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Abstract: This study evaluates the possibility of recovery of high-quality valuable fish oil and
proteins from fish co-streams by traditional means or a combination of several technologies. A
techno-economically feasible and sustainable zero-waste process is needed for full utilisation of this
co-stream’s potential. This study aims to determine the energy efficiency and economic feasibility
of four different zero-waste bio-refineries based on salmon filleting co-streams. The study covers
four concepts: (I) biogas and fertiliser production from salmon co-streams, (II) fish silage production,
(III) thermal processing of salmon co-streams for producing oil, protein concentrate, and meal, and
(IV) novel two-stage thermal and enzymatic process for producing high-quality oil and protein
hydrolysate, while the solid residue is converted to biogas and fertilisers. Monte Carlo simulation is
used to evaluate uncertainties in economic evaluation. The results show that the two-stage processing
of fish co-streams leads to recovery of both high-quality marine oil and proteins, showing the largest
profitability and return on investment during the economic analysis. It is a more tempting option
than the currently used thermal treatment or traditional silage processes. The possibility of producing
food-grade fish protein hydrolysate is the biggest benefit here. Concepts studied are examples of
zero-waste processing of bioproducts and illustrate the possibilities and benefits of fully utilising the
different fractions of fish as fillets, oil, protein, fertilisers, and energy production.

Keywords: salmon; co-stream; fish protein hydrolysate; biogas; modelling

1. Introduction

The world is concerned about the use of natural resources and the deployment of
sustainable practices and goals. Greater attention should be given to the implementation
of sustainable agriculture, fisheries, and aquaculture, solving several challenges including
water scarcity and food waste problems [1]. Fish processing into different products on an
industrial level generates a significant quantity of co-streams, which are often considered
as low-value products or even can be wasted without any attempt to recover. Such a point
of view is unattractive in terms of circular economy [2].

Aquaculture is the fastest growing producer of animal protein in the world. The UN
Food and Agriculture Organization (FAO) estimates that by 2030 aquaculture will account
for 2/3 of the seafood produced [3]. Salmon is one of the most popular aquaculture fish in
the world, and Norway is currently the world’s largest producer of farmed salmon. It is
estimated that salmon aquaculture will grow and reach up to 5·106 tonnes in 2050, which
means a 4–5 times increase from the current level [4]. Due to this, it is important to estimate
and find the most optimal and sustainable way of utilising salmon processing co-streams,
taking into account that this fish as well as co-streams are not seasonal goods and can be
generated and supplied to the market year-round.
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It is estimated that up to 50–75% of fish end up as co-streams in the seafood industry [5].
In Norway approximately 77% of fish processing co-streams are utilised, where 72% of
the utilised amount is used for fish meal and silage production and ~13% for production
of human consumption products [6,7]. In many countries, due to the lack of specialised
infrastructure, co-streams are wasted or sent directly for animal feed without any attempt
to recover the valuable components. However, these co-streams can be upgraded into
more valuable products like w:3 rich oils, gelatine, and marine proteins [8,9]. Enzymatic
and thermal treatment of animal-based co-streams lead to oil, protein, and sediment
fractions, where the latter contain lipids, insoluble proteins, and the rest of the bones and
scales [10–13]. The remaining sediments after the recovery of valuable products from fish
co-streams contain a high concentration of nitrogen (N), phosphorus (P), and calcium
(Ca) [14,15] and could be used for biogas production and bio-fertiliser generation [16,17].
Generated biogas has various applications, such as purification to biomethane [18,19],
generation of biohydrogen [20], biomethanol [21–25], or used in fuel cells for power
generation [26] and chemicals production [27]. The obtained digestate after anaerobic
digestion could be used as an organic fertiliser for the fields of the farm [28–31]. The
composition of the mixture of fish co-streams with cattle manure should be formed as
nutrients for plant fertilisation [32,33]. Co-digestion of fish co-streams with cattle manure
could improve the energy efficiency of biogas plant and fertilisation quality of the final
digestate [34,35]. Energy balance of the system includes the total energy input, which
comprises direct and indirect energy inputs [36] of the full cycle covering soil cultivation,
biomass production, anaerobic digestion, and fertilisation of soil by the digestate [37].

Biogas generation from animal by-products supports the 34% target of the European
Union (EU 27) for the contribution of renewable sources from final energy consumption by
2030 [38]. The use of biomass for energy generation reduces the greenhouse gas emissions
compared to the use of fossil fuels [39,40] with a special focus on green biomass [41] such
as forest residues [42], maize [43], or other biomass [44].

There is also a lack of optimal technological solutions for the recovery of high-quality
valuable fish oil and proteins from fish co-streams for human consumption. Tradition-
ally enzymatic hydrolysis and/or thermal treatments are used for processing of fish co-
streams [5,12]. The new technological concept presented by Slizyte et al. [45] produces
high-quality fish oil and protein-rich fractions more sustainably and profitably. A techno-
economically feasible and sustainable zero-waste process is needed to reach full utilisation
of this co-stream’s potential [46]. It is expected that new innovative food processing
technologies and products will help to contribute to climate change mitigation [2,47].

The aim of the zero-waste biorefinery is directed to 100% utilisation of valuable
fish filleting co-streams by producing high-value products (biomaterials, nutraceutical,
cosmetics, and ingredients for food and feed) [48], followed by utilisation of the remaining
residue for co-generation of energy and soil fertilisers. This study aims to determine the
energy efficiency and economic feasibility of four different zero-waste bio-refineries based
on salmon fileting co-streams.

2. Materials and Methods

An energetic and economic evaluation of four technological concepts for the process-
ing of salmon processing co-streams is presented in this study: (I) biogas and fertiliser
production from salmon co-streams, (II) fish silage production, (III) thermal processing of
salmon co-stream for producing oil, protein concentrate, and meal, and (IV) novel two-stage
thermal and enzymatic process for producing high-quality oil and protein hydrolysate,
while the solid residue is converted to biogas and fertilisers.

Fish aquaculture and slaughterhouses are situated near the shore in Northern Europe.
More than 1,300,000 t of salmon is annually processed in slaughterhouse resulting in more
than 400,000 t co-stream flows (heads, backbones, and viscera) [6]. The chosen battery
limits for the modelled system are given in Figure 1.
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The fish co-stream processing plant is situated next to the slaughterhouse. Annual
operation time of this plant is ~3000 h (in concepts II, III, and IV) indicating operation
in one shift [49]. Heads, backbones, and viscera from the processes (of concepts I, III,
and IV) are transported to four farms. The approximate road distance between the fish
processing plant and farms (the digestion facilities) is assumed to be 100 km (by 24 t lorry).
In each farm, the additional fertilisation of arable land (600 ha) intended for summer barley
growing is needed. Barley nutrient requirements are N110, P40, and K80 kg·ha−1. In
addition, cattle of 600 milking cows produce 12,000 t of manure annually in each of the
farms. When biogas is produced (in concepts I and IV), the micro-turbine is utilised for
combined heat and power production.

Economic evaluation was conducted with stochastic simulation, here Microsoft Excel
(Microsoft Corporation, Redmond, WA, USA) and @Risk (Palisade Corporation, Ithaca,
NY, USA) [50] were used as tools. @Risk is an add-in tool to Ms Excel that lets you analyse
uncertainties using Monte Carlo simulation. Energetic evaluation was based on the process
simulation by SimaPro (©PRé Sustainability B.V., Amersfoort, The Netherlands) [51]. Key
input parameters were obtained from the literature. Next, evaluated concepts are presented
in more detail.

2.1. Processing Fish Co-Stream to Biogas and Fertilisers

The fish co-stream was considered here as residue and is used for biogas and fertiliser
production, see Figure 2. The residue is transported from the slaughterhouse to the farm
by lorry. The system assessed was the anaerobic digestion of fish co-stream and cattle
manure on a regional scale, while co-digestion of other feedstock was not considered.
Liquid manure and fish co-stream were mixed at a ratio 5:1 by raw material mass together
before feeding to the digester. Anaerobic digestion was assumed to be a wet, single-stage,
continuously fed process operating at mesophilic temperature (+38 ◦C) and an organic
loading rate of 2 kg volatile solids (VS) m3·d−1 with total solids (TS) content at the input of
12.1 wt.%. The volume of the anaerobic digester was 2300 m3. Parameters associated with
the fish backbones and animal manure treated within the anaerobic digestion plants were a
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biogas yield of 88 m3·t−1 of mixture and methane content of 65 v.%. The same parameters
were used for biogas plant for treating the residues in concept IV.
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2.2. Production of Fish Silage and Fertilisers

Fish silage to be used as an animal meal can be considered as the simplest processing
method for fish co-streams, see Figure 3. The co-stream is processed by acidification and
preserved in silage form [5,6,13,52]. First, the co-stream is grinded to decrease the particle
size, and acid (formic acid) is added to reduce the pH to 3.5–4.0. The silage is stored
in containers for several days or weeks. Low pH inhibits microbial activity but enables
the activity of endogenous proteolytic enzymes from fish to hydrolyse, which liquefies
material. Elevated temperature (to 50 ◦C) speeds up the reaction. Silage can be used as
liquefied feed, typically for pigs.
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Figure 3. Fish silage process (II).

As the entire fish co-stream is used as a meal, no residue is left for biogas production.
In this concept the farm land (totally 600 ha) was divided into two areas where 400 ha
fertilised with cattle manure with additional P-fertilisers, and another area of 200 ha
fertilised with mineral fertilisers only. The application rate of cattle manure was 30 t·ha−1

and additionally 484 kg·ha−1 of mixed fertilisers (ammonium nitrate; ammonium di-
hydrophosphate; potassium chloride). The area of 200 ha was fertilised by application
of 534 kg·ha−1 of mixed fertilisers (ammonium nitrate; ammonium di-hydrophosphate;
potassium chloride). Mineral fertiliser was transported 100 km from the supplier to the
farm by a lorry with the transportation capacity of 24 t. The storage of 500 m2 was designed
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for fertilisers at the farm. From storage place, fertilisers were transported to the fields
which were 10 km away by a tractor (155 HP) with 13 t trailer. Liquid manure was stored
in an 8000 m3 tank, which is littered by injecting spreader with a capacity of 7 m3 and 12 m
width. The same specification was also applied when concept III is analysed.

2.3. Production of Fish Oil, Protein Concentrate and Meal

This concept covers the production of fish oil and protein concentrate (FPC), see
Figure 4. The fish co-stream was minced to produce homogenous feed for the process.
Thermal treatment (>90 ◦C) was used to fractionate the oil from the raw material, after
which the individual phases were separated. For example, a tri-canter can be applied here.
The separated phases were oil, protein-rich stick water, and meal. The aqueous phase (e.g.,
stick water) was evaporated to 50 wt.% concentration, and the meal was dried. The fish
protein concentrate process is a common procedure in the industry [53]. Obtained products
are typically used as animal feed.
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Figure 4. Production of oil and fish protein concentrate (III).

As fish co-stream is fully utilised in this concept, and no residue is considered here. The
fertilisation of arable land is conducted similarly as for concept II: manure and additional
mineral fertilisers are applied.

2.4. Production of Premium Oil and Fish Protein Hydrolysate and Utilising Residues for
Biogas Production

Production of premium oil and protein-rich hydrolysate was conducted in a novel
two-stage process, see Figure 5. The principles of this process are given in the work of
Slizyte et al. [45]. The process differs from the thermal process (concept III) as it uses
a gentler, mild thermal extraction during the first stage to obtain premium quality oil.
Thermal extraction also minimizes the amount of oil in the following enzymatic process.
From mild thermal extraction, the defatted fraction continued to enzymatic treatment.
Enzymes were inactivated by heating after the enzymatic hydrolysis. The phase separator
was applied to separate the oil, aqueous fish protein hydrolysate, and solids. The aqueous
phase was evaporated to 50 wt.% concentration or dried. The aim of the gentle processing
of the fish co-stream is to increase the quality and amount of value-added products and
even utilise them as food instead of feed [45,54].
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The solid residue was transported to the farm. When concept IV is considered the
arable land was fertilised with a digestate obtained after anaerobic co-digestion of mixtures
from fish backbones and cattle manure. However, the volume of residue was much smaller
than in concept I, and so additional mineral fertilisers are needed.

3. Results
3.1. Material and Energy Balance

Material and energy balances of fish co-stream processing are adapted from the
literature [49] (Table 1) and are presented per tonne of fish co-stream raw material. The
typical values of the biogas plant are shown in Table 2, where the figure is collected
from [55]. This balance date is applied for the evaluation of energetic and economic
performances of four different fish co-stream processing technologies.

Table 1. Material and energy balance of the fish processing plant.

Raw-Material/Utility Unit a I II III IV

Input

Fish co-stream (kg·tRM
−1) 1000 1000 1000 1000

Formic acid (kg·tRM
−1) 6.7

Enzyme (kg·tRM
−1) 1

Steam (kg·tRM
−1) 0.5 0.7 1.3

Electricity (kWh·tRM
−1) 30 40 60

Water (m3·tRM
−1) 0.4

Output

Premium oil (kg·tRM
−1) 175

Oil (kg·tRM
−1) 187 46

Fish protein concentrate (kg·tRM
−1) 189

Fish protein hydrolysate (kg·tRM
−1) 171

Meal (kg·tRM
−1) 158

Silage (kg·tRM
−1) 1000

Residue (kg·tRM
−1) 1000 130

a RM refers to fish co-stream as raw material.
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Table 2. Material and energy balance of the biogas plant.

Raw-Material/Utility Unit a I II III IV

Input

Fish residue (kg·tRM
−1) 1000 130

Manure (kg·tRM
−1) 5000 650

Output

Heat (kWh·tRM
−1) 1562 203

Electricity (kWh·tRM
−1) 1213 158

Fertilisers (kg·tRM
−1) 5168 662

a RM refers to fish co-stream as raw material.

3.2. Energetic Analysis

When fish co-streams were analysed, high concentrations of nitrogen (62 g·kg−1) and
phosphorus (13 g·kg−1) were found in backbones after salmon filleting (Table 3). Due to
this, the co-digestion of salmon backbones and cattle manure was considered optimal for
improving the efficiency of biogas plant and fertilisation quality of digestate. Mixing liquid
(6 wt.% TS) cattle manure with dry (42 wt.% TS) fish backbones in 1:5 ratio was desirable
for anaerobic digestion TS concentration (5–20 wt.% TS) [56].

Table 3. Chemical composition of salmon backbones and cattle manure.

Parameter Salmon Backbones after Filleting Liquid Cattle Manure

Total solids (TS) wt.% 41.6 6.3

In total solids:

Volatile solids (VS) wt.% 92.5 72.0
Organic carbon (C) wt.% 69.8 39.4

Total nitrogen (N) mg·kg−1 62,357 59,344
Total phosphorus (P) mg·kg−1 12,912 10,376
Total potassium (K) mg·kg−1 5583 60,414

Calcium (Ca) wt.% 2.3 3.2
Magnesium (Mg) wt.% 0.06 1.01
Copper (Cu) mg·kg−1 8 93

Zink (Zn) mg·kg−1 32 267
Manganese (Mn) mg·kg−1 6 235

Iron (Fe) mg·kg−1 20 1178
Boron (B) mg·kg−1 18 43

Sulphur (S) mg·kg−1 294 4256
Fat wt.% 54.2 4.1

It was assumed that the digestate generated from the biogas plants was compliant with
the Publicly Availably Specification (PAS) 110 [57] and the Anaerobic Digestate Quality
Protocol [58], and can therefore be considered as a product and utilised as a fertiliser within
agriculture, forestry, or soil/field grown horticulture. The whole digestate was transported
to the fields for fertilisation of barley. Transportation of digestate was undertaken using
a tractor with a capacity of 7 m3. Tractor velocity when loaded was 15 km·h−1 and was
25 km·h−1 when empty. Distances for transporting digestate to the nearest arable land
were assumed to be 10 km (arable land belonging to the farm).

At the biogas plant, a storage place of 500 m2 was modelled to store delivered fish
backbones. Storage conditions were at ambient temperatures (+10 ◦C). The energy balance
of the analysed system can be expressed as the difference between input and output and
can be defined by the equation:

Efinal = EBM − Einput (1)

where Efinal is final useful energy (MJ·ha−1); EBM is the energy potential of biomass
(MJ·ha−1), and Einput is the energy input of the system (MJ·ha−1). The energy poten-
tial of biomass was defined as potential biogas production from cattle manure and fish
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backbones and was determined according to the methodology explained by Navickas et al.
(2013) [59] based on farm land area. According to the (unpublished) laboratory exper-
iments, the biogas yield from the mixture of cattle manure and salmon backbones was
considered 88 m3·t−1 from feedstock with methane concentration of 64.9 v.% in the biogas.

Various equipment and machinery are used for technological operations and processes;
therefore, the total energy input can be expressed by the equation:

Einput =
i

∑
1

ETEi (2)

where ETEi is total energy inputs (MJ·ha−1), and i is the number of technological oper-
ations/processes. The methodology of energy input for technological operations was
presented and described previously in [37,60].

Total energy input is defined as direct and indirect energy input of the technologi-
cal operation:

ETEi = Edi + Eindi (3)

where Edi is direct energy input (MJ·ha−1), and Eindi is indirect energy input (MJ·ha−1).
The results obtained after recalculation for 1 t of fish co-stream shows that energy

input at biogas plant was higher in concept I than in concept IV, see Figure 6.
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In concept I, the mass of the fish co-stream was estimated to be 2400 t per year and
12,000 t per year of cattle manure. The feedstock conversion to biogas requires a total
energy input of 2548 MJ·tRM

−1 (of that 160 kWh·tRM
−1 of electricity). After anaerobic

treatment, the produced biogas was used for energy production. Additional processing of
the fish co-stream (grinding, thermal treatment, and phase separation) is energy-intensive,
and it required 82 MJ·tRM

−1 in concept I, 326 MJ·tRM
−1 in concept II, 377 MJ·tRM

−1 in
concept III, and 678 MJ·tRM

−1 in concept IV. Energy generated in concept I was the highest
among the analysed cases and reached 9992 MJ·tRM

−1, but at the same time the energy
input for the operation of the biogas plant, i.e., self-consuming, was 2196 MJ·tRM

−1 and
lowered the total output of useful energy. Concept IV had useful energy generated by the
biogas plant of 1299 MJ·tRM

−1, while self-consumption was 293 MJ·tRM
−1.

In concept II, the mass of the fish co-stream (meal) was 379 t per year and was used
as animal feed; therefore, no energy was produced in this case. Processing of the fish
co-stream to animal feed required 326 MJ·tRM

−1.
In concept III, the mass of the fish co-stream (meal) was 312 t per year and was pro-

cessed to fish meal, oil, and proteins. Processing of the fish co-stream required 377 MJ·tRM
−1.

After anaerobic treatment, the produced biogas was used for electricity production
with a total generation of 1213 kWh·tRM

−1 in concept I and 158 kWh·tRM
−1 in concept
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IV (Figure 7). Internal usage in processing the fish co-stream and biogas plant operation
reduced useful (ready to sell to the network) power to 1042 kWh·tRM

−1 in concept I and
66 kWh·tRM

−1 in concept IV. Concepts II and III consumed electric power for processing
the fish co-stream, sequentially 41 kWh·tRM

−1 and 51 kWh·tRM
−1.
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negative indicate energy generation.

Transportation required the same amount of energy in all concepts due to the same
mass to be transported and needed 82.1 MJ·tRM

−1 in total.
By using a higher mass of fish co-stream for biogas generation despite higher usage of

energy, the total useful energy increased as well (Figure 8). Only concept I and concept
IV generated additional energy due to the biogas plant. The ratio of energy input/output
shows that the higher and most efficient treatment of the fish co-stream was concept I when
a high amount of fish co-streams was delivered directly to the biogas plant. In such a way
the ratio was 3.9, while in concept IV it was 1.0 only.
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3.3. Economic Feasibility

The variable costs (raw materials, utilities, logistics, labour, and maintenance) and
fixed costs (depreciation and other fixed costs) were calculated according to [61]. The
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economic feasibility of four technological concepts for zero-waste processing of fish co-
streams is evaluated in terms of return on investment (ROI), expressed as

ROI =
Annual net profit
Investment costs

(4)

Certain uncertainties are involved in the early stages of concept design. Consequently,
stochastic simulation, here Monte Carlo simulation, was applied to assess these uncertain-
ties. Applied prices are presented in Table 4 and obtained from [49]. The conversion used
in this study was €1.0 EUR is $1.1 USD.

Table 4. Applied prices.

Product Unit Value

Fish co-stream (USD·tRM
−1) 120

Formic acid (USD·tRM
−1, 80 v.%) 1000

Enzyme (USD·kg−1) 20
Steam (USD·t−1) 20

Electricity (USD·MWh−1) 100
Water (USD m−3) 0.1

Premium fish oil (USD·t−1) 1350
Fish oil (USD·t−1) 1200

Fish protein hydrolysate (USD·t−1) 3900
Fish protein concentrate (USD·t−1) 900

Meal (USD·t−1) 1350
Silage (USD·t−1) 240

Mineral fertilisers (USD·t−1) 500

The estimates of capital costs for the four presented technological concepts are given
in Table 5. The estimates of capital costs were based on the literature values [49,62] and
step-counting method [61].

Table 5. Investment costs.

Fish Co-Stream Processing Unit Concept I Concept II Concept III Concept IV

Capacity (tRM·a−1) 10,000 10,000 10,000 10,000

Investment (USD) 1.0 × 106 7.4 × 106 9.5 × 106

Biogas plant

Fish residue (tRM·a−1) 10,000 1300
Manure (tRM·a−1) 50,000 50,000 50,000 50,000

Biogas capacity (tRM·a−1) 60,000 7800

Biogas capacity/farm (tRM·a−1) 15,000 7800

Number of biogas plants 4 1.0

Investment (USD per farm) 2.6 × 106 1.8 × 106

Total investments (USD) 10.4 × 106 1.0 × 106 7.4 × 106 11.3 × 106

Other relevant cost factors are listed in Table 6. The average salary of 65,000 USD
was assumed with additional 40% indirect costs on top. Maintenance and repairs were
assumed as 2.5% of the original investment. Other indirect costs were 1% of the investment.
For logistics, a cost of 0.1 USD·t−1·km−1 was assumed.
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Table 6. Other costs.

Other Costs Unit Concept I Concept II Concept III Concept IV

Operators 2 1 3 5
Salary (USD·a−1) 65,000 65,000 65,000 65,000

Indirect costs a (%) 40% 40% 40% 40%
Maintenance b (%) 2.5% 2.5% 2.5% 2.5%

Depreciation time (a) 15 15 15 15
Other indirect b (%) 1.0% 1.0% 1.0% 1.0%

Logistics (USD·t−1·km−1) 0.1 0.1 0.1 0.1
Distance (km) 100 100 100 100

a % of salary; b % of the original investment.

Total annual production costs are listed in Table 7 and total revenues in Table 8. It is
seen that raw materials and capital costs were the main cost factors here. Largest revenues
were gained for premium quality oil and fish protein hydrolysate (concept IV). Revenues
from the energy were at the same level or higher than used for energy utilities in the fish
co-stream processing plant.

Table 7. Costs.

Costs Unit Concept I Concept II Concept III Concept IV

Raw materials (USD·a−1) 1.2 × 106 1.3 × 106 1.2 × 106 1.4 × 106

Utilities (USD·a−1) 0.1 × 106 0.2 × 106 0.3 × 106

Labour (USD·a−1) 0.2 × 106 0.1 × 106 0.3 × 106 0.5 × 106

Logistics (USD·a−1) 0.1 × 106 0.01 × 106

Maintenance (USD·a−1) 0.3 × 106 0.03 × 106 0.2 × 106 0.3 × 106

Depreciation (USD·a−1) 0.7 × 106 0.1 × 106 0.5·× 106 0.8 × 106

Other indirect (USD·a−1) 0.1 × 106 0.01 × 106 0.1 × 106 0.1 × 106

Mineral fertilisers (USD·a−1) 0.0 × 106 0.6 × 106 0.6 × 106 0.5 × 106

Total (USD·a−1) 2.5 × 106 2.2 × 106 3.0·× 106 3.9 × 106

Table 8. Revenues.

Revenues Unit Concept I Concept II Concept III Concept IV

Oil (USD·a−1) 2.3 × 106 2.9 × 106

Protein (USD·a−1) 1.7 × 106 6.6 × 106

Meal (USD·a−1) 2.4 × 106 2.2 × 106

Energy (USD·a−1) 1.2 × 106 0.2 × 106

Total (USD·a−1) 1.2 × 106 2.4 × 106 6.2 × 106 9.7 × 106

The profitability of four different concepts is given in Table 9. If the fish co-stream is
used for plain biogas production (I), it is seen that the production was not profitable. All
other three concepts generated positive cash flow, and the two-stage process gained almost
$6·106 USD annually. Return on investment was also positive for concepts II, III, and IV,
see Table 9.

Table 9. Profit.

Indicator Unit Concept I Concept II Concept III Concept IV

Profit (USD·a−1) −1.3 × 106 0.2 × 106 3.1 × 106 5.8 × 106

ROI (%) −13% 21% 42% 51%

A sensitivity analysis was conducted to illustrate the most critical factor of economic
evaluation. The prices of raw materials, energy, fish oil, fish protein, and fish meal were
varied ±20%. (For example, the prices of mineral fertilisers and formic acid were considered
to change according to variations in energy price.) Sensitivity analysis was based on the
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Monte Carlo simulations, with 10,000 iterations. Results of four different concepts are
shown in Figure 9.
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Biogas production (I) was equally sensitive to the revenues from the produced energy
and the fish residue price. Fish silage process (II) was critical for the revenues of liquid
silage. Thermal processing of fish-side stream (III) indicated that the prices of fish oil
and dried fish meal were the most critical aspects. On the other hand, the two-stage
thermal-enzymatic processing of fish co-stream (IV) generated significant revenues from
the high-quality fish protein hydrolysate. This factor is the most critical when profitability
is considered.

4. Discussion

An energetic and economic evaluation of four different fish co-stream processing
technologies showed a clear contradiction between energy production and economic
feasibility. The largest amount of energy is produced when the entire fish co-stream is
considered as residue and transported to farms for biogas production (I). This concept also
allowed omitting the mineral fertilisers entirely, as combined fish co-stream and manure
provided enough K, N, and P for winter barley cultivation.
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On the other hand, the two-stage processing of the fish-side stream (IV) utilising
valuable marine biomass by producing premium fish oil and high-quality fish protein
hydrolysate was a most economically feasible concept. Here, the solid residue was trans-
ported to farms and utilised in smaller-scale biogas production. The annual revenues of
this new process were significantly higher than the thermal processing of fish co-stream
(III) or traditional fish silage process (II). Naturally, this new concept benefits the assumed
high price of the better-quality oil and fish protein hydrolysate. If food-grade quality is not
achieved, the profitability is lower, as the sensitivity analysis showed.

Biogas production (I) required a large amounts of the fish co-stream assumed in this
study. If very low-quality fish co-streams would be considered, the production of feed and
food production would not be an option. A biogas plant could be considered an elegant
way to handle this solid waste residue and to utilise the organic matter for biogas and
inorganic components for fertilisers.

When the two-stage concept is considered, the solid fraction could be utilised, at least
partly for meal production, and an even higher profitability for concept (IV) would be
achieved. However, the solid fraction is a possible source of marine phospholipids, and
consequently, additional processing might be applied. After the extraction of these valuable
components, the biogas production of remaining residue might be the best option.

Battery limits of this study are defined in such a way that fish co-stream processing
plant, biogas production, and farms are considered as a single unity. In reality, these
plants would form a value chain or network where intermediates (such as fish residue) are
purchased at a certain price. This analysis is outside the scope of this study, but as positive
cash flow is generated across the studied battery limit, it might be possible to define prices
for intermediates where both fish co-stream operator and farms are gaining profits.

Certain uncertainties are involved in the early stages of concept design, the availability
of data is limited, and simplified models may be used. The performed economic analysis
evaluates the key cost items to focus on future development stages and gives an economic
ranking of the proposed fish co-stream process options. The obtained information can
be used to compare process options, select concepts for further optimisation and more
detailed design, and support the decision-making process.

5. Conclusions

This study reviewed four different technological concepts for zero-waste processing
of fish (salmon) co-streams. Fish co-stream processing plants, production of biogas from
fish residues, and utilising digestate as fertilisers were considered in this study. Energetic
and economic analyses were conducted.

From an energetic point of view, the processing of fish residue to biogas and fertilisers
is the most tempting option. However, valuable marine components will not be recovered
in this case. Technologies of biogas and fertiliser production should be used when obtained
co-streams are low quality, and the extraction of other valuable components is not possible.
If such a stream is available, this concept utilises the organic fraction of residue for energy
production, recycles the inorganic components as fertilisers, and reduces the energy need
and amount of purchased mineral fertiliser in farms.

Two-stage processing of fish co-streams leads to the recovery of both high-quality
marine oil and proteins and shows the largest profitability and return on investment dur-
ing the economic analysis. It is a more tempting option than the currently used thermal
treatment or traditional silage processes. The possibility of producing high-quality and
food-grade fish protein hydrolysate is the biggest benefit here. Conclusions indicate contra-
diction between energy production and economic feasibility of the evaluated processes.
Quality of co-streams should be defined as the main indicator for making decisions in
industries utilising fish co-streams. Chemical composition of by-products would slightly
change the outcomes and yields of the presented technologies, and this would not have a
significant influence on the final outcome.
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Concepts studied herein are examples of zero-waste processing of bio-products and
illustrate the possibilities and benefits of fully utilising whole fish, in form of various
products, such as fillets, oil, and protein, for fertilisers and energy production.
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