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A B S T R A C T   

The advance in analytical methodology is critical for progress in 1) biorefinery and 2) torrefaction product 
commercialization. The chemical characterisation of torrefaction liquid and concentrated tar produced by Arigna 
Fuels’ pyrolysis plant allowed identification of polar, volatile, non-volatile compounds, species containing 
organically bound sulphur and nitrogen heteroatoms. The results suggest that only combined use of ion chro-
matography with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, and 1H-13C HS-QC can provide 
comprehensive information on sugar-like material and lignin-derived compounds. Due to the technical robust-
ness and short analysis time, Fourier Transform Ion Cyclotron Resonance Mass Spectrometer was found to be a 
promising tool for tar analysis containing heavy molecular compounds. Importantly from a technological 
standpoint, the presence of aromatic and saturated compounds in both liquid and concentrated tar samples 
indicated the predominance of lignin-derived compounds over products originating from cellulose and hemi-
cellulose polymers.   

1. Introduction 

Increasing human population and global warming require the 
development of new sustainable, environmental-friendly and cost effi-
cient technologies for energy conversion. Torrefaction is a mild pyrolysis 
process that converts biomass into a carbon enriched material with high 
energy density and decreased oxygen content. Conversion of olive res-
idues to value-added products via torrefaction can provide a potential 
solution to solid waste problems, while the liquid tar by-product can 
provide a valuable source of green carbon for the chemical, metallur-
gical and construction industries [1–3]. Recently, tar product has been 
defined as all the hydrocarbons with a molecular weight higher than 
benzene [4]. Compositional studies on liquid tar by-products have 
resulted in several research papers in recent years. Knowledge of the 

composition of liquid tar by-product is important to better understand 
the torrefaction process as well as further refinement of value-added 
products. 

The chemical structure of torrefaction tar possesses an analytical 
challenge to study. This is due to the presence of complex mixtures 
containing compounds of low and high polarity which are tendentious to 
resolve with conventional techniques [5]. During torrefaction, three 
different product groups are formed (1) concentrated char, (2) con-
densable volatile organic compounds comprising water, acetic acid, 
higher aldehydes, alcohols, and ketones, and (3) non-condensable gases 
such as CO2, CO, and small amounts of methane [6]. The condensable 
liquid products can be further divided into four subgroups: (1) water 
generated as a by-product from biomass thermal decomposition, (2) 
freely bound water that has been released through evaporation, (3) 
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polar organic species e.g. acetic acid, methanol, furfural, methoxy- 
phenols and fatty acids, and (4) lipids, which contain higher molecu-
lar weight compounds such as waxes [7]. Literature defines the liquid tar 
as an organic product that contains all four subgroups [8]. During 
biomass torrefaction, evolved gaseous tars can condense on the walls of 
exhaust pipes leading to gas-line blockages and formation of concen-
trated tar products [9]. Acetic acid is a major product in the liquid 
fraction that originates from acetoxy- and methoxy-groups present as 
side chains in xylose units [10]. In addition, small quantities of formic 
acid, lactic acid, furfural, hydroxyl acetone, and traces of phenol were 
detected in the condensed liquid sample [11]. 

Many attempts are being made to characterise physicochemical 
properties of pyrolysis liquid products [12]. However, the inherent 
complexity of the liquid products from biomass torrefaction hinders a 
full identification of their constituents. Literature reports that torre-
faction of Pubescens at 200 ◦C generated liquid tar samples with com-
pound molecular weights varying from 200 to 2000Da using gel 
permeation chromatography techniques [13]. Reversed-phase liquid 
chromatography (LC) with UV detector indicated that coal/ biomass tar 
might contain large PAHs with more than 7-rings [14]. This indicates 
that compositional analysis of the torrefaction tar requires the devel-
opment of methods for preparation, introduction and ionization of low 
and heavy molecular fractions [15]. Literature sources also reported that 
analytical techniques for bio-oil characterisation can be classified in (1) 
GC–MS detectable volatile compounds, (2) total carbohydrates (slightly 
dehydrated sugars and furans), (3) phenols, (4) highly dehydrated 
structures rich in carbonyl groups, and (5) carboxylic groups [16]. 

The accuracy of tar characterisation using chromatographic methods 
only is limited because only a small fraction of the molecular-weight 

distribution can be analysed [17]. The reassignment of carbohydrates 
and methoxy/hydroxy regions during 13C NMR analysis of tar samples 
can hinder functional group assignment of the cellulosic component, 
leading to challenges in the distinction between aromatic and carbo-
hydrate products [18]. Although the phenol content significantly varies 
in tar samples depending on the method used, only a small fraction (less 
than 10%) is shown in the form of GC–MS detectable phenols [19]. This 
indicates that most of these phenols are condensation reaction products 
in the form of high molecular weight compounds [16]. Moreover, the 
efficiency of electron ionization using various spectroscopic techniques 
for tar structure characterisation increases with the size of the molecule 
[20]. High resolution Fourier Transform Ion Cyclotron Resonance Mass 
Spectroscopy (FT-ICR MS) can be used to characterise tar structure with 
respect to molecular weight distribution, exact masses, chemical for-
mulas and isoabundance plots [21–25]. Compared to MALDI-TOF plat-
forms, FT-ICR has a better resolution in a similar detection range 
[26–28]. 

In the present study, an approach for the detailed componential 
characterisation of torrefaction tar has been shown for the first time. The 
aim of this study was to evaluate the chemical composition of torre-
faction tar using FT-ICR MS, two-dimensional 1H-13C HS-QC NMR, 
headspace gas chromatography-mass spectrometry (HSGC-MS), GC-FID, 
MS, UV-Fluorescence and ESI. In addition, the two-dimensional 1H-13C 
HS-QC was conducted for both liquid and concentrated tar samples to 
determine differences in their chemical composition. Torrefaction tar 
viscosity was characterised using a rheometer. The differences in 
physicochemical properties of torrefaction tar were correlated to the 
kinetics derived from thermogravimetric analysis. 

Fig. 1. Arigna torrefaction plant combined with the destoning of olives schematic.  
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2. Materials and methods 

2.1. Raw materials 

Washed olive pits (Olea europaea) were sourced from the Mediter-
ranean region and are a by-product of the olive oil industry where they 
are separated, crushed to < 3 mm and air dried. Figure 1 illustrates the 
biomass torrefaction and briquetting processes at Arigna Fuels com-
bined with olive destoning offsite. Prior to olive oil extraction, stones are 
removed from the olive fruit, washed to provide skin and pith for animal 
feed and later dried in large piles [29]. The torrefaction of olive stones 
was carried out at 280 ◦C during a 24h long production [30]. The dryer 
and pyrolysis reactors are both heated indirectly with thermal oil. Liq-
uefied petroleum gas (LPG) is used to heat the plant initially and start 
the torrefaction process, but when gases are produced, these are com-
busted in a thermal oxidizer to provide heat to the drying and torre-
faction processes and no further heat source is required. The heat 
recovered from thermal oil is used for the drying of coal briquettes 
produced at the integrated coal briquetting plant. The torrefied biomass 
is cooled to room temperature, further crushed and briquetted. Liquid 
tar was collected from an opening located in the exhaust pipe during 
torrefaction and stored at ambient temperature in a desiccator. The pipe 
temperature and sampling port is maintained at 220 ◦C to prevent 
condensation of any organic matter. Volatiles emitted during torre-
faction can condense on reactor walls forming a viscous tar product 
leading to blocked pipes between the torrefaction unit, thermal oxidizer 
and conditioning stage. The concentrated tar sample was collected from 
the thermal oxidiser feed pipes, following completion and cooling (< 50 
◦C) of the torrefaction process due to a safety precaution. 

2.2. Characterisation techniques for liquid and concentrated tar analysis 

2.2.1. Elemental analysis 
A Leco TruSpec CHN 628 series instrument was used to analyse the 

tar samples for carbon, hydrogen, and nitrogen content following ASTM 
D5373-08. The oxygen content was calculated by difference. 0.15g of 
the oil sample was weighed into a tin foil cup, and then approximately 
0.3g of Leco’s Com-Aid was added on top and the foil cup was sealed by 
hand. Three-point calibrations were completed using LECO 502–092 
EDTA. 

2.2.2. Lignocellulosic analysis 
The samples were hydrolysed to determine structural carbohydrates 

and lignin in tar samples [31]. The process includes two main steps: 1) 
two-stage acid hydrolysis; 2) separation of the hydrolysate from the acid 
insoluble residue (AIR) through gravimetric filtration. Klason lignin (KL) 
was determined by measuring the weight difference between the AIR 
and the ash content. Acid soluble lignin (ASL) was determined by 
absorbance of the hydrolysate at 205nm. The 8453 UV–vis spectro-
photometer (Agilent, USA) was used to determine the absorbance which 
was converted to concentration using Beer’s law [31]. ICS-3000 AS50 
ion chromatography (Dionex, USA) was used to determine the ligno-
cellulosic sugars obtained after hydrolysis. 10 μl of the diluted sample 
was injected to achieve sugar separation into arabinose, rhamnose, 
galactose, glucose, xylose, and mannose. The analysis consisted of 
diluting the hydrolysate samples 20x with a deionised water solution 
containing known amounts of internal standard (melibiose). Deionised 
water was used as the eluent; the flow rate applied was 1.5mL min− 1, 
and the column/detector temperature was 21 ◦C. Furthermore, NaOH 
(300mM) was added to the post-column eluent stream due to the photo- 
diode array detector requiring an alkaline environment in order to 
detect the presence of carbohydrates. NaOH was added using a Dionex 
GP40 pump, at a flow rate of 0.3mL min− 1. 

2.2.3. Thermogravimetric analysis 
Moisture, fixed carbon, volatiles, and ash content of the liquid tar 

sample were determined using a thermo-gravimetric analyser (TGA) 
SDTA851e (Mettler Toledo, US). Briefly, moisture content was measured 
as the weight loss after the tar was heated in a crucible from 25 to 120 ◦C 
and held at this temperature for 3min under nitrogen gas at a flow rate 
of 50ml min− 1. The tar sample was then heated from 120 to 950 ◦C 
under nitrogen gas to determine the volatile content, following which it 
was held for 5min and later cooled to 450 ◦C. Ash was determined after 
heating the tar from 450 to 600 ◦C under flowing oxygen (50ml min− 1). 
All measurements were conducted in duplicate to establish sufficient 
reproducibility. 

2.2.4. Qualitative 1H-13C heteronuclear single quantum coherence analysis 
Samples of around 30.2mg were dissolved in 550 μl of chloroform or 

acetone (0.05% TMS). Heteronuclear single quantum coherence (HS- 
QC) spectra (1H at 500.13MHz and 13C at 125.7MHz) were recorded at 
25 ◦C on a Bruker Avance III HD 400MHz instrument equipped with 
TopSpin 2.1 software. The pulse sequences zgpr were used to suppress 
the residual water signal. 1H-13C HS-QC spectra were obtained applying 
the following parameters for acquisition: TD (F2 and F1) = 2048 and 
256Hz. The Bruker COSY pulse program in DQD acquisition mode was 
used, with NS = 64; TD (F2 and F1) = 2048 and 256Hz; SW (F2 and F1) 
= 129836ppm and 215ppm; O2 (F2) = 12575.78Hz, O1 (F1) =
2749.02Hz; D1 = 1.0s; CNST2 (1 J(C–H) = 145; acquisition time F2 
channel = 0.1576960ms, F1 channel = 0.0047336ms; pulse length of 
the 90◦ high power pulse P1 was optimized for each sample. The Bruker 
Cosy pulse program in DQD acquisition mode was used, with NS = 32; 
TD (F2 and F1) = 2048 and 128Hz; DS = 8; SW (F2 and F1) =
13.0627ppm; O1 (F2 and F1) = 2768.55Hz. 

2.3. Characterisation techniques for liquid tar analysis 

2.3.1. Solubility 
Liquid tar was dissolved in 8 different solvents obtained from Merck 

and Fluka with > 99% purity. 1g of tar and 20ml solvent were added to 
a vial which was placed in an ultrasonic bath for 2h. Afterwards, the 
solution was filtered using a PTFE filter with a pore size of 0.45 μm 
under vacuum and the residue was washed until the filtrate became 
totally clear. The residue was dried to constant weight, as reported in 
Guillen et al. [32]. 

2.3.2. UV-Fluorescence (synchronized) 
Liquid tar was diluted in HPLC grade methanol to 100ppm and 

analysed on a Shimadzu RF 5301 pc (software: Panorama Fluorescence 
2.1) spectrometer. Synchronous fluorescence spectra at constant wave-
length difference were set. The excitation wavelength was scanned from 
250 to 700nm, and emission wavelengths were recorded at 15nm in-
tervals (from 265 to 715nm). The excitation slit width and emission slit 
width were set at 3nm. Data was collected every 1nm. 

2.3.3. KF titration 
Water content of the sample was determined by Karl Fischer titration 

as per ASTM E203-08 (Standard Test Method for Water Using Volu-
metric Karl Fischer Titration) using a Schott Instruments TitroLine Karl 
Fischer volumetric titrator. Deionized water (> 18.18MΩ cm) was used 
for calibration. 

2.3.4. Fourier transform ion cyclotron resonance mass spectrometer 
10mg of tar sample was dissolved in 990 μl of tetrahydrofuran. Prior 

to FT-ICR analysis, a 1.5ml aliquot was pipetted into the autosampler 
screw cap vial. Mass spectra were acquired using a Bruker solari 
XRFourier transform ion cyclotron resonance mass spectrometer (Bruker 
Daltonik GmbH, Germany) equipped with a 12T refrigerated actively- 
shielded superconducting magnet (Bruker Biospin, France) and the 
new dynamically harmonized analyser ParaCell (Bruker Daltonics 
GmbH, Germany). The mass range was set to m/z 150–4000 using 4 M 
data points with a transient length of 1.6s resulting in a resolving power 
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of 450000 at m/z 400 in magnitude mode. A linear calibration was 
applied. The root mass square (RMS) mass error of the recalibration of 
all acquired spectra was better than 150ppb using a linear calibration. 
The molecular formula calculation was performed in Composer 1.0.6 
(Sierra Analytics, USA) using a maximum formula of CnHhN3O3S3. The 
relative abundances of the compound classes were calculated with 
Composer software. Statistical analysis was performed with the software 
ProfileAnalysis 2.1 (Bruker Daltonics GmbH, Germany). Carbon number 
and double bond equivalence (DBE) number were determined for each 
mass peak, using equation 1 [33]: 

DBE = C − (H/2)+ (N/2)+ 1 (1)  

2.3.5. Electrospray ionization mass spectrometry 
5mg of liquid tar was dissolved in methanol containing 1% acetic 

acid (2ml) and directly analysed in both positive and negative ion 
electrospray ionization-mass spectrometry (ESI-MS, m/z 90–2000) on a 
Finnigan LCQ-Deca instrument (Thermoquest, USA) at a flow rate of 10 
μl min− 1. Data analysis was based on the calculation of number average 
molar mass (Mn) as Mn=

∑
MiNi/ 

∑
Ni and the weight average molar 

mass (Mw) as Mw=
∑

M2
i Ni/ 

∑
MiNi with Mi as m/z and Ni as intensity of 

ions [34]. 

2.3.6. Headspace gas chromatography-mass spectroscopy 
Approximately 20mg of a liquid tar was accurately weighed and 

directly sealed into a 20ml headspace vial. Headspace gas 
chromatography-mass spectroscopy (HSGC-MS) analysis was performed 
using an Agilent 7694E Headspace sampler (Agilent Technologies, 
Germany), connected to an Agilent 7890B series gas chromatograph 
(Agilent Technologies, Germany) coupled with an Agilent 5977A series 
mass spectrometer (Agilent Technologies, Germany) and equipped with 
a HP-5MS Agilent column (0.25mm x 30m x 0.25 μm). The headspace 
operating conditions were as follows: the equilibration time was 20min; 
the headspace oven, loop, and transfer line temperatures were 100, 120 
and 150 ◦C, respectively; the vial was shaken for 2min at low intensity; 
the injecting time was 2min in an analysis cycle. GC operating condi-
tions were as follows: carrier gas (helium) was set at a flow rate of 
4.0125ml min− 1 with a split ratio of 10:1; the column temperature 
program was initially set at 80 ◦C for 2min in an analysis cycle, and 
gradually increased to 325 ◦C at 15 ◦C min− 1, then kept for 5min. For 
MS detection, an electron ionization (EI) system was used with ioniza-
tion energy at 70eV; temperatures of the ion source and quadrupole 
were 230 and 150 ◦C, respectively; the mass range was 50–550amu in 
full-scan acquisition mode with 3min of solvent delay. The HSGC-MS 
collected data were processed by MassHunter Qualitative Analysis 
B.06.00 for peak deconvolution. The mass spectra with well-resolved 
peaks were imported into the mass spectra library software NIST MS 
Search 2.3 [35]. 

2.3.7. Rheometer 
The stored deformation energy (G’) of the tar sample was measured 

in pascals (Pa) using a Discovery Hybrid Rheometer-2 (TA Instruments, 
Ireland), as reported in previous studies [36]. This instrument is 
equipped with a heating unit that maintains the sample from 30 to 150 
◦C, with a stainless-steel cone and disposable parallel aluminium plates. 

The cone has an angle of 48 degrees and both, cone and plate have a 
diameter of 25mm. 

3. Results 

3.1. Liquid and concentrated tar characterisation 

3.1.1. Elemental analysis 
Proximate and ultimate analysis of raw olive stones and liquid/ 

concentrated tar samples are shown in Table 1. The moisture content in 
the liquid tar was low due to the torrefaction temperature of 280 ◦C, 
where mostly low molecular weight compounds were formed [16]. The 
concentrated tar showed low oxygen contents and thus, relatively higher 
calorific value than the liquid tar [37]. In addition, the high heating 
value of the concentrated tar is like that of bio-oil from fast pyrolysis and 
liquid tar from torrefaction in the range of prepared in the range of 240 
to 300 ◦C [16,38]. The low ash content showed that both concentrated 
and liquid tar samples mostly consist of organic compounds. 

3.1.2. Lignocellulosic analysis 
The liquid and concentrated tar overall contained only traces of 

sugars varying from 0.2 to 0.4 wt.% on dry basis, as shown in Table 2. 
Pyrolytic sugars typically contribute to 5–10 wt.% of bio-oil from 
biomass pyrolysis in the range 400–600 ◦C [39]. The results of the 
present study have shown that only glucose was present in both tar 
samples. Small traces of sugars in tar samples likely originate from the 
pyrolysis of cellulose compounds in raw olive stones. This indicates that 
the remaining compounds in tar samples are largely composed of py-
rolytic lignin macromolecules and compounds derived from it, as pre-
viously suggested [40]. These results are comparable with findings using 
FT-ICR instrumentation (Section 3.3.3) whereas heteroatom class dis-
tribution and double bond equivalence showed composition of the liquid 
tar consisted of distinguished phenols derived from lignin. In addition, a 
large fraction of extractives was found in tar samples. These might be 
proteins, polymerized compounds, uronic acids, acetyl acids, etc. 
[41,42]. The higher lignin content in the concentrated tar indicates a 
more stable molecular structure than that of liquid tar, confirming 
previous results of Yu et al. [43]. 

3.1.3. Thermogravimetric analysis 
Figure 2 shows differential weight loss curves (DTG) for oxidation 

(5% by volume) of liquid and concentrated tar samples. The DTG curve 
of concentrated tar shows a triple peak at 315, 400 and 610 ◦C, whereas 
the DTG curve of liquid tar shows a double broad peak at 190 and 

Table 1 
Proximate and ultimate analysis of raw olive stones, liquid and concentrated tar.   

Moisture Ash Volatiles C H N O HHV  

%, as received %, dry basis MJ kg− 1 

Olive stones 15.5 0.8 76 44.8 5.8 0.2 48.3 20.3 
Liquid tar 5.4a 1.1 89 64.2 6.7 0.1 29 26.1 
Concentrated tar 0.8a 0.4 36.6 72.7 5.5 0.9 20.9 29.3  

a Moisture in the tar was determined using Karl Fisher titration. The moisture content was subtracted from the hydrogen and oxygen content of the liquid tar to show 
the elemental analysis data in % on dry basis. 

Table 2 
Lignocellulosic and ash composition of liquid and concentrated tar samples, 
calculated in percentage (wt.% dry basis).  

Sample Glucose 

Lignin 

Extractives Ash  acid 
insoluble 

acid 
soluble  

Liquid tar 0.4 3.4 0.1 96.3 1.1  
Concentrated 

tar 
0.2 58.7 0.7 40.9 0.4   
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575 ◦C, both of which indicate a heterogeneous tar mixture with respect 
to O2 reactivity. Decomposition of volatile compounds in the liquid tar 
occurs in the temperature range from 60 to 375 ◦C with the peak tem-
perature at 190 ◦C attributed to devolatilization of light volatile com-
pounds. The decomposition rate of concentrated tar was shifted to 
higher temperatures from 150 to 460 ◦C with two significant peaks at 
temperatures of 315 and 400 ◦C, indicating devolatilization of light 
volatiles i.e. acids, aliphatic species, and alkylphenols at low tempera-
tures and fewer oxygen-containing compounds of aromatic and poly-
aromatic origin in the range 350 to 460 ◦C [44,45]. The peak DTG 
temperature of concentrated tar is shifted to higher temperatures than 
that of liquid tar. Presence of oxygenated aromatics in the liquid tar is 
known to increase the reaction rate [46]. The cross-linked polyaromatic 
structure of concentrated tar with more carbon and less hydrogen than 
in liquid tar could decrease the oxidation reactivity [47]. (See Figure 3). 

3.1.4. 1H-13C NMR measurements 
Differences in solubility between the liquid and concentrated tar 

samples were observed, whereas the liquid tar sample showed greater 
chemical information in signals compared to the concentrated tar. Based 
on HSQC, HMBC and COSY analysis it was possible to identify the 
chemical shift ranges of functional groups of different chemical struc-
tures. In the 13C NMR experiments about 166 signals from the different 
major molecules were observed in the liquid tar, while only 21 signals 
were seen in the concentrated tar. The chemical shifts of compounds 
present in torrefaction products are summarized in the Supplemental 
material (TableS-1). The more intense signals at 56, 106.5, 107, 116, 
119, 120, and 172ppm were associated with the presence of carbon 
species which originate from lignin [48]. The less soluble concentrated 
tar sample showed mostly aliphatic C–C signals, whereas the liquid tar 
contained aromatic and aliphatic carbon nuclei. 

Fig. 2. DTG curves of liquid tar and concentrated tar reacted in 5% volume fraction O2 + 95% volume fraction N2.  

Fig. 3. Comparison of 1H NMR spectra of the liquid and concentrated tar samples dissolved in chloroform using 600MHz.  
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On both samples a large amount of residual unbranched carbon 
skeleton (peaks at 56ppm) was observed corresponding to methyl and 
aliphatic groups from fatty acids such as hexadecenoic acid (C16), oleic 
acid (C18:1) and linoleic acid (18:2) as described by HSGC-MS [49]. In 
comparison to the concentrated tar, 1H NMR analysis of the liquid tar 
sample showed greater concentrations of aromatic and conjugated 
alkene hydrogen contents (8.2–6.0ppm) [50]. Overall, the 1H NMR 
analysis showed that aliphatic protons are more prevalent than protons 
which are proximal to heteroatoms (alcohols, carbohydrates) in both 
liquid and concentrated tar samples. The most upfield region 28–0ppm 
indicated the presence of methyl groups and the region 50 to 28ppm 
contains a high percentage of aliphatic carbons which are most likely 
methylene carbons (CH2) which are associated with longer aliphatic 
chains [51]. The region 95–50ppm in the 13C NMR spectra represents 
carbon atoms which are adjacent to an O atom in carbohydrates, ethers, 
or alcohols. 

Predictably, the relative amount of these types of carbon atoms fol-
lows the same general trend as their overall oxygen content with higher 
oxygen content in the liquid tar than in the concentrated tar sample. In 
addition, the region between 95–50ppm indicated that the liquid tar 
contains significantly fewer carbohydrates and aliphatic compounds 
with OH groups than the bio-oil generated from herbaceous feedstocks, 
as reported by Mullen et al. [17]. Compared to bio-oil obtained from fast 
pyrolysis of herbaceous feedstocks and chicken litter, torrefaction tar 
was assumed to derive mostly from lignocellulosic monomers, rather 
than from aliphatic branching, as shown in the Supplemental material 
(Fig. S-3(a)). 

3.2. Liquid tar characterisation 

3.2.1. Tar solubility 
Solubility tests were carried out to determine a suitable solvent to 

dissolve and disperse the tar used for the experimental runs with various 
analytical techniques. Table 3 shows that the liquid tar was most soluble 
in 1-methyl-2-pyrrolidinone (86.9 wt.%) and dimethyl sulfoxide (90.8 
wt.%). It is worth pointing out that the reproducibility of the extraction 
experiment is not identical for all solvents. NMP and DMSO solvents give 
more reproducible extraction yields than C2H5OH, ACN and other sol-
vents, confirming the previous results of Guillen et al. [32]. 

3.2.2. UV-fluorescence 
The fluorescence emission bands at 274, 315, 325 and 350nm were 

detected in the liquid tar sample which were attributed to higher mo-
lecular weight aromatics because of increased conjugation during tor-
refaction, as shown in the Supplemental material (Fig. S-8) [52,53]. The 
multiaromatic and conjugated ring systems indicate that only two- to a 
maximum of four-ring aromatic systems are present in the liquid tar 
from olive stone torrefaction, confirming the previous results of Stan-
kovikj et al. [16]. This is indicated by the presence of absorption bands 
in the region of 500 to 700nm. The intensity of the UV-Fluorescence 
spectra decreased with increasing molecular size and with increasing 
sizes of polycyclic aromatic (PCA) units embedded within large mole-
cules in the torrefaction tar. The effects were explained by the transfer of 
intramolecular energy within large molecules which diminish fluores-
cence quantum yields for larger PCA units [54,55]. Thus, the method has 
limitations in estimation of molecular weights of heavy tar fractions. 

3.2.3. Direct injection gas chromatography-mass spectrometry 
GC–MS analysis of the liquid tar was conducted and the chromato-

gram with compounds identified is shown in the Supplemental material 
(Fig. S-9 and Table S-2) respectively. A match quality of > 85% was 
accepted for the identification of the compounds and the MS signatures 
were visually compared with the database entries for best match. 
Qualitative analysis of the liquid tar identified phenols and their de-
rivatives, benzenoids, phenethylamine, and imidazoles, which were 
previously found in the GC–MS analysis of lignocellulosic compounds 
[56,57]. The present GC–MS results correspond to the compounds found 
in the HSGC-MS analysis, as discussed in section 3.3. However, the 
present GC–MS results indicated that the liquid tar mostly consists of 
detectable volatile compounds while the heavy molecular weight frac-
tions were not detectable using this method. 

3.3. HSGC-MS 

Formation of the main compounds in liquid tar was investigated by 
HSGC-MS with more than 100 peaks detected. The major target com-
pounds with a spectral match quality greater than 85% are listed in the 
Supplemental material (Table S-3). The results show that compounds 
formed during torrefaction are all oxygenated species, arising from the 
large amount of oxygen in lignocellulose. The main products of the 
HSGC-MS analysis of the liquid tar were vanillin, cresols, dihy-
droeugenol, methoxy- eugenol, trans-isoeugenol and guaiacol forming 
the non-condensed structure of lignin in the feedstocks. In addition, the 
presence of p-cresol in the tar is due to high abundance of methoxy 
groups in olive stones which are rich in guaiacyl and p-hydroxyphenol 
units indicating that the lignin structure of olive stones is similar to that 
of hardwood [58]. The presence of O-guaiacol, vanillin and dihy-
droeugenol in the olive stone tar indicated that the chemical structure of 
tar is like that of monomers in the raw lignin. 

3.3.1. GC-FID 
The analysis of fatty acid composition of liquid tar was carried out 

using a quantitative GC-FID method with the tridecanoic acid as an in-
ternal standard, as shown in the Supplemental material (Fig. S-10). The 
results showed that torrefaction tar from olive stones contains hex-
adecenoic acid (C16), oleic acid (C18:1) and linoleic acid (18:2). In 
addition, fatty acids are present in the liquid tar as it was observed 
during HSGC-MS analysis (Section 3.3). The raw olive stones contain a 
small amount of residual oil which generated the oxidation products in a 
form of acids. 

3.3.2. ESI-MS 
The ESI-MS results indicate the presence of oligomers in liquid tar 

dissolved in methanol containing 1% acetic acid with negative and 
positive molecular ions shown in the Supplemental material (Figs. S-8a 
and S-8b), respectively [16,59,60]. Since most of the phenolics can be 
easily identified through negative ionization in the ESI, this method was 
selected to demonstrate the molecular distribution of the tar and then 
used to calculate the average molar mass (Mn and Mw). The number and 
weight average molar masses were 800 and 1000, respectively. The 
polydispersity index was then calculated to be 1.29. The main detected 
negative ions are listed in the Supplemental material (Table S-1) with 
their relative abundance presented as well. These ions ranged from 
133.1 to 1984.52 (m/z) with smaller ions being mainly derived from 
substituted phenols, which were also identified by GC–MS, as seen in the 
Supplemental material (Fig. S-11). 

Table 3 
Liquid tar solubility using dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), N-Methyl-2-pyrrolidone (NMP), acetone (C3H6O), chloroform (CHCl3), methanol 
(CH3OH), ethanol (C2H5OH), acetonitrile (ACN) in wt.% with standard deviation.  

DMSO THF NMP C3H6O CHCl3 CH3OH C2H5OH ACN   

90.8 ± 0.01 75.8 ± 0.04 86.9 ± 0.45 53.2 ± 0.56 60.5 ± 0.25 75.9 ± 0.24 66.3 ± 0.3 68.3 ± 0.45    
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3.3.3. FT-ICR MS 
Figure 4 shows chemical composition analysis of the liquid tar using 

FT-ICR. The analysis procedure includes filtered liquid tar sample with 
DMSO as a solvent. Fourier transform ion cyclotron resonance mass 
spectrometry (FT-ICR MS) offers ultrahigh mass resolution and accu-
racy, which enables unique assignment of elemental compositions for 
thousands of fragments obtained from a single torrefaction tar sample. 
Overall, ESI FT-ICR MS covered a large chemical range up to m/z 950. 
The spectra of oxygen-rich compounds in the liquid tar were enhanced 
using DMSO as a solvent due to the presence of additional hydroxyl 
groups which increased deprotonation. Kendrick plot of the liquid tar 
showed a broad band with relatively high Kendrick mass defects. A 
significant fraction of compounds had lower Kendrick mass defects 

forming a large cloud of points ranging over ΔKMD ≈ 0.375 (from 0.125 
to 0.5) which represent large aliphatic species [5]. A narrow dense cloud 
of points ranging over ΔKMD ≈ 0.125 (from − 0.5 to − 0.375) represents 
the distribution of large aromatic compounds in the liquid tar [61–63]. 

Figure 5(c) shows that DMSO as a solvent gave a homogeneous 
distribution of oxygen atoms in oxygenated hydrocarbons in the range 
O6-O10. In addition to simply comparing the number of detected species, 
a van Krevelen diagram in Figure 4(b) was plotted to study the selec-
tivity of FT-ICR MS analysis. The van Krevelen diagram is a widely 
applied graphical tool to study the evolution of fuels, arranging the 
molar ratio of hydrogen-to-carbon (H/C ratio) as ordinate and the molar 
oxygen-to-carbon ratio (O/C ratio) as abscissa. The dots drawn from the 
magnitude mode data exhibited gaps in the plot, and the chemical 

Fig. 4. (a)-(c) Contour plots of van Krevelen, Kendrick versus nominal mass, 
and DBE versus carbon number using DMSO as solvent for the liquid tar. 

Fig. 5. (a)-(c) Heteroatoms N, S and O class distribution obtained via FT-ICR- 
MS analysis of the liquid tar. 
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composition was not distributed continuously, especially for species 
with low carbon numbers, because the mass resolving power of the FT- 
ICR MS was not sufficient to resolve the peaks of species which are 
present in a high concentration at higher m/z [64]. Some of the 
neighbouring peaks could merge or form complex polyaromatic struc-
tures; thus, it was possible to identify only one of the reacting com-
pounds in the magnitude mode spectrum [65]. The dots generated for 
very high m/z, in contrast, exhibited a more continuous pattern. The 
average H/C and O/C ratios were approaching the ratios of unsaturated 
hydrocarbons, condensed aromatics, lignin and lipids samples during 
FT-ICR MS analysis. The van Krevelen diagram clearly shows that many 
more lignin-like compounds (O/C 0.2–0.6 and H/C 0.7–1.5) were 
detected via FT-ICR MS, confirming the previous results [66,67]. Figure 
4(c) showed the DBE distribution (the degree of unsaturation) of each 
oxygen heteroatom class over the number of carbons. Compositional 
information (C55; DBE = 30) in the DBE distribution graph 4(c) can be 
interpreted that the compound has 55 carbon atoms with 30 unsatured 
bonds. For the liquid tar, the total carbon and DBE numbers mainly 
range from 10 to 60 and from 1 to 32.5, respectively. This is also in line 
with the suggestion that the degree of unsaturation rapidly increases 
with the carbon number and molecular weight [68,69]. Single-ring ar-
omatic compounds (DBE < 5) were abundant, followed by double-ring 
aromatic compounds (DBE 8–16) followed by large polyaromatic 
structures (DBE 16–35) with the same degree of unsaturation but 
different aliphatic side chains i.e. dibenzo[a,j]coronene [70,33]. Since 
the DBE values of benzene and naphthalene are 4 and 7, compounds 
detected in the present study were associated with (poly) aromatics 
[71,72]. Such conjugated π-systems can readily redistribute vibrational 
energy over the entire system and stabilize their core structures [73]. 

In addition, nitrogen-containing compounds ranging from N to N2 
were detected in liquid tar, leading to the broad DBE distributions 
ranging from 1 to 35, as shown in Figure 5(a). The Cn and DBE distri-
bution indicated that liquid tar may include oxygenated derivatives of 
pyrrole, pyridine, indole, imidazole or pyrazine, corresponding to the 
results of GC–MS analysis, see section 3.2.3 and previous results [37]. 
The organic-nitrogen species found in liquid tar were mainly products 
from pyrolysis of proteins, lipids and polysaccharides in olive stones 
[74]. The presence of NxOy species in liquid tar showed at degree of 

unsaturation like that of crude oil (DBE = 1–30), whereas the DBE values 
of biocrude from hydrothermal liquefaction and shale oil were below 17, 
as reported in previous studies [75–77]. In addition, both FT-ICR and 
elemental analysis presented in Table 1 report traces of non-aromatic 
nitrogen-containing species in the tar sample, confirming previous re-
sults [78,72]. Detected SzOx class compounds are most likely sulfonic 
acids or their derivatives, as shown in Figure 5(b). About 20–35% of 
sulphur content of the initial feedstock concentration can be released 
during wood pyrolysis and this release increases to 40–70% for herba-
ceous feedstocks in the range of 200 to 350 ◦C [79]. Previous torre-
faction studies have indicated that the release of sulphur at 200–400 ◦C 
could originate from the decomposition of organically associated 
sulphur in the proteins [80,81]. However, no loss of sulphur was 
observed during the torrefaction process. In fact, on a wt.% basis it in-
creases as per the inorganic species. 

Figure 5(c) shows the distribution of compounds which were 
assigned to On class species with double bond equivalent (DBE) values of 
1–35. The O2-O4 compounds represented by m/z 117, 137 and 151 were 
detected in low concentrations. The O2 class compounds may be 
composed of hexadecanoic acid and octadecanoic acid [82]. The O4 and 
O5 class compounds were associated with the presence of aliphatics 
[83]. Thus, these compounds can be associated with both poly-
hydroxylcyclic hydrocarbons of cellulose and ”phenolic compounds” of 
lignin. In addition, the O6 compounds representing most of the lignin 
trimers were present in large quantities. 

The O5-O8 exhibited high intensities in the mass spectrum and were 
associated with the ”sugaric” components coupled to the nitrogen- 
containing species or with the phenolic compounds containing a car-
boxylic group [84,85]. The main compounds containing O5-O8 were 
likely cellulose-, hemicellulose-, lignin-derived depolymerization prod-
ucts, e.g., di- and trilignols which included two phenyl groups (Cn =

20–30; DBE > 8) [86]. Lipids i.e. fatty and amino acids and extractives i. 
e. resin acids, terpenes contain O5-O7 class compounds with Cn ranging 
from 20 to 25 [87]. Previous studies showed that lignin pyrolysis 
generated mainly monomers and dimers with a molecular mass centered 
around 400Da [88]. The compounds detected in the O9-O12 classes are 
likely to be phenolic extractives e.g., residues of quercetin with different 
glycosides based on the Cn and DBE values (Cn = 20–40; DBE = 11–19) 
[89,90]. 

Fig. 6. Steady-state flow viscosity of the liquid torrefaction tar.  
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Table 4 
Summary of the techniques used in the tar compositional analysis.  

Technique Solvent Property Classification Highlights of tar analysis Improvements  

TGA  Reactivity; limited information 
on composition of organic and 
inorganic compounds 

H2O, aliphatics, aromatics, sugars, 
polymerized large hydrocarbons [40] 

Aliphatics, acids, alkylphenols, oxygenated 
aromatics 

Increase in sensitivity, simultaneous capture of product 
evaluation, broader ranges of compositional analysis [96]  

Elemental  Organics CHNOS C: 60.8–72.7% db; O: 20.9–32.3% db. General 
remark: bio-oil has lower C (50–64% db) and 
higher O (35–40% db) than torrefaction tar 

Systematic errors related to differences in calibration  

KF titration Methanol H2O Total water content Total water content Systematic errors (Methanol used as a sample solvent may react 
with activated aldehyde/ketone groups present in the oils, and 
release water) [97]  

Ion chromatography Hydrolysis Organic and halogens Sugars and sugar degradation products (e.g. 
furans and organic acids), uronic acids, Cl, S  
[98] 

Glucose Decrease acquisition time for chromatographic run (approx. 30 
min)  

1H-13C NMR Chloroform/ 
acetone 

Organics Hydroxyl groups, carbonyl groups, aromatic 
carbon, aliphatic carbon, heteroatoms 
containing bonds, sugars 

Carboxylic acid, aldehydes, aromatics/ alkenes, 
ethers/ methoxy groups, aliphatics 

Overlapping spectra for sugar-based and lignin-derived 
compounds, limited information on heavy molecular 
compounds, no information on individual components  

Two-step Soxhlet 
extractor 

Water - ethanol Extractives Water- and ethanol soluble material No attempts to differentiate nitrogenous, 
inorganic and non-structured sugars 

Need to develop new methods to analysis e.g. large, polymerized 
hydrocarbons, etc.  

ESI-MS Methanol Organics   Separation efficiency, sensitivity for complex samples, 
information on low/ intermediate molecular size compounds 
(200–1000Da) [99]  

GC-FID Methanol Organics Acids and ester content [100] Acids, ester and derivatives: hexadecenoic acid, 
oleic, linoic, fatty 

Separation efficiency, sensitivity for complex samples, 
information on the low molecular compounds (50–500Da)  
[101]  

UVvis Methanol Organics Aromatics Phenols and derivatives Erroneous readings: UVvis does not differentiate between the 
sample of interest and contaminants that absorb at the same 
wavelength, limited to low molecular compounds (50–500Da)  
[102]  

HS GC–MS  Organics Alkanes, aromatics, PAHs, nitrogenated 
organics and sulfur-containing organics 

Aliphatics, small aromatics e.g. vanillin, cresols, 
including nitrogen-containing species 

Separation efficiency, low molecular compounds (40–500Da)  
[103]  

ESI / APPI FT-ICR MS DMSO Organics Identification of molecular species within a 
wide range of MW (200–1000Da) with high 
mass resolution (better than 0.003Da) [16] 

Furfural derivatives, phenolics, aliphatics, 
oligomers, condensed aromatics and different 
size PAHs, sulphur and nitrogen-containing 
species 

Instrumental and operational cost   
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3.3.4. Rheology 
Figure 6 shows the temperature-dependent viscosity of the torre-

faction tar, corn-based starch binder, cellulose and glycerol. Generally, 
tar and bio-oil are Newtonian fluids and do not show hysteresis. Glyc-
erol, liquid tar and corn-based binder showed qualitatively similar vis-
cosities that varied from 2.4 to 2.6Pa s which remained constant 
through the entire experiment. The viscosity of liquid tar was almost 200 
and 100 times greater than that of bio-oil and water-wood slurry, re-
ported in previous studies [91,92]. The dynamic viscosity of cellulose 
decreased from 14 to 9Pa s with increasing temperature from 50 to 80 
◦C. The viscosity of cellulose is similar to that of corn sillage both of 
which are non-Newtonian fluids [93–95]. The viscosity of liquid tar and 
corn-based starch binder was similar indicating that the liquid fraction 
collected from the torrefaction process could be successfully used as a 
binder for woodstove biomass briquetting. 

4. Discussion 

Chemical analysis of the liquid torrefaction tar showed that it con-
sists of a complex mixture of light and heavy molecular weight com-
pounds. The best solubility of tar was achieved in DMSO, acetone, DCM 
and chloroform which were used as solvents during qualitative FT-ICR 
and 1H-13C HS-QC NMR analysis. Based solely on the strong effect of 
solvents on the compositional analysis it might be expected that the tar 
structure is too complex to be analysed. However, results from the 
present work demonstrate that accurate prediction of the tar structure 
strongly depends on using several different but complementary analyt-
ical techniques. 

All techniques used in the compositional characterisation of tar 
samples are summarized in Table 4. Overall, aliphatic and aromatic 
protons were more prevalent in both liquid and concentrated tar sam-
ples than alcohols and carbohydrates. The HSGC-MS analysis, direct 
injection GC–MS and GC-FID, UV-Fluorescence analysis indicated the 
presence of lipids, acids i.e. hexadecenoic, oleic, linoleic, phenols i,e, 
mono, di-tri-, and tetra-phenols, benzenoids and imidazoles. The results 
using FT-ICR MS showed that the liquid tar comprise of aromatic and 
aliphatic compounds which most likely include oxygen heteroatoms 
ranging from O5 to O9, nitrogen heteroatoms ranging from NO to N2O9 
and sulfur heteroatoms varying from SO to S3O7. 

The low ash content in the liquid tar indicated that nitrogen and 
sulphur were probably organically bound to the tar structure. The 
inorganic compounds in raw olive stones could either vaporize during 
torrefaction or remain in the char. Interestingly, no alkali metal com-
pounds were detected in the liquid tar by FT-ICR MS and HSGC-MS 
analysis. FT-ICR analysis is an innovative way to characterise the com-
plex composition of pyrolysis products. 

For the first time, FT-ICR analysis was conducted on a liquid tar. The 
results showed that the torrefaction tar contains a high percentage of 
high molecular weight compounds. However, only comprehensive 
analysis of the tar structure using FT-ICR, NMR, UVvis and ion chro-
matography methods can provide information on compounds origi-
nating from different lignocellulosic fractions (cellulose, hemicellulose, 
lignin). The analytical limitations using all discussed techniques are 
referred to the absence of calibration standards to quantify the heavy 
molecular compounds. Overall, more research should be carried out to 
quantify the light and heavy molecular compounds in the liquid tar. The 
FT-ICR MS technique coupled to an ESI source ionization enables 
identification of polar and non-volatile compounds, such as sugars, 
proteins, and extractive derivatives. Moreover, the developed method 
using FT-ICR dynamic range of m/z can identify a broad spectrum of 
compounds which were difficult to detect with the other analytical 
techniques. 

This work showed a great promise to use the FT-ICR technique in the 
characterisation of tar and bio-oil samples from high-temperature 
biomass treatment due to the high reproducibility, short analysis time 
and uncomplex data processing. The numbers of commercial vehicles 

increase every year requiring improvement of asphalt road facilities. For 
that reason, the road paving industry is interested in utilizing bio-based 
binder materials to improve the production, placement, and perfor-
mance of asphalt mixtures. Thus, the volatile lean composition, low 
reactivity and high viscosity of the liquid tar are the most important 
properties for the use as a bio-based binder in biomass briquettes or as 
asphalt road pavement. In addition, low moisture content of less than 
5.4wt.% as received, the low ash content and its high calorific value of 
26.1MJ kg− 1 will provide benefits for future uses of the liquid tar as a 
binding agent. The formation of solid tar condensate contained fewer 
oxygen-containing compounds and was less reactive in oxygen than 
liquid tar. These properties of tar could be perhaps considered beneficial 
for storage and transportation of tar. This result clearly demonstrates 
that tars as a by-product of the torrefaction process at Arigna Fuels could 
be a valuable feedstock for use as a bio-based binder in temperature- 
critical processes. 

5. Conclusion 

The combination of IC, GC–MS, ESI MS, GC-FID, UV-Fluorescence, 
TGA, HS-GC–MS and FT-ICR MS techniques provided comprehensive 
characterisation of tar samples from the pilot plant torrefaction of olive 
stones. To the best of our knowledge, this work is the first comparison of 
different analytical techniques for the characterisation of tars produced 
from torrefaction. The results of this study revealed that only the uti-
lisation of a range of complementary analytical techniques can provide 
information on light and heavy molecular tar fractions, allowing the 
detection and characterisation of carbohydrates, phenolic and poly-
aromatic compounds. The torrefaction tar viscosity was like that of 
fossil-based resin binders which were in general 100–200 times higher 
than that of bio-oil samples. The presence of organically bound sulphur 
and nitrogen detected with FT-ICR might limit the use of torrefaction tar 
as a fuel due to the potential formation of toxic emissions when 
combusted. 
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