
SoftwareX 19 (2022) 101200

m
s
t
t
t
i
w
f
d
e

b
u

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

EspyInsideFunction.jl — extracting intermediate results from
numerical functions
Philippe Mainçon
SINTEF Ocean, Postboks 4760 Torgarden, 7465 Trondheim, Norway

a r t i c l e i n f o

Article history:
Received 4 February 2022
Received in revised form 8 August 2022
Accepted 25 August 2022

Keywords:
Meta-programming
Julia language
Finite element analysis

a b s t r a c t

EspyInsideFunction allows to write software in the Julia programming language Julia (2017) [1]
to make the value of variables within a function’s local scope — variables that are neither arguments
nor return values, available to the caller. This is relevant for functions within a solution process (e.g.
a function which return value is to be minimized by some iterative scheme). In such a setting it is
natural to tailor the function’s interface to the solution process. However, internal results within the
function, while not relevant to the solution process, may be wanted output from the analysis. The
package allows to write such a function with an interface tailored for the solution process, and then
uses meta-programming to create a second version of the function, with a modified interface, which
can be called to extract relevant intermediate results.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 0.2.1
Repository https://github.com/ElsevierSoftwareX/SOFTX-D-22-00032
Code Ocean compute capsule n/a
Legal Code License MIT License
Compilation requirements, operating environments & dependencies Julia 1.7+
Documentation/manual philippemaincon.github.io/EspyInsideFunction.jl
Support email for questions philippe.maincon@sintef.no

1. Motivation and significance

In the process of computing return values from their argu-
ents, functions typically assign intermediate results to local
cope variables. These intermediate results are not returned by
he function because they are not of interest for the code calling
he function. Consider a finite element code: Each finite element
ype has a function (or method) residual, whose arguments
nclude degrees of freedom (for example: displacements), and
hose return values include residuals (in the same example:

orces). The solution process then adjusts the degrees of free-
om in order to make all residuals (adequately summed over all
lements in the model) close to zero (force equilibrium).
The intermediate results (for example stresses) are not needed

y the solution process: the solution algorithm does not explicitly
se stresses to adjust the degrees of freedom. However some

E-mail address: philippe.maincon@sintef.no.

intermediate results may be wanted from the solution process:
a typical motivation for a finite element analysis of a structure is
to determine the stresses within the structure, so stresses need
to be available for visualization and other post processing.

One obvious solution would be to modify the function in-
terface, and return any intermediate results wanted from the
solution process in addition to those wanted by the solution
process. This approach has its drawbacks:

1. Not all intermediate results may be wanted from the so-
lution process, but the quantity of intermediate results
of potential interest may be large. To avoid unnecessary
storage of intermediate results, the user would have to
specify which results are wanted. The code of the function
would be cluttered by test and storage code.

2. Handling the transfer of intermediate results also clutters
the code of the solution process.
https://doi.org/10.1016/j.softx.2022.101200
2352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101200
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101200&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00032
https://philippemaincon.github.io/EspyInsideFunction.jl
mailto:philippe.maincon@sintef.no
mailto:philippe.maincon@sintef.no
https://doi.org/10.1016/j.softx.2022.101200
http://creativecommons.org/licenses/by/4.0/

P. Mainçon SoftwareX 19 (2022) 101200

w
‘
p
t
f

2

2

p
p

l

c
p
a
e
i
n
a

i
w
f
i
g
t
f
t
r
c
t

2

f
a

EspyInsideFunction was developed as part of a project in
hich a in-house finite element code (referred to thereafter as

‘Lithe’’) was written in the Julia language. The emphasis in this
roject was on making it as easy as possible to implement new
ypes of finite elements and new solvers, so that modifying the
unctions interface was not preferred.

. Software description

.1. Approach

EspyInsideFunction ’s approach is to use Julia’s meta-
rogramming functionality to generate two versions of the ‘‘es-
ied’’ function’s code (in the above example: residual):

1. The fast version, which is essentially the ‘‘espied’’ func-
tion un-tampered, and does nothing to save or export
intermediate results. This version is used by the solution
process.

2. The ‘‘spying’’ version, which is called to extract intermedi-
ate results. It receives additional parameters:

• key, (input) which describes what intermediate re-
sults to store, and where to write them into the vector
out.

• out, (pre-allocated output) a vector (or vector-shape
view into a larger array) in which to store intermedi-
ate results.

Code is inserted in this version to store intermediate results
where requested.

The numerical analysis uses EspyInsideFunction as fol-
ows:

1. The solution process runs using the fast version and the
solver stores the inputs to the espied function (in the
example, degrees of freedom and internal states, for each
finite element).

2. Then, the spying version of the code can be called with said
inputs, and a request for intermediate results, to extract the
intermediate results.

This design provides great flexibility. For example, a thread
ould be used to extract and present results as the analysis
rogresses, with the possibility to adjust on the fly which results
re exposed. Another possibility is to store all the inputs to the
spied function, and to provide functionality to allow the user to
nteractively request intermediate results. In both cases: there is
o need to decide before the analysis which intermediate results
re of interest.
Another important aspect of EspyInsideFunction ’s design

s memory management: this ‘‘espying’’ approach can be used
ithin loops over multiple function calls (in the example: on

or each element in a finite element mesh, and for each load
ncrement in the analysis). To avoid memory fragmentation and
arbage collection overhead, all intermediate results are copied
o a single large array. This requires a key, discussed in the
ollowing, to address elements within the array. More specifically,
he key provides indices into ‘‘flattened’’ vector of intermediate
esults extracted from one call to the espied function. For multiple
alls, the array of results is created with additional dimensions (in
he example, element and increment).

.2. Software functionalities

The developer of a function to be espied must provide said
unction, annotated to point out available intermediate results,

of the name and size of available intermediate results, including
the handling of intermediate results that appear inside of loops
or functions called by the espied function. See Section 3.2 for
examples of such functions.

EspyInsideFunction provides three components:
@request to specify which intermediate results are wanted,
makekey to generate the above-mentioned key and @espy to
generate ‘‘fast’’ and ‘‘spying’’ code for the espied function.

@request. The macro @request allows the user to describe which
intermediate results are wanted. For example

req = @request gp [] . (s , material . (a , b))

states that withing the espied function, there is a loop of fixed
length of the form

for igp = 1:ngp

and inside the loop, the variable s is requested. Within the same
loop, there is also a call to a function called material, within
which variables a and b are requested.

The macro just captures the string and returns the syntax tree
for that string, as generated by Julia’s parser.

Makekey. The function makekey takes as input the syntax tree
generated by @request and the data structure requestable.
Combining both, it returns the key. This key is a data structure of
nested vectors and named tuples, with names corresponding to
names in the espied function: sub-functions, loop variables and
variable names. The content of this data structure is indices into
a vector out that will be returned by the ‘‘spying’’ version.

@espy. This is the macro, which, given annotated code, generates
the fast and spying codes. A variant @espydbg is also provided,
that outputs both codes.

2.3. Software architecture

The generation of the spying code is made in several passes:
@espy generates the fast code, and a precursor to the spying code.
This precursor code contains further macro calls: @espy_loop,
placed at the top of for-loop blocks, @espy_record, placed right
after an assignment to an espied variable and @espy_call,
placed right after a call to an espied sub-function.

This precursor code can be inspected by replacing the @espy
macro invocation by the verbose @espydbg.

In the present version, @espy_loop, @espy_record,
@espy_call generate a small code with a test on what is re-
quested in key. One could get some performance improvement
by having these macros generate different code depending on the
key.

3. Illustrative examples

3.1. Package documentation

In addition to the example below, the documentation provides
a complete usage example: github.com/PhilippeMaincon/
EspyInsideFunction.jl/ blob/master/test/EspyDemo.
jl.

3.2. Basic usage

The following shows annotated code for espied function
residual and a sub-function material. Note the use of colons
to annotate variables that receive an assignment, the annotated
function call, and the @espy macros at the head of both func-
nd a data structure requestable, which provides a description tion declarations. The data structure requestable (used by

2

P. Mainçon SoftwareX 19 (2022) 101200

m
s
f
w

e

e

m

T
s

w
a

N
n
r
a

y
s

3

p
t
b
d
m

akekey) here states that within a for loop of length 2, two
calars z and s are requestable, and that within the espied
unction, there will be a call to the function material, within
hich more results are requestable.

using EspyInsideFunction
@espy function res idual (x , y)

ngp = 2
r = 0
for igp = 1:ngp

: z = x [igp]+y [igp]
: s , r = : material (z)

end
return r

nd
@espy function material (z)

: a = z+1
:b = a∗z
return b , 3 .

nd
requestable = (gp = forloop (2 , (z = scalar , s = scalar ,
material = (a = scalar , b = sca la r))) ,)

The following is the code written by the user to extract inter-
ediate results.

req = @request gp [] . (s , material . (a , b))
key , nkey = makekey(req , requestable)
out = Vector { Float64 } (undef , nkey)
x , y = [1 . , 2 .] , [. 5 , . 2]
r = res idual (out , key , x , y)
b2 = out [key . gp [2] . material . b]

he user first specifies which results are wanted, in a custom
yntax.
A key is generated which allows the spying function to know

here to write intermediate results, and the user know how to
ccess these. In the present example, key is such that

key . gp [1] . s == 1
key . gp [1] . material . a == 2
key . gp [1] . material . b == 3
key . gp [2] . s == 4
key . gp [2] . material . a == 5
key . gp [2] . material . b == 6

ote that the integers in key are unique, and form a sequence.
key is the value of the highest integer, useful for allocating the
esult storage out. If awas an array, then key.gp[1].material.
would be an array of integers, of the same shape as a.
An array out is then allocated to store the intermediate re-

sults.
Assuming the solution process is completed (values of x and
have been obtained, using the fast version of residual), the

pying version of residual is called. Note the two additional
parameters.

The key is finally used to address results of interest in out.

.3. Integration into a finite element software

In the finite element software Lithe which motivated the
resent package, a data type is associated to each finite element
ype (volume, point load, beam etc.). Methods residual (to
e espied) and requestable are associated to each element
ata type. An element ‘‘has-a’’ and calls, a material model, and
aterials are organized in a similar fashion:

s t ruc t Volume
N : : Matrix { Float64 }

. . .
end

@espy function res idual (o : : Volume , y)
. . . # interpolat ions , c a l l to material model , quadrature
return r

end

function requestable (o : : Volume)
at_gp = (F = (Nx , Nx) , material = requestable (o .mat))
return (X = (Nnod , Nx) , gp = forloop (Ngp , at_gp))

end

@espy function material (o : : Material , F)
. . .
return s t res s

end

function requestable (o : : Material)
return (s t ra in = (Nx , Nx) , s t res s = (Nx , Nx))

end

Then the user writes a script to run the analysis and extract
the results:

. . . # code for meshing and boundary conditions
s ta te = run (analys is) # state [i s tep] [iincrement] . y

are degrees of freedom

req = @request X , gp [] . (F , material . (s t ress , s t ra in))
out , key = elementresult (s ta te [i s tep] , req , Volume ,

i e l s = 1:1000 , i i n c r s =[2 ,3 ,50])
s t ra in = out [key . gp [2] . material . s t ra in , ielement , iincrement]

The finite element solver returns a data structure state with
the ‘‘essential’’ results of the whole analysis. These are the degrees
of freedom of the system (and, taken out of the above example for
clarity, the state variables for each element, for example plastic
strains).

Lithe provides the method elementresult that can be used
to extract intermediate results from multiple elements of the
same type, at multiple load increments. Building on this, Lithe
also provides functionality to extract intermediate results, inter-
polate them to the model’s nodes and create a visualization. This
is not described further here.

Using dispatching, elementresults calls the relevant re-
questable method, and uses the output to call makekey. It
then has the necessary information (nkey) to allocate a multi-
dimensional array out in which to store the intermediate results,
for all requested elements and load increments. elementre-
sults then loops over increments and elements. Within the loop,
it calls the spying version of the relevant residual method with
each element’s internal state and degrees of freedom, and a slice
of out.

4. Impact

In Lithe, the use of EspyInsideFunctionwas combined with
automatic differentiation [2,3] to simplify the code of resid-
ual: The following is from the implementation of a simple
displacement-based element for static problems in mechanics.

@espy function res idual (o : : Volume , t : : Real , y , r : : Real1 ,
stateo , staten , statecv)

ixdof = o . kind . ixdof
:X = y [ixdof] . + o . Xo
for igp = 1:ngp

N, B , dVo = o . kind .N[igp] , o . B[igp] , o . dVo[igp]
3

P. Mainçon SoftwareX 19 (2022) 101200

e

W
t
e
o
d
t
a

a
a

e
p
c
a
e
t
l

s

i
a
o
e

a

5

e
J
p
p
c

: F = (B∗X0) ’
S , f , staten [igp] = : material (o .mat , t , F ,

s tateo [igp] , s tatecv)
r [ixdof ’] += (f∗N’ + F∗S∗DN)∗dVo

end
nd

ithout any mention of incremental matrices, and no visible code
o extract intermediate results, the numerical formulation of the
lement can be quickly read from the code. Compared to a previ-
us generation of code in Fortran 90, written without automatic
ifferentiation and automated extraction of intermediate results,
he length of code is reduced by a factor 10 for simpler elements
nd more for hybrid formulations, without loss of performance.
At the same time, the solver code in Lithe (vector and matrix

ssembly) is written without concern for result extraction, there
lso improving readability.
Within Lithe, EspyInsideFunction has contributed to low-

ring the cost and complexity of creating and maintaining high
erformance finite element solutions. These lower costs will fa-
ilitate the creation of commercially viable FEM solvers for niche
pplications (like [4,5], which were written without EspyInsid-
Function), and other tailor-made solvers by researchers. By
aking out the drudge part of element development, this also
owers the threshold to induce students into this type of work.

The technique is expected to be applicable other numerical
oftware, in particular those with

• iterative solutions
• plug-in components that should have simple code

ncluding, computational fluid dynamic code, neural networks,
nd so forth. It must be noted that the macro @espy was devel-
ped specifically for FEM applications, and thus may need some
xtension to tackle Julia syntax not used in the FEM context.
Julia language’s macros, operating on syntax trees inspired and

llowed the creation of EspyInsideFunction.

. Conclusions

EspyInsideFunction demonstrates that it is possible to
xtract intermediate results from within functions written in the
ulia programming language, without code clutter and with good
erformance. EspyInsideFunction allows to create numerical
rocedures in which the exact results wanted from the analysis
an be decided during or after the analysis.
There is of course scope for improvement:

• It should not be necessary to provide a requestable data
structure. @espy could generate a third version of the espied
call, which when called (only once) would survey the name
and size of each intermediate result.

• More general Julia syntax should be supported. For example,
loops with enumerate are not supported in the present
version.

• Bugs in the espied functions lead to error messages which
are not made less readable by @espy. However internal
errors in @espy (failing to process unsupported Julia syntax)
or in the spying version of the espied function (disagree-
ment on array size) result in arcane error messages.

• A less terse and rigid syntax for inputs to @request might
be easier to use.

• The type of the output of function makekey depends on the
input. This in turn means that the spying version of the code
will be recompiled for ‘‘each’’ request. Ensuring makekey is
type-stable would improve performance.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

EspyInsideFunction was developed as a part of the Lithe
project, awarded by SINTEF Industry, financed by the Research
Council of Norway’s general subvention to SINTEF Industry.

Several anonymous users on discourse.julialang.org
generously contributed their time and expertise in helping this
author understand basic and advanced features of Julia needed
to create EspyInsideFunction. The reviewer to this paper pro-
vided extensive feedback which significantly contributed to the
quality of both this paper and the software. These contributions
to EspyInsideFunction are gratefully acknowledged.

This application was inspired by the capabilities of the Julia
programming language. The author expresses admiration and
gratitude to Julia’s creators.

Current executable software version

At the Julia prompt, type

ju l i a > using Pkg
ju l i a > Pkg . add (" EspyInsideFunction ")

to download and install the latest version of the package (in-
cluding dependencies) from the Julia registry. The package should
then be ready for use:

ju l i a > using EspyInsideFunction

References

[1] Bezanson Jeff, Edelman Alan, Karpinski Stefan, Shah Viral B. Julia: A fresh
approach to numerical computing. SIAM Rev 2017;59:65–98. http://dx.doi.
org/10.1137/141000671.

[2] Wengert RE. A simple automatic derivative evaluation program. Comm ACM
1964;7(8):463–4. http://dx.doi.org/10.1145/355586.364791.S2CID24039274.

[3] Revels J, Lubin M, Papamarkou T. Forward-mode automatic differentiation
in Julia. 2016, arXiv:1607.07892.

[4] Bruaseth Sævik. Theoretical and experimental studies of the axisym-
metric behaviour of complex umbilical cross-sections. Appl Ocean Res
2005;27(2):97–106, 2005.

[5] Hoang Hieu, Mainçon Philippe, Philippe David, Coudert Terence,
Bjørset Arve, Saether Sturla. Novel computational tool for efficient
structural analyses of geothermal wells. Geothermics 2021;92:102058.
4

http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1145/355586.364791.S2CID24039274
http://arxiv.org/abs/1607.07892
http://refhub.elsevier.com/S2352-7110(22)00119-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00119-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00119-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00119-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00119-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00119-4/sb5
http://refhub.elsevier.com/S2352-7110(22)00119-4/sb5
http://refhub.elsevier.com/S2352-7110(22)00119-4/sb5
http://refhub.elsevier.com/S2352-7110(22)00119-4/sb5
http://refhub.elsevier.com/S2352-7110(22)00119-4/sb5

	EspyInsideFunction.jl — extracting intermediate results from numerical functions
	Motivation and significance
	Software description
	Approach
	Software functionalities
	Software architecture

	Illustrative examples
	Package documentation
	Basic usage
	Integration into a finite element software

	Impact
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Current executable software version
	References

