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Abstract: Water droplets released from the sea surface represent one of the major causes of ice accretion
on marine vessels. A one-dimensional model of the freezing of a spherical water droplet moving in
cold air was developed. The crystallization model allows one to obtain an analytical solution if a
uniform temperature distribution over the liquid’s core is assumed. The model was validated using
STAR CCM+ Computational fluid dynamics (CFD) code. A collision of a partially frozen droplet with
a solid wall assuming the plastic deformation of an ice crust was also considered. The ratio of the crust
deformation to the crust thickness was evaluated. It was assumed that if this ratio were to exceed
unity, the droplet would stick to the wall’s surface due to ice bridge formation caused by the water
released from the droplet’s core.

Keywords: breakage; collision; droplet–wall sticking probability; crystallization; ice crust; modeling;
ice-accretion

1. Introduction

Droplets may be generated on water surfaces under windy conditions. As they are
transported with cold air, the droplets rapidly cool and then either partially or entirely
solidify. If it collides with a solid wall, such a partially frozen droplet may either stick to
the wall’s surface or bounce off. Particles sticking to offshore structures and ships’ surfaces
may eventually lead to significant ice accretion, representing a severe problem for further
equipment exploitation [1].

The rate of the ice accretion depends mainly on the following factors [2]: (1) wind speed;
(2) surface-wave conditions; (3) ambient air temperature; (4) air humidity; (5) water surface
temperature; (6) water salinity; (7) angle of droplet-surface interaction; and (8) properties
of the vessel’s (equipment’s) surface, its special orientation, and its speed. Additional
loads caused by ice formations alter the vessel’s or stationary structure’s center of mass,
increasing construction instability risks. Another important problem is the erosion of floating
wind turbines.

There is a lack of statistical data for accurate analyzing the accretion problem [1].
Therefore, a mathematical model can be a useful tool for ice formation forecasting. A
number of ice accretion models have been reported for different objects, such as aircraft [3,4],
electrical power lines [5,6], and marine equipment [7]. The ice accretion process involves
the modeling of several sub-processes. First, a droplet’s generation from a water surface
and interaction with wind flow have to be modeled. A model should properly forecast
droplet generation frequency, size, and velocity distribution. Second, the transportation of
the droplet through the ambient air, accompanied by cooling and freezing, should also be
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modeled. Finally, multiple interactions of droplets with a solid wall and ice layer formation
and growth on that wall have to be forecasted. To the best of our knowledge, there are no
ice accretion simulation tools that account for all of the aforementioned sub-processes [8].
Moreover, the majority of the known models of these sub-processes are computationally
expensive, limiting their employment as components of an efficient computational tool.
The present work suggests a preliminary engineering approach to solving the second and
third groups of the formulated problems.

We limit our considerations to the development of a simple model of the cooling of a
droplet, its partial solidification, and its further interaction with the solid wall surface. To
a great extent, our work is in line with the research of [9], who developed a model of the
collision of an ice particle with a wall, which has an implied applicability to the modeling
of ice accretion. The model presented below is simple and suitable only for an approximate
analysis of ice accretion. The simplicity of the model is justified by our intention to incor-
porate this model into a detailed CFD code developed for 3D simulations of the entire ice
accretion process that will be adjusted, verified, and validated with experimental data.

2. Modeling

The model consists of two sub-models: (a) droplet cooling and ice crust growth; (b)
breakage of a partially frozen droplet caused by its collision with the solid surface.

2.1. Droplet Cooling and Solidification

Let us assume that a droplet maintains a spherical shape during its motion. This
assumption is justified by the relatively small sizes of droplets generated on the surface
of seawater. Seawater is usually contaminated with different impurities. Therefore, it is
possible to assume that a droplet’s surface is rigid (immobile), and the circulation motion
inside a droplet can be neglected [10]. A small-sized droplet generated in the air is cooled
due to convective heat transfer. Such a droplet usually rotates with an unknown and
non-constant angular velocity. Due to this uncertainty, in engineering applications, the
droplet–air heat transfer coefficient is calculated with empirical correlations (e.g., [11]).
Assuming that the heat flux through the droplet’s surface is uniform, we can conclude that
the heat transfer inside the droplet can be described by the one-dimensional equation of
heat conduction for a sphere. Prior to the solidification of a droplet, its surface should be
cooled to the crystallization temperature. To describe the cooling of a liquid droplet, we
use the heat conduction equation, which is formulated in the dimensionless form [12]:

∂θ(ξ, τ)

∂τ
=

∂2θ(ξ, τ)

∂ξ2 +
∂θ(ξ, τ)

∂ξ

2
ξ

, (1)

where θ(ξ, τ) = (T(ξ, τ) − T∞)/(Tcr − T∞) is the dimensionless temperature, T is the
temperature, T∞ is the ambient air temperature, Tcr is the water crystallization (freezing)
temperature, τ = αwt/R2

0 is the dimensionless time, t is the time, R0 is the droplet radius,
αw = kw/(ρwcw) is the water’s thermal diffusivity, kw is the water’s thermal conductiv-
ity, ρw is the water’s density, cw is the water’s specific heat capacity, ξ = r/R0 is the
dimensionless radial coordinate, and r is the radial coordinate.

Equation (1) is applicable until the moment when the temperature at the droplet’s
surface, Ts, reaches the water’s freezing temperature. After that, the solid crust starts
growing toward the droplet’s center. This solidification process represents a well-known
Stefan problem. A diagram illustrating this process is shown in Figure 1A. The heat
conduction inside a shrinking liquid core that is coated with a solid crust of increasing
thickness is described by the heat conduction equation, which is formulated in coordinates
normalized by the radius of the liquid core. Equation (1) can be converted into the heat
conduction equation for the liquid core, accounting for a decreasing radius, through the
following coordinate transformation [13]:
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(t, r)→ (τ, ξ);
∂

∂t
=

αw

R2
0

(
∂

∂τ
− d ln R̄

dτ
ξ

∂

∂ξ

)
;

∂

∂r
=

1
R(t)

∂

∂ξ
, (2)

where ξ = r/R is the dimensionless radial coordinate, R is the liquid core’s radius, and
R̄(τ) = R/R0 is the dimensionless radius of the liquid core.

(A) Model (B) Simplified model

Figure 1. Droplet solidification diagram.

This transformation leads to the following equation:

∂θ(ξ, τ)

∂τ
=

1
R̄2(τ)

[
∂θ(ξ, τ)

∂ξ

(
dR̄
dτ

ξR̄(τ) +
2
ξ

)
+

∂2θ(ξ, τ)

∂ξ2

]
. (3)

We would like to emphasize that Equation (3) was successfully employed in [14] for
modeling the heat transfer inside an oil sand lump digested in a hot pipeline water flow.

The liquid core’s shrinkage rate, which is caused by ice crust formation, is derived from
the heat balance at the liquid core/solid crust boundary formulated for a small time lapse
dt. During dt, the heat rejected from the liquid core’s surface due to conduction through
the solid crust is spent on both solidification of a thin spherical layer of the thickness
dR and on cooling of the liquid core by heat conduction through the liquid. The only
assumption employed for the derivation of the shrinking rate equation is the steady-state
heat conduction through the solid crust. This assumption is justified by both a rather small
ice crust thickness, which is caused by the short time of droplet motion in cold air, and the
relatively high thermal diffusivity of ice. After conducting routine math, the obtained heat
balance equation is transformed into the dimensionless equation for the radius reduction
rate of the unfrozen core as follows:

dR̄
dτ

= −Ste
cwρw

csρs

[
ka

kw

Nu
BiR̄(1− R̄) + 2R̄2 +

1
R̄

∂θ

∂ξ

]
, (4)

where Ste = cs(Tcr−T∞)
H f

is the Stefan number, H f is the latent heat of crystallization, cs is the
ice’s specific heat capacity, ρs is the ice’s density, Bi = 2R0h/ks is the droplet’s Biot number,
ks is the ice’s thermal conductivity, h is the droplet–ambient-air convective heat transfer
coefficient, Nu = 2R0h/ka is the droplet’s Nusselt number, and ka is the air’s thermal
conductivity.

In the present work, the Nusselt number was calculated with the well-known Ranz–
Marshal correlation: Nu = 2 + 0.6Re1/2Pr1/3 [11], where Re = 2ρaR0U/µa is the droplet’s
Reynolds number, U is the droplet–air relative velocity, ρa is the density of air, µa is the
air’s dynamic viscosity, Pr = caµa/ka is the air’s Prandtl number, and ca is the air’s specific
heat capacity.
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The initial condition required for the solution of the equation of droplet cooling,
Equation (1), is the known water temperature uniformly distributed over the droplet
volume. The first boundary condition in the droplet center is as follows:(

∂θ

∂ξ

)
ξ=0

= 0. (5)

Note that the first boundary condition is also the same for Equation (3). The second
boundary condition for Equation (1) is obtained by equating the convection heat flux out
of the droplet’s surface to the conduction flux toward this surface, and it is formulated
as follows: (

∂θ

∂ξ

)
ξ=1

= −0.5Nu
ka

kw
θ(1, τ). (6)

The second boundary condition for Equation (3) expresses the equality of the temper-
ature at the liquid core’s boundary to the water’s crystallization temperature, i.e.,

θ(1, τ) = 1. (7)

Thus, Equations (1)–(7) allow the calculation of both the cooling and freezing processes
for a droplet moving in cold air.

Assuming that, at the initial moment in time, the temperature over the droplet’s liquid
core is uniform and equal to the crystallization temperature (i.e., ∂θ/∂ξ = 0), Equation (4)
can be solved analytically. A diagram illustrating this simplified case is shown in Figure 1B.
The analytical equation relating the dimensionless time and the solid crust’s thickness has
the following form [15]:

τ =
1

2Ste
ρs

ρw

αw

αs

[
1−

(
1− δ

R0

)2
+

2
3

(
2
Bi
− 1
)(

1−
(

1− δ

R0

)3
)]

, (8)

where αs = ks/(ρscs) is the ice’s thermal diffusivity and δ is the ice crust’s thickness.
Although at the normal conditions, the ice’s density is about 9% lower than the water’s

density, for the sake of simplicity, we assume ρs/ρw = 1. This simplification weakly affects
the modeling results.

The model equations (Equations (1), (3), and (4)) were solved numerically using an ex-
plicit finite difference technique. A Matlab code was developed for this purpose. The code
demonstrated rapid convergence and independence of the solution on the chosen radial
and time steps (dξ = 0.02 and dt = 10−5 s, respectively). Note that for the one-dimensional
heat conduction problem, the stability of an explicit numerical method is determined by
the Fourier number formulated for a single integration cell [16]. If this criterion is smaller
than 0.5, the numerical method is stable. This condition has been satisfied for the computa-
tions conducted within the present work. To further support the correctness of the model
validation presented here, we would like to emphasize again that the model of droplet
solidification proposed in the present work has a single assumption that differentiates
it from the accurate one-dimensional model that was solved and validated by different
authors [15,17]. This assumption is the steady-state heat transfer through the ice crust,
which is justified by both the small crust thickness and high thermal diffusivity of ice. We
estimated the Fourier number for the crust, assuming that its characteristic size was equal
to the crust’s thickness. It turned out that the Fourier numbers corresponding to the crust
thickness range considered in the present work are almost always below the critical value,
0.1, indicating the nearly immediate formation of a uniform temperature profile across the
crust if the liquid core is absent. This result means that heat conduction through the crust
is practically the steady state process. Thus, the model for forecasting the thin ice crust
growth suggested in this work has to provide results that are very close to those calculated
using the standard (accurate) model [15]. Therefore, the model validation given here is
primarily aimed at validating not the model itself, but the numerical code developed.
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The presented cooling/freezing model was validated by comparing the calculated
results with those computed using the commercial STAR CCM+ CFD code. The model
incorporated into this code assumes that solidification occurs not at a single temperature
value, but within a defined temperature range [18]. Note that this modeling approach was
originally developed for metal alloys. According to this model, a mixture of solid and liquid
is formed during the crystallization process. A solid-phase volume fraction corresponding to
a certain temperature is assumed to be known. This model was meticulously validated [19].
To apply it to the ice crust formation calculation, we assumed a very small range for the
solidification temperature, 0.002 ◦C. The volume fraction of ice was linearly interpolated
within this range.

The STAR CCM+ simulations were conducted in the three-dimensional formulation.
The initial and boundary conditions for the CFD model were the same as those for the
developed model. The uniform mesh was employed for all of the computations. The mesh
size was assumed to be equal to the initial mesh size used in the Matlab code. The same
time step was employed for both codes.

In Figure 2, we show the dimensionless crust thickness vs. time, comparing the
computed results using the STAR CCM+ CFD code with the results calculated using the in-
house engineering code developed based on the model presented here. The computations
were done for a droplet with a 2 mm diameter. The initial droplet temperature was assumed
to be T0 = 3 ◦C and the ambient air temperature was assumed to be T∞ = −20 ◦C. The
air–droplet heat transfer coefficient was calculated, assuming that the droplet–air relative
velocity was equal to the droplet’s terminal velocity. The properties of the water, ice, and
air used for the calculations are given in Table 1. These data were obtained at a constant
temperature equal to 0 ◦C [20].

Figure 2. Dimensionless crust thickness vs. time for a droplet with a 2 mm diameter at T∞ = −20 ◦C
and T0 = 3 ◦C.

Table 1. Physical properties of water, ice, and air used for the computations.

Physical Property Unit Water Ice Air

Density kg/m3 1000 1000 1.292
Thermal conductivity W/(m·K) 0.57 2.2 0.024
Specific heat capacity J/(kg·K) 4217 2108 1003

One can see that the results of computations by the different models are relatively
close to each other. The slightly faster growth of the ice crust forecasted by the Matlab
code was probably caused by the assumption of the steady-state heat transfer through
this crust. The difference between the computational results increases with an increase
in the crust thickness: The thicker the crust is, the longer the time needed to obtain the
steady-state temperature distribution across the crust assumed in the Matlab code. The
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larger the deviation from the steady-state assumption, the larger the error caused by this
simplification. Note that the Matlab code’s numerical inaccuracy is excluded from the
present analysis due to the proven independence of the generated data on both the spatial
and time steps. It is possible to affirm that the results presented in Figure 2 support our
conclusion that the developed ice crust formation model is sufficiently accurate for practical
calculations. We would like to stress that further model validation with experimental data
is unfeasible for two reasons: (1) It has been proven that the developed model provides
results close to those produced by the accurate model for a small crust thickness; (2) there
are no known experimental data on droplet freezing that were obtained while monitoring
the thickness of a thin ice crust.

In Figure 3, we compare the numerical solution obtained by the developed Matlab
code with the analytical solution. The initial droplet temperature was assumed to be
T0 = 3 ◦C. For Figure 3A, the ambient air temperature was set equal to T∞ = −15 ◦C, and
for Figure 3B, it was set to T∞ = −20 ◦C. All of the calculations for Figure 3 were conducted
with the assumption that the obtained crust thickness, δ, was equal to 10% of the droplet’s
radius. Note that the curve showing the analytical solution was obtained as a sum of the
crystallization time, which was calculated by Equation (8), and the cooling time, τc, which
was estimated assuming a uniform droplet temperature [21]. The dimensionless cooling
time is calculated as follows:

τc =
2
3

ln θ(1)
Nu

. (9)

(A) T∞ = −15 ◦C, T0 = 3 ◦C (B) T∞ = −20 ◦C, T0 = 3 ◦C

Figure 3. Comparison of the numerical and analytical solutions for the freezing time required to crystallize a layer whose
thickness is equal to 10% of the droplet’s radius.

Our calculations showed that the cooling time stage is relatively short for the droplet
size range considered. The crust formation times calculated by the analytical equation are
close to those computed by the Matlab code; however, the deviations of the analytical solu-
tion from the numerical one increase with an increase in the droplet size. This observation is
explained as follows. The analytical solution does not account for heat conduction through
the liquid core during the solidification process. The larger the droplet size, the higher the
corresponding heat conduction flux because larger droplets are characterized by higher
temperature gradients; therefore, the error associated with neglecting the conduction flux
in the liquid core increases with an increase in the droplet size. Nevertheless, the analytical
equations (Equations (8) and (9)) are accurate enough to be used for practical estimations
of the crust thickness vs. time if the droplet size is relatively small.
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2.2. Particle–Wall Collision

We would like to emphasize that rapid growth of the ice crust is accompanied with
the formation of different defects (e.g., micro-cracks) and, consequently, is characterized
by a relatively low strength. There are numerous research works on solid particle–wall
collisions. It is worth mentioning a couple of recent experimental works [22,23] where ice
particle–wall interactions were studied.

Our estimations showed that a collision of a droplet coated by an ice crust with a wall
is usually associated with plastic deformation of the ice. Elastic deformation corresponds
to a very low collision velocity and, therefore, does not represent a practical interest.

The process of a collision of a partially frozen droplet with a solid surface can be
modeled using the approach suggested in [9]. The corresponding diagram is shown in
Figure 4. We limit our analysis to normal collisions, i.e., we assume that the droplet’s
velocity is normal to the wall. However, this approach can also be employed for oblique
collisions if a velocity component that is normal to the wall is used.

The particle’s displacement during the plastic deformation of the solid crust is de-
scribed by the following equation [9]:

d2z
dt′2

= − πYa(z)
R0ρwV(z)

, (10)

where z = ∆/R0 is the dimensionless droplet displacement during an interaction with the
wall surface, ∆ is the droplet displacement, Y is the ice’s yield strength (assumed to be
Y = 5.2 MPa [24]), a(z) = R0

√
z(2− z) is the radius of the particle–wall contact area, and

V(z) = πR3
0

3 (2− z)2(1 + z) is the volume of the uncrushed particle part. Note that the time
count, t′, for this equation starts from the moment at which the particle touches the wall.

The initial condition for Equation (10) is the known particle velocity at the moment of
touching the wall, U0, which is written as:

z = 0,
dz
dt′

=
U0

R0
. (11)

Figure 4. Particle–wall collision diagram.

Equation (10) has the analytical solution [9], where the maximum dimensionless center
displacement, zmax = ∆(t′end)/R0, is expressed as:

(2− zmax)
2(1 + zmax) = 4 exp

(
−

ρwU2
0

2Y

)
, (12)

where t′end is the collision duration.
In the present work, the equation describing plastic deformation of the ice crust was

utilized to evaluate the probability of a particle sticking to the wall in the following way.
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It was assumed that if the deformation ∆ is smaller than the crust thickness, the droplet
bounces from the wall. In contrast, if the deformation exceeds the crust thickness, the
droplet sticks to the wall due to adhesion caused by the immediate formation of an ice
bridge induced by water released from the droplet’s core.

3. Results and Discussion

To analyze the interaction of a partially solidified droplet with a wall, we introduced
the critical velocity, which indicates the equality of the plastic droplet’s deformation and
the ice crust’s thickness. We assume that if the droplet velocity exceeds the critical velocity,
the droplet sticks to the wall.

For our simplified analysis, we assume that the droplet velocity, representing a
droplet–wall interaction, is equal to the normal-to-the-wall component of the absolute
droplet velocity.

The analysis, which is illustrated in Figure 5, is based on the following computational
algorithm for the critical droplet velocity: (1) The droplet diameter and traveling duration
are given, whilst the droplet velocity is assumed; (2) the temperature distribution along
the droplet radius is calculated numerically by Equation (1) until the moment when the
temperature at the droplet surface is equal to the water crystallization temperature; (3) then,
both the temperature distribution along the liquid core radius and the crust thickness are
calculated by Equations (3) and (4), respectively; (4) the crust deformation is calculated
by Equation (12) and compared to the crust thickness; (5) if the crust deformation is
smaller than the crust thickness, the droplet velocity is increased, and if it is larger, the
droplet velocity is decreased; (6) steps 2–5 are repeated until the difference between the
crust thickness and its deformation becomes smaller than an acceptable error assumed in
advance, which means that the droplet velocity reached the critical value.

In Figure 5A–D, we show the dependence of the critical droplet velocity on the droplet
size for the different traveling times in ambient air. In each figure, (A)–(D) correspond to a
certain air temperature.

Note that it was assumed that the droplet–air relative velocity is constant and equal to
the terminal droplet velocity for all of the computations.

It can be seen that for the fixed traveling time, the critical velocity after an initial rapid
reduction slowly decreases with an increase in the droplet size. This observation is explained
as follows. First, the smaller the droplet size, the faster both the cooling and the further
increase in the ice crust’s thickness. The thicker the crust, the higher the critical velocity.
Second, the smaller the droplet size, the lower the droplet inertia, leading to a smaller
collision-induced deformation than the deformation of a larger particle at the same collision
velocity. Both of these factors lead to the strong effect of the droplet size on the critical
collision velocity. This effect is rapidly reduced with an increase in the droplet size because
the relative contributions of these factors are decreased. An increase in the critical velocity
with an increase in the droplet traveling time is obvious. The longer the time, the thicker
the crust; therefore, a higher velocity is required to break it. A reduction in the ambient
air temperature, which is different for Figures 5A–D, leads to faster droplet cooling and
crust growth. Therefore, an ambient temperature drop causes an upward shift of the curves
due to the increase in the droplet velocities required to break thicker crusts. It is important
to emphasize that the ranges of the critical velocity values obtained in the calculations,
which are illustrated by Figure 5, are realistic, i.e., they correspond to actual wind speeds.
Our results are also in agreement with the field data [25], showing that an increase in the
wind speed leads to an increase in the ice accretion rate. The computational results also
do not contradict to the field data [25], according to which the highest ice accretion rate is
observed in the ambient temperature range of about −10 to −5 ◦C. The same set of field
data show that the ice accretion rate decreases with a decrease in temperature, which can
be explained by the corresponding increase in the critical droplet velocity (see Figure 5).
The decrease in the ice accretion rate observed at ambient air temperatures higher than
−5 ◦C [25] can be explained by a corresponding reduction in the strength of the ice bridge
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that glues partially frozen droplets to the wall surface. The suggested engineering approach
for evaluating the sticking probability of a partially frozen droplet to the solid wall surface
allowed us to evaluate the minimum velocity that indicates this event. This approach was
reduced to solving relatively simple equations. Moreover, the rather accurate analytical
solution of droplet solidification enabled us to avoid solving the partial differential equation
of heat conduction (Equations (1)–(3)). As a result, the developed modeling approach
requires one to solve several analytical equations (Equations (8), (9), and (12)), which do not
require significant computational resources. Thus, the modeling approach looks suitable
for incorporation into the three-dimensional CFD code for computations of the generation
of multiple droplets from a sea surface and their transport to structures that are expected
to be coated with ice. Finally, we would like to emphasize that although the suggested
approach to modeling droplet sticking probability looks oversimplified, it represents a
reasonably justified step toward the development of a comprehensive CFD-based model of
ice accretion.

(A) T∞ = −5 ◦C (B) T∞ = −10 ◦C

(C) T∞ = −15 ◦C (D) T∞ = −20 ◦C

Figure 5. Critical velocity vs. droplet size.

4. Conclusions

An approach for evaluating the sticking probability of a partially frozen spherical
droplet colliding with a rigid wall has been developed. This model includes two sub-
models: (1) cooling of a droplet and formation of an ice crust coating the liquid droplet’s
core; (2) droplet–solid wall interaction. The formation of an ice crust was modeled by
solving the heat conduction equation formulated in the moving coordinate system. A
collision of the partially frozen droplet with the wall was modeled with the assumption of
plastic deformation of the ice crust. It was assumed that the droplet sticks to the wall if the
ice crust deformation exceeds the crust thickness. The critical droplet velocity, indicating
the minimum droplet velocity leading to the sticking event, was introduced. The critical
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velocity was employed as a criterion for illustrating the effects of the droplet size, the total
time required for droplet cooling and solidification, and the ambient air temperature on
the droplet sticking to the wall. The computed dependencies of the critical velocity on
the different factors allow the explanation of the corresponding ice accretion rate trends
observed in the field.

Although the developed modeling approach is very approximate, it has the potential to
be efficiently incorporated into a prospective three-dimensional CFD code for simulations
of ice accretion on different structures as a subroutine. It is also possible to tune our
simplified model for more detailed models if improved accuracy is needed.
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