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A R T I C L E I N F O A B S T R A C T
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A micromechanical model of cross‐over fiber bridging is developed for the prediction of macroscopic mixed‐
mode bridging laws (traction‐separation laws). The model is based on non‐linear beam theory and takes into
account debonding between fiber and matrix as well as buckling of fibers in compression. Further, it is shown
how failure of the bridging fibers can be taken into account through a Weibull distributed failure strain.
Predictions made by the proposed model are compared with predictions made by detailed 3D finite element
models, and a very good agreement was observed. It is shown that models based on linear beam theory are
only valid for small transverse deflections of the bridging ligament and greatly underestimate the force trans-
ferred by ligaments subjected to moderately large deflections. The novel model, on the other hand, is applica-
ble in the entire range where the bridging problem transitions from a beam bending problem to a bar‐like
problem. Finally, an example of how the proposed model can be used for parameter/sensitivity studies is given.
A conclusion from this study is that reducing the fracture toughness, Gc, of the interface between fibers and
matrix may lead to increased energy dissipation through cross‐over fiber bridging as more fibres remain intact
longer.
1. Introduction

In some fiber reinforced polymer laminates, the fracture process
zone (FPZ) of a delamination can be long in comparison with laminate
dimensions due to the development of fiber bridging in the wake of the
crack tip as illustrated in Fig. 1. Fibers that bridge the fracture surfaces
transfer tractions between the two surfaces (see Fig. 2) and can
enhance the delamination resistance substantially as the crack extends
[1–6]. Micromechanical models of cross‐over fiber bridging can be
valuable tools for studying the underlying mechanisms and how to uti-
lize fiber bridging to maximize the fracture resistance and therefore
the damage tolerance.

A number of micromechanical models for the prediction of macro-
scopic traction‐separation laws for cross‐over fiber bridging have been
developed. Spearing and Evans [1] developed a model of cross‐over
fiber bridging in pure mode I delamination including shear deforma-
tions in a bridging ligament with rectangular cross section [7]. Shear
deformations will dominate in short ligaments, i.e. at small opening
displacements. At large opening displacements the bridging ligament
becomes slender as it peels off the fracture surface, and shear deforma-
tions become negligible. Kaute et al. [8] proposed a model where only
the axial stiffness of the bridging fiber is considered. They assumed the
fiber to be straight and long in comparison with its diameter. A reduc-
tion in tensile strain in the fiber due to slipping of the fiber within the
uncracked matrix was taken into account through fracture‐mechanics
considerations. The model predicts that the normal tractions acting
on the fracture surface from a single fiber will increase to a plateau
for increasing opening displacements. A length‐dependence of fiber
strength was included through a Weibull distribution. In this way,
the number of surviving fibers decreases for increasing opening dis-
placements and the resulting traction on the fracture surface also
decreases, as observed experimentally. Ivens et al. [9] developed a
model based on the work of Wells [10]. A simple model of a DCB spec-
imen with one fiber bridging the crack was analysed on the basis of
energy considerations. The fiber was assumed to be straight and only
transfer longitudinal forces. More recently, Daneshjoo et al. [11] pub-
lished a model building on the work by Kaute [8]. Their model consid-
ers matrix spalling, fiber pull‐out and fiber fracture as the main failure
mechanisms. The absorbed energy in the fiber bridging zone is
obtained by summing the energy terms associated with each of these
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Fig. 1. Fracture process zone with bridging fibers.

Fig. 2. Fracture process zone with bridging tractions. Both the normal
traction, σn, and the tangetial traction, σt , are functions of the normal opening,
δn, and the tangential opening, δt .

Fig. 3. Idealized fracture process zone with a single bridging fiber.
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mechanisms. Sørensen et al. [6] proposed a micromechanical model
for mixed mode delamination based on classical Euler–Bernoulli beam
theory. Their work can be viewed as an extension of the model by
Spearing and Evans to mixed mode I/II delamination. The two models
are identical for pure mode I opening if the shear term of Spearing and
Evans is omitted. For that case both models predict the normal traction
to be inversely proportional to the square root of the normal opening.
Both these models are limited to infinitesimally small deflections of
the bridging ligament, i.e. when the local normal opening displace-
ment is much smaller than the height of the bridging ligament. The
models proposed by Kaute et al. [8], Ivens et al. [9] and Daneshjoo
et al. [11], on the other hand, are only applicable when the local nor-
mal opening displacement is several orders of magnitude larger than
the height of the bridging ligament. A comprehensive review of fiber
bridging investigations, including micromechanical models for cross‐
over fiber bridging in the wake of a delamination front under different
modes, is given by Khan [12].

The scope of the present work is to establish a micromechanical
model applicable to the full range of deformations that the bridging
ligaments are subjected to in mixed mode I/II delamination. I.e. the
model should be able to predict the transition from a beam bending
2

problem to a bar‐like problem. The model is based on the framework
of Sørensen et al. [6], extended with moderately large deflection beam
theory (including von Kármán strains) and a Weibull distributed fail-
ure strain of the fibers.

2. Micromechanical model

Fig. 3 shows schematically a fracture process zone with a single
bridging fiber. This corresponds to an arbitrary position within the
fracture process zone depicted in Fig. 1. The fiber is considered as a
beam. In the depicted case, the beam is fixed at the left end while
the local opening displacements are imposed to the right end. The hor-
izontal and vertical displacement at the right end are denoted δx and
δy , respectively. These correspond to the local opening displacements
which are the prescribed input to the model. Both ends are constrained
from rotating. The prescribed end‐displacements result in varying dis-
placements along the beam. The horizontal displacement as function
of position is denoted uðxÞ and the corresponding vertical displace-
ment is denoted wðxÞ. The solution of this beam problem forms the
basis for the micromechanical model that will be described in the fol-
lowing subsections. In short, the tractions acting on the fracture sur-
face from one single ligament are calculated from moderately large
deflection beam theory. Buckling is considered for fibers subjected
to compression, and limits the contribution from compressed fibers.
The details of the beam model are described in Section 2.1. The length
of the bridging beam is determined from Griffith‐like energy consider-
ations, as described in Section 2.2. Finally, the statistical contribution
from a large number of bridging fibers is included in Section 2.3 where
also fibre failure is taken into account through a Weibull distributed
failure strain.

A Matlab implementation of the model has been made and results
obtained with it will be compared to finite element predictions in
Section 3.

2.1. Determining forces from a single fiber with given length

We assume finite rotations and deflections in the following. The
material of the fibers is assumed to be linear elastic, and the laws of
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elasticity remain the same as for classical beam theory. Thus, the axial
force N and bending moment M can be written

N ¼ EAεn ð1Þ

M ¼ EIκ ð2Þ
where E is the Young’s modulus, A is the cross sectional area, I is the
second moment of area, εn is the strain at the neutral axis and κ is
the curvature. In the case where the bridging ligament consists of a sin-
gle fiber, the elastic modulus E equals the fiber modulus Ef . In case the
beam represents a ligament consisting of several fibers and matrix, the
modulus is a representative Young’s modulus of the composite material,
Ec.

In comparison with classical beam theory, the expression for the
axial strain at the neutral axis contains a second term due to finite rota-
tions (von Kármán strain [13])

εn ¼ du
dx

þ 1
2

dw
dx

� �2

ð3Þ

where u is the horizontal displacement and w is the vertical displace-
ment. The definition of curvature also has a nonlinear rotation term
[14]

κ ¼ �
d2w
dx2

1þ dw
dx

� �2h i3=2 ð4Þ

However, we will restrict our model to moderately large rotations
where the square of the slope is small compared to unity and the cur-
vature can be defined in the same way as in the theory of small
deflections

κ ¼ � d2w
dx2 ð5Þ

Equilibrium in the vertical direction for a beam with axial force, but no
distributed vertical load, is given by [15]

� EI
d4w
dx4 þ N

d2w
dx2 ¼ 0 ð6Þ

where both the axial force, N, and the vertical displacement along the
beam, wðxÞ, are unknowns that must be determined. We assume the
axial force as well as the cross‐sectional properties to be constant along
the beam. By dividing Eq. (6) by EI and introducing λ2 ¼ N

EI one gets

d4w
dx4 � λ2

d2w
dx2 ¼ 0 ð7Þ

Depending on the axial force, the general solution of this ordinary dif-
ferential equation is [16]

wðxÞ ¼ C0 þ C1x þ C2x2 þ C3x3 for N ¼ 0

wðxÞ ¼ C0 þ C1x þ C2 coshðλxÞ þ C3 sinhðλxÞ for N – 0
ð8Þ

The constants C0 to C3 as well as λ (i.e. five unknowns) must be deter-
mined from the boundary conditions. There are six boundary condi-
tions in Eq. (9), but both uð0Þ and uðLÞ are required to determine ΔL
and thus λ. Note that the constants will differ for the two cases
(N ¼ 0 and N – 0). The boundary conditions of the beam shown in
Fig. 3 are

uð0Þ ¼ 0
wð0Þ ¼ 0
w0ð0Þ ¼ 0
uðLÞ ¼ δx

wðLÞ ¼ δy

w0ðLÞ ¼ 0

ð9Þ
3

If the axial force is kept constant for now, then Eqs. (8) and (9) (the
parts related to w) form a system of four linear equations that must
be solved simultaneously and the following values can be determined
for the four constants

C0 ¼ 0

C1 ¼ 0

C2 ¼ 3δy
L2

C3 ¼ �2δy
L3

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

for N ¼ 0

C0 ¼ δy ð1�coshðλLÞÞ
2�2 coshðλLÞþλL sinhðλLÞ

C1 ¼ δyλ sinhðλLÞ
2�2 coshðλLÞþλL sinhðλLÞ

C2 ¼ δy ðcoshðλLÞ�1Þ
2�2 coshðλLÞþλL sinhðλLÞ

C3 ¼ �δy sinhðλLÞ
2�2 coshðλLÞþλL sinhðλLÞ

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

for N – 0

ð10Þ

Since the axial force is assumed to be constant along the beam, it can be
expressed in terms of the total elongation of the beam.

N ¼ EIλ2 ¼ EA
ΔL
L

ð11Þ

As can be seen from Eq. (3), the axial strain depends on both vertical
and horizontal displacements, u and w. The elongation of the beam
can be determined from the integral of Eq. (3) which equals the differ-
ence in horizontal movement at the ends plus the integral of the axial
strain araising from vertical movement along the beam

ΔL ¼ uðLÞ � uð0Þ þ
Z L

0

1
2

dw
dx

� �2

dx ð12Þ

Inserting (12) into (11) yields

N ¼ EA
L

uðLÞ � uð0Þ þ
Z L

0

1
2

dw
dx

� �2

dx

" #
ð13Þ

Inserting (8) into (13) results in rather complicated transcendental
equations for λ, from which no closed form solution has been obtained.

Instead, the axial force was determined iteratively. The axial force
in iteration (i + 1), Niþ1, was found by inserting the axial force from
iteration i, Ni, into Eqs. (8) and (10) and using this in Eq. (13). The ver-
tical displacement wðxÞ calculated from linear theory (i.e. setting
N ¼ 0) can be used as a starting point for calculating the axial force
iteratively. Combining Eqs. (8) and (10) gives the solution for N ¼ 0

w0ðxÞ ¼ δy
3x2

L2
� 2x3

L3

� �
ð14Þ

Differentiating Eq. (14), inserting into Eq. (13) and performing the inte-
gral gives

N0 ¼ EA
L

δx þ
3δ2y
5L

 !
ð15Þ

This initial estimate is normally very good and only few iterations are
needed to obtain acceptable accuracy.

Since the ends of the beam are constrained from rotating, the tan-
gential force acting on the fracture surface from one beam is identical
to the axial force N. Similarly, the normal force is identical to the shear
force V at the end of the beam

Vð0Þ ¼ M0ð0Þ ¼ �EIw000ð0Þ ¼ �6C3EI for N ¼ 0
�λ3C3EI for N – 0

�
ð16Þ



Fig. 4. Two fibers crossing in opposite directions and sign convention of
bridging tractions.
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Slender fibers are susceptible to buckling if they are subjected to com-
pressive axial forces approaching the critical load, which for fixed ends
can be written [15]

Ncr ¼ � 4π2EI
L2

ð17Þ

Both the tangential and the normal force are therefore set equal to zero
if N < Ncr .

2.2. Determining the undeformed length of the bridging fiber

The forces in a bridging beam with a given undeformed length L
were derived in the previous subsection. The length of the beam has
to be determined for given opening displacements. Assuming that
the fracture process zone of the debonding process between fiber
and matrix is small, the length can be determined by requiring that
the energy release rate of the bridging mechanism equals the fracture
energy of the interface Gc. The potential energy of an elastic body, Π, is
defined as follows [17]

Π ¼ U � F ð18Þ
where U is the strain energy stored in the body and F is the potential of
the external forces. For the present problem we prescribe displacements
not forces, so the last term in (18) vanishes, so F ¼ 0 and Π ¼ U. There-
fore, the rate of change in potential energy with the crack area, G, can
be written

G ¼ � @Π
@A

¼ � @U
@A

¼ � 1
b
@U
@L

ð19Þ

where A is the fracture area and b is the effective width of the fracture
area.

Since the material is assumed to be linearly elastic, the strain
energy density can be calculated as

û ¼ 1
2
σε ¼ σ2

2E
ð20Þ

where σ and ε denote stress and strain, respectively. Then the total
strain energy can be expressed as

U ¼
Z
V
ûdV ¼

Z
V

N2

2EA2 dV þ
Z
V

M2y2

2EI2
dV ¼ N2L

2EA
þ 1
2EI

Z L

0
M2dx ð21Þ

where y is the distance to the neutral axis. The first term is due to
stretching and the second due to bending. The bending moment M is
given by MðxÞ ¼ �EIw00ðxÞ where wðxÞ is the deflection of the non‐
linear beam as described in the previous subsection. Numerical differ-
entiation of the strain energy with respect to the length of the beam
and Ridders’ method is used in our Matlab implementation to deter-
mine L so that G ¼ Gc by solving

Gc þ 1
b
@U
@L

¼ 0 ð22Þ
2.3. Contribution from a large set of fibers

Fig. 4 shows two fibers bridging the fracture surfaces in opposite
directions. As can be seen, the contribution from both the normal
and shear force to the fracture surface tractions is depending on fiber
orientation.

Let ηu and ηd be the number of fibers bridging a unit area of the
fracture surface in the upwards and downwards direction, respec-
tively, see Fig. 4. The resulting tractions on the fracture surface can
then be written

σt ¼ Nuηu � Ndηd
σn ¼ Vuηu � Vdηd

ð23Þ

where σt and σn are the tangential and normal tractions, respectively.
The sign convention follows from Fig. 4.
4

If the number of fibers initially bridging the fracture zone is very
large, then the fraction of active fibers can be approximated by a con-
tinuous function

ηu ¼ ηu0f u
ηd ¼ ηd0f d

ð24Þ

where ηu0 and ηu0 are the amount of fibers initially bridging a unit area
in the upwards and downwards directions, respectively. The fraction of
active fibers is represented by f u and f d for the two diagonal directions.
It is necessary to keep track of the number of fibers crossing each direc-
tion, since it can be different. A mode II opening component will cause
tension in one direction and compression in the other. These stresses/
strains may be superimposed to the tension resulting from a mode I
opening component. Therefore, the stress/strain level may be different
in fibers bridging in opposite directions.

Note that Eqs. (23) and (24) relate the forces in the representative
volume element (RVE) at the micro scale to the statistically homoge-
neous tractions at the macro scale. This is a critical step that is denoted
homogenization in micromechanics [18].

For brittle fibers, such as carbon or glass, the strength is normally
limited by the most severe defect present. Literature suggests that
the strength of individual fibers and fiber bundles subjected to uniform
tension are well described by the Weibull distribution [19–21]. Under
this assumption, the fraction of still intact fibers can be expressed as
unity minus the cumulative distribution function of the Weibull distri-
bution [21]

f ¼ e
� L
L0

ε
ε0

� �mh i
ð25Þ

where ε is the applied strain and ε0 and m represent the Weibull scale
and shape parameters for failure strain. ε0 can be thought of as the
strain associated with a probability of failure of 0.63 for a length L0
of fiber strained uniformly, while m describes the flaw distribution
and the size dependency.

Except for the case of pure mode II opening displacement, the fibers
will not be subjected to a uniform strain. Instead, the strain will vary
both along and across the fiber. Assuming that fiber failure is initiated
at surface defects, Sørensen and Goutianos [22] proposed a surface
integral to be used for fibers subjected to a heterogeneous strain field

f ¼ e
� 1
L0πD

R L

0

R 2π

0
εðx;θÞ
ε0

D Em
D
2dθdx ð26Þ

where εðx; θÞ is the current strain at the fiber surface at position ðx; θÞ
and D is the diameter of the fiber. It should be noted that the Weibull
distribution is only defined for ε∈ 0;1½ i. Since it is also believed that
brittle materials are more prone to fail from tension than compression,
we have chosen to only include the contribution of tensile strains to the
probability of fracture and hi denotes Macaulay brackets in Eq. (26).

The largest combination of bending and axial strains occurs at the
ends of the free span of the partially pulled off fiber (the anchoring
point). In this way, the cross‐sections at the ends account for the major
contribution to the surface integral in Eq. (26). However, as the fiber
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continues to be pulled off, the end of the free span translates along the
fiber and the previously most strained cross‐sections are partially
unloaded. This causes Eq. (26) to reach a plateau when the opening
mode is constant. It therefore fails to capture size (length) effects
whereby the probability of failure due to severe defects increases as
an increasing length of the fiber has been subjected to severe loading.
Ideally, one should consider the maximum strain that each point in the
fiber has experienced. However, it is not possible to derive any analyt-
ical expression for the maximum strain a point has experienced since
the shape of the fiber is determined iteratively for each opening state.
Instead, it was chosen to integrate strains along the fiber’s end‐
circumference in the current state and multiply by the peeled off
length of the fiber as follows (as if the entire free‐spanning fiber length
has experienced the same strain as the current anchoring point):

f ¼ e
� DL
2πD0L0ε

m
0

R 2π

0
εðx¼0;θÞh imdθ ð27Þ

In pure mode II, the strain is constant in the entire fiber regardless of
the magnitude of the opening displacement and Eq. (27) captures the
size effect correctly. However, when there is a mode I component,
the curvature at the end increases with increasing opening displace-
ment and the current strain at the end will be greater than the strain
at the end in previous opening states. It is still believed that Eq. (27)
is more representative than Eq. (26).

The axial strain at any point in the fiber can be expressed as

ε ¼ εN þ εM ¼ N
EA

� κy ¼ N
EA

þ w00ðxÞrsinðθÞ ð28Þ

At the end of the fiber the axial strain reduces to

ε ¼ DC2sinðθÞ for N ¼ 0
N
EA þ D

2 λ
2C2sinðθÞ for N – 0

(
ð29Þ
3. Validation of the model

The model described in the previous section was implemented in
Matlab. Comparisons against finite element analyses (FEA) will be
used to verify the implementation and assess the accuracy of the
assumptions and simplifications made in the proposed micromechani-
cal model. A set of representative, but somewhat arbitrary, material
and geometry parameters was chosen to test the model. These param-
eters are summarized in Table 1.

Finite element analyses (FEA) of the bridging problem were carried
out using the non‐linear finite element code LS‐DYNA. Fig. 5 shows the
parts in the model as well as the mesh of the cross‐section of the fiber.
A structured mesh of approximately 810,000 brick elements (eight‐
node hexahedron) was used to represent the fiber (red in the figure).
This very fine discretization was chosen in order to have a sufficient
resolution of the fracture process zone between fiber and matrix.
Eight‐node cohesive elements were used to model the interface
between the fiber and the matrix (blue in the figure, seen through
the partly transparent matrix parts). A bi‐linear cohesive law with an
Table 1
Model parameters.

Property Value Unit

Fiber diameter, D 10 μm
Fiber Young’s modulus, E 72 GPa
Interfacial fracture energy, GIc ¼ GIIc ¼ GIIIc 1:0 Nmm

mm2

Effective width, b π D
2 mm

Number of fibers initially bridging upwards, ηu0 1 mm−2

Number of fibers initially bridging downwards, ηd0 1 mm−2

Weibull scale parameter, ε0, 3.62 %
Weibull shape parameter, m 6.4
Weibull reference length, L0 70.0 mm

5

initial stiffness of 20 GPa/μm, a maximum traction of 4 GPa and a crit-
ical separation of 0.5 μm was used. The critical separation corresponds
to D/20, so the size of the active fracture process zone is small and thus
satisfies LEFM conditions, i.e. the dissipative processes remain con-
fined to a region in the vicinity of the crack tip that is small compared
to the structural dimensions. The exact same traction separation law
was assumed for mode I, II and III. Mode interactions were modelled
using the power law criterion [23] with the exponent equal to 2, i.e.
quadratic interaction. This means that the direction of the traction vec-
tor follows that of the opening vector. Since we assume the same trac-
tion separation law for all modes, the combined work of the cohesive
tractions doesn’t depend on opening path history [24]. The matrix was
modelled with two rigid bodies, representing the two fracture surfaces.
The lower surface (green in the figure) was fixed while opening dis-
placements were imposed on the upper surface (yellow in the figure).

A comparison of the normal force predicted by FEA, the novel non‐
linear model as well as the model proposed by Sørensen et al. [6]
(modified to circular cross‐section) for a single fiber bridging upwards
in pure mode I opening is shown in Fig. 6. The normal opening, δn was
increased incrementally for the two analytical models. The peeled off
length, L, and the forces acting in the fiber were determined for each
state as described in the previous section. Very good agreement
between the non‐linear model and FEA is observed, while the model
based on linear beam theory underestimates the force level signifi-
cantly for opening displacements exceeding the fiber diameter.
Although the force comparison is a very good indication that both
the free span, L, and the slopes and curvatures along the fiber, wðxÞ,
are well predicted, additional comparisons are given in Figs. 7 and
8. The finite element model predicts the crack front between the fiber
and the matrix to be curved. It is difficult to give a stringent definition
of L in this case. Both the maximum and minimum value depending on
where it is measured are given in Fig. 7. Regardless of which of these
are chosen as the reference, the proposed model predicts the free span
to be slightly longer. This has an impact on the predicted slope as seen
in Fig. 8, which shows the deflections predicted at one of the last con-
verged states of the FEA with the proposed model prediction overlaid.
The proposed model predicts the rotation at the mid‐span to be slightly
smaller than what predicted by the finite element model, but the over-
all agreement is good. Note that at this stage, the non‐linear model pre-
dicts the fiber to act more like a bar than a beam.

The mode‐mixity can be defined as φ ¼ atanðδtδnÞ where δt and δn are
displacement jumps between two points located on opposite crack
faces at some distance behind the crack tip. Four mode mixities were
selected for validation of the non‐linear model against FEA, namely
φ ¼ 0�;φ ¼ 45�;φ ¼ 67:5� and φ ¼ 90�. The results are shown in

Fig. 9 where the total opening is defined as δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2n þ δ2t

q
. Forces are

according to the definitions shown in Fig. 4. Predictions by the novel
non‐linear model are shown as continuous lines while finite element
predictions are shown as crosses. The abrupt changes in force in the
fibers crossing downwards occur when the buckling criterion (Eq.
17) is met. Pure mode I opening causes identical axial forces in fibers
Fig. 5. The finite element model used for validation.



Fig. 6. Normal force acting on the fracture surface from a single fiber in pure
Mode I opening.

Fig. 7. Predicted length of the unbonded section of the bridging fiber in pure
Mode I opening by the proposed model and the finite element model.

F. Grytten et al. Composite Structures 258 (2021) 113405
bridging both diagonal directions, and the two curves are therefore on
top of each other in Fig. 9(a).

Fig. 10 shows the bridging tractions predicted by the proposed
micromechanical model for the chosen mode angles assuming
Fig. 8. Predicted shape of the bridging fiber in pure Mode I opening by the propose
FE model are as defined in Fig. 5.

6

ηu0 ¼ ηd0 ¼ 1. Except for the pure opening modes, the ratio of the nor-
mal to tangential traction will vary with the magnitude of the opening.
Thus, the direction of the traction vector will vary and in general will
be different from the direction of the separation vector. The mixed
mode cohesive laws are thus coupled. These findings are in agreement
with the finding of the simpler model [6].

Small rotations were assumed in Eq. (5). It is important to check the
validity of this for the bridging problem. The value chosen for Gc in
Table 1 corresponds to 1000 J/m2. This value is significantly higher
than what is typically reported in the literature. This was initially
believed to be conservative for the purpose of validating the model.
However, the predicted slopes of the fibres are smaller than the max-
imum seen in delamination tests. The fracture energy of the fibre/ma-
trix interface was therefore varied to investigate the effect of this
parameter on the predicted maximum slope of the fibre. The rotation
at the mid‐span is defined as:

θ ¼ atan
dw
dx






x¼L

2

 !
¼ atan C1 þ C2λsinh λ

L
2

� �
þ C3λcosh λ

L
2

� �� �
ð30Þ

Fig. 11 shows the predicted rotation of the fibre at the mid‐span for
various mode I opening states for a wide range of Gc. A very good
agreement between FEA (circles) and the micromechanical model
(continuous lines) is seen for the reference Gc (1000 J/m2) and lower
values of Gc. The predictions for the quadruple Gc (4000 J/m2) are
more apart, but the agreement is still acceptable. It should be noted
that values stated in published literature is in the range 10–300 J/
m2 [25–30]. Still, rotations grater than 25° are frequently observed.
The reason for this is likely a deeper embedment than half the diame-
ter and that energy is dissipated in the bulk of the matrix material and
not only at the fibre/matrix interface.

4. A short parameter study

The proposed semi‐analytical model has been used in a limited
parameter study to demonstrate its usefulness for such. The parame-
ters varied were the fracture energy of the fiber/matrix interface, Gc,
and the fiber diameter, D. Note that in the case where D was scaled,
so was η to reflect a constant fiber volume fraction. The values of
the parameters used in this study are given in Table 2. The remaining
input parameters are as given in Table 1.

For simplicity, only pure mode I and II delaminations were investi-
gated in this limited study and buckling of compressed fibers in mode
II was neglected. The predicted bridging laws are shown in Fig. 12.
The energy dissipated through the bridging mechanism can be found
by integrating the traction separation curve. The resulting curves are
shown in Fig. 13. As can be seen, increasing Gc leads to a more rapid
d model and the finite element model. All units are in mm and the parts of the



Fig. 9. A comparison of tangential and normal forces predicted by the finite element model and the non-linear model: (a) Pure mode I; (b) φ ¼ 45�; (c) φ ¼ 67:5�;
and, (d) Pure mode II. The total opening is defined as δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2n þ δ2t

q
.
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decrease in tractions and therefore the dissipated energy is reduced.
This effect is stronger in mode‐I than in mode‐II.

It is possible to derive analytical expressions for the tractions and
dissipated energy in pure mode‐II delamination. The elastic energy
in a fiber of linearly elastic material with diameter D and length L sub-
jected to an elongation δt can be written

U ¼
Z
V

1
2
σεdV ¼ π

D
2

� �2

L
1
2
E

δt
L

� �2

¼ πD2Eδ2t
8

L�1 ð31Þ

Differentiating with respect to L gives

@U
@L

¼ � πD2Eδ2t
8

L�2 ð32Þ

Solving for the peeled off length assuming that half the circumference
was initially embedded in matrix:

πD
2

Gc ¼ πD2Eδ2t
8

L�2 ) L ¼
ffiffiffiffiffiffiffiffi
DE
4Gc

r
δt ð33Þ

The strain in the fiber then becomes

ε ¼ δt
L
¼

ffiffiffiffiffiffiffiffi
4Gc

DE

r
ð34Þ

I.e. the strain (and stress) is constant regardless of opening displace-
ment in pure mode II. The force in a single bridging fiber can be written

N ¼ σA ¼ Eεπ
D2

4
¼ π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GcD3E

q
ð35Þ

The bridging tractions then become

σt ¼ Nη ¼ Nη0f ð36Þ
7

The fraction of intact fibers can be written

f ¼ e
� DLεm

D0L0ε
m
0

h i
¼ e

� Dεðm�1Þ
D0L0ε

m
0

h i
δt ¼ e

�
D

ffiffiffiffiffi
4Gc
DE

p� �ðm�1Þ

D0L0ε
m
0

� �
δt

¼ e�Φδt ð37Þ
where the relation εL ¼ δt has been used and Φ has been introduced as:

Φ ¼
D

ffiffiffiffiffiffi
4Gc
DE

q� �ðm�1Þ

D0L0εm0
ð38Þ

The energy dissipated per unit area can be found by integrating tangen-
tial tractions with respect to tangential displacements. The energy
required to completely separate the two surfaces can then be found
by integrating to infinite displacements

W ¼
Z δt¼1

δt¼0
σtdδt ¼ Nη0

Z δt¼1

δt¼0
e�Φδt dδt ¼ π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GcD3E

q
η0

1
Φ

ð39Þ

By inserting Φ

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
GcDE

p πL0D0η0ε
m
0

2

ffiffiffiffiffiffiffiffi
DE
4Gc

r� �m�1

ð40Þ

From the expression above, it can be seen that for m ¼ 2;Gc will cancel
out. For m > 2;W will decrease for increasing Gc. For m < 2;W will
increase with increasing Gc. It can also be seen that W / Dm=2. How-
ever, η0 is likely to be a function of D. If the fiber volume fraction is kept
constant, then the number of fibers, η0, will be inversely proportional to
the square of the diameter, D, i.e. η0 / D�2. In this case, it can be argued
that W / Dm=2�2. Then D will cancel out for m ¼ 4. For lower values of
m;W will decrease with increasing D while it will increase when m > 4.



Fig. 10. Predicted bridging law for ηu0 ¼ ηd0 ¼ 1: (a) Pure mode I; (b) φ ¼ 45�; (c) φ ¼ 67:5�; and, (d) Pure mode II. The total opening is defined as δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2n þ δ2t

q
.

Fig. 11. Predicted centre rotation of the bridging fiber in pure Mode I opening
by the proposed model (lines) and the finite element model (circles) for
various values of Gc.
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5. Discussion

The results presented in Section 3 clearly demonstrate the need to
take geometric stiffness effects into account for accurate modelling of
large‐scale bridging problems. As can be seen in Fig. 6, the linear
model becomes inaccurate for mode I when the deflection approaches
8

a magnitude of the same order as the fiber diameter and greatly under-
predicts the force level for large opening displacements. As can be seen
in Fig. 9(a), the axial force is dominating the response of the fiber in
pure mode I already at a normal opening displacement equivalent to
half the fiber diameter. Therefore, a linear beam model is incapable
of capturing the real physics of the problem already at small normal
opening displacements. However, as the last term in Eq. (12) and
(13) become zero in pure mode II, the proposed model and the linear
model produce identical predictions in this case.

The finite element model includes large rotations and shear defor-
mations. The very good agreement observed between the FE model
and the proposed analytical model when it comes to force predictions
indicates that (at least for the chosen set of parameters) the proposed
model has sufficient accuracy even if it is constrained to moderately
large rotations and the Kirchhoff hypothesis (plane cross‐sections
remain plane). Neglecting the square of the slope in the denominator
of Eq. (4) introduces an error. The maximum rotation of the centre
point of the fibre was 18.2° for the reference case (see Fig. 11). This
would lead to an error of 16.7% for this particular point along the
fibre. At the same time, the numerator is zero for this particular point.
The fact that the maximum curvature occurs at the ends where the
rotation is zero, while the curvature is zero at the mid span where
the maximum rotation occurs, may explain why the model predicts
seemingly accurate results even when the centre rotation is quite large.

Rotations are well within the range of moderately large deflection
beam theory when Gc is chosen in the range reported in the literature
on testing adhesion between fibre and matrix [25–30]. However, lar-
ger rotations are observed in delamination tests. This can only be
explained by fibres being over‐embedded and mechanically licked by
the matrix material.



Table 2
Input parameters used to study effects of Gc and D

Case
Reference 1.5 Gc 2D

D 0.01 0.01 0.02 mm
Gc 1.0 1.5 1.0 N/mm
ηu0 and ηd0 1.0 1.0 0.25 mm−2

Fig. 12. Predicted tractions for the three cases in: (a) pure mode I and (b) pure mode II.

Fig. 13. Dissipated energy for the three cases in: (a) pure mode I and (b) pure mode II.
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The analytical model predicts a slightly longer peeled off length L
than the FE model and thus that the rotation at the mid‐span is slightly
smaller. It should be noted that the boundary conditions (BCs) differ
slightly between the FE model and the analytical model. While the
analytical model is completely fixed at the end, the BCs of the FE
model are a little more relaxed as they are imposed through cohesive
element at only half the circumference (as opposed to a complete fix-
ation of the entire cross‐section). This may explain some of the differ-
ences seen between the two models.

The analytical model has a clear advantage over the FE model
when it comes to computational cost. While the FE model required
approximately one day of CPU time on a work station, the analytical
model completed in a few seconds. Furthermore, the analytical model
was capable of providing predictions for opening displacements
beyond the point where the equilibrium iterations failed for the FE
model. It may be possible to establish more efficient FE models than
the one used in the present study, but it is our belief that the element
length must be much smaller than the fiber diameter in order to suffi-
9

ciently resolve the fracture process zone between the fiber and the
matrix. Then the number of elements, and the computational cost, will
be high even if beam elements are used. The authors have not been
able to obtain good results with beam elements (where an underlying
assumption is that the length of the element is much greater than the
height and width), but this may be possible.

The finite element model predicts that the fibers in compression
have a significant post‐buckling capacity (see Fig. 9), while all forces
are set equal to zero in the proposed analytical model when the critical
load according to linearized buckling theory is reached. In this respect,
the drop in tractions predicted by the proposed model is probably too
abrupt, but on the conservative side.

As seen in Fig. 9(d), the finite element model predicts non‐zero
shear force in the initial phase for pure mode II. This is caused by
the eccentricity of the axial loading of the fiber from the two rigid bod-
ies some vertical distance apart (see Fig. 5). The effect of this is bal-
anced out when there is an equal number of fibers bridging the two
diagonal directions. Further, the finite element model doesn’t predict
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the axial force to instantly reach a plateau like the analytical model.
This is because the fiber is modelled with finite thickness and stiffness,
and is therefore allowed to shear between the two fracture surfaces. A
more advanced beam model would not improve the predictions, as the
bridging ligament is not acting as a beam at this stage, but rather as a
bulky 3D‐structure (the length is smaller than the height and width).

Similarly, the finite element model predicts a horizontal force to be
transferred to the fracture surface for very small mode I openings, see
Fig. 9(a). This is due to shear stress at the interface between the fiber
and matrix. Including shear deformations in the micromechanical
model would not improve the predictions since the transferred force
is assumed to be equal to the axial force acting at the neutral axis of
the fiber. The error from this becomes negligible for larger openings.
For an equal number of fibers bridging in the two directions, the effect
would balance out also for small opening displacements.

Since bending and axial extension are the only admissible deforma-
tions of the micro‐mechanical beam, the model predicts normal open-
ing components to cause infinitely large normal tractions when the
beam length approaches zero (see Fig. 9 and 10). This is a weakness
of the proposed model. However, the model is not intended to predict
the onset of fiber bridging at the crack tip but rather what happens in
the wake of the crack tip where the fibers are of a finite length.

It should be noted that on the side of a circular fiber peeling off, the
debond crack opening includes a mode III component and the opening
mode will be a varying mixity of mode I and III along the circumfer-
ence of the fiber. The results presented in the previous section were
based on the assumption that the fracture energy is the same for all
three modes, GIc ¼ GIIc ¼ GIIIc ¼ Gc. These are likely to be different
in reality. Fracture energies dependent on mode mixity have not been
implemented in the proposed model.

The model can be used to predict bridging forces from bundles of
fibers being pulled out of the matrix instead of individual fibers.
Appropriate values for EI and EA must then be used. However, adapt-
ing the fiber failure criterion is not straight forward.

The fibers are assumed to be prevented from rotations at the end of
the free span. In reality, the two fracture surfaces may rotate relative to
each other. The effect of this has been neglected. It should also be
noted that the fibers will bridge between two points that did not ini-
tially coincide.

The effect of frictional sliding and interaction between fibers is
neglected. Contact between crossing fibres may lead to point forces
acting in their free span. This would affect the forces transferred
between the two fracture surfaces through these fibres.

The low computational cost of the proposed model makes it well
suited for parametric studies including stochastic variables. A small
example of a parameter study has been shown in Section 4, but this
is something the authors intend to study in more depth in the future.
For pure mode II delamination, Eqs. (25)–(27) all give the same frac-
tion of failed fibers. The analytical expressions for dissipated energy
derived in Section 4 should therefore be exact. When there is a mode
I component, on the other hand, Eq. (27) overestimates the fraction of
failed fibers. The magnitude of the effects seen in Fig. 13 are therefore
likely to be overestimated for mode I. Even if they may be quantita-
tively inaccurate, they qualitatively similar to those in pure mode II
which should be correct.

An important finding in the parameter study was that increasing Gc

leads to more fibres failing earlier and a more rapid decrease in trac-
tions. This caused reduced dissipated energy for both mode I and II
in the short parameter study. To the best of our knowledge, this has
not been shown analytically before.

The individual fibers are considered to only have stress/strain in
the longitudinal direction (caused by bending, stretching or a combi-
nation thereof). No assumption regarding plane stress/strain in the
matrix has been made since this is considered rigid in the model.
Assuming a different width would therefore not affect the model pre-
dictions. In a real DCB test, for instance, the width would naturally
10
affect the results, but that is at a different length scale than what is
modelled here.

An important point is that δx and δy are only related to local open-
ing displacements if the two fracture surfaces do not rotate relative to
each other or deform within the span that the fiber bridges. Consider
two rigid surfaces that are both prevented from rotating. Regardless of
which points that are chosen on the two surfaces as reference points,
the relative displacement will be the same for any arbitrary combina-
tion of tangential and normal movement.

6. Conclusions

A novel micromechanical model of crossover fiber bridging has
been developed. The predicted macroscopic bridging laws of the
new model were found to follow those predicted by a detailed FE
model capable of taking large deflections and shear deformations into
account.

It has been demonstrated that large deflections must be taken into
account when modeling cross‐over fiber bridging. Models based on lin-
ear beam theory will not be able to predict the correct stress and strain
inside the fiber.

The proposed model allows strains to be integrated over the
exposed surface of the fiber, and thus enables fiber fracture to be han-
dled as a stochastic and size dependent process.
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