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a b s t r a c t 

Predicting crystal structure information is a challenging problem in materials science that clearly benefits 

from artificial intelligence approaches. The leading strategies in machine learning are notoriously data- 

hungry and although a handful of large crystallographic databases are currently available, their predictive 

quality has never been assessed. In this article, we have employed composition-driven machine learning 

models, as well as deep learning, to predict space groups from well known experimental and theoretical 

databases. The results generated by comprehensive testing indicate that data-abundant repositories such 

as COD (Crystallography Open Database) and OQMD (Open Quantum Materials Database) do not provide 

the best models even for heavily populated space groups. Classification models trained on databases such 

as the Pearson Crystal Database and ICSD (Inorganic Crystal Structure Database), and to a lesser extent the 

Materials Project, generally outperform their data-richer counterparts due to more balanced distributions 

of the representative classes. Experimental validation with novel high entropy compounds was used to 

confirm the predictive value of the different databases and showcase the scope of the machine learning 

approaches employed. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Crystal structure information is key to predicting materials 

erformance. In particular, the underlying symmetry (i.e. crys- 

allographic space group), which together with the atoms in 

he asymmetric unit and the cell constants define the structure 

dopted during crystallization. Demand for optimal properties has 

ed to an increased focus on materials screening through both ef- 

cient experimental strategies [1] and computational methods, the 

atter being at the forefront of various data-driven initiatives [2] , 

uch as the Materials Project (MP) [3] , JARVIS [4] , AFLOW [5] , and

OMAD [6] to name a few. On the experimental side, databases 

uch as the Inorganic Crystal Structure Database [7] (ICSD) and the 

rystallography Open Database [8] (COD) provide valuable crystal 

tructure data. 

Exhaustive exploration via experimentation is prohibitive 

nd computer-aided materials discovery by way of both high- 

hroughput ab initio simulations [9–11] and artificial intelligence 
∗ Corresponding author. 
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12–15] facilitates identification of interesting compositions in a 

imely manner. Ab initio determination of crystal structures poses 

owever considerable challenges [16,17] . Indeed, although first- 

rinciples methods based on density functional theory (DFT) are 

uite popular for comparing the thermodynamic stability of struc- 

ures, they require educated guesses on the candidate unit cells. In 

ddition, they are computationally expensive and can be inaccu- 

ate, or even unreliable, when entropy effects are relevant but only 

round state enthalpy is evaluated [18] . 

Recently, various data-efficient machine learning approaches to 

rystal structure prediction have been proposed that rival in ac- 

uracy with DFT methods [19–24] . Nonetheless, suitable represen- 

ation of the materials, i.e. input to the machine learning models, 

s still required. The strategies adopted thus far to predict space 

roup based on structure-derived characteristics [25–27] range 

rom employing atomic pair distribution functions [25] to the 

se of string- and graph-based structural representations [28,29] . 

or instance, in the approach proposed by Liu et al [25] , where 

 convolutional neural network predicts the space group of a 

tructure given the corresponding atomic pair distribution func- 

ion, the model achieved a top-6 accuracy of over 90% for 45 of 
nc. This is an open access article under the CC BY license 
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he most heavily represented space groups in ICSD. X-ray diffrac- 

ion patterns of known crystal structures have also been used 

s structure-derived representations to predict space groups from 

on-interpreted diffraction data [30] . 

On the other hand, there has been a growing interest in 

tructure-agnostic approaches, which do not require structural 

haracteristics but instead learn directly from elemental composi- 

ions [26,31–34] . In these cases, sets of descriptors are constructed 

rom compound stoichiometry and elemental properties assumed 

elevant [33,34] or, alternatively, are derived from composition 

hrough deep learning [31,35] . 

In practice there is an additional degree of complexity regard- 

ess of the strategy employed. Each composition often corresponds 

o multiple crystal structures, with the one adopted depending 

n the specific crystallization conditions (pressure, temperature 

nd kinetic factors). Zhao et al attempted to address this problem 

hrough multilabel classifiers for polymorphism prediction by as- 

igning to each sample a set of target labels [27] . The results ob-

ained using the MP database yielded F1-scores (weighted average 

f the precision and recall) of 0.65 for the multiclass prediction of 

pace groups. 

Machine learning studies for space group prediction typically 

se either ICSD or MP data. In this work we have compared five 

ifferent databases popular in the materials science community, 

hree of which contain experimental data, namely COD [8] , Pear- 

on’s Crystal Data (PEARSON) [36] and ICSD [7] , with the other 

wo comprising DFT-calculated structures, namely the Open Quan- 

um Materials Database (OQMD) [37] and MP [3] . We have used 

tructure-agnostic models trained on fixed-length descriptors de- 

ived from the chemical formulas, while polymorphism was ex- 

lored through multilabel classifiers. In addition, a deep-learning 

trategy producing a stoichiometry-to-descriptor map directly from 

he data [31] was employed for comparison. In all cases, the perfor- 

ance was evaluated in terms of the ability to classify any given 

omposition into a specific space group. However, since many of 

he 230 space groups are sparsely populated, we have adopted the 

ame strategy as Liu et al. [25] and performed the analysis solely 

or the 50 most frequent classes in each database. Furthermore, we 

ave independently tested the predictive value of the databases for 

ess stringent classifications into 7 crystal systems, 5 lattice center- 

ng options, 14 Bravais lattices, and 32 point groups. Experiment- 

ng with multiple datasets using different machine learning ap- 

roaches and multiple end-points has not been carried out before 

o the best of the authors knowledge. 

Predicting structural information is particularly relevant in the 

eld of high-entropy (HE) materials. HE alloys were originally de- 

ned as equimolar solid solutions of five or more metals for which 

igh configurational entropy inhibits long-range order [38,39] . In 

act, entropy alone is not a good predictor of full solubility and, 

ike any process governed by the total free energy, ensuring sta- 

ility requires supplementation with a low-enthalpy criterion [40] . 

onetheless, the concept of maximizing configurational entropy to 

nhance solid-state miscibility continues to inspire the exploration 

f unfamiliar composition spaces and the popular, albeit impre- 

ise, high-entropy designation seems destined to endure [40] . The 

potlight has been on the mechanical properties of HE alloys, but 

nterest in functional behaviour is swiftly rising. In particular, the 

ast potential of combining metal solid solutions with structural 

oron, carbon, oxygen or silicon to form HE compounds is becom- 

ng evident [41] , but a priori knowledge on the crystal structure 

dopted for a given composition remains crucial. The structure- 

gnostic models trained on the different databases have been ap- 

lied to the particular case of HE borides, carbides, oxides, silicides 

nd antimonides with experimentally validated crystal structures. 
2 
. Methods and materials 

.1. Datasets 

Five different databases have been analyzed: (i) COD 

8,42,43] (ii) PEARSON [36] , (iii) OQMD [37,44] (iv) MP [3] and 

v) ICSD [7] . COD, ICSD and PEARSON comprehend curated col- 

ections of experimentally solved crystal structures, while OQMD 

nd MP offer computed information, namely DFT-calculated ther- 

odynamic and structural properties, for known and predicted 

aterials. Among these, COD, OQMD and MP are open access, 

hile ICSD and PEARSON are commercial databases. 

For each dataset, we eliminated duplicate entries. Compounds 

or which the formulas could not be parsed and structures that 

ontained only a single element or noble gas(es) were excluded, as 

ell as those that could not be mapped to the 230 crystallographic 

pace groups. After cleansing, the available data were divided into 

wo categories for which (i) there was a one–to–one association 

etween composition and space group or (ii) the composition be- 

onged to multiple space groups. Table 1 provides a summary of 

hese two categories in the processed data together with the frac- 

ion of compounds containing oxygen, a distinctive characteristic of 

he datasets. The first category was used for the multiclass studies 

nd the second one for the multilabel studies. 

The heatmap in Fig. 1 shows the distribution of the 230 space 

roups across the 5 datasets for the one–to–one category. The data 

n COD cover all space groups, while a number of space groups are 

issing in the other databases (1 in ICSD, 3 in MP, 25 in OQMD 

nd 6 in PEARSON). P ̄1 , P 2 1 /c, C2 /m , P nma and F m ̄3 m are among

he most frequent space groups in all databases. 

The pie charts in Fig. 2 a show that the databases exhibit dif- 

erent crystal system distributions. COD contains large proportions 

f monoclinic, triclinic and orthorhombic structures, reflecting a 

igh fraction of low-symmetry mineral compounds. ICSD, PEAR- 

ON and MP exhibit relatively even distributions of the 7 crystal 

roups, while OQMD is dominated by cubic structures, which prob- 

bly stems from a practical interest in high-symmetry compounds 

elevant for mechanical, optical and electronic applications. Fig. 2 b 

hows the distribution of the 5 lattice centering types. Primitive 

ells largely prevail in COD; ICSD, Pearson and MP show lower 

revalence of primitive cells and comparable distributions of all 

entering options; while face centered cells are notably preponder- 

nt in OQMD. 

The heatmap in Fig. 3 a shows the distribution of Bravais lat- 

ices, which reflects the combined frequency of crystal system and 

ell centering options. The heatmap in Fig. 3 b shows the distribu- 

ion of the 32 point groups across the 5 datasets, where the preva- 

ent groups in COD ( ̄1 and 2 /m ) and OQMD ( ̄4 3 m and m ̄3 m ) stand

ut. 

The compounds in the one–to–one category (see Table 1 ) were 

urther analyzed with respect to the number of elements. Fig. F1 in 

he Supplementary Material shows the distribution of crystal sys- 

ems in each subset of multi-element compounds in the different 

atabases. In all cases, only a residual number of compounds con- 

ists of more than 9 elements (see also Table S6 and Figs. F2– F4 

n the Supplementary Material). 

A number of compounds in the different datasets exhibit one–

o–many relationships. However, while OQMD has less than 20 

ompounds in these circumstances, the other four databases con- 

ain much larger numbers (see Table 1 ). As shown in Fig. 4 ,

ompounds belonging to 2 space groups are the predominant 

lass in the context of polymorphism in all databases, while 

nly minor fractions were associated with more than 4 space 

roups. 
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Fig. 1. Heatmap showing the distribution of the 230 space groups in COD, ICSD, PEARSON, MP and OQMD. See also Table S1 in the Supplementary Material. 

Table 1 

Number of entries in each dataset in terms of compound mapping to 1 space 

group (one–to–one) or more (one–to–many). The last column lists the percentage 

of oxygen-containing compounds. 

Dataset #1:1 #1:many % O-containing compounds 

COD 329,080 24,016 73 

ICSD 99,646 7327 48 

PEARSON 160,440 13,489 53 

MP 83,781 14,362 45 

OQMD 322,338 - 6 
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.2. Compound representation 

For each compound, a set of over 200 descriptors was con- 

tructed from the respective composition and elemental properties, 

uch as electronegativity [45] , atomic weight, Zunger pseudopoten- 

ial radius [46] , Mendeleev number, polarizability, heat of forma- 

ion, number of filled/unfilled valence orbitals, heat of fusion etc., 

hich were extracted from the python package Mendeleev [47] and 

rom http://www.knowledgedoor.com . The fixed-length descriptors 

ere based on maximum, minimum, fraction-weighted mean and 
3 
ode, as well as on the average deviations of the elemental prop- 

rties compared to the ones of the prevalent element [4 8,4 9] . 

he descriptors were calculated using software developed in-house 

available from https://github.com/vvishwesh/MaterialDescriptors ), 

hich extends the Magpie [50] set to include additional elemental 

ttributes. The list of the descriptors is provided in the Supplemen- 

ary Material. 

.3. Modelling and assessment 

Classification models were built using random forests [51] em- 

loying the ranger [52] machine learning package available in the 

 Project for Statistical Computing [53] . Random forests uses an 

nsemble of decision trees wherein predictions from multiple tree 

odels are combined. The algorithm is easy to train and has 

een shown to provide robust models in a number of modelling 

asks spanning multiple fields from materials property prediction 

48,54] , drug design [55] , imaging [56] to precision medicine [57] . 

n the random forest model, the number of decision trees was set 

o 500 while the number of variables randomly sampled as candi- 

ates at each split was varied between 2 and the number of input 

ariables. Training and validation of the models was carried out 

http://www.knowledgedoor.com
https://github.com/vvishwesh/MaterialDescriptors
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Fig. 2. Distribution of the (a) 7 crystal systems and (b) 5 lattice centering types (P – Primitive, S – Base-centered, I – Body-centered, F – Face-centered and R – Rhombohedral. 

See also Tables S2 and S3 in the Supplementary Material. 

Fig. 3. Heatmaps showing the distribution of the (a) 14 Bravais lattices; (a – Triclinic, m – Monoclinic, o – Orthorhombic, t – Tetragonal, h – Hexagonal and c – Cubic, P 

Primitive, S – Base-centered, I – Body-centered, F – Face-centered and R – Rhombohedral), and (b) 32 point groups. See also Tables S4– S5 in the Supplementary Material. 

4 
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Fig. 4. Distribution of one–to–many associations (compounds mapping to more than 1 space group). The total number of one–to–many associations found in each dataset 

is listed in Table 1 . Few compounds showed 1–many associations in OQMD and this database is omitted from the analysis. 

u

s

l

I

w

i

o

m

p

e

l

i

t

m

m

s

g

t

o

e

t

R

r

f

a

t

i

F

w

p

–

t

c

t

2

t

u

(

n

p

(

I

t

i

a

t

3

3

a

p

g

b

f

T

t

c

e

F

S

t

a

o

≈
f

a

s  

f

s

t

m

s

s

t

s

w

t

r

t

t

v

O

i

c

sing independent splits of the data into calibration (80%) and test 

ets (20%). The calculations were repeated 5 times to check for any 

arge deviations in performance caused by the random partitioning. 

n order to reduce the dimensionality of the feature space, a pair- 

ise squared correlation cut-off of 0.90 was applied to the train- 

ng set. The feature removal resulted in a reduction of the number 

f variables to 85–140 depending on the particular dataset. Since 

any of the 230 space groups were sparsely populated, we have 

erformed the analysis solely on the 50 most frequent classes in 

ach dataset. In addition, we developed separate models for the 

ess stringent classifications into 7 crystal systems, 5 lattice center- 

ng options, 14 Bravais lattices, and 32 point groups, which taken 

ogether define the space groups. 

Only space groups and crystal systems were considered for the 

ultilabel classification, which involved assigning simultaneously 

ultiple labels (polymorphs) to a composition. The multilabel clas- 

ification was carried out using the multivariate random forest al- 

orithm [58] available in the mlr [59,60] package included in R. For 

he multilabel space group prediction, only the 10 most frequently 

ccurring space groups in each one–to–many datasets were consid- 

red. Due to insufficient data, OQMD was excluded from the mul- 

ilabel analysis. 

Model performance was assessed using 5-fold cross-validation. 

esponse randomization ( y -randomization) was additionally car- 

ied out to ensure that the achieved performance has not resulted 

rom chance. For all classification problems, evaluation metrics that 

re sensitive to class imbalance [61,62] have been used. In addition 

o the standard accuracy, the other performance metrics employed 

nclude: 

P recision = 

1 

m 

m ∑ 

i 

t p i 
t p i + f p i 

Recall = 

1 

m 

m ∑ 

i 

t p i 
t p i + f n i 

 1 − score = 

1 

m 

m ∑ 

i 

2 ∗ ( Recall i × P recision i ) 

( Recall i + P recision i ) 

here for class C i (there being m such classes), t p i are the true 

ositive, and f p i – false positive, f n i – false negative, and tn i 
true negative counts, respectively. For multiclass classification, 

he macro-averaged F1-score was used, i.e. the F1 scores were 

omputed for each class and then averaged via arithmetic mean, 

hereby treating all classes equally. 

.4. Experimental methods 

In the context of screening new materials a set of 7 new 

ransition-metal silicides with high configurational entropy and 

nknown space groups have been produced with an Arc Melter 

Buhler, Model AM500). The composition and symmetry of the 
5 
ew phases were determined, respectively, by X-ray energy dis- 

ersive spectroscopy (EDS) and electron backscattered diffraction 

EBSD) with an FEI NanoLab 600 instrument equipped with Oxford 

nstruments EDS and EBSD detectors. In addition, several high en- 

ropy compounds recently reported in the literature (see Table S10 

n the Supplementary Material for a full list of the compounds and 

ssociated references), have been included in the set of composi- 

ions used to interrogate the databases. 

. Results and discussion 

.1. Multiclass classification 

Multiclass models for the prediction of space groups and sep- 

rately for crystal systems, lattice centerings, Bravais lattice and 

oint groups have been investigated. Although these other cate- 

ories are embedded in the space group designation, they have 

een treated as independent entities to assess differences in per- 

ormance as a function of dataset size and class size uniformity. 

his strategy also allows to retrieve reliable structural informa- 

ion for compounds belonging to least populated space groups (ex- 

luded from the space group models). 

A summary of model performance for the 5 types of multiclass 

valuation carried out using the different datasets is provided in 

ig. 5 . Detailed performance statistics are shown in Table S7 in the 

upplementary Material. In all cases, the statistics obtained for the 

est sets mirror those of the training sets. For 5 independent iter- 

tions, where the models were trained on multiple random splits 

f the data, standard deviations for the calculated statistics were 

±0.03, which suggests that data splitting has not impacted per- 

ormance. 

In the case of crystal system, the models trained on PEARSON 

nd ICSD yielded relatively high F1-scores ( � 0.70), while a con- 

iderably lower value was achieved with COD ( F 1 ≈ 0 . 50 ). The per-

ormance obtained for the test set (see heatmaps of the confu- 

ion matrices in Fig. F5 in the Supplementary Material) indicates 

hat the COD model shows high predictive ability for the prevalent 

onoclinic system, but that the performance for the other crystal 

ystems is much lower due to the data skewness (see Fig. 2 a). A 

imilar trend is seen for the model trained on OQMD, which shows 

he best predictive ability for the overwhelmingly dominant cubic 

ystem. However, here the effect of skewness is less pronounced, 

ith the lower performance for non-cubic systems resulting from 

he inability to discriminate between these less frequently occur- 

ing classes (see Fig. F5 in the Supplementary Material). In con- 

rast, the models trained on ICSD and PEARSON exhibit average 

o good performance for all crystal systems, while the predictive 

alue of MP is more modest and on average comparable to that of 

QMD. 

The predictions for Bravais lattice, point group, lattice center- 

ng and space group followed trends similar to those observed for 

rystal system: the models trained on PEARSON and ICSD outper- 
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Fig. 5. Performance of the random forests models in terms of the F1-scores obtained for the validation sets presented in the typical crystallography order, i.e., crystal systems 

(7 classes), lattice centering options (5 classes), Bravais lattices (14 classes), point groups (32 classes) and space groups (50 most populated of the 230 classes). Values shown 

are an average of 5 independent runs. For detailed performance statistics see Table S7 in the Supplementary Material. 
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ormed the others, while the opposite occured for models trained 

n COD (see Fig. F6 in the supplementary material for the space 

roup results). In general, performance decreased with increasing 

umber of classes ( Fig. 5 ). However, in the case of space group

he performance was boosted by excluding the poorly populated 

lasses from the dataset, making the prediction comparable to that 

chieved for lower class numbers (see Fig. F7 in the Supplementary 

aterial). Nevertheless, this effect was marginal for COD due to its 

trong class imbalance. For example, among the 50 top populated 

pace groups in COD there are more than 90,0 0 0 entries for P ̄1

ut only ≈ 550 for R 3 m . Attempts to address class imbalance us-

ng methods such as undersampling/oversampling of, respectively, 

ajority/minority classes [63] as well as other alternative learn- 

ng algorithms such as XGBoost [64–66] did not improve the pre- 

iction performance (Table S11 in the Supplementary Material lists 

he F1 scores obtained). 

Close examination of the test set predictions for space group al- 

ows to refine the discussion. The heatmap of the confusion matrix 

or the PEARSON model ( Fig. 6 ) shows that most of the 50 space

roups are well predicted and a similar behaviour is observed for 

CSD (see Fig. F6 in the Supplementary Material). The confusion 

atrices for the other datasets show higher levels of misclassifica- 

ion for underrepresented classes, justifying the darker shades at 

he diagonals. Namely, for the COD model ( Fig. 7 ), only a small set

f the space groups (numbers 123, 129, 139, 160, 191, 194, 221, 

25 and 227), reasonably well represented in the dataset, result 

n predictions with accuracy values close to 80%. Thus, in general, 

mproved results are seen for datasets with more even class dis- 

ributions. Relatively high misclassification occurred toward space 

roups 14 and 62. These errors are largely associated with the 

ver-representation of these two classes in COD (see Fig. 1 ), in ad- 

ition to a prevalence of oxygen-containing compounds in the low 
6

ymmetry compounds, which form a significant majority in the ex- 

erimental databases (similar observations were reported by Liang 

t al. [26] ). Nevertheless, the prediction results showed that the 

econd highest probability was typically associated with the target 

pace group. As shown in Table S8 in the Supplementary Material, 

 performance boost in terms of the top- n accuracies is seen as n

aries from top-1 to the top-3, i.e. for the majority of the models 

he correct answer was found to be among the three most proba- 

le predictions. 

.2. Fixed-length vs deep learning representation 

Prediction models based on constructed descriptors (derived 

rom stoichiometry) promote an understandable causality between 

nputs and outputs. In an alternative approach, Goodall and Lee 

31] have recently proposed a deep learning framework called 

oost (Representation Learning from Stoichiometry) that makes 

se of a message-passing neural network to directly learn mate- 

ial descriptors. Each compound corresponds to a dense weighted 

raph, where the nodes represent the different elements weighted 

y the corresponding molar fractions. Code from the Roost repos- 

tory was used to generate deep learning predictions for compari- 

on with the descriptor-based approach used above. Each database 

as randomly divided into training (60%), validation (20%) and 

est (20%) sets (see Table S12 for information on the hyperpa- 

ameters). Table 2 summarizes the prediction performance of the 

eep learning models for both crystal systems and the most fre- 

uent 50 space groups in the 5 datasets. Except for OQMD, the 

erformances of the deep learning models are lower than those 

btained by the descriptor-based random forests approach. Indeed, 

lthough Goodall and Lee [31] have demonstrated good predictive 

bility of their deep learning method in regression problems tested 
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Fig. 6. Confusion matrix of the PEARSON model predicting the 50 most frequent space groups in the PEARSON database. Elements on the diagonal indicate the proportion 

of correct predictions (the integrated intensity across each row is 1.0 which ideally should be concentrated at the diagonal element). Off-diagonal brighter elements indicate 

incorrect classifications. 

Table 2 

Test set performance of the deep learning classification model for both crys- 

tal system and space group prediction (averaged through the 7 and 50 classes, 

respectively, for each dataset). 

Source Crystal System Space Group 

Accuracy F1-score Accuracy F1-score

COD 0.47 0.39 0.34 0.25 

ICSD 0.66 0.62 0.63 0.59 

PEARSON 0.44 0.40 0.67 0.65 

MP 0.60 0.58 0.54 0.50 

OQMD 0.93 0.64 0.93 0.54 

o

p

b

a

a

a

3

c

I

7

n OQMD, training on the other datasets generated rather disap- 

ointing results. Nonetheless, improvements in performance may 

e possible through suitable modifications of both the loss function 

nd network architecture [31] . The addition a self-attention mech- 

nism, which allows for learning of inter-element interactions, may 

lso improve the prediction performance [35] . 

.3. Multilabel prediction 

The models for crystal system prediction in the polymorphism 

ontext (see Table 3 ) yielded F1-scores ranging from 0.54 (for 

CSD) to 0.69 (for COD). The numbers compare favourably with 
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Fig. 7. Confusion matrix of the COD model predicting the 50 most frequent space groups in COD. Elements on the diagonal indicate the proportion of correct predictions (the 

integrated intensity across each row is 1.0 which ideally should be concentrated at the diagonal element). Off-diagonal brighter elements indicate incorrect classifications. 

Table 3 

Performance of the random forest-based multilabel classification model 

predictions of the 7 crystal groups (see Section 3.3 for additional de- 

tails). 

Source Set Accuracy Precision Recall F1-score 

COD TRAIN 0.59 0.74 0.72 0.69 

TEST 0.59 0.74 0.73 0.69 

ICSD TRAIN 0.49 0.75 0.52 0.55 

TEST 0.48 0.76 0.52 0.54 

PEARSON TRAIN 0.55 0.79 0.59 0.61 

TEST 0.55 0.79 0.60 0.61 

MP TRAIN 0.55 0.75 0.62 0.63 

TEST 0.55 0.74 0.61 0.62 

r

f

s

f

m

t

0

b

s

u

l

r

8 
esults reported by Zhao et al., who obtained similar F1-scores 

or descriptor-based models trained on MP data [27] . These results 

how that for polymorph crystal system prediction, COD outper- 

orms the other databases, as expected from the larger size of its 

ultilabel classes (see Fig. 4 ). For polymorph space group predic- 

ion, the models exhibited lower F1-scores with only COD nearing 

.50 (see Table 4 ). Given today’s paucity of data and the large num- 

er of space group classes, building reliable multilabel models for 

pace group prediction clearly requires investing in further pop- 

lating the available crystallographic databases. On the machine 

earning front, Alsaui et al. [67] , recently investigated prominent 

esampling techniques and have advocated the use of random un- 
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Fig. 8. Heatmaps of the F1-scores obtained for crystal system (top row matrices) and space group (bottom row matrices) predictions. Both random forests (RF) and deep 

learning (DL) models were trained independently on COD, ICSD, PEARSON, MP and OQMD, and then used to predict the other datasets. 

Table 4 

Performance of the random forest based multilabel classification model for the top 

10 frequently occurring space groups in each dataset (see Section 3.3 for additional 

details). 

Source Set Accuracy Precision Recall F1-score 

COD TRAIN 0.43 0.65 0.48 0.52 

TEST 0.43 0.65 0.48 0.52 

ICSD TRAIN 0.48 0.78 0.27 0.49 

TEST 0.49 0.79 0.28 0.50 

PEARSON TRAIN 0.54 0.81 0.39 0.55 

TEST 0.54 0.82 0.39 0.56 

MP TRAIN 0.49 0.75 0.37 0.52 

TEST 0.49 0.75 0.37 0.52 
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ersampling (wherein randomly selected samples from the major- 

ty class are omitted) for improved classification performance in 

ulticlass multilabel problems. 

.4. Cross-predictive ability 

More challenging than predicting responses included in the 

atasets on which the models were trained is the question: How 

oes performance vary when models trained on one dataset are 

sed to predict data included in other datasets? Cross-predictive 

apabilities were assessed after excluding compounds common to 

he training sets to prevent biasing i.e. compositions that exist in 

he training or validation datasets, were removed from the test set. 

he results (in terms of F1-scores) for crystal system and space 

roup are summarized in Fig. 8 . The models trained on OQMD and 

P show relatively low F1-scores and follow rather similar trends 

or both crystal systems and space groups. For crystal systems, 

he best overall cross-prediction performance (based on value av- 

raging) was achieved by COD ( ¯F 1 = 0 . 45 ) followed by PEARSON 

 

¯F 1 = 0 . 44 ). In the case of space groups, the best results were ob-

ained using models trained on PEARSON and ICSD. Compared with 

he random forests model, the performance of the stoichiometry- 

ased deep learning predictions was generally poorer, with the 

odels trained on COD and ICSD yielding mean F1 values of 0.37 

nd 0.33 respectively for crystal system prediction. For space group 
9 
rediction, the deep learning models followed similar trends to 

hat of the random forests approach, albeit with lower F1-scores. 

Models for crystal system prediction trained on ICSD and PEAR- 

ON when applied to each other yielded good F1-scores, with the 

imilar class distributions contributing to the higher performance 

see Fig. 2 a and Figs. F8–F17 in the Supplementary Material). Con- 

rarily, and despite the abundance of data in OQMD and COD, 

hen models trained on either dataset are applied to the other 

he results are relatively poor since OQMD is dominated by com- 

ounds with cubic symmetry while low-symmetry crystal systems 

re prevalent in COD ( Fig. 2 a). In the case of space groups, the

odels trained on ICSD and PEARSON achieved good F1-scores for 

ost of the 50 space groups used for training (see Figs. F9 and F12 

n the Supplementary Material). While arguments based on simi- 

ar ratios of compounds to classes are valid in the case of space 

roups, it must be pointed out that the 50 most frequent classes 

ay not be the same in all databases and may differ strongly in 

he relative number of entries. In many cases, we observe that the 

odels record a high precision but low recall as well as the con- 

erse (low precision and high recall) which implies that the model 

t times has a high false positive rate or a high false negative rate 

predicted labels are incorrect) respectively. In particular, for space 

roup the scores are impacted by the fact that some classes con- 

ain very few compounds ( < 10 ). Examination of the top- n accu-

acy values, as seen in Fig. 9 (see also Table S9 in the Supplemen-

ary Material), shows that for a majority of the models, the top-2 

ccuracy values are much higher than those for the top-1 indicat- 

ng that the models are unable to correctly select between the two 

op predictions. 

The error rate variation showed diverse patterns with respect 

o the type of the training vs predicted database (experimental 

r theoretical) as well as to the number of elements in the com- 

ounds. For instance, for the model trained on COD, the error rates 

ssociated with space group prediction for ICSD and PEARSON data 

re below 45% and decrease with the number of elements in the 

ompound, while for theoretical OQMD and MP data the error 

ates are ≥ 70 %. Analysis of the errors also showed that train- 

ng on datasets with relatively large proportion of O-containing 

ompounds (COD – 75%, Pearson – 53%, ICSD – 48%, see Fig. 1 ) 
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Fig. 9. Top-1 and top-2 accuracy of the random forest models when predicting (i) crystal system, (ii) lattice centering, (iii) Bravais lattice, (iv) point group and (v) space 

group. The accuracy values for X_Y correspond to the cross-prediction performances where a model trained on dataset X is applied to dataset Y. 

Fig. 10. Error rates of the random forest models when predicting (i) crystal system, (ii) lattice centering, (iii) Bravais lattice, (iv) point group and (v) space group for 

O-containing vs other compounds. The X_Y errors correspond to cross-prediction performances where a model trained on dataset X is applied to dataset Y. 

10 
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Fig. 11. Comparison of the ability of the random forest models calculated for the 5 datasets to predict crystal systems and space groups for a set of 54 high entropy 

compounds with experimentally verified space groups (see Section 2.4). 
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esulted in considerably lower error rates for predicting structural 

nformation of other O-containing compounds (see Fig. 10 ). This 

ias partly justifies the large errors observed when the models 

rained on COD, ICSD and Pearson are used to predict OQMD data 

6% O-containing compounds). 

The models were also tested on a set of 54 high entropy com- 

ounds with experimentally verified space groups. The perfor- 

ance for crystal system and space group predictions is summa- 

ized in Fig. 11 . In the case of crystal system, the best performance

as achieved with the model trained on PEARSON (89%), while 

he models trained on ICSD and COD attained slightly lower ac- 

uracies of 81% and 76%, respectively. For space groups, the model 

rained on PEARSON achieved much lower accuracy (57%), while 

ther models performed rather poorly, with training on OQMD or 

P leading to correct classification of only 3 compounds. The rel- 

tively low number of compounds with more than 4 elements in 

QMD and MP may also contribute to the poor performance of 

pace group prediction (see Table S6 in the Supplementary Mate- 

ial). Interestingly, the PEARSON model showed an appreciable in- 

rease to 83% when the top-3 accuracy (3 most probable classes) 

alues are considered, while corresponding values for the COD and 

CSD show smaller improvements. 

.5. Variable importance 

The predictive power of the different variables was calculated 

rom the decrease in accuracy associated with their exclusion. Bar 

lots in Figs. 12 (for crystal systems) and 13 (for space groups) 

how the calculated importance (scale of 0–100) of the 10 most 

nfluential variables in the models trained on the 5 datasets. 

The Mendeleev number ( mendeleevnum ), which represents 

he similitude in chemical behaviour, played a key role in the 
11 
lassification of both crystal system and space group. Another set 

f descriptors based on the filled ( NdValence, NpValence ) 
nd unfilled ( NdUnfValence, NpUnfValence ) d and p orbitals 

ere found pivotal for multilabel classification. Variables such as 

ork function, angular momentum quantum number ( lquant ) 
which describes the orbital shape), first ionization energy, single- 

ond covalent radius [68] and heat of fusion represented less in- 

uential and generalized contributions. The present results show 

hat variables, such as specific heat, atomic packing misfitting 

69,70] and the electronegativity scale from Rahm et al. [45] which 

re not included in the Magpie [50] set of features are relevant for 

rediction of crystallographic information. In particular, the atomic 

acking misfitting was shown to be a critical variable for the HE 

ompounds. 

. Conclusions 

In this study we have assessed the predictive utility of machine 

earning models created from 5 different repositories of experi- 

ental or theoretical crystallographic data. For both crystal system 

nd space group predictions, the performance shows strong depen- 

ence on the class distribution in the dataset used for training. 

n the validation tests conducted, the models trained on PEARSON 

and to some extent on ICSD) were found to be more consistent 

nd exhibiting better predictive ability across all other datasets 

nd additional experimental data. This is attributed to a more bal- 

nced distribution of the classes compared to more skewed ratios 

n databases such as COD and OQMD. 

Overall, the present work demonstrates that random forest 

odels (in particular, the ones trained on the PEARSON dataset) 

or both multiclass and multilabel classification problems were 

ble to capture decision rules that can facilitate rapid and directed 
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Fig. 12. Importance of the variables in the random forest models for crystal system prediction (importance normalized to 100). See Supplementary Material for the expla- 

nation of the variables. 

Fig. 13. Importance of the variables in the random forest models for space group prediction (importance normalized to 100). See Supplementary Material for the explanation 

of the variables. 
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esign of new materials. Although the stoichiometry-based deep 

earning approach was shown to perform well on a number of re- 

ression tasks [31] , its current application for multiclass classifica- 

ion has yielded only average results. 

On a final note on the predictive ability of the existing 

atabases, the fact that only about 50 space groups comprise suffi- 

ient data for successful machine learning shows that the curators 

f each theoretical and experimental database must develop spe- 

ific effort s to populate the sparse classes, both to fulfill a sound 

nformation goal and because biased databases tend to delay the 

iscovery of exotic materials with unusual space groups. Clearly, 

he materials science field and the world at large could greatly 

rofit from a major merging operation of these partially incom- 

lete and differently biased crystallographic databases. 
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