios (� ∈ {0:7; 1:5}) first and the
xtrapolation scenarios (� ∈ {−0:5; 2:5}) thereafter.
The results for Solutions 2P1 and 2P2 in the interpolation

cenarios are shown in Figs. 7–11. From the temporal develop-
ent of the models’ relative ‘2-errors (Fig. 7), we see that the
odels follow a clear hierarchy in terms of accuracy. In all four
ases, the PBM is the least accurate model. The PBM’s accuracy is
specially poor for Solution 2P2, for which it produces relative ‘2-
rrors of up to 30%. The DDM is the second most accurate model,
roducing relative ‘2-errors which are, on average, roughly one
rder of magnitude smaller than those of the PBM. However, in
 S

8

ll cases, the CoSTA-based HAM model is by far the most accurate
odel. We observe that the addition of the DNN-generated cor-

ective source term yields an increase in accuracy of roughly three
rders of magnitude compared to the unmodified PBM. We also
bserve that the CoSTA-based HAM model generally outperforms
he DDM by more than one order of magnitude. The CoSTA model
nd the DDM use the same DNN using the same hyperparameters
nd the same training regime, so this result must imply that using
PBM to account for some physics, as is done in the CoSTA model,
s more efficient than using the DNN to account for all physics, as
s done in the DDM model. We notice that this holds true even
hen the accuracy of the PBM itself is poor (cf. the results for
olution 2P2).
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Fig. 8. Solution 2P1, � = 0:7: Reference temperature field and relative ‘2-errors of PBM, DDM and HAM at t = 5 s.

Fig. 9. Solution 2P1, � = 1:5: Reference temperature field and relative ‘2-errors of PBM, DDM and HAM at t = 5 s.

Fig. 10. Solution 2P2, � = 0:7: Reference temperature field and relative ‘2-errors of PBM, DDM and HAM at t = 5 s.
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