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a b s t r a c t

Upcoming technologies like digital twins, autonomous, and artificial intelligent systems involving
safety–critical applications require accurate, interpretable, computationally efficient, and generalizable
models. Unfortunately, the two most commonly used modeling approaches, physics-based modeling
(PBM) and data-driven modeling (DDM) struggle to satisfy all these requirements. In the current work,
we demonstrate how a hybrid approach combining the best of PBM and DDM can result in models
that can outperform both of them. We do so by combining partial differential equations based on
first principles describing partially known physics with a black box DDM, in this case, a deep neural
network model compensating for the unknown physics. The novelty of the work is in the theoretical
contribution of presenting a sound mathematical argument for why the approach should work. The
argument is backed by an array of experiments involving a two-dimensional heat diffusion problem
with unknown source terms. The hybrid approach demonstrates the method’s superior performance
in accuracy and generalizability. Additionally, it is shown how the DDM part can be interpreted within
the hybrid framework to make the overall approach reliable. The approach, as we see, will be a door
opener for underutilized DDMs in high stake applications.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The development and industrial utilization of digital twins
DTs) is an important trend facilitated by the increased digitaliza-
ion following Industry 4.0, in addition to recent advances within
ata processing, computational infrastructure and big data cyber-
etics. DTs [1] can be defined as virtual representations of phys-
cal assets and their applications include real-time prediction,
ptimization, monitoring, control, and improved decision mak-
ng. For DTs to be successful in these applications, high-quality
odeling techniques are paramount. In particular, DTs require
odels which are generalizable, trustworthy, self-evolving and
omputationally efficient while maintaining good accuracy [2].
nfortunately, it has proven difficult to attain all four of these
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modeling characteristics using either of the two traditional mod-
eling paradigms: physics-based modeling (PBM) and data-driven
modeling (DDM).

PBM (Fig. 1) generally describes the system to be modeled
using a set of governing equations representing known and un-
derstood physical phenomena. However, the governing equations
generally do not reflect the complete physics of the system, as
some relevant physics may be unobserved, not understood, or
neglected as a simplifying assumption. In addition, further loss
of physics may result from solving the governing equations using
numerical methods with finite precision. As such, PBM gener-
ally does not capture the complete physics of the system being
modeled. However, they are still considered trustworthy because
we know exactly which physical phenomena are included in the
model and can bound their numerical errors. PBM also tends
to generalize well, as it is typically not fine-tuned for specific
applications. However, solving the governing equations can be
computationally expensive. Another disadvantage of PBM is that
it is generally static in the sense that it does not automatically get
updated to account for new scenarios encountered after model
deployment.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

BC Boundary Condition
CoSTA Corrective Source Term Approach
DDM Data-Driven Model(ing)
DNN Deep Neural Network
DT Digital Twin
FC Fully Connected
FVM Finite Volume Method
HAM Hybrid Analysis and Modeling
MSE Mean Squared Error
MMS Method of Manufactured Solutions
NN Neural Network
PBM Physics-Based Model(ing)
PDE Partial Differential Equation
PGNN Physics-Guided Neural Network
PINN Physics-Informed Neural Network
ROM Reduced-Order Model
T Temperature
T ref Reference temperature field
T p/T d/T h Temperature field predicted by

PBM/DDM/CoSTA
Te, Tw , Tn, Ts Boundary temperatures
σ̂ /σ̂nn Reference/DNN-generated corrective

source term
σ̂P /σ̂k Source term correcting error in model-

ing of P/k
NΩ /N∂Ω Operators defining general PDE
f /g Right-hand-side functions defining gen-

eral PDE
u True solution of general PDE
k Thermal conductivity
P Internal heat generation rate
cV Specific heat capacity at constant vol-

ume
ρ Density
α General system parameter
x/y/t Spatial and temporal coordinates
Ep/Ed/Eh Relative ℓ2-errors of PBM/DDM/CoSTA
ϵP /ϵk Error in modeling of P/k
ξ Convenience function (see Eq. (26))
˜/ˆ̃ Approximation/Corrected

approximation
j,i/n Grid cell indices/Time level
DNNσ /DNNT DNN predicting σ̂ /T
Nt Maximum time level

DDM (Fig. 2) exhibits the opposite traits of PBM, as DDM is
enerally inexpensive to run and can be continuously updated
sing new data even after deployment. Furthermore, the fact that
bservations may include neglected/unknown physics means that
DM, if tuned and trained perfectly, can reflect the complete
hysics. However, under realistic (imperfect) conditions, DDM
ill be biased towards the data samples on which the model

s trained. This limits the models’ generalizability, especially to
xtrapolation scenarios. Additionally, even with recent research
ocused on increasing the explainability of DDM, it can be chal-
enging to establish precisely what physics are modeled by a DDM
2

Fig. 1. PBM: black part corresponds to unknown/unmodeled physics, orange
ellipse corresponds to observed physics, purple ellipse corresponds to actually
modeled physics while red ellipse signifies the actual physics solved for.

Fig. 2. DDM: It is assumed that since data is a manifestation of both known
and unknown physics, models trained on the data will implicitly captured full
physics.

approach. This black-box-like nature greatly hurts the trustwor-
thiness of DDM and is the primary barrier keeping DDM from
entering high-stakes and safety–critical applications.

From an analysis of the strong and weak points of PBM and
DDM as described above, it is clear that neither modeling ap-
proach is ideal for use in DTs. However, we see that all four
modeling characteristics identified by San et al. [2] can be at-
tained by combining PBM and DDM in a way that retains their
strengths while eliminating their weaknesses. This is exactly the
philosophy behind the emerging Hybrid Analysis and Modeling
(HAM) paradigm. As shown in Fig. 3, HAM utilizes PBM to the
maximum extent possible, and only compensates for the unmod-
eled/unknown physics using DDM. Recent works have explored
many interesting approaches to HAM, most of which falls into
one of the following categories:

1. PBM embedded inside neural networks (NNs): Examples of
these are embedding a differentiable convex optimization
solver [3] or a rigid body simulator [4] in a neural network.
A common challenge with these methods is that they are
computationally expensive not only for training but also for
inference.

2. Reduced Order Model (ROM): The ROM approach [5] in-
volves projecting complex partial differential equations
(PDEs) onto a reduced dimensional space based on the
singular value decomposition of the offline high fidelity
simulation snapshots resulting in a set of ordinary differ-
ential equations which are fast to solve. Xiang et al. [6]
applied ROM to model heat transfer in a battery pack of
an electric vehicle, while Georgaka et al. [7] applied it
to model turbulent heat transfer problems, and Li et al.
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Fig. 3. Hybrid analysis and modeling: It maximizes the utilization of the well
known PBM while correcting for the unknown using DDM. In the CoSTA, PBM
is described by partial differential equations and DDM is a DNN.

[8] modeled steady-state and transient heat transfer in
fractured geothermal reservoir. A recent review conducted
by Ahmed et al. [9] gives a detailed overview of the various
ROM approaches. Despite the huge potential ROM holds,
their development requires knowledge of the equation
governing the process to be modeled.

3. Physics-informed neural networks (PINN): The work of
Raissi et al. [10] involves penalizing the cost function of the
neural network with the residual of governing equations
representing physical laws. Penwarden et al. [11] propose
a particular multifidelity approach applied to PINNs that
exploits low-rank structure. In the context of heat transfer,
PINN has been used by He et al. [12] for solving both direct
and inverse heat conduction problems. The penalization of
the cost function can result in challenges during the op-
timization process due to the increased complexity of the
cost function. Moreover, the exact form of the governing
equations is a prerequisite for the method to work well.

4. Data-driven equation discovery: Sparse regression based
on l1 regularization [13,14] and symbolic regression based
on gene expression programming have been shown to be
very effective in complex equation discovery directly from
data [15]. Xu et al. [16] demonstrated deep-learning based
discovery of partial differential equations in integral form
from sparse and noisy data. However, the limitations of
this approach are that either large number of additional
features are required to be handcrafted (in case of sparse
regression) based on prior knowledge or the resulting mod-
els are unstable and prone to overfitting (in case of sym-
bolic regression based on gene expression programming).
In the case of using deep learning, interpretability remains
elusive.

5. Physics-guided neural network (PGNN): This concept has
been recently introduced to improve the training and pre-
dictions of deep neural networks (DNN). Partial knowledge,
prior information, or results from highly simplified (and
hence incomplete) models are injected into an intermedi-
ate hidden layer of the neural network [17]. The injection
helps in improving accuracy, reducing model uncertainty
and enabling more robust training. The approach has been
used to combine information from simplified analytical
models or low-fidelity models with noisy data obtained ei-
ther from experiments or high-fidelity simulations through
a neural network. It has been shown that this multi-fidelity
information fusion framework produces physically consis-
tent models that achieve better generalizability than purely
DDM [18,19]. However, since PGNN is just a special kind of
3

Fig. 4. CoSTA combines PBM and DDM into a unified model by adding a
DNN-generated corrective source term to the governing equation of the PBM.

NN, misbehavior of the neural network in unseen condi-
tions and lack of interpretability may still be an issue in
high-stakes application.

A more comprehensive list of hybrid modeling approaches
and their applications can be found in [20–22]. From a careful
evaluation of these modeling approaches it becomes apparent
that most of the HAM approaches mentioned above have some
shortcomings. Some of the approaches, like PBM embedded inside
NNs, tend to be computationally expensive. Others, such as ROM
and PINN, require the exact form of the equations governing
the physics to be modeled. Data-driven equation discovery based
on symbolic regression can be unstable and not fit for interpre-
tation, while PGNN also offers limited interpretability and few
opportunities for NN sanity checks. Another observation in our
literature survey was that a disproportionately large percentage
of work on hybrid modeling was found in more physics and engi-
neering oriented journals and lesser in the data-driven machine
learning journals. These observations have motivated our recent
work [23] on a different HAM approach – the Corrective Source
Term Approach (CoSTA) – where a PBM is augmented with a data-
driven component. More specifically, a DNN-generated corrective
source term is added to the (discretized) governing equation(s)
of the PBM such as to correct any errors present in the original
PBM, as illustrated in Fig. 4. These errors may e.g. stem from
partial knowledge, discretization, and/or inaccurate parameter
estimation. An important difference between CoSTA and the other
HAM approaches discussed above is that CoSTA utilizes PBM to
the greatest extent possible.

In [23], CoSTA was demonstrated to work for simple, one-
dimensional heat transfer problems. In the current work we
extend the work to two dimensions and take a closer look at
the interpretability of the DNN-generated source term. The main
contribution of this work can be enumerated as follows:

• Provide a brief presentation of the approach’s underlying
mathematical foundation

• Apply the approach to model a wide variety of two-
dimensional heat diffusion phenomena

• Demonstrate and discuss how the DNN-generated correc-
tion term can be interpreted in a physics context, thereby
increasing the explainability and reliability of the approach.

In Section 2, we present a profound mathematical founda-
tion of the approach. We then continue with a discussion on
heat diffusion modeling and its importance in Section 3. Physics-
based and data-driven heat diffusion models are presented in
Sections 3.2 and 3.3, respectively. In Section 3.4, we explain in
detail how to combine these models using the proposed hybrid
approach, as illustrated in Fig. 4.

Section 4 is devoted to explaining the setup of our numerical
experiments — including the manufactured solutions considered,
our DNN architecture and hyperparameter choices, and our data
generation, training and testing procedures. Our experimental
results are presented and discussed in Section 5 before the article
is concluded in Section 6 with a brief summary and an outlook on
future work.
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. Theory

This section briefly presents the mathematical justification
f the hybrid approach, henceforth called the Corrective Source
erm Approach (CoSTA), originally introduced in [23,24] for mod-
ling systems governed by linear partial differential equations
PDEs). The presentation largely follows Blakseth [24].

First, suppose we want to solve the following general problem,
efined on a domain Ω with boundary ∂Ω:

NΩu = f in Ω, (1)

N∂Ωu = g on ∂Ω. (2)

Here, u is the unknown of the problem, NΩ and N∂Ω are linear
operators2 acting on u, and f and g are some functions. With this
formulation, we also capture scenarios where there are multiple
governing equations. In such scenarios, u is a vector, and f and g
are vector-valued functions.

Assume now that we have a PBM designed to predict u, and
let ũ denote the PBM’s prediction of the true solution u.

If ũ ̸= u, there is some error in the PBM, and this error must
stem from one or more of the following sources:

1. The true function f in Eq. (1) is unknown, so it is approxi-
mated by f̃ .

2. The true operator NΩ in Eq. (1) is unknown, so it is approx-
imated by ÑΩ .

3. The true function g in Eq. (2) is unknown, so it is approxi-
mated by g̃ .

4. The true operator N∂Ω in Eq. (2) is unknown, so it is
approximated by Ñ∂Ω .

5. A combination of the above.
6. The true governing equation (1) and the true boundary

conditions (2) are known, but cannot be solved analyti-
cally. To obtain a prediction ũ, we must therefore solve
some approximation of the true system constituted by
Eqs. (1) and (2), which effectively puts us in one of the
other cases. For example, one could approximate the true
operatorNΩ with some numerical operatorNnum e.g. based
on finite-difference approximations, which is equivalent to
Case 2.

We observe that Cases 3 and 4 are analogous to Cases 1 and 2
because N∂Ω and g play exactly the same roles in Eq. (2) as NΩ

and f do in Eq. (1).
Since Case 6 is also mathematically equivalent to one of the

other cases, it suffices to consider Cases 1 and 2, and combina-
tions thereof.

Suppose now that the PBM-predicted solution ũ is given as the
solution of the following system:

ÑΩ ũ = f̃ in Ω, (3)

N∂Ω ũ = g on ∂Ω. (4)

This formulation encompasses both Case 1 (for ÑΩ = NΩ and
f̃ ̸= f ), Case 2 (for ÑΩ ̸= NΩ and f̃ = f ), and combinations
thereof (for ÑΩ ̸= NΩ and f̃ ̸= f ). Furthermore, suppose we
modify the system above by adding a source term σ̂ to Eq. (3),
and let the solution of the modified system be denoted ˆ̃u. Then,
the modified system reads

ÑΩ
ˆ̃u = f̃ + σ̂ in Ω, (5)

N∂Ω
ˆ̃u = g on ∂Ω. (6)

and the following theorem holds.

2 For u to be uniquely defined, N∂Ω must be the unity mapping along a
ortion of ∂Ω of length greater than zero.
 o

4

Theorem. Let ˆ̃u be a solution of Eqs. (5) and (6), and let u be a
solution of Eqs. (1) and (2). Then, for all operators ÑΩ , NΩ , Ñ∂Ω and

∂Ω and all functions f , f̃ , g and g̃ such that ˆ̃u and u are uniquely
efined, there exists a function σ̂ such that ˆ̃u = u.

roof. Define the residual r of the PBM’s governing equation (3)
s3

= ÑΩu − f̃ . (7)

f we set σ̂ = r in Eq. (5), we then obtain

ÑΩ
ˆ̃u = f̃ + σ̂

= f̃ + ÑΩu − f̃
= ÑΩu

H⇒ ˆ̃u = u ■

The theorem above proves that, for any error in the PBM’s
overning equation (3), there always exists a corrective source
erm σ̂ which we can add to that equation such that the so-
ution ˆ̃u of the modified governing equation (5) is equal to the
rue solution u. Furthermore, any error in the PBMs boundary
onditions (Eq. (4)) can be corrected analogously, since Eqs. (5)
nd (4) have the same functional form. Thus, the true solution
of the true governing equations can always be retained by
odifying an erroneous PBM with a corrective source term. This
bservation is the principal theoretical justification of CoSTA. It is
orth pointing out that, so far, we have not made any assumption
egarding the operators NΩ and N∂Ω except that they are linear.
ence, the approach should be applicable across a wide array
f physical problems that can be cast in the form of the above
quations.
The broad applicability of the approach is not to be con-

used with its generalizability, which is its ability to provide accu-
ate predictions for previously unseen states of some particular
ystem. The case study presented in the following is aimed at
emonstrating the approach’s generalizability.

. Heat diffusion modeling

To demonstrate the potential of CoSTA, we choose to study
wo dimensional heat diffusion problems. The main motivation
or choosing such problems is two-fold. Firstly, temperature can
ive insight into a wide variety of physical phenomena.4 Sec-

ondly, cost-effective and non-intrusive measurement techniques
(e.g. based on thermal cameras) exist to make high-resolution
spatio-temporal temperature measurements. In real-world appli-
cations, such techniques can be used to obtain the reference data
needed for training the DNN used by CoSTA.

In this following sections, we describe the PBM, DDM and
CoSTA models used in our numerical experiments on 2D heat
diffusion. These models are presented in Sections 3.2, 3.3 and 3.4,
respectively. But first, we shall briefly describe the heat equation
in Section 3.1.

3 Note that our definition is in some sense opposite of common practice; we
ave defined the residual by inserting the true solution into the approximate
quation rather than inserting the approximate solution into the true equation.
he latter is the conventional approach, and is used e.g. in truncation error
nalysis [25, chapter 8]. The reason for our choice is two-fold: (1) It yields
he simplest proof of the theorem. (2) When observing a real-world system, it
s often easier to measure its state than to find the exact governing equation
escribing said state.
4 Trivial examples include using temperature to evaluate the power output
f a heater, or to indicate an impending malfunction due to overheating.
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.1. The heat equation

The heat equation, which describes heat conduction through
olid materials, can be written as

V
ρcV

∂T
∂t

dV =

∫
∂V

(k∇T ) · n̂ dA +

∫
V
P dV (8)

for a stationary system with volume V , surface ∂V , surface unit
normal n̂, density ρ, specific heat capacity at constant volume cV ,
conductivity k, internal heat generation rate P and temperature T .
We take Eq. (8) to be the true governing equation for all systems
considered in the present work. Comparing with the general
formulation used in Section 2, Eq. (8) corresponds to Eq. (1) with

u = T , NΩu =

∫
V

ρcV
∂T
∂t

dV −

∫
∂V

(k∇T ) · n̂ dA (9)

and

f =

∫
V
P dV . (10)

To have a complete formulation of the system at hand, we also
eed to formulate the boundary conditions (BCs) of the system.
n this work, we only consider Dirichlet BCs, which means that
he temperature at the domain boundary is specified by some
unction(s). For the 2D systems considered in this work, the
irichlet BCs can be formulated as
(xe, y, t) = Te(y, t), T (xw, y, t) = Tw(y, t),
T (x, yn, t) = Tn(x, t), T (x, ys, t) = Ts(x, t),

(11)

where the subscripts e, w , n and s denote quantities evaluated at,
respectively, the eastern (right), western (left), northern (upper)
and southern (bottom) domain boundaries, and Te, Tw , Tn and
Ts are the functions specifying the boundary temperature. Again
comparing with Section 2, we see that Eq. (11) is equivalent
to Eq. (2) with u = T , N∂Ω as the unity operator, and g being
equal to Te, Tw , Tn or Ts depending on whether we are on the
eastern, western, northern or southern part of ∂Ω .

3.2. Physics-based modeling

We now want to obtain a PBM for Eqs. (8) and (11). By limiting
ourselves to 2D systems and assuming k, ρ and cV to be constant,5
we are able to rewrite Eq. (8) as∫ yn

ys

∫ xe

xw

∂T
∂t

dxdy = κ

((
∂T
∂x

)
e
−

(
∂T
∂x

)
w

+

(
∂T
∂y

)
n
−

(
∂T
∂y

)
s

)
+

∫ yn

ys

∫ xe

xw
σ dxdy,

(12)

here κ = k/(ρcV ) and σ = P/(ρcV ). Eq. (12) can be solved
umerically using the Implicit Euler FVM, which can be expressed
n the following matrix form for two successive time levels n and
+ 1:

T n+1
p = b

(
T n

p

)
. (13)

or a domain that is discretized with Nj grid cells in the x-
irection and Ni grid cells in the y-direction, A is a banded
NjNi × NjNi)-matrix with five non-zero diagonals, while T p and
are NjNi-dimensional vectors. The components of T p describe

5 In our numerical experiments, we consider scenarios where the assumption
f constant k does not hold. Assuming constant k thereby allows us to synthesize
odeling error in the PBM.
 i

5

the temperature at the grid cell centers, as predicted by the PBM.
The components are ordered such that the first Nj components
describe the temperature at bottom-most row of cell centers
(from left to right), the subsequent Nj components correspond
to the second row from the bottom (still from left to right),
and so on. Precise definitions of A and b can be found in [24].
Here, we highlight that A depends on the conductivity k, while b
depends on the heat generation rate P and the system’s boundary
conditions (cf. Eq. (11)) in addition to the predicted temperature
distribution at the old time level n, T n

p. Comparing with Section 2,
we see that Eq. (13) is equivalent to Eq. (3) with

ũ ↔ T n+1
p , ÑΩ ũ ↔ AT n+1, and f̃ ↔ b. (14)

In our numerical experiments, we use the LAPACK routine
‘?gesv’’ (accessed through the SciPy library) to solve the sys-
em (13). However, using a specialized solver for sparse, banded
ystems is advised for problems that are more computationally
emanding than those considered herein.

.3. Data-driven modeling

The crux of DDM is to learn physics directly from observational
ata. For transient systems, this can be done by training a DNN
o learn a mapping between two subsequent observations of the
ystem state. For the heat diffusion problems considered herein,
e take an observed state to be a vector T n

ref describing the true
emperature at the center of the grid cells used to define the PBM,
s described in Section 3.2. The mapping we want the DNN to
earn is then given by

NNT : R(Nj+2)(Ni+2)
→ RNjNi such that T n+1

d = T n+1
ref , (15)

T n
d ↦→ T n+1

d

here T n+1
d refers to the temperature profile predicted by the

DM at time level n + 1. The dimensionality of the DNN output
is lower than that of the DNN input because the input vector
contains boundary temperatures while the output vector does
not. Since we consider Dirichlet BCs where the boundary tem-
peratures are known, we need not have the DNN predict the
boundary temperatures. However, it is still potentially useful to
include them as DNN input with the aim of making the DNN’s
learning task easier. In an effort to reduce notational complexity,
we use the same notation to denote both vectors with and with-
out boundary information. Furthermore, we will use the notation
DNNT to refer to both the mapping defined by Eq. (15) and any
DNN trained to approximate that mapping.

Our reason for choosing DNN-based DDM over other applica-
ble DDMs is that DNNs have the ability to approximate any non-
linear mapping, as guaranteed by the universal approximation
theorem. Notice also that if we know the true initial condition
of a system, i.e., if we can set T 0

d = T 0
ref, then we will have

n
d = T n

ref ∀n ≥ 0 if the mapping (15) is learnt perfectly.6
To summarize, the DDM used in this work is a DNN denoted

NNT which is trained to predict T n+1
ref given T n

ref for any time
evel n. During testing, the output of DNNT at time level n is used
s its input at time level n + 1, i.e. T n+1

d = DNNT (T n
d). Since we

se T 0
d = T 0

ref, we will have T n
d = T n

ref ∀n ≥ 0 if DNNT is perfectly
rained.

6 It should be noted that, depending on the discretization used, Eq. (15)
ay not constitute a well-defined mapping. Particular care should be taken

or systems governed by so-called hyperbolic PDEs which permit discontinuous
olutions. However, Eq. (15) is a well-defined mapping for the cases considered
n our numerical experiments.
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.4. Hybrid analysis and modeling with CoSTA

In this section, we will briefly explain how we use CoSTA
o model 2D heat diffusion. The PBM on which we base our
oSTA model is the Implicit Euler FVM described in Section 3.2. In
ection 2, we established that the ideal corrective source term is
iven generally as the residual defined in Eq. (7). For the Implicit
uler FVM, we recall that ÑΩ ↔ A and f ↔ b. Moreover, we

have u ↔ T n+1
ref , such that the ideal corrective source term for the

Implicit Euler FVM reads

σ̂
n+1

= AT n+1
ref − b

(
T n

ref

)
. (16)

As in Section 2, we use the corrective source term to define a
modified governing equation whose solution is exactly equal to
the reference solution at all grid nodes and at all time levels. We
use a subscript h (for ‘‘hybrid analysis and modeling’’) to denote
the solution of the modified system, and we write the modified
system as

AT n+1
h = b

(
T n

h

)
+ σ̂

n+1
. (17)

For a posteriori analyses, these equations can be used directly.
However, for a priori predictions, T n+1

ref is unknown. We therefore
use a DNN-generated corrective source term σ̂

n+1
nn to approxi-

mate the true corrective source term σ̂
n+1. As input to the DNN

enerating σ̂
n+1
nn , we use a predictor T̃

n+1
h defined by

T̃
n+1
h = b

(
T n

h

)
, (18)

ith A and b defined as in Eq. (12). Our choice of DNN input
as inspired by predictor–corrector schemes used for numerical

ntegration. We make no claim that this choice is optimal, but
bserve that it has worked well in our numerical experiments.
ith this choice of input, we want to train the DNN of the CoSTA
odel to approximate the following mapping:

NNσ : R(Nj+2)·(Ni+2)
→ RNj·Ni such that σ̂

n+1
nn = σ̂

n+1
. (19)

T̃ n+1
h ↦→ σ̂

n+1
nn

As for the DDM mapping (15), the dimensionality reduction orig-
inates from the use of Dirichlet BCs. Furthermore, we use the
notation DNNσ to refer to both the mapping (19) and any DNN
trained to approximate that mapping.

4. Experimental setup and procedures

4.1. Data generation

We use the method of manufactured solutions (MMS) to gen-
erate data for our numerical experiments. Our motivation for
using synthetic data generated using MMS instead of real data,
is to make the analysis of CoSTA’s accuracy and interpretability
as rigorous as possible. Real data inevitably contains some noise,
which would make it difficult to differentiate the models’ accu-
racy in scenarios where several models perform well. Moreover,
when the reference data is noisy, the true corrective source term
σ̂ (as defined by Eq. (5)) is not known precisely. This would
make it difficult to assess our hypothesis that the DNN-generated
corrective source term σ̂nn can be interpreted to obtain useful
information. In the present work, we feel it was important to keep
the number of error sources to a minimum, such as to keep the
analysis as straight-forward as possible.

The main concept of MMS is to prescribe some convenient
but otherwise arbitrary function as the solution of the governing
equation (the heat Eq. (8) in our case). All of the parameters
of the equation except for one (typically the heat generation
rate P for the heat equation) are also prescribed. The final pa-

rameter is then calculated by inserting the prescribed solution b

6

Fig. 5. The fully connected DNN architecture used in the numerical experiments
of the present work. Temperatures at both the domain interior and the boundary
are given as model input. The data is processed by a number of fully connected
layers with LeakyReLU activation functions. A fully connected layer without
activation functions is used to generate the final output. For DDM, the output is
the temperature in the domain interior7at the subsequent time level. For CoSTA,
the output is the corrective source term σ̂

n+1
nn .

Source: Adapted from [23].

and parameters into the governing equation. This way, it is easy
to obtain analytical solutions for any governing equation. Thus,
MMS is a powerful tool for generating synthetic data for numer-
ical experiments without the use of any expensive high-fidelity
solvers.

Due to the integrals, Eq. (8) is not convenient for use with
MMS. Therefore we use instead the so-called differential form
of the heat equation when generating data for our numerical
experiments. For smooth temperature profiles, the differential
form is equivalent to Eq. (8), and it reads

ρcV
∂T
∂t

=
∂

∂x

(
k
∂T
∂x

)
+

∂

∂y

(
k
∂T
∂y

)
+ P . (20)

t is clear from the equation that given any P independent of
he third dimension (which is the case for all the cases at-
empted), the heat transfer phenomena will be completely two-
imensional. Therefore, from here onwards, we will assume that
he third dimension is of unit thickness. Our data generation
rocedure is then to prescribe T , k, ρ and cV in the equation above
nd calculate the P required for the equation to be satisfied. For
implicity we always prescribe ρ and cV to unity in this work.
We consider a total of four different manufactured solutions

ref as listed in Table 1. The corresponding chosen k and calculated
are also included in the table. All the manufactured solutions

re parametrized by a parameter α which allows us to generate
everal time series using the same manufactured solutions. We
onsider a total of 22 different α-values, such that we get 22
nique time series for each manufactured solutions. We empha-
ize that this way of choosing uniformly spaced values of α is not
ptimal. If we were to use resource-intensive experimentation for
ate generation then a better approach would have been to use
oncepts from Design of Experiments to minimize the number of
xperiments while still generating informative data.
As shown in Table 2, 16 of these were used for DNN training,
were used for DNN validation, and 4 were used for model

esting. Each time series was discretized using Nt = 5001 time
evels on the temporal domain [0 s, 5 s] and 20 × 20 grid cells on
he spatial domain [0m, 1m] × [0m, 1m]. Furthermore, a unit
hickness for the plate has been assumed. All models operate on
lattened data, meaning that any discretized 2D temperature field
s represented by a 1D vector in the models.

.2. DNN setup and training routines

The fully-connected DNN architecture we use is illustrated in
ig. 5, and our hyperparameter choices are listed in Table 3. To be

7 We assume the BCs are known, so there is no need for the DNN to predict
oundary temperatures.
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Table 1
Manufactured solutions Tref used for our experiments Each solution is taken to be defined on the spatial domain [0m, 1m] × [0m, 1m] and the temporal domain
0 s, 5 s]. P and k are given in their respective SI units, while T is given in degrees Celsius.
Label Tref(x, y, t; α) P(x, y, t; α) k(x, y, t; α)

2P1 t + 0.5α(x2 + y2) + x (1 − 2α) 1
2P2 1 + sin (2π t + α) cos (2πx) cos (2πy) 2π cos (2πx) cos (2πy) (cos (2π t + α) + 4π sin (2π t + α)) 1

2k1 t + αx + y2 −(1 + α + 2x + 4y) 1 + x + y
2k2 α + (t + 1) cos (2πx) cos (4πy) cos (2πx) cos (4πy)

(
1 + 40π2(t + 1) (1 + sin (1πx) sin (4πy))

)
2 + sin (2πx) sin (4πy)
c
i
q

Table 2
Parametrization: Selection of α-values corresponding to the training, validation
nd testing time series used in our experiments. Note that in the test set Atest ,
wo values of α = −0.5 and 2.5 correspond to extrapolation scenarios while
= 0.7 and 1.5 correspond to interpolation scenarios.
Purpose Set of α-values Symbol

Training {0.1, 0.2, . . . , 2.0}\{0.7, 0.8, 1.1, 1.5} Atrain
Validation {0.8, 1.1} Aval
Testing {−0.5, 0.7, 1.5, 2.5} Atest

Table 3
The DNN hyperparameters used in our experiments.
Parameter Value

Loss function MSE
Learning rate 1e−5
Optimizer Adam
Batch size 32
# hidden FC layers 4
Hidden FC layer width 80
LeakyReLU slope 0.01
Validation period 1e2
Overfit limit 20

compatible with our chosen spatial discretization, the DNN input
and output layers must consist of 484 and 400 nodes respec-
tively.8 The training procedures for the DNNs of DDM and CoSTA
are illustrated in Fig. 6(a) for a single data example (T n

ref, T
n+1
ref ).

.3. Testing

In each of our numerical experiments, we consider one of the
anufactured solutions listed in Table 1, and attempt to replicate

he four time series corresponding to α ∈ Atest. For each time
eries, we inform the models of the true initial condition and the
rue boundary conditions.

To synthesize modeling error in the PBM, we set P = 0 in
the PBM when modeling Systems 2P1 and 2P2. However, for
Systems 2k1 and 2k2, we inform the PBM of the true P . In these
cases, modeling error is instead synthesized by the assumption
of constant k. More specifically, we set k = 1 in PBM for all the
numerical experiments considered herein. Our hypothesis is that
the corrective source term in the CoSTA model will correct for
the modeling error synthesized in the PBM, irrespective of the
whether the error stems from an incorrect P or an incorrect k.

e highlight that no modeling error is synthesized in the DDM
odel.
For assessing the quality of the three models’ predictions, we

se the relative ℓ2-norms

Ep =

T n
p − T n

ref


2T n

ref


2

, Ed =

T n
d − T n

ref


2T n

ref


2

,

h =

T n
h − T n

ref


2T n

ref


2

,

(21)

8 For our chosen discretization, the number of grid cells is 400, and the
umber of boundary nodes is 84. Since the boundary conditions are known
n advance they are omitted from the output layers.
 i

7

where

∥v∥2 =

(
D∑

i=1

v2
i

)1/2

(22)

for any D-dimensional vector v. The training and testing proce-
dures are illustrated in Fig. 6. Algorithmic representations of the
training and testing are given in Algorithms 1 and 2 of Blakseth
et al. [23].9

5. Results and discussion

In this section, we present and discuss the results of our four
numerical experiments. The experiments concerning solutions
2P1 and 2P2, where modeling error due to an unknown P is the
dominant error source in the PBM, are considered in Section 5.1.
The experiments concerning solutions 2k1 and 2k2, where an
incorrectly modeled k is the primary PBM error source, are con-
sidered thereafter in Section 5.2. Finally, the section is concluded
by a discussion on the interpretability of the corrective source
term in Section 5.3.

In Sections 5.1 and 5.2, the results are grouped in interpola-
tion scenarios α ∈ {0.7, 1.5} and extrapolation scenarios α ∈

{−0.5, 2.5}. We make a distinction between the interpolation
and extrapolation scenarios during testing because data-driven
models tend to do relatively better in interpolation compared
to the extrapolation scenarios. This is due to the fact that the
test data corresponding to interpolations are better represented
by the training data. Since by design, PBMs do not differentiate
between the two scenarios, it is expected that a hybrid approach
will inherit this strength of the PBM, and consequently perform
better than pure DDM in the extrapolation scenarios.

Both result sections begin with a discussion on the interpola-
tion scenarios, while the extrapolation scenarios are considered
thereafter. For each α-value and each manufactured solution, we
display the temporal development of the ℓ2-errors Ep, Ed and
Eh defined in Eq. (21) (cf. Figs. 7, 12, 17 and 22). Additionally,
we also display the relative error fields (TNt−1

p − TNt−1
ref )/TNt−1

ref ,
(TNt−1

d − TNt−1
ref )/TNt−1

ref , and (TNt−1
h − TNt−1

ref )/TNt−1
ref , where all

subtractions and divisions are applied component-wise.10

5.1. Experiments with unknown source term

In this section, we consider two experiments where the source
term P of the heat equation is assumed unknown. From a physical
point of view, this can be interpreted as some unknown heating
within the system. For example, P can correspond to an unknown
power output of a heater in a room, to heat generated from
electrical resistance in a system influenced by electrical currents,
or to heat generated by friction inside a system with moving

9 Keep in mind that, while the procedures used here and in [23] are
ompletely analogous, there are some technical difference. An obvious example
s the definitions of the temperature vectors. Moreover, Blakseth et al. [23] use
ˆ to refer to the heat generation rate P which we here denote P .
10 For these illustrations, we use the imshow function of Matplotlib, which
nterpolates the discrete differences to produce smooth error fields.
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Fig. 6. Training and time stepping procedures for the three modeling approaches PBM (red), DDM (blue) and HAM (green). Note that PBM is not included in (a)
because it does not require any training.
Source: Figure adapted from [23].
Fig. 7. Solutions 2P1 and 2P2, interpolation: Relative ℓ2-errors for α ∈ {0.7, 1.5} (— PBM, — DDM, — HAM).
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omponents. The manufactured solutions studied in this section
re Solutions 2P1 and 2P2 (cf. Table 1). We discuss the results
or the interpolation scenarios (α ∈ {0.7, 1.5}) first and the
xtrapolation scenarios (α ∈ {−0.5, 2.5}) thereafter.
The results for Solutions 2P1 and 2P2 in the interpolation

cenarios are shown in Figs. 7–11. From the temporal develop-
ent of the models’ relative ℓ2-errors (Fig. 7), we see that the
odels follow a clear hierarchy in terms of accuracy. In all four
ases, the PBM is the least accurate model. The PBM’s accuracy is
specially poor for Solution 2P2, for which it produces relative ℓ2-
rrors of up to 30%. The DDM is the second most accurate model,
roducing relative ℓ2-errors which are, on average, roughly one
rder of magnitude smaller than those of the PBM. However, in
 S

8

ll cases, the CoSTA-based HAM model is by far the most accurate
odel. We observe that the addition of the DNN-generated cor-

ective source term yields an increase in accuracy of roughly three
rders of magnitude compared to the unmodified PBM. We also
bserve that the CoSTA-based HAM model generally outperforms
he DDM by more than one order of magnitude. The CoSTA model
nd the DDM use the same DNN using the same hyperparameters
nd the same training regime, so this result must imply that using
PBM to account for some physics, as is done in the CoSTA model,
s more efficient than using the DNN to account for all physics, as
s done in the DDM model. We notice that this holds true even
hen the accuracy of the PBM itself is poor (cf. the results for
olution 2P2).
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Fig. 8. Solution 2P1, α = 0.7: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.

Fig. 9. Solution 2P1, α = 1.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.

Fig. 10. Solution 2P2, α = 0.7: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.

9
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Fig. 11. Solution 2P2, α = 1.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.
Fig. 12. Solutions 2P1 and 2P2, extrapolation: Relative ℓ2-errors for α ∈ {0.7, 1.5} (— PBM, — DDM, — HAM).
The extrapolation scenario results for Solutions 2P1 and 2P2
are shown in Figs. 12–16. By comparing the ℓ2-errors for the ex-
trapolation scenarios (cf. Fig. 12) and the interpolation scenarios
(cf. Fig. 7), we see that PBM is the most generalizable model, in
the sense that its results for the interpolation and extrapolation
scenarios are the most similar. In fact, there is no significant
difference between the PBM’s accuracy in the extrapolation sce-
narios and in the interpolation scenarios. However, it should be
noted that the PBM is still the least accurate model overall. For
Solution 2P2, DDM and HAM exhibit roughly the same level of
accuracy in the interpolation scenarios, and this can be explained
by the fact that Solution 2P2 is not qualitatively different in the
extrapolation scenarios than in the interpolation scenarios. The
qualitative difference between the scenarios is much greater for
Solution 2P1, and this is clearly reflected in the DDM and HAM
results. Both DDM and HAM suffer significant accuracy reduc-
tion going from interpolation to extrapolation for this solution.
However, CoSTA-based HAM is still the most accurate model
overall.
10
It is of particular interest to study the error fields correspond-
ing to Solution 2P1, which are illustrated in Figs. 13 and 14. We
observe that the PBM and HAM error fields are smooth and quite
uniform throughout the spatial domain, while this is not the case
for the DDM error fields. For α = −0.5, the DDM prediction
is significantly too hot in the top right corner. For α > 0, that
corner is the warmest corner, so this error illustrates a failure to
generalize which is not observed for the PBM and CoSTA models.
For α = 2.5, we observe that the DDM error field is noisy.
Since the DNN is trained using an ℓ2 loss function which does
not enforce smooth DNN output, this is not really surprising.
However, it is worth noting that HAM is not affected by noise
from the DNN to the same extent as the purely data-driven
model.

Looking at the error curves for System 2P2 in Figs. 7 and 12,
the curious reader may wonder why the error curves of the PBM
are ‘‘out of phase’’ in comparison to the DDM and HAM curves. A
careful examination reveals that the low-points of the PBM error
curves correspond to temporal locations where P ≈ 0. Since the
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Fig. 13. Solution 2P1, α = −0.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.
Fig. 14. Solution 2P1, α = 2.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.
PBM assumes P = 0, this is sensible. Still, it may appear counter-
intuitive that the DDM and HAM models perform worst for this
simple situation. The reason is probably related to the training of
the DNNs; most training examples seen by the DNNs correspond
to curved temperature fields, so the DNNs are not well-trained
for handling the special case P ≈ 0 corresponding to virtually flat
temperature fields. If the case P ≈ 0 is of particular importance,
data augmentation could be beneficial in obtaining more accurate
predictions in this case.

5.2. Experiments with unknown conductivity

We now move on to our two experiments where the conduc-
tivity k is taken to be unknown. Such scenarios are found, for
example, when studying composite systems, mixtures or other
inhomogeneous systems. In such cases, accurately determining
the thermal conductivity at all locations within the system can
be forbiddingly challenging, or even unfeasible. In this section,
we consider the two manufactured solutions 2k1 and 2k2 (cf. 1),
whose corresponding conductivity profiles are linear and periodic
in space, respectively. As in the previous section, we discuss
11
the interpolation scenarios first and the extrapolation scenarios
thereafter.

The interpolation scenario results for Solutions 2k1 and 2k2
are shown in Figs. 17–21. As in the previous experiments, we
see from Fig. 17 that the CoSTA-based HAM model is the most
accurate model. On the whole, CoSTA is at least one order of
magnitude more accurate than DDM, which is in turn at least
one order of magnitude more accurate than PBM. The difference
in accuracy is particularly striking for Solution 2k1, for which
the DNN-generated source term of CoSTA yields an accuracy
increase of roughly four orders of magnitude in comparison to
the uncorrected PBM.

The results for Solutions 2k1 and 2k2 in the extrapolation
scenarios α ∈ {−0.5, 2.5} are shown in Figs. 22–26. From the
ℓ2-errors illustrated in Fig. 22, we see that CoSTA maintains its
position as the most accurate model. We also observe that the
DDM model apparently generalizes well to the scenario α = 2.5
for Solution 2k1, almost matching the accuracy of CoSTA in that
scenario. However, the DDM model is the least accurate model
for the same solution with α = −0.5, being more than one

order of magnitude less accurate in the latter scenario than in
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Fig. 15. Solution 2P2, α = −0.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.
Fig. 16. Solution 2P2, α = 2.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.
the former. On the other hand, CoSTA maintains the same level
of accuracy in both scenarios, thereby exhibiting better gener-
alization than DDM. This conclusion is further strengthened by
the error fields shown in Fig. 23. From that figure, we see that
the prediction of the CoSTA-based HAM model is qualitatively
correct but somewhat too hot over the entire domain. However,
the DDM prediction is decidedly too cold over most of the domain
while being too warm for x ≳ 0.75m. For the system at hand,
there is nothing special occurring at this vertical line, so the error
field indicates that the DDM predictions for this scenario are
qualitatively incorrect and possibly even unphysical. The errors
fields shown in Fig. 24 tell a similar story; the CoSTA prediction
is too cold but otherwise qualitatively correct, while the DDM
error field is noisy and has no clear connection to the reference
temperature field.

The significant ℓ2-error drop observed for System 2k2 in
Fig. 22 can possibly be explained by noting that, since the os-
cillation amplitude of Tref increases with time, the importance
of α (which defined the center of the oscillation) decreases with
time. As such, the observed errors are consistent with the HAM
12
and DDM models being able to model the spatial oscillation well
while having more difficulties modeling α accurately (with DDM
struggling significantly more than HAM).

5.3. Interpretation of the corrective source term

Interpretability of the DNN-generated corrective source term
has been highlighted as one of CoSTA’s major strong-points. In
this section, we aim to substantiate these claims regarding in-
terpretability by demonstrating possible ways of interpreting the
corrective source term for Solutions 2P2 and 2k1 with α = −0.5
and α = 0.7. We will also provide some general discussions
related to interpretation of the corrective source term.

Let us first consider the case where we want to model a system
with unknown heat generation rate P . Suppose we approximate
the true P with P̃ = P − ϵP , where ϵP ̸= 0 is the error of
the approximation. (For Solutions 2P1 and 2P2 considered in the
numerical experiments above, we used P̃ = 0, such that ϵ = P .)
P
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Fig. 17. Solutions 2k1 and 2k2, interpolation: Relative ℓ2-errors for α ∈ {0.7, 1.5} (— PBM, — DDM, — HAM).
Fig. 18. Solution 2k1, α = 0.7: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.
Inserting P̃ + ϵP for P into Eq. (8) for 2D systems, we obtain

∫
V

ρcV
∂T
∂t

dV =

(
kA

∂T
∂x

)
e
−

(
kA

∂T
∂x

)
w

+

(
kA

∂T
∂y

)
n
−

(
kA

∂T
∂y

)
s

+

∫
V
P dV

=

(
kA

∂T
∂x

)
e
−

(
kA

∂T
∂x

)
w

(23)

+

(
kA

∂T
∂y

)
n
−

(
kA

∂T
∂y

)
s

+

∫
V
P̃ dV +

∫
V

ϵP dV .
13
Following the discretization procedure used to derive the Im-
plicit Euler FVM (13),11 we can discretize the above equation as
follows:

AT n+1
= b

(
T n)

+ ∆tσ̃P . (24)

Here, A, T and b are defined as in Eq. (13), and σ̃P = ϵP/(ρcV ),
where ϵP = [ϵP (x1, y1), . . . , ϵP (xNj , yNi )] and (x1, y1), . . . , (xNj , yNi )
are the grid nodes used to discretize the spatial domain. Compar-
ing Eqs. (24) to (17), we can see that there is a clear connection
between σ̃P and the corrective source term σ̂ used in CoSTA.
One might be tempted to simply write ∆tσ̃P = σ̂, but this
equality does not hold true in general. The reason for this is that
σ̂ accounts for all error in the PBM, while σ̃P accounts only for

11 This discretization procedure is considered in detail in Section 2.2.3
of Blakseth [24].
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Fig. 19. Solution 2k1, α = 1.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.

Fig. 20. Solution 2k2, α = 0.7: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.

Fig. 21. Solution 2k2, α = 1.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.

14
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Fig. 22. Solutions 2k1 and 2k2, extrapolation: Relative ℓ2-errors for α ∈ {0.7, 1.5} (— PBM, — DDM, — HAM).
Fig. 23. Solution 2k1, α = −0.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.
ncorrect modeling of P . However, we do have

tσ̃P ≈ σ̂ (25)

nder the assumption that incorrect modeling of P dominates all
ther sources of error in the PBM (including discretization error).
In Fig. 27, we illustrate that the approximation (25) is valid

or Solution 2P2 with α ∈ {0.7, 1.5}. The right-hand side of the
igure illustrates the true corrective source term σ̂

n+1, as defined
n Eq. (16), at the time t = 0.1 s. The figure’s left-hand side illus-
rates ∆tσ̂P = ∆tϵP/(ρcV ), which is equal to ∆tP for the choices
f P̃ , ρ and cV used in the present work. As can be seen from the
igure, the top and bottom pairs are visually indistinguishable.12

his indicates that Eq. (25) is a reasonable approximation when it

12 With the obvious exception that σ̂
n+1 is discrete while we have shown

tσ̂P as a continuous field since P , and thus also σ̂P , is known analytically
verywhere.
15
is known that a PBM suffers from significantly incorrect modeling
of P .

We now consider the case where we model a system with
unknown conductivity k. We write k = k̃ + ϵk, where k̃ is our
estimate of the system’s conductivity (k̃ = 1 for the numerical
experiments considered in the present work), and ϵk is the error
of the estimate. Inserting into the 2D version of Eq. (8) yields∫
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∂t

dV =

(
kA

∂T
∂x

)
e
−

(
kA

∂T
∂x

)
w

+

(
kA

∂T
∂y

)
n
−

(
kA

∂T
∂y

)
s
+

∫
V
P dV

=

(
(k̃ + ϵk)A

∂T
∂x

)
e
−

(
(k̃ + ϵk)A

∂T
∂x

)
w

+

(
(k̃ + ϵk)A
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Fig. 24. Solution 2k1, α = 2.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.

Fig. 25. Solution 2k2, α = −0.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.

Fig. 26. Solution 2k2, α = 2.5: Reference temperature field and relative ℓ2-errors of PBM, DDM and HAM at t = 5 s.
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Fig. 27. Comparison of σ̂ (left) and ∆tσ̂P (right) for Solution 2P2 at t = 0.1 s.
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For ease of notation, we define
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uch that we get
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(27)

To enable a comparison with Eq. (16), we need to discretize the
equation above. To this end, we discretize the spatial domain into
a grid of Nj ·Ni grid cells, where integral and half-integral indices
are used to denote quantities evaluated at cell centers and cell
faces, respectively. As such, ξ for a grid cell centered at (xj, yi) is

ξj,i =

(
ϵkA

∂T
∂x

)
j+1/2,i

−

(
ϵkA

∂T
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)
j−1/2,i

+

(
ϵkA

∂T
∂y

)
j,i+1/2

−

(
ϵkA

∂T
∂y

)
j,i−1/2

.

e now make the following approximations

ϵk)j+1/2,i ≈ (ϵk)j,i, (ϵk)j−1/2,i ≈ (ϵk)j,i,
ϵk)j,i+1/2 ≈ (ϵk)j,i, (ϵk)j,i−1/2 ≈ (ϵk)j,i
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which yield
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(28)

Using the above discretization for ξ and the standard Implicit
uler FVM discretization for the other terms of Eq. (27), we obtain

T n+1
= b(T n) + ∆tσ̂k, (29)

ith A and b as in Eq. (13) and σ̂k = ξ/(ρcV ). Finally, we observe
hat we have

tσ̂k ≈ σ̂ (30)

hen incorrect modeling of k is the dominant source of error in
he PBM.

The true corrective source term σ̂ is compared to ∆tσ̂k in
ig. 28 for Solution 2k1 with α = −0.5 and α = 0.7 at time
= 0.1 s. From the figure, it is clear that the approximation (30)
olds well in the interior of the domain. However, at the domain
oundaries, comparatively large discrepancies are visible. There
re two main contributions to these discrepancies. The first is
he approximations made when discretizing ξ , and the other
s the influence of the discretization error in the original PBM
n σ̂. Irrespective of where the discrepancies originate from,
heir presence illustrates that it is generally advisable to perform
nterpretations of the corrective source term in the interior of the
omain, such as to avoid the influence of boundary effects.
Eqs. (25) and (30) have two main areas of application: model

mprovement and DNN sanity checks. We first consider model
mprovement, which can be performed by conducting some kind
f regression analysis on the true corrective source term σ̂ to
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o
d

Fig. 28. Comparison of σ̂ (left) and ∆tσ̂k (right) for Solution 2k1 at t = 0.1 s.
approximate it with some analytic expression. For example, the
symbolic regression techniques studied by Vaddireddy et al. [15]
are prime candidate for performing this kind of regression anal-
ysis. Once a regressed expression for σ̂ has been identified, this
expression can be related to the modeling errors ϵP and ϵk using
the applicable approximation (25) or (30). The modeling of P or k
in the PBM-component of the CoSTA model can then be updated
according to estimated modeling error. Since CoSTA benefits from
improved PBM accuracy, this would increase the accuracy of the
CoSTA model.13

For sanity checks, we observe first that a successfully trained
DNNσ is – by definition – a DNNσ for which we have σ̂nn ≈ σ̂. So
let us insert σ̂nn into Eqs. (25) or (30) (depending on which is ap-
plicable). For systems whose PBM is dominated by a single error
source, we expect the applicable approximation to hold well even
with this modification. This allows us to obtain a relation between
σ̂nn and ϵP or ϵk. Of course, for a priori predictions, the modeling
error ϵP or ϵk is not known exactly, but it may be known that they
are bounded within some range. As a simple example, suppose
the we know that a room is heated by some heater whose
precise power is unknown. Moreover, suppose that the heater
manufacturer specifies that their heaters output 50W/m3

± 10%.
When modeling the effect of the heater on the room temperature,
it is then natural to use P̃ = 50W/m3. Then, ϵP should lie
within the range [−5W/m3, 5W/m3

]. Eq. (25) then gives us a
corresponding bound for σ̂nn. This is generally not a hard bound,
since σ̂nn is also influenced by any other errors in the PBM, but
it gives a ball park estimate for σ̂nn. If we suddenly observe that
DNNσ produces a σ̂nn well outside the estimated ball park (e.g. a
σ̂nn corresponding to negative ϵk, in our example), this is a clear
sign of DNN misbehavior. As such, physic-based interpretation
of σ̂nn using the framework presented in this section provides a
valuable sanity-check for the DNN of the CoSTA model.

We conclude the this section with two remarks on the applica-
bility of the interpretability approach outlined above. First of all,

13 The regression analysis and PBM update can be performed before the DNN
f the CoSTA model is trained, such that the proposed improvement scheme
oes not incur any extra DNN training cost.
18
if two or more error source contribute significantly to the overall
error of a PBM, the approximations underpinning the analyses
above do not hold. Also, it is not straightforward to separate
the contributions from the different error source. Interpretation
of the corrective source term using the suggested approach will
then be limited. However, this is a general problem with inverse
solution methods, so the issue is not unique to CoSTA. Secondly,
we highlight that, when a single error source is dominating, the
approach above is not limited to capturing the effects of heat
generation or conductivity in the heat equation. To the contrary,
analogous calculations can equally well be carried out for other
governing equations with other parameters.

5.4. The impact of noise

Just like other modeling approaches utilizing data-driven tech-
niques, CoSTA is potentially vulnerable to noise. Indeed, if the
reference data (T ref in our case) contains noise, this noise will
be embedded in the corrective source term σ̂ from Eq. (5). It is
therefore beneficial to remove as much noise as possible from
the reference data before it is used to train the DNN that is
part of the CoSTA model. In particular, it is advised to mini-
mize high-frequency noise, since this noise will have the greatest
impact on the magnitude of the corrective source term. If the
nature of noise is statistically similar across the snapshots in
time, conducting a principal component analysis for denoising
the data could be helpful. Still, it is not necessarily so that all
noise must be removed for CoSTA to be usable. If the noise is
truly random, proper regularization of the DNN should ensure
that σ̂nn is not detrimentally affected by the noise. Using the DNN
in a CoSTA model does not restrict the choice of regularization
techniques, so standard regularization techniques like dropout,
weight regularization and early stopping are all applicable.

6. Conclusion

In this work, we presented the Corrective Source Term Ap-
proach (CoSTA) to Hybrid Analysis and Modeling (HAM). The
method exploits the universal approximation properties of a deep
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eural network (DNN) to generate a correction term that com-
ensates for the unmodeled/unresolved physics in a physics-
ased model (PBM). In a series of numerical experiments on
wo-dimensional heat diffusion problems, we compared the per-
ormance of the CoSTA-based HAM to PBM and the data-driven
odel (DDM). The two major conclusions from the study are as

ollows:

• In terms of predictive accuracy, CoSTA for two dimensional
heat diffusion problems involving unknown physics is sev-
eral orders of magnitude more accurate than comparable
PBM and DDM both for interpolation as well as extrapola-
tion cases.

• It is also demonstrated that the CoSTA-generated correc-
tive source term can be subjected to physical interpretation
leading to a better understanding of the underlying physics.
In fact, physical laws (like the conservation of energy) can
be used to put a sanity check on the predictions of the
DDM-part of CoSTA models. Such sanity checks are foreseen
to result in more reliable models, resulting in increased
penetration of DDM in high-stakes applications.

Despite the demonstrated strengths of CoSTA, there are still
ome areas for improvement. For example, the DDM used does
ot consider all known information of the scenario in which the
odel is applied. More specifically, we do not inform the DDM of

he parameter α, even if it might be reasonable to assume that α

is known. One of the reasons for not exploiting the knowledge
about the parameter’s value is that the vanilla neural network
architecture used in this work downweights the importance of
the parameter if it is fed at the input layer. Based on our recent
research work in [17–19], it could be desirable to inject this
knowledge in an intermediate hidden layer leading to smoother
and more certain solutions. Another knowledge that is not yet
exploited is the temporal correlation of the time series. This
can be addressed through the use of long short-term memory
(LSTM) network. A potential future extension of the work is
proposed in these two directions. Lastly, as explained earlier, we
chose to demonstrate the effectiveness of the proposed approach
using synthetic data which was devoid of any noise. Since we
claim that the approach can be used in the context of predictive
digital twins, it would be valuable to apply the approach on
real temperature data collected using e.g. high-resolution thermal
cameras.
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