
https://doi.org/10.1007/s00165-021-00566-z
BCS © 2021
Formal Aspects of Computing (2021) 33: 829–854

Formal Aspects
of Computing

Drawing with SAT: four methods and A tool for
producing railway infrastructure schematics
Bjørnar Luteberget1 and Christian Johansen2

1SINTEF Digital, Oslo, Norway,
2Norwegian University of Science and Technology, Gjøvik, Norway

Abstract. Schematic drawings showing railway tracks and equipment are commonly used to visualize railway
operations and to communicate system specifications and construction blueprints. Recent advances in on-line
collaboration and modeling tools have raised the expectations for quickly making changes to models, resulting in
frequent changes to layouts, text, and/or symbols in schematic drawings. Automating the creation of high-quality
schematic views from geographical and topological models can help engineers produce and update drawings
efficiently. This paper introduces four methods for automatically producing schematic railway drawings with
increasing level of quality and control over the result. The final method, implemented in the open-source tool
that we have developed, can use any combination of the following optimization criteria, which can have different
priorities indifferent use cases:widthandheight of thedrawing, thediagonal line lengths, and thenumberof bends.
We show how to encode schematic railway drawings as an optimization problem over Boolean and numerical
domains, using combinations of unary number encoding, lazy difference constraints, and numerical optimization
into an incremental SAT formulation. We compare drawings resulting from each of the four methods, applied to
models of real-world engineering projects and existing railway infrastructure. We also show how to add symbols
and labels to the track plan, which is important for the usefulness of the final outputs. Since the proposed tool is
customizable and efficiently produces high-quality drawings from railML 2.x models, it can be used (as it is or
extended) both as an integrated module in an industrial design tool like RailCOMPLETE, or by researchers for
visualization purposes.

Keywords: SAT; Schematics; Railway; Maps; Railplot; Optimization; Quality

Correspondence to: Christian Johansen, e-mail: christian.johansen@ntnu.no

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-021-00566-z&domain=pdf

830 B. Luteberget and C. Johansen

Fig. 1. Example cut-out from a geographical railway drawing (top) and two corresponding full-station schematic layouts, optimized for bends
(bottom left) and optimized for height/width (bottom right). See on page 849 our tool’s optimization options.

1. Introduction

Engineering schematics of railway track layouts are used for several purposes: serving as construction blueprints,
visualizations on train dispatch workstations, infrastructure models in timetabling software, specifications for
interlocking control systems, and more. Because of the large distances involved, geographically accurate draw-
ings are not always suitable for communicating an overview that can help with analyzing and reasoning about
the railway models. Instead, many disciplines use schematic representations of infrastructures to provide a com-
pressed overview, e.g., shortening sections of the railway that have low information density. Figure 1 compares a
geographically correct drawing against two alternative schematic renderings of the same model for two different
purposes: the left-hand drawing is suitable for a schematic engineering drawing while the right-hand drawing
is more suitable for a dispatcher workstation visualization where a highly compressed view is better. Producing
schematic drawings like these involves practical and aesthetic trade-offs between intended structure, simplicity,
and geographical accuracy.

Perhaps themost well-known railway schematics are themetromaps for passengers, popularized by the iconic
Tube Map of the London Underground. When designing metro maps, removing and compressing geographical
information better conveys topological structure (e.g., useful for finding transfers) and sequential information
along lines (e.g., for finding your stop).

Methods for automatically producing metro maps have been surveyed in [Wol07]. The main approaches are
iterative and force-directed algorithms for gradually transforming a geographical network map into a simpler
presentation [Ave02, CdBvK05], and mixed integer programming methods for finding exactly grid-structured
and rigidly optimized solutions [NW11, OS15]. For railway drawings the convention is to use only horizontal,
vertical, and diagonal lines (at 45◦). The problem of drawing graphs optimized for size and/or bends using only
horizontal and vertical lines (so-called orthogonal drawings) can be solved by efficient algorithms [Tam87], but
adding diagonal lines in general makes the problem NP-complete [NW11, Nö05].

Schematic railway drawings used for engineering are usually more strictly constrained than metro maps, but
still have large variety in different versions produced for different engineering use cases, project stages, and opera-
tional scenarios. Especially in construction projects for new railway lines or upgrades, frequent changes are made
in coordinated 2D, 3D, geographical, and schematic models of the railway infrastructure. This can cause much
repeated manual work in updating and cross-checking these models after every change in the construction design
work in several engineering and construction categories, such as tracks, signaling and interlocking, catenary,
cables, telephony.

Drawing railway infrastructure schematics with SAT 831

Automatically producing consistent and high-quality schematics from other models has great potential to
increase the efficiency and quality of the documentation, speed up cross-discipline communication during design
and construction phases, and also opens up for easier data transfer to other tools. For example, an engineer
working on a geographical CAD model may be hindered in performing capacity analysis because importing a
network model into a capacity tool may require also inputting a track plan for simulation overview (see, e.g.,
[LCJ18]).

In this paper we develop methods for producing a type of schematic track plan which is suitable for infras-
tructure within a single corridor, meaning that each point on each track can be located on a common linear axis.
We call this a linear schematic drawing (see Definition 1 on page 833). This is a common drawing used for many
purposes in construction projects, where drawings typically show placement of tracks and track-side equipment
on a single station or along a single corridor. More generally, this problem concerns network structures that are
oriented along a linear axis, such as highways, railways, or public transit systems, but may also be extended to
encompass routing in electronic design (see e.g. the problem description for VLSI routing in [Ozd05]). On larger
scales with multiple corridors, the visualization may be split into individual corridors, as in our setting, but for
some applications, such as an overview of a national railway network or a city metro network, the single corridor
assumption will not work well, and other approaches (see e.g. [NW11, OS15]) may be more relevant.

Linear schematic drawings specifically have little coverage in the literature. A specialized algorithm presented
in [Bra16] computes corridor-style drawings, but does not guarantee that switch shapes are preserved, and does
not offer choices in optimization criteria. For comparison, we apply our method to examples taken from [Bra16],
among others; see Fig. 14 on page 848. Another algorithmic approach described in [SS14] has similar goals, but
does not automatically produce high-quality results and relies on interactive guidance from the user and manual
post-processing.

Graph drawing techniques (see [DETT94, DETT99] for a general overview) have been developed for a great
number of different use cases. Most closely related to engineering drawings are the orthogonal layout methods
(see e.g. [PT98, Tam87]) and storyline visualizations (see e.g. [vDLMW18]). However, most approaches from the
graph drawing literature, including orthogonal layout methods, produce outputs that have a distinct style and
are not suited to be customized to adhere to engineering drawing conventions.

Instead, we have solved the problem by modeling engineering drawings as mathematical optimization prob-
lems using constraints formulated as Boolean satisfiability and difference constraints. We present how different
available constraint programming systems can be used to express our constraints, solve optimization problems,
and produce high-quality engineering drawings.

The main contributions of this paper are:

1. We formally define and describe the problem of linear schematic railway drawings in Sect. 2.
2. We introduce four mathematical models for schematic plans, and compare their strengths and weaknesses in

Sect. 3.
3. We develop an open-source tool that can be used by railway engineers to visualize railway infrastructure, and

demonstrate its performance and output on real-world infrastructure models in Sect. 4.

Our tool1 can be used as a module, e.g., integrated in the RailCOMPLETE engineering framework; but it can
also be used as a standalone tool by researchers and developers working on new techniques for analysis and
verification, e.g. on interlockings or capacity and timetabling, who can greatly benefit from low-effort, high-
quality visualizations in order to improve communication, usability, and for lowering the barrier for adoption of
their tools and techniques. Our tool takes input railML files, which are widely available among railway engineers
as it is a standard description format for railway infrastructure. The tool also has options for placing symbols
besides a track in the schematics.

This paper is an extended version of the conference paper [LCJ19] containing three new sections: Sect. 2.4
describing in detail the problem of drawing symbols around the tracks in a schematics; Sect. 3.3 introduc-
ing a fourth method of drawing in SAT using a grid-based encoding; and Sect. 4 which is a considerable en-
largement of the two paragraphs that appeared in the conference proceedings. Besides, a few corrections were
made and more care given to the presentation and exemplification of our formalizations, often providing more
details.

1 See the railplot web page: https://github.com/luteberget/railplot

https://github.com/luteberget/railplot

832 B. Luteberget and C. Johansen

2. Problem definition and formalization

In this section we define and formalize the problem of drawing railway infrastructure. First, we define the input
data model that is used to represent the relevant information about railway infrastructure for creating schematic
drawings (Sect. 2.1 and Sect. 2.2). Then, the problem definition is presented in two parts:

1. The linear schematic track drawing (Sect. 2.3) defines the drawing of lines representing the topology of railway
tracks on the infrastructure, and forms the backbone for the rest of the drawing.

2. The linear schematic symbol placement (Sect. 2.4) assumes that the track drawing problem is solved, and
defines a restricted model for placement of relevant symbols and labels.

Thedefinitions andassumptions presentedbelowwere designedby the authorsworking togetherwith software
developers and railway engineers with the purpose of formalizing and automating complex tasks in the context of
railway construction engineering.Wewereparticularly inspiredby the requirements of the signaling sub-discipline,
being also one that we are quite familiar with. The trade-offs made in these definitions, and in modeling and
solving the problem in the following sections, are intended to balance:

1. The needs for low complexity in small-scale software development: this concerns software suppliers such as Rail-
complete AS who are developing software to be used in railway design stages (e.g., for signaling designs) which
have to graphically present railway infrastructure schematics both on the screen, to the railway engineer using
the software, but also printed or exported for further design stages. Using an off-the-shelf mathematical solver
allows developers to focus on user-friendly tooling instead of implementing and maintaining a complicated
algorithm.

2. Short running times in interactive software: this concerns railway engineers using the software. Engineers are
often willing to sacrifice perfect optimality with respect to the given criteria if the calculations run orders of
magnitude faster.

3. The quality requirements for actually using the results as engineering artifacts: this concerns railway engineers
producing schematic drawings and also their engineering organization managing its quality assurance policy.
For some use cases, such as engineering drawings, formalization, consistency, optimality, and reproducibility
may be key concerns. For other use cases, such as visualizations used in software tools, approximate optimality
and by-hand adjustments may be more valuable. The methods presented below have different strengths and
weaknesses in these aspects.

2.1. Linear positioning system

It is a common practice in railway engineering to use a linear reference positioning system (in British English
called mileage, in German Kilometrierung, and in railML absolute position), which assigns a scalar value to
each point on, or beside, a railway track. The value corresponds approximately to the traveling distance along
a railway corridor from a reference point (which is often a known point on the central station of the network).
For a single track, the linear reference system may simply be the arc length from the start of the track’s center-
line curve. Double tracks and side tracks are typically mapped to the linear reference position by geometrically
projecting each point onto a reference curve. The projection’s target curve may either be a selected reference track
(see Fig. 2), or another curve that does not necessarily coincide with a track, such as the geometrical center-line
of the corridor. For the rest of this paper, we assume that all locations are already given in such a linear reference
system.For network-orientedmodels obtained fromanalysis software, such as simulators and time-table planners,
and exchange formats such as railML, the linear positions are the main position attribute given to objects, and
should always be available. For models obtained from CAD software, the linear positions must be computed
by geometrical calculations by using the track geometry, and this is a basic feature of all railway-related CAD
extension softwares.

Drawing railway infrastructure schematics with SAT 833

Reference track

Local track

Projection

(xl, yl)

sr

Fig. 2. Linear reference position calculated by projection onto a reference track.

x = x0 x = x1 x = x2 x = x3

trunkend rightleft

leftright

trunk end

Node (end) Node (switch) Edge Ports

Fig. 3. Graph representation of linearized track plan. Nodes are ordered by an x coordinate, and have a given type which determines which
ports it has, e.g., a switch node has trunk, left, and right ports. Edges connect ports on distinct nodes.

2.2. Track network representation

Different track segments are connected together at switches in a graph-like network. The mathematical definition
of a graph is too abstract for many engineering use cases. Some applications use a double node graph [Hü02], or
describe tracks as nodes with two distinct sides [rai16a]. For a schematic plan, we model switches and crossings
as graph nodes which have a given set of ports (Fig. 3 presents all our modeling elements). Each end of each edge
connects to a specific port on a specific node. Model boundaries and track ends are also represented as nodes
with a single port.

Each locationwhere tracks start/end or intersect with other tracks is represented as a node of a given class. The
classes used in this paper are ends, switches, crossings, and flyovers (shown in Fig. 4 with all their representative
variants). Each class comes with a different set of drawing requirements. For example, a switch is oriented such
that its branching edges (left/right) point either up (called an outgoing switch) or down (called an incoming
switch), seen in the positive direction of the linear positioning system, and each switch class can be drawn in two
different variants, chosen freely, one with the trunk and straight leg directed horizontally and another with the
deviating leg directed horizontally.

2.3. Linear schematic track drawing

A linear schematic drawing algorithm is a core concept in our formalization.

Definition 1 A linear schematic track drawing algorithm d : (N ,E) → L assigns a set of line segments L to each
edge in the set E of edges connecting the set of nodes N , where:

• N � {ni � (ci , si)}, where ci ∈ C is a node class, and si ∈ R is a linear position distinct from other nodes’
positions.

• E � {
ej � (na , pa ,nb, pb)

}
, where na ,nb ∈ N are two nodes where sa < sb and pa , pb are distinct, available

ports on the referenced nodes.

834 B. Luteberget and C. Johansen

Begin

End

Out./left
switch

Out./right
switch

In./left
switch

In./right
switch

Crossing Flyover

Fig. 4. Node classes and their drawing variants. Begin/end nodes have one variant each. Switches are divided into four classes (each with
two variants) based on their orientation (incoming or outgoing) and their course (deviating left or right). Crossings have three variants, and
flyovers have six variants.

• L � {
(ej , lj)

}
, where lj is a polyline, representing the drawing of edge ej ∈ E , and defined by a sequence of

points inR2, 〈(x j
1 , y j

1), (x
j
2 , y j

2), . . . , (x
j
n , y j

n)〉.Thepolyline consists of the line segments connecting consecutive
points in this sequence.

The definition of a track drawing algorithm in itself does not ensure that the output drawing is suitable
for reading. To ensure a usable output we establish a set of criteria for drawing quality based on engineering
conventions and aesthetic judgements. We divide the criteria into hard constraints, that all drawings must satisfy
and that we can base mathematical models on, and soft constraints, which are optimization criteria that can be
prioritized differently in different use cases. We base our models on the following hard constraints provided by
railway signaling engineers (from Railcomplete AS):

(A) Octilinearity: the lines representing tracks should be either horizontal, or diagonal at 45◦. This property
contributes to the neat look of a schematic drawing, while also giving a visual clue that the drawing is not
fully geometrically accurate. When loops are present in the infrastructure, vertical lines may also be allowed,
such as in the balloon loop used on many tram lines.

From n To n
Balloon
loop

(B) Linear order: the reference mileages of locations on the infrastructure should be ordered left-to-right on the
schematic drawing to give a clear sense of sequence, which is useful when navigating the infrastructure and
reasoning about train movements.

sa < sb ⇒
na

nb

· · · xna
≤ xnb

(C) Node shapes: switches split the track on the trunk side into a left and a right leg on the branch side. Left and
right should be preserved so that the layout can be traced back to the geography. Since one of the legs of the
switch is typically straight and the other is curved, it is also desirable to preserve the straight leg’s direction
relative to the trunk.

Drawing railway infrastructure schematics with SAT 835

Deviating leg

Straight leg

(D) Uniform horizontal spacing: parallel tracks are typically required to be drawn at a specific distance from
each other, which we normalize and say that y coordinates take integer values. Note that x coordinates
have no such restriction, but consecutive nodes will often be placed at integer-valued distances to fulfill the
octilinearity constraint.

�y ∈ N

Even with the above constraints fulfilled, there is no guarantee that the drawing output of an algorithm can
be deemed of high-quality. For this we use the following soft constraints as optimization criteria:

1. Width and height of the drawing.

2. Diagonal line length, the sum of length of non-horizontal line segments.

3. Number of bends, i.e. the number of direction changes on lines.

These criteria have different priorities in different use cases. For example, a signaling schematic might be
optimized to have a minimum amount of diagonal lines to neatly show several concurrent train movements
and their relative progress, while a dispatch control station schematic might be optimized for width to fit more
infrastructure into a computer screen.

Several or all of the criteria can be combined into an optimization objective, either by a scoring function, or
more commonly, by simply ordering the objectives and performing lexicographical optimization on each objective
in turn. Our tool (detailed in Sect. 4) provides options for ranking the objectives.

2.4. Linear schematic symbol placement

A railway engineering schematic often features a large amount of different symbols and labels (recall the example
in Fig. 1). In a railway signaling schematic, signals and related equipment are drawn on the schematic, and the
diagram is richly annotated with traveling distances, area limits, comments, and more.

In some cases, the symbols and labels can be placed onto a well laid-out track plan without needing to change
the track plan to accommodate other symbols and labels, but in other cases the track layout must be drawn in a
way that accounts for the amounts and sizes of symbols and labels.

The general label placement problem is known in the graph-drawing literature. We focus here on a simplified
formalization of the problem which is useful for several variants of railway infrastructure schematics, where each
of the lines representing a track has a specified number of bands around it, and where symbols may be placed by
specifying a single linear position, cf. Figure 5.

We assume that the symbols themselves have already been assigned to one of the bands and each has a fixed
symbol size. This assumption is inspired by schematic signaling drawings, where objects such as signals, balises,
point machines, derailers, etc., are drawn at their specified locations around the track.

The symbols may then be placed subject to the following hard constraints (on top of the ones from Sect. 2.3):

(E) Linear symbol order: symbols across all tracks andbands shouldbedisplayedaccording to the linear reference
system of Sect. 2.1 by ordering them based on their location origin, i.e., their center coordinates xc . In other
words, for any two consecutive symbols to be well drawn their center points x 1

c , x
2
c should be ordered as in

the following:

836 B. Luteberget and C. Johansen

(a)

Track
Band 0

Band 1

Band 2

Band −1

Band −2

(b) w

xc

xl xr

Fig. 5. aA track, drawn as the black horizontal line in the middle, defines a set of bands of fixed width around it. bA symbol is defined by its
width w and the relative horizontal position of the location origin s, and is placed in the drawing by choosing a horizontal center coordinate
xc from which the left and right edge coordinates xl and xr can be computed.

x 1
c ≤ x 2

c :

x 1
c

x 1
lx 1

r

x 2
c

x 2
l x 2

r

(F) Non-overlapping symbols: for the symbols that belong to the same band on the same track, an additional
ordering constraint applies to ensure that the symbols are not drawn overlapping. Thus, for two symbols
within a band that are ordered increasingly on the linear reference system, the horizontal coordinate of the
right end of the first symbol x 1

r must be less than the left end of the second symbol x 2
l :

x 1
r ≤ x 2

l :

x 2
c

x 2
l x 2

r

x 1
c

x 1
l x 1

r

This also means that symbols belonging to the same band on the same track are not allowed to have the
alignment constraint described below.

(G) Alignment constraints: in addition to the linear symbol order, some symbols may be placed symmetrically
on several parallel tracks, and have an additional specified equality constraint, i.e., for each pair of symbols
in the set of symbols associated with an alignment constraint, the center points, x 1

c and x 2
c , must be equal:

x 1
c � x 2

c :

x 1
c

x 1
l x 1

r

x 2
c

x 2
l x 2

r

Drawing railway infrastructure schematics with SAT 837

We add an alignment constraint when two or more symbols on different bands have linear positions that
differ by less than 1m.

In addition to these constraints, it is also desirable to keep the symbols proportionally distributed relative to
the linear position system on the horizontal axis, so that the drawing gives a more accurate impression of the
location of objects. We use the following optimization criterion:

• Proportional placement: assume a track stretching from linear position s1 to s2 has been assigned horizontal
coordinates x1 and x2. A symbol at linear position ss has the proportional placement x prop

s :

x prop
s � x1 + (x2 − x1)

ss − s1
s2 − s1

The proportional placement optimization criterion is to minimize:
∑

s∈S

∣
∣x prop

s − xs
∣
∣

Note that the constraints on symbol placement may not be satisfiable if the track plan is decided in advance
and there is not enough room on the drawing for all the symbols. This means that, in general, the track plan
problem and the symbol placement problems are interacting, and may benefit from being solved simultaneously.

Actually, this reflects oneof the keymotivations for automating schematic drawings from the railway engineer’s
perspective: when adding or modifying symbols on the schematic track drawing, some additions or modifications
require reshaping the backbone of the drawing, represented by the track lines. If this happens at a late stage of
the project, there may not be sufficient time and resources available to update the schematic and lower-quality
drawings will be used instead, as a shortcut.

Instead of full simultaneous optimization of both the track plan and the symbol placements, we also define
the following simplified, heuristic approach:

Definition 2 The weakly interacting simultaneous track and symbol drawing problem is defined as follows: when-
ever solving the symbol drawing problem fails because there is not enough room on a track segment, re-solve the
track drawing problem with an additional constraint that increases the length of that track.

3. Model definitions and drawing algorithms

This section describes the four different models of linear schematic drawings that we have developed. All models
use a pre-processing step which orders edges vertically, described in Sect. 3.1. The first method is a linear pro-
gramming formulation (Sect. 3.2) where edges can have up to two bends, and the middle section of each edge is a
horizontal line at a certain level, i.e. y coordinate. The resulting optimization problem is efficiently solvable, but
has some drawbacks in visual quality. The second method introduces Boolean choice variables to mitigate the
shortcomings of the linear programming formulation, and use instead a SAT solver to solve a direct representa-
tion of choices for each point on the whole drawing grid (Sect. 3.3). The third model is a different Boolean model
where the choices for where different edges can appear is partially implicit in the variable domains, which we call
the cross-section SAT encoding (Sect. 3.4). Finally, we re-visit the levels-based formulation in combination with
Boolean choice (Sect. 3.5), using lazy solving of difference constraints to optimize the Boolean/numerical model
(keeping the maximum of two bends per edge).

An approach for adding symbols and labels to engineering drawings is presented in Sect. 3.6. This approach
is developed separately as an optimization problem that can be combined with the rest of the drawing methods
that we present in this section.

Section 3.7 summarizes the quality andperformance trade-offs between the fourmethods.ComparisonFigs. 8,
11, and 14 demonstrate the strengths andweaknesses of each approach, while Tables 2 and 3 describe their relative
performance and quality.We use several well-known SAT encoding techniques without explaining them in detail,
such as finite set encodings, unary number encodings, at-most-one, and optimization using binary search. These
techniques are described in [BHvMW09, Bjö11].

838 B. Luteberget and C. Johansen

(c) Clothes iron

<E?

(a)
Start node Termination

position

Search direction

(b)
Start nodeTermination

position

Search direction

Fig. 6. A search procedure starting in each node produces a set of tuples for the edge vertical order relation <E . a, b show two different start
nodes and search directions, where the lighter, orange edges are all below darker, magenta edges. c Shows an input on which the procedure
cannot decide an ordering.

The presentation of these four methods is both important for research purposes to show also weaknesses of
alternative simpler approaches (instead of only showing the most powerful of the methods), but is also intended
to be educational, where the earlier simpler methods introduce only some of the concepts (used also in later
methods), making the whole presentation easier to follow, more organized and ready for comparisons.

3.1. Vertical ordering relation on edges

From the nodes and edges defined as inputs to the linear schematic drawing algorithm, it is possible to derive a
vertical ordering relation <E on the set of edges. This relation is a strict partial order relating edges whose linear
position intervals intersect, i.e., it relates each pair of edges ea from nal

to nar
, and eb from nbl to nbr , where:

]
sal

, sar

[∩]
sbl , sbr

[�� ∅.

Such a relation can be established by considering paths starting in each of the branch-side ports of each switch,
crossing, and flyover (cf. Fig. 4). For example, an outgoing switch with branch-side edges ea and eb connecting
to its right and left ports, respectively, will obviously have ea <E eb . Each edge connected to the outgoing edges
from the other side of ea and eb will also be ordered vertically, and so on until either of the following termination
conditions are fulfilled:

(C1) The two sets of edges meet in another node.
(C2) One of the sides has no more edges to follow.

More precisely, we define <E by the following. LetG � (N ,E) be the graph from Definition 1. We first look
in the positive direction on the linear reference axis. We define a vertical order relation <i

E for each node ni ∈ N .
If ni has less than two ports on the side of increasing linear position, <i

E is empty. However, if the node has two
ports on the side of increasing linear position, let the edges connected to these ports be el , the lower edge, and
eh , the higher edge. For example, in an outgoing switch node (cf. Fig. 4), these correspond to the right and left
ports, respectively.

For any node nj with si < sj , define the directed graph H]i,j [containing:

• The subset of nodes fromG with positions in the open interval
]
si , sj

[
, along with any number of fresh nodes

(i.e. the nodes ni and nj are not included).
• The subset of edges from G which have at least one end connected to a node from the open interval

]
si , sj

[
,

directed in the direction of increasing linear position. If an edge connects to a node from G which is not
included in H]i,j [, that connection is replaced with a connection to a distinct fresh node.

We are looking for those nodes nj such that, inH]i,j [, the set of reachable edges when starting from el are disjoint
from the set of reachable edges when starting from eh (termination condition (C1)), see Fig. 6a. Also, the linear
position interval of each edge reachable from el should have a non-empty intersection with at least one edge
reachable from eh , and vice versa (termination condition (C2)). The node nj which has the highest position sj
while still fulfilling the above criteria, is called the termination position.

Drawing railway infrastructure schematics with SAT 839

Begin node

End node

(a)

(b)
(c)

Level

Fig. 7. The edge level model divides the edge into three sections on the horizontal axis: a the initial diagonal section from the left-most node
to the edge level, b the middle horizontal section connecting the two diagonal sections, c the final diagonal section reaching the right-most
node from the edge level. Any of these may have zero length.

Each edge ex reachable from el in H]i,j [is below all edges ey reachable from eh in H]i,j [whenever this pair of
edges has intersecting linear position intervals, in which case we have ex <i

E ey .
For the direction of decreasing linear positionwe apply the same argument with horizontal directions reversed

(see Fig. 6b). Finally, the relation <E is defined as the union of the relations from each node,

<E �
⋃

ni∈N
<i

E .

Remark 3 Unconnected graph components must still be explicitly ordered, and the same for some connected
topologies such as the clothes iron example in Fig. 6c. These are usually easy to decide from, e.g., a geographical
model, and this situation occurs rarely, in our experience.

3.2. Level-based linear programming encoding

We start by giving a constraint system on linear equations over continuous numerical variables which fulfills
the hard requirements from Sect. 2.3 and can be solved efficiently by linear programming (we used the CBC
solver v2.92). Later, the shortcomings of this model will motivate the introduction of Boolean and integer-valued
variables and a SAT problem formulation.

The main idea for this first model is based on the observation that (for many drawings) edges are mostly
horizontal, and they can thus be modeled as occupying a certain y-coordinate (the “level”) over a horizontal
interval. A complete drawing can then be produced by connecting the ends of the horizontal segments by shorter
diagonal segments. This level concept is more of a mental model that railway engineers are using when producing
drawings by hand (we are not aware of such practices being described in publicly available literature).We formalize
this level-based style of schematic drawing here to take advantage of it for producing drawings automatically.

For each node ni we use two real variables, xi and yi , representing the schematic coordinates of nodes. For
each edge ei we use one real variable li representing the edge’s level. This builds in an assumption that each edge
is drawn in three parts as explained in Fig. 7. We introduce the following constraints:

1. Node location ordering for successive nodes ni ,nj gives xi ≤ xj , corresponding to the linear order requirement
(from Sect. 2.3(B)).

2. Node location distance for nodes ni ,nj connected by an edge ek , where si < sj , gives xi+ | lk − yi | + |
yj − lk | +qk ≤ xj , where qk is 0 if the edge connects an outgoing switch to an incoming switch with the same
branching direction, and 1 otherwise. This creates room for a horizontal line segment if needed. The sign of
the absolute value terms is determined statically (not part of the linear programming) by the node class and
variant. This constraint corresponds to the octilinearity requirement (from Sect. 2.3(A)).

3. Edge level ordering for edges: ei <E ej gives li + 1 ≤ lj , corresponding to the node shape requirement (from
Sect. 2.3(C)).

2 Part of the COIN-OR project 2018: https://projects.coin-or.org/Cbc

https://projects.coin-or.org/Cbc

840 B. Luteberget and C. Johansen

(a) Junction (b) Crossover (c) Nested siding loops

(d) Ladder sidings

Fig. 8. Output examples for the linear programming method. The junction (a) and nested sidings (c) are correctly drawn. The crossover (b)
uses 2 units for the diagonal, where 1 would be sufficient, because each edge requires a level distinct from other edges with intersecting linear
position intervals. The ladder sidings (d) are unnecessarily wide because node shape variants are not included (compare with Fig. 11b).

4. Edge levels are related by switches, i.e.: each switch node ni constrains the trunk-side edge ej and the straight
branch-side edge ek to be at the same level as the node (yi � lj � lk) corresponding to the node shape
requirement.

Note that the uniform horizontal spacing constraint (from Sect. 2.3(D)) is implicit in these equations. Now we
have the following criteria available for optimization:

• Width of the drawing. Take the node ni with the lowest si , and the node nj with the highest sj . Then the width
of the drawings is xj − xi .

• Height of the drawing. The height of the drawing is not directly expressible in this model, but can be approxi-
mated by summing the vertical level difference of edges. For pairs of edges ei , ej where ei <E ej , the vertical
level difference distance is lj − li .

Someoutput examples fromthe linearprogramming solutionare shown inFig. 8.Althoughefficiently solvable,
this linear programming solution has amain drawback in that it is not able to choose between different alternatives
for drawing a node. For example, in the so-called ladder configuration shown in Fig. 8d, much space is wasted on
diagonal lines going to the top-most level, when the two topmost switches could have been rotated to produce a
simpler drawing. Also, each edge needs to have a y value distinct from other edges with intersecting x intervals,
even if it is drawn only with diagonals, such as in Fig. 8b, which contributes to inefficient use of space. Both these
shortcomings will be improved by the level-based Boolean formulation in Sect. 3.5.

3.3. Direct grid-based SAT encoding

The level-based representations do not represent the shapes of edges explicitly at each coordinate, and thus
cannot insert bends at arbitrary locations, something which is needed to pack drawings together more tightly.
This section presents a straight-forward grid-based SAT encoding of the schematic plan where each point on a
grid is associated with a choice of any node, and each cell with a choice of edge shape.

First, assume that we know a grid size w × h which is sufficiently large to contain a schematic drawing of a
given infrastructure. Each grid cell may be either blank, be occupied by a node n ∈ N , or be point on an edge
e ∈ E . Furthermore, each horizontal line lStraightx ,y , diagonal upwards line lUp

x ,y , and diagonal downwards line lDown
x ,y

starting at each point on the grid is either drawn or not. These are the variables in the problem:

px ,y ∈ {None} ∪ N ∪ E , lUp
x ,y , lStraightx ,y , lDown

x ,y ∈ B, for (x , y) ∈ [1,w] × [1, h]

We use the standard one-hot encoding for encoding the selection of an element from a finite set into the
Boolean satisfiability problem (see [BHvMW09] for an overview of the standard techniques). See Fig. 9 for an
overview of the variable definitions through an example.

Drawing railway infrastructure schematics with SAT 841

Unused grid point
p2,3 = None

Node at grid point
p2,2 = n1

Edge at grid point
p4,3 = l3, p5,3 = l3

¬lDown
6,2lStraight4,2

Fig. 9.Direct SAT representation. Each grid point is either gray (unused), blue (occupied by a node), or red (occupied by an edge). Each line
segment is either gray (deactivated) or black (activated).

The following constraints are used:

• Grid points adjacent to active edges cannot be unused. For lines starting in (x , y):

lUp
x ,y ⇒ (

px ,y �� None ∧ px+1,y+1 �� None
)
,

lStraightx ,y ⇒ (
px ,y �� None ∧ px+1,y �� None

)
,

lDown
x ,y ⇒ (

px ,y �� None ∧ px+1,y−1 �� None
)
,

• Only one of the two possible diagonals crossing a grid square may be used:

¬lDown
x ,y ∨ ¬lUp

x ,y−1

• Each node is at exactly one grid point in the drawing:

∀n ∈ N : exactlyOne(
{
px ,y � n | (x , y) ∈ [1,w] × [1, h]

}
,

where exactlyOne is encoded as one clause and one atMostOne constraint using a standard hierarchical
encoding.

• At each node n ∈ N at grid point px ,y � n, the active edges at that point must correspond to an allowable
set of adjacent line segments. For example, for a left outgoing switch n1 there are two variants v1 (straight)
and v2 (slanted):

∀(x , y) ∈ [2,w − 1] × [2, h − 1] :
(
px ,y � n1

) ⇒ v1(x , y) ∨ v2(x , y),

v1(x , y) � ¬lDown
x−1,y+1 ∧ lStraightx−1,y ∧ ¬lUp

x−1,y−1 ∧ ¬lDown
x ,y ∧ lStraightx ,y ∧ lUp

x ,y ,

v2(x , y) � lDown
x−1,y+1 ∧ ¬lStraightx−1,y ∧ ¬lUp

x−1,y−1 ∧ lDown
x ,y ∧ lStraightx ,y ∧ ¬lUp

x ,y .

Note that the choice of node class variant is not explicitly represented as a variable, but is implicit in the
mutually exclusive choices of enabled line segments neighboring the grid point.

• Also at each node, the nearby line segments must lead to a node with the correct edge. For example, say that
v1(x , y) above connects nodes n1 and n2 through edge e1 on its left port. Then we have:

v1(x , y) ⇒ (
px ,y+1 � e1 ∨ px ,y+1 � n2

)

• At each edge e ∈ E at grid point px ,y � e, exactly two neighboring edges must be active, and these cannot
be diagonals going in different directions.
So for conjunctions a1(x , y), a2(x , y), . . . corresponding to each line of Table 1, we get:

∀ e ∈ E : ∀(x , y) ∈ [1,w] × [1, h] : a1(x , y) ∨ a2(x , y) ∨ . . .

842 B. Luteberget and C. Johansen

Table 1. At each grid point (x , y) that is occupied by an edge px ,y � e, e ∈ E , there are seven valid combinations of active adjacent edges,
a1, . . . , a7, where each combination is a conjunction of the variables named in the column headers. The value true in the table indicates
inserting the variable positively, while the value false indicates that the variable is negated in the formula.

Variant lDown
x−1,y+1 l

Straight
x−1,y l

Up
x−1,y−1 lDown

x ,y l
Straight
x ,y l

Up
x ,y

a1(x , y) True False False True False False
a2(x , y) False True False False True False
a3(x , y) False False True False False True
a4(x , y) True False False False True False
a5(x , y) False True False False True False
a6(x , y) False True False False False True
a7(x , y) False False True False True False

• Also at each edge, the nearby line segments must lead to the correct node. For example for an edge e1
connecting nodes n1 and n2:

∀(x , y) ∈ [1,w] × [1, h] :
(
px ,y � e1 ∧ eStraightx−1,y

)
⇒ (

px−1,y � e1 ∨ px−1,y � n1
)
,

(
px ,y � e1 ∧ eStraightx ,y

)
⇒ (

px+1,y � e1 ∨ px+1,y � n2
)
,

and similarly for diagonal (up/down) lines.

• The linear ordering is imposed as follows for two consecutive nodes n1 and n2:

∀(x1, y1) ∈ [1,w] × [1, h] :
(
px1,y2 � n1

) ⇒ (∀(x2, y2) ∈ [1, x1 − 1] × [1, h] : ¬(px2,y2 � n2)
)

The grid encoding in principle requires a bound on the width and height of the drawing. To avoid specifying
this bound, we can start by solving the problem with a lower bound estimate on the drawing’s size, and, whenever
the problem is shown to be unsatisfiable by the solver, increase the size of the drawing. The increased-size problem
can benefit from incremental SAT solver calls, as the structure of the smaller-size drawing is preserved exactly as
it was. When increasing the bound, one needs also to choose between increasing the width and the height. We
chose a heuristic approach based on the test cases we had seen, increasing the width by 3 and the height by 1 at
each step.

The solution space created by the variables in this encoding is simple and obvious, but also much too large
given the structure and constraints of the problem. Indeed, with this encoding, drawings with only about 30 nodes
take hours to optimize.

This method naturally optimizes width/height first, since it needs to search for a width and height to make the
SAT problem satisfiable. Bends can then afterwards be approximately optimized through the number of diagonal
lines, by encoding a unary-encoded count of the number of diagonal lines and doing a binary search optimization
on that number.

We describe this method here to illustrate a first, naive approach for solving the schematic drawing problem,
and to highlight the importance of finding an efficient problem encoding. We have implemented this method and
tested its performance compared to the other methods, as shown in Table 2.

3.4. Cross-section SAT encoding

Instead of directly representing a grid, we define a vertical cross-section ck of the drawing, represented by a
unary-encoded integer yk

ei
capturing the height of each edge ei at some horizontal location in the drawing.

This naturally allows us to use the edge vertical order <E as constraints on unary numbers yk
ei

<E yk
ej
. Each

pair of successive nodes is transformed into a sequence of such cross-sections, and we associate a direction
dk
ei

∈ {
Up, Straight,Down

}
with each edge ei at each cross-section ck , giving the shape of the edge to the left

(lower x value) of the cross-section. Cross-sections can be enabled or disabled (represented by bk) to optimize the
width of the drawing.

Drawing railway infrastructure schematics with SAT 843

y03 = 1

y01 = 3

y00 = 5

y02 = 2 Trunk
Le
ft

Right

c0 c1 c2 c3
(deactivated)

c4 c5 c6
(deactivated)

c7 . . .Cross-section:

Node i (switch) Node j (end)

Cross-section c4, c5, c6

Fig. 10. Cross-section SAT representation. Dashed vertical lines show cross-sections ci . Edges have a y value and a direction to the left of
each cross-sec. Thick red arrows are constraints imposed by node type. Gray columns correspond to deactivated cross-sections, where shape
constraints are propagated to the next or previous column.

Finally, the ahead Boolean ak
ei
for each edge at each cross-sectionmarks whether the shape of the edge has already

been constrained for the next cross-section to the right (higher x value), which allows nodes to impose edge shape
constraints in both x -axis directions.

With this representation, we can impose constraints as follows:

1. Edge vertical order:

(ei <E ej) ⇒
∧

ck

yk
ei

≤ yk
ej

2. A begin node at cross-section ck constrains the edge shape to the right, and makes the y value unequal to the
y value of other edges ej ∈ ck .

ak
ei

∧ dk
ei

� Straight,
∧

ej ∈ck
yk
ei

�� yk
ej

,

and similar for end nodes, in the opposite direction:

¬ak
ei

∧ dk
ei

� Straight,
∧

ej∈ck
yk
ei

�� yk
ej

.

3. A switch node at cross-section ck constrains the edge shape in both directions by constraining the incoming
edges ei according to the node class variant. For example, for an outgoing left switch we have one incoming
edge ei1:

¬ak
ei1 ∧ dk

ei1 �� Up

The incoming edges ei are replaced by the outgoing edges ej in the cross-section representation. For exam-
ple, for an outgoing left switch (see Fig. 10) we have two outgoing edges ej1, ej2 as the left and right ports,
respectively:

844 B. Luteberget and C. Johansen

ak
ej1

∧ ak
ej2

,

and we have two choices of shape:
(
dk
ei

� Straight
) ⇒

(
yk
ei

� yk
ej2

∧ dk
ej2

� Straight ∧ dk
ej1

� Left
)

(
dk
ei

� Down
) ⇒

(
yk
ei

� yk
ej1

∧ dk
ej2

� Down ∧ dk
ej1

� Straight
)

Constraints are similar for other node classes.
4. Disabled cross-sections propagate all their values:

¬bk ⇒
∧

ei∈ck

{
yk
ei

� yk+1
ei

∧ ak
ei

� ak+1
ei

∧ dk
ei

� dk+1
ei

}

5. Enabled cross-sections require consistency between edge shapes and y values:

bk ⇒
∧

ei∈ck

{(¬ak
ei

∧ dk+1
ei

� Up
) ⇒ yk

ei
+ 1 � yk+1

ei

}

And correspondingly for Straight and Down directions.
6. Enabled cross-sections realize rightward-constrained ahead values a:

bk ⇒
∧

ei∈ck

{(
ak
ei

⇒ yk
ei

� yk+1
ei

) ∧ (
ak
ei

⇒ dk
ei

� dk+1
ei

) ∧ ¬ak+1
ei

}

With this formulation we can choose freely between prioritizing width, height, or bends, and the resulting
plans have lower total width than for the level-basedmethods, since the grid-basedmethod has the added freedom
of inserting bends at any location along an edge. See Fig. 14 for a comparison.

3.5. Level-based SAT encoding

We reformulate the problem using variables from the Boolean and bounded integer domains. Since we are dealing
with small integers, we can transform the problem into aBoolean satisfiability problem (SAT) by encoding numer-
ical variables into Boolean variables and use incremental SAT solvers which can be efficient for lexicographical
optimization on small discrete domains, as ours.

Integers can be encoded into SAT in variousways. Eager encodings represent numbers and constraints directly
using a set of Boolean variables and constraints and creates an equisatisfiable SAT instance.Most commonly used
is the binary encoding (one Boolean for each bit) and the unary encoding (one Boolean for each distinct number).
See [Bjö11] for details. Lazy encodings, as used in SMT solvers (see [BT18, NOT06] for an introduction), can
avoid some of the work of transforming and solving a large SAT problem by abstracting the numerical constraints
into marker Boolean variables. Only when the SAT solver sets markers to true, another procedure (the theory
solver) will go to work on the numerical constraints and report unsatisfiable combinations back to the SAT solver.

Although the SAT problem itself does not directly concern numbers, much less numerical optimization, an
incremental interface to a SAT solver allows solving many similar problems consecutively. For a set of constraints
φ, we can perform numerical optimization on some number x by solving the sequence of formulas φ ∧ (x <
m1), φ∧(x < m2), . . . ,where the sequencemi is a linear or binary search over the range of x , locating the smallest
value that satisfies the constraints. Querying the solver successively with such similar formulas incrementally is
much faster than solving the instances separately.

Weused theMiniSat [ES03] solver v2.2.0withunary encodingof bounded integers andalso lazy representation
of unbounded integers with difference constraints, i.e. constraints of the form xi − xj ≤ k , where k is a constant.
Difference constraints are suitable as a first-line refinement in SMT solvers (see e.g. [BBC+05]) because they can
be efficiently solved.

We keep the assumption from the previous subsection that each edge is assigned to a single level, and extend
the problem representation as follows:

1. Distances between nodes are represented as a saturating unary number of size 2, i.e. �x ∈ {0, 1,≥ 2}. This
allows us to distinguish between short (�x ≤ 1) and long (�x ≥ 2) edges.

Drawing railway infrastructure schematics with SAT 845

(a) Crossover

(b) Ladder sidings (c) Real-world example: Eidsvoll railML

Fig. 11. Output examples for the level-based SAT method. The crossover (a) requires only a 1 unit diagonal edge (improving Fig. 8b).
The ladder sidings (b) now use diagonal switch variants to improve width, height, and bends (improving Fig. 8d). The Eidsvoll station (c)
demonstrates real-world infrastructure imported from railML.

2. For each edge ej , we use Booleans q
up
j and qdownj to indicate a short edge pointing up/down, respectively, seen

in the direction of increasing x .
3. Node vertical coordinates yi and edge levels lj are represented by unbounded integers on which we can

conditionally impose difference constraints.

4. Variant selection ri ∈R(cj) for each node i indicates the node’s variant from the available shapes R(cj) of the
node class cj ∈C listed in Fig. 4.

5. Edge direction values, dbegin
i , d end

i ∈ {
Up, Straight,Down

}
, for the beginning and end of each edge ei , are

based on node variant values.

We need the following constraints:

• Each edge must be at least 1 unit long on the x axis.

• Edge ordering constraints for ea <E eb :

la ≤ lb,
(¬qupa ∧ ¬qdownb

) ⇒ la + 1 ≤ lb

If an edge is a short edge (such as a crossover between two adjacent tracks) it does not require its own level,
and we use instead the same level as the one of its end nodes which has the highest value. This allows to
produce a better crossover drawing, as in Figs. 11a instead of Fig. 8b.

• An edge i is short (qup or qdown) if both ends have the same direction and the vertical distance between nodes
is one:

qupi ⇒ (dbegin
i � Up) ∧ (d end

i � Up) ∧ (ya + 1 � yb)

qdowni ⇒ (dbegin
i � Down) ∧ (d end

i � Down) ∧ (ya − 1 � yb)

• Direction on edge i decides vertical level constraints:

(dbegin
i � Straight) ⇒ (ya � li), (dbegin

i � Up) ⇒ ya + 1 ≤ li ,

(dbegin
i � Down) ⇒ ((

qupi ⇒ (ya ≥ li)
) ∧ (¬qupi ⇒ (ya ≥ li + 1)

))

And correspondingly for d end.

• The sum of �x values over the edge must match the shape of the edge:
(
qup ∨ qdown

) ⇒ �j∈(a,b)�xj ≤ 1
(
¬qup ∧ ¬qdown ∧

(
dbegin �� Straight ∨ d end �� Straight

))
⇒ �j∈(a,b)�xj ≥ 2

Since the shape of an edge is now explicit through dbegin and d end, we can optimize for the number of bends
to produce Fig. 11b instead of Fig. 8d.

846 B. Luteberget and C. Johansen

Fig. 12. Symbol placement and style may affect track layout.

Bands -1,-2 below upper edge.
Bands 1,2 above lower edge.
· · ·

Fig. 13. Label placement can be done by restricting symbols to fit into a set of bands above and below each line, which reduces the constraints
to linear ordering.

3.6. Symbols and labels

Railway engineering schematics also include a considerable number of symbols and labels, e.g., in a railway
signaling schematic, signals and related equipment aredrawnon the schematic, and thediagram is richly annotated
with traveling distances, area limits, comments, andmore. It is quite common that the track layout must be drawn
in a way that accounts for the amounts and sizes of symbols and labels (see Fig. 12). In consequence, we include
in our tool (presented in Sect. 4) options for placing symbols on two rows above and below each track, which is
suitable for a commonly used schematic signaling drawing where trackside signaling equipment is drawn on and
around the tracks. We present here the method of doing this using difference constraints, which can thus be easily
combined with the method of drawing the tracks.

The level-based SAT encoding already relies on difference constraints for solving the track layout, so for
ensuring that the drawing has enough space for all the symbols, we can straight-forwardly encode the symbol
placement constraints from Sect. 2.4 using difference constraints. We also limit the number of bands to two bands
above and below the tracks, and shorten the bands at a fixed offset from switches to avoid symbols overlapping,
see Fig. 13. Since we are using integer domains for the difference constraints, the scale that we have used above
to describe the model can be too coarse for placing many small symbols. We scale up the X axis of the difference
constraints by a factor of 10000, and then straightforwardly translate the constraints:

• Ordering symbols by linear reference position, for consecutive symbols a and b:

xa
c ≤ x b

c ,

where x i
c is the center point for symbol i ∈ {a, b}.

• Ordering symbols within the same band, for consecutive symbols a and b:

xa
r ≤ x b

l .

• For a pair of symbols a and b with an alignment constraint:

xa
c ≤ x b

c ∧ x b
c ≤ xa

c .

However, the optimization task of minimizing the symbols’ offsets from their proportional position is not
readily expressible in SAT modulo difference constraints. We suggest two approaches to solve this problem:

1. Use a full-featured SMT solver with optimization capabilities, such as Z3 or OptiMathSAT.
2. After ensuring satisfiability with the SAT modulo difference logic solver, transfer the symbol constraints to a

linear programming solver, such as COIN-OR CLP/CBC, to optimize their final positions while keeping the
track plan fixed.

Drawing railway infrastructure schematics with SAT 847

Table 2.Running times in seconds on a mid-range workstation. Time-outs (T/O) indicate exceeding 300 s. Model sizes are given as the sum of
the number of nodes and edges. Models were obtained from BaneNOR [Rai16b], a RailCOMPLETE CAD project (RC), and adapted from
[Bra16]. Scaling test models (T) named n ×m consist of n serially connected stations, each spreading out tom parallel tracks. Optimization
criteria are height (h), width (w) and bends (b). The size columns show the number of SAT variables and clauses (v/c).

Model Source Size Direct/SAT Levels/SAT Cross-sec./SAT

hwb size (v/c) bhw size (v/c) hwb hbw bhw size (v/c)

Eidsvoll [Rai16b] 35 60.7 57k/153k 0.02 2.3k/0.7k 0.05 0.06 0.33 4.0k/28k
Arna RC 57 294 167k/493k 0.03 4.9k/1.3k 0.26 0.65 1.06 11k/100k
Asker [Rai16b] 64 T/O 104k/295k 0.04 5.6k/2.0k 0.61 1.02 0.87 14k/124k
Weert [Bra16] 102 T/O 304k/969k 0.18 11k/4.0k 0.72 19.3 21.4 29k/327k
5x10 T 228 T/O 2.8M/13M 0.58 35k/2.7k 5.83 7.48 8.08 46k/364k
5x20 T 478 T/O 2.8M/12M 3.37 97k/7.7k 279 299 T/O 265k/4.2M
10x5 T 203 T/O 3.0M/14M 0.40 28k/2.0k 0.52 0.59 1.08 20k/83k
20x5 T 403 T/O 3.0M/14M 1.73 70k/4.0k 1.95 2.50 3.36 44k/165k
10x10 T 453 T/O 2.6M/12M 2.74 86k/5.5k 21.9 22.4 40.7 96k/727k
15x15 T 1053 T/O 2.3M/10M 22.7 255k/15k T/O T/O T/O N/A

Table 3. Quality comparison for the methods. The Direct/SAT and Cross-section/SAT methods optimize all criteria exactly, but can take
too long to compute for practical usage. The Levels/Linear programming method is highly scalable, but suffers from poor quality in width,
diagonals, and bends. The Levels/SAT method offers a compromise where width, diagonals and bends are optimized, but according to the
simplified “levels” edge definition which does not represent all possible drawings.

Model Hard constraints Optimization criteria

Width Height Diagonals Bends

Levels/linear programming � Poor Adequate Poor Poor
Direct/SAT � Optimal Optimal Optimal Optimal
Levels/SAT � Adequate Optimal Adequate Adequate
Cross-section/SAT � Optimal Optimal Optimal Optimal

To avoid installation, distribution and licensing issues, we avoided both approaches in our tool, and went
instead for a heuristic approach: setting the starting positions for all symbols to their proportional value before
solving the difference logic constraints ensures that symbols are not moved from the proportional location unless
forced to by a constraint. This approach is not guaranteed to produce optimal solutions, but has worked well on
our examples.

3.7. Quality and performance evaluation

We have implemented and compared the performance of the four methods described above, summarized in
Table 2. The Direct/SAT encoding’s performance is too poor to be of practical value. The Levels/SAT encoding
is the fastest, and produces good output when optimizing for bends first. Cross-sec./SAT is slower, but is more
capable for optimizing for height and width.

In Table 3, we summarize the quality aspects discussed in the subsections above for each of the methods. We
classify the methods’ ability to attain the given criteria into the following categories:

• “poor” if the method produces obviously sub-optimal results,
• “adequate” if the method optimizes approximately and may produce sub-optimal results, but still works well
in practice,

• “optimal” if the method produces optimal results.

848 B. Luteberget and C. Johansen

Levels/Lin.Prog. Levels/SAT
Cross-sec./SAT,
opt. width/heightDirect/SAT

(a) Drawings of Eidsvoll station, infrastructure imported from BaneNOR railML [Rai16b]. In this infrastructure there is little
reason to rotate switches, so the linear programming model produces good results except for the excessive height. The levels
SAT improves the height by using short crossover tracks. The cross-section SAT model attains a smaller drawing by deviating
from the “levels” assumption described in Section 3.2. The direct SAT drawing does not respect linear order, and it makes a
very compressed drawing.

Levels/Lin.Prog. Levels/SAT
Cross-sec./SAT,
opt. height/bends

(b) Drawings of Asker station, imported from [Rai16b]. Like in (a), there is little reason to rotate switches, all approaches
produce similar drawings, though the linear programming model creates excessive height for the same reason as in (a).

Levels/Lin.Prog. Direct/SAT
Levels/SAT

Cross-sec./SAT,
opt. bends/width

Cross-sec./SAT,
opt. height/bends

Cross-sec./SAT,
opt. height/width

(c) Drawings of Arna station ongoing construction project, infrastructure imported from a RailCOMPLETE CAD project.
The linear programming model produces the unwanted ladder style described also in Figure 8. Note that the direct SAT model
drawing does not respect linear order. The cross-section SAT model optimizing for bends first is very similar to the levels SAT
model (which also optimizes for bends first), but the cross-section SAT model can also be used to attain even lower height and
width by optimizing for these first and deviating from the “levels” assumption described in Section 3.2.

Cross-sec./SAT, opt. height/bends Cross-sec./SAT, opt. height/width

Levels/SATLevels/Lin.Prog.

(d) Drawings of Weert station, infrastructure remodeled from figures in [Bra16]. We see that the linear programming model
has much wasted space. The levels SAT is somewhat better, but on this infrastructure, the cross-section SAT method is clearly
better because it is able to pack together the fan-out shapes and not reserve excess space for edges. Note that some method
implementations did not include crossings, so these have been left out of some drawings.

Fig. 14.Comparisonof three optimizationmodels on various infrastructuremodels: Levels/Lin.Prog. (see Sect. 3.2),Direct/SAT (see Sect. 3.3),
Cross-sec./SAT (see Sect. 3.4), Levels/SAT (see Sect. 3.5).

Drawing railway infrastructure schematics with SAT 849

The qualitative differences between the methods are exemplified by the comparison in Fig. 14. The linear
programming model’s excess length and height caused by crossovers (see Fig. 8b) can be seen in each of the
examples in Fig. 14a–d. The linear programming model’s excess length caused by ladder sidings (see Fig. 8d) can
be seen in the Arna andWeert examples in Fig. 14c, d. The effect of the “levels” assumption described in Sect. 3.2
can be observed by comparing the levels SAT method to the cross-section SAT method in Fig. 14a, c, d. Note
that the direct SAT method drawings shown in Fig. 14a, c do not respect the linear ordering constraints, as they
were produced using an earlier version of the input data format specification where the linear reference positions
were not available.

We conclude that Cross-section/SAT and Levels/SAT are the only ones which have good enough running
times and visual quality to be used in practice. The Cross-section/SAT with unbounded number of bends per
edge is able to optimize drawing size further than the levels-based model. However, this comes at the cost of
increased running time.

4. Software tool support for railway infrastructure design

Computer software tools can have an important supporting role in the complex design processes for railway
infrastructure, both for engineering analysis and verification work, and for cross-discipline coordination and
project management. The use of software for railway infrastructure engineering tasks has in many companies not
advanced beyond computerized drafting. This section describes software that is in use in railway engineering,
and how they could benefit from automating schematic infrastructure drawings.

The main types of tools in use in railway engineering today are:

Drafting tools, often called CAD (computer-aided design/drafting), provide efficient means for producing geo-
graphical or schematic drawings of a construction project. Today, these are being extended to so-called BIM,
Building InformationManagement, which typically means extending the CADmodel to include 3D drawings of
all disciplines for realistic visualization, and to include semantic data on components involved in the construction
process.

Examples of general CAD programs in use for all sub-disciplines include Autodesk AutoCAD and Bentley
MicroStation. For some disciplines, there are also domain-specific CAD programs available, most notably for
railway track design which is supported by Trimble NovaPoint, AKG Vestra, Card 1, and more. Signaling and
interlocking design is supported by WSP ProSig and RailCOMPLETE3 (see Fig. 15).

Databases and models of railway infrastructure and related information are used to store and transfer infras-
tructure data between companies, and between engineering, maintenance and operations sub-organizations.
Typically, each national railway has a database model and a central database to store information about their
railway network for engineering, maintenance, and operational planning. Examples include Ariane/Gaı̈a in the
French SNCF railways, PlanProML in the German DB railways, and Banedata in the Norwegian Bane NOR
railways.

Some efforts on international standards for datamodels are gaining traction, such as railML,RailTopoModel,
EuLynx, and IFC, all of which are aimed at improving integration between software tools, and data exchange
between infrastructure managers and contractors across different countries.

The railML format (see Fig. 17 for an example) is an XML based language for data exchange of railway
designs, developed by an international standardization committee, and was used as input to our tool as it is
designed for exchange of infrastructure data between programs. railML consists of sub-schemas for time table,
rolling stock, and infrastructure. The infrastructure schema is organized with a list of tracks at the top level
of the hierarchy. Tracks contain sub-elements for (1) movable track elements, such as switches, crossings, and
derailers, (2) trackside elements such as signals, detectors, and balises, (3) track geometry, such as radius and
gradient, and (4) operational status, such as country borders, electrification, platform adjacency, and muchmore.
Ends of tracks, along with switches and crossings, are considered nodes which can be connected to each other by
mutually cross-referencing each other by name (using the XML attribute id). The recent railML version 3 now
also contains a sub-schema for interlocking specifications.

3 See the RailCOMPLETE web page: http://railcomplete.no/.

http://railcomplete.no/

850 B. Luteberget and C. Johansen

Fig. 15. The RailCOMPLETE CAD tools extends Autodesk AutoCAD with railway-specific drafting and modeling capabilities.

Fig. 16. The LUKS capacity analysis tool offers analytical models and simulation models on comprehensive infrastructure and time table
data.

Drawing railway infrastructure schematics with SAT 851

Fig. 17. The railML XML format is hierarchically structured, the infrastructure element contains tracks, and tracks contain trackside
elements such as signals, and track geometry features such as radius and gradient.

Analysis tools are typically specific to a sub-discipline. A major category of analysis tools is the capacity and
time tabling tools. These tools use detailed data from the infrastructure, rolling stock, and time table domains
to analyze changes to time table and stochastic effects of delays and congestion. Examples of capacity and time
table analysis tools include VIA LUKS4 (see Fig. 16), OpenTrack, and RMCon RailSys.

Examples of other analysis domains include SicatMaster for catenary power line analysis, and Prover Trident
for formal verification of interlocking implementations.

Automatic schematic drawing of railway infrastructure eliminates a major obstacle in transferring information
between software from these categories. For example, extracting data from a database for use in analysis tools
often requires drawing a schematic manually, and the resulting drawing is seldom reusable outside that specific
analysis software. Another example is rapid iterations in early-stage construction projects, where models are first
constructed in geometric CAD software, and then transferred to databases or analysis software. With automatic
schematic drawings, this transfer is immediately available, avoiding manual modeling for a validation process
which might be quite time-consuming or possibly skipped altogether.

5. railplot: a scriptable plotting tool for railway infrastructure

Wehavedevelopeda toolwith a command-line interface, called railplot, that can generate railway infrastructure
drawings of the kind described and shown in this paper, available online5. The program is written in the Rust
programming language, using the MiniSat v2.2 SAT solver through its library API.

The railway software industry does not have widely implemented standards for data representation and
transfer, so a tool that works on railway infrastructure data needs to be flexible in how it reads and writes data
to be applicable in different settings. Also, many applications require strict adherence to specific drawing styles
which vary widely between different countries and companies. To accommodate such a variety of requirements,
we considered the following approaches:

• A programming library interface could offer full flexibility of input/output formats by requiring the user to call
the library with operations that correspond to the internal model of the automated drawing solver. In effect,
this would require users of the software to program the required data transfer and drawing output routines
themselves. railplot can be used as a library in this way, but we do not expect that railway engineers will
directly take such a library into use, though it could be useful for software engineers in a development project
for railway software.

4 See the LUKS web page: https://www.via-con.de/en/development/luks/.
5 See the railplot web page: https://github.com/luteberget/railplot. The project is also archived at Software Heritage (https://archive.
softwareheritage.org/swh:1:snp:4f0ec805bcce1785abe2a0a31f330cb7ab8b6034;origin=https://github.com/luteberget/railplot/) and Github
Archive Program (https://archiveprogram.github.com/arctic-vault/).

https://www.via-con.de/en/development/luks/
https://github.com/luteberget/railplot
https://archive.softwareheritage.org/swh:1:snp:4f0ec805bcce1785abe2a0a31f330cb7ab8b6034;origin=https://github.com/luteberget/railplot/
https://archive.softwareheritage.org/swh:1:snp:4f0ec805bcce1785abe2a0a31f330cb7ab8b6034;origin=https://github.com/luteberget/railplot/
https://archiveprogram.github.com/arctic-vault/

852 B. Luteberget and C. Johansen

• Using standard file formats is another approach to integrating with other railway software systems. railplot
can be used in this way by using input from railML 2.x or a custom file format, and output given in SVG or a
custom JSON structure. However, we have not defined a specific input language for declaring which railML
objects are drawn as symbols with their size and graphic display. The tool can import railML files as track
network input and track-side object symbols, or use a custom format for directly specifying topology. The
tool offers two choices of built-in symbol appearances: “simple” for generic lamp-like signals and detector,
and “ERTMS” for ERTMS-style marker boards and detectors (see Fig. 12).

Both of the above approaches can work well for integrating a tool in many different settings, especially for
dedicated software engineers. However, many engineers that work on railway and other infrastructure projects
can be competent programmers, but not on a dedicated professional level where they are able and willing to invest
time and effort into installing a development environment, reading API documentation, parsing from one data
structure to another, and setting up all railway symbols from scratch.

To make it easier for non-professional programmers to customize the plotting tool, we have organized
railplot so that a scripting language drives the main part of the program. This approach has been success-
ful in other plotting tools such as Gnuplot6 and Graphviz7. We used the Lua programming language8 and have
embedded its interpreter into the railplot program. The user can export the application’s default script to a
Lua file and make smaller or larger customizations. The following are the main features of the scripting language
interface:

• Reading inputs: the railplot program can load a railML (or other XML formats) and convert the XML
structure into Lua objects. The plot script defines how the XML structure is interpreted into symbol objects.
The objects should have the following properties: (a) pos, the linear reference position, (b) width, the width
of the symbol in drawing units, (c) origin, the offset of the symbol center-point from the left as a fraction of
the symbol width, and (d) level, which selects the band on the track (see Fig. 5). An example using railML
might look like this:

model = l o ad r a i lm l {
f i l ename = i n p u t f i l e ,
g e t po s = f u n c t i o n (o) r e t u r n o.absPos or o.pos end ,
symbol in fo = f u n c t i o n (o)

i f o . e l em == " s i g n a l " t hen
l e v e l = o . d i r == "up" and −1 or 1
o r i g i n = o . d i r == "up" and 0 . 0 or 0 . 4
r e t u r n { pos = o.absPos or o.pos ,
width=0.4 , o r i g i n = or i g in , l e v e l = l e v e l }

(. . .)

• Drawing primitives: the default script defines a function that maps from a symbol object into one or more
drawing primitives. The primitives are lines, rectangles, and circles. The following example draws a train
detector as a line crossing the track.

f u n c t i o n draw symbol (o)
i f o . e l em == " t r a i nDe t e c t o r " t hen
r e t u r n l i n e (0 ,−0 .05 , 0 , 0 . 05)
e l s e i f o . e l em == " s i g n a l " t hen
(. . .)

Each primitive is drawn in a coordinate system rotated and translated so that the point on the track it belongs
to is at the origin and the positive direction of the track is along the positive direction on the x-axis. The user
is also free to define new such primitives, for example image file references.

• Output format: finally, the script contains a function that maps from the drawing primitives to an output
format.

6 See the gnuplot web page: http://www.gnuplot.info/
7 See the Graphviz web page: https://www.graphviz.org/.
8 See the Lua web page: http://www.lua.org/.

http://www.gnuplot.info/
https://www.graphviz.org/
http://www.lua.org/

Drawing railway infrastructure schematics with SAT 853

The following example defines outputting a rectangle to TiKZ format:

i f output format == " t i k z " t hen
f u n c t i o n r e c t (x0 , y0 , x1 , y1)

r e t u r n " \\draw (" . . x 0 . . " , " . . y 0 . . ") r e c t a n g l e (" . . x 1 . . " , " . . y 1 . . ") ; "
end
(. . .)

The tool’s default script can produce output in JSON format (for custom visualization or post-processing),
SVG (for use in web pages and web applications), or TikZ (for use in LaTeX documents).

Driving the programusing an embedded scripting language solves the problemof needing to install a program-
ming environment on the user’s computer, but still allows full customization using a full-featured programming
language.

The tool implements the Levels/SAT method described in Sect. 3.5, as we found this method to give the best
trade-off between drawing quality and running time (see Table 2).

Implementations of the three other methods described in this paper are also available for download at the
same address, but they are not integrated into the scriptable tool.

6. Conclusions and future work

We have demonstrated the feasibility of using an incremental SAT solver to automatically produce and optimize
schematic railway drawings using several different optimization criteria. However, the choice of encoding makes
a significant difference in the size of models that can be handled in a reasonable amount of time, cf. Table 2. The
direct representation using an explicit grid fails to handle instances of relevant scale. Only after reformulating
the problem in a more structured solution space, where the order of symbols is hard-coded into the problem,
rather than added as a constraint after the fact, we were able to solve industrial-size instances in reasonable time
for interactive use (i.e., under 1s). A remaining interesting problem is the study of the inherent computational
complexity of the linear schematic drawing problem.

Our goal is that professionals should be able to rely on high-quality automatic schematics, which requires
further tailoring of symbol and text placement to specific use cases, and integration with GUI tools.

Acknowledgements

We would like to thank Koen Claessen and Martin Steffen, as well as engineers from Railcomplete AS, for their
help with this work, which was partly funded by Railcomplete AS and the Norwegian Research Council through
the project RailCons—Automated Methods and Tools for Ensuring Consistency of Railway Designs.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://www.mn.uio.no/ifi/english/research/projects/railcons/
http://creativecommons.org/licenses/by/4.0/

854 B. Luteberget and C. Johansen

References

[Ave02] Avelar S (2002) Schematic maps on demand—design, modeling and visualization. Ph.D. thesis, ETH Zürich
[BBC+05] BozzanoM, Bruttomesso R, Cimatti A, Junttila TA, van Rossum P, Schulz S, Sebastiani R (2005) An incremental and layered

procedure for the satisfiability of linear arithmetic logic. In: Tools and algorithms for the construction and analysis of systems
(TACAS), vol 3440 of LNCS, pp 317–333. Springer

[BHvMW09] Biere A, Heule M, van Maaren H, Walsh T (eds) (2009) Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press

[Bjö11] Björk M(2011) Successful SAT encoding techniques. JSAT 7(4):189–201
[Bra16] BrandsA (2016) Automatic generation of schematic diagrams of theDutch railway network.M.Sc. thesis, RadboudUniversity
[BT18] Barrett C, Tinelli C(2018) Satisfiability modulo theories. In: Handbook of Model Checking, pp 305–343. Springer
[Rai16b] Bane NOR: Model of the Norwegian rail network. http://www.banenor.no/en/startpage1/Market1/Model-of-the-national-

rail-network/, 2016.
[CdBvK05] Cabello S, de Berg M, van Kreveld MJ (2005) Schematization of networks. Comput Geom 30(3):223–228
[DETT94] Di Battista G, Eades P, Tamassia R, Tollis IG (1994) Algorithms for drawing graphs: an annotated bibliography. Comput

Geom 4:235–282
[DETT99] DiBattistaG,Eades P, TamassiaR,Tollis IG (1999)GraphDrawing:Algorithms for theVisualization ofGraphs. Prentice-Hall
[ES03] Eén N, Sörensson N (2003) An extensible SAT-solver. In: SAT conference 2003, volume 2919 of LNCS, pp 502–518. Springer
[Hü02] HürlimannD (2002) ObjektorientierteModellierung von Infrastrukturelementen und Betriebsvorgängen imEisenbahnwesen.

Ph.D. thesis, ETH Zurich
[rai16a] IRS (2016) 30100: RailTopoModel—railway infrastructure topological model. The International Union of Railways (UIC)
[LCJ18] Luteberget B, Claessen K, Johansen C (2018) Design-time railway capacity verification using SAT modulo discrete event

simulation. In: FMCAD. IEEE
[LCJ19] Luteberget B, Claessen K, Johansen C (November 2019) Automated drawing of railway schematics using numerical optimiza-

tion in SAT. In: Wolfgang A, Silvia Lizeth TT (eds) 15th international conference on integrated formal methods (iFM 2019),
volume 11918 of LNCS, pp 341–359. Springer

[NOT06] Nieuwenhuis R, Oliveras A, Tinelli C (2006) Solving SAT and SAT modulo theories: from an abstract Davis–Putnam–
Logemann–Loveland procedure to DPLL(T). J ACM 53(6):937–977

[NW11] Nöllenburg M, Wolff A (2011) Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans
Vis Comput Graph 17(5):626–641

[Nö05] Nöllenburg M (2005) Automated drawing of metro maps. Technical Report 25, Universität Karlsruhe, Karlsruhe
[OS15] OkeO,Siddiqui S (2015)Efficient automated schematicmapdrawingusingmultiobjectivemixed integerprogramming.Comput

& OR 61:1–17
[Ozd05] Ozdal MM (2005) Routing algorithms for high-performance VLSI packaging. Ph.D. thesis, University of Illinois at Urbana-

Champaign
[PT98] Papakostas A, Tollis IG (1998) Algorithms for area-efficient orthogonal drawings. Comput Geom 9(1–2):83–110
[SS14] Seyedi-Shandiz S (2014) Schematic representation of the geographical railway network used by the Swedish transport admin-

istration. M.Sc. thesis, Lund University
[Tam87] Tamassia R (1987) On embedding a graph in the grid with the minimum number of bends. SIAM J Comput 16(3):421–444
[vDLMW18] van Dijk TC, Lipp F, Markfelder P, Wolff A (2018) Computing storyline visualizations with few block crossings. In: GD, pp

365–378. Springer
[Wol07] Wolff A (2007) Drawing subway maps: a survey. Inf Forsc Entwick 22(1):23–44

Received 16 June 2020
Accepted in revised form 13 January 2021 by Lizeth Tarifa, Wolfgang Ahrendt and Heike Warheim
Published online 20 October 2021

http://www.banenor.no/en/startpage1/Market1/Model-of-the-national-rail-network/
http://www.banenor.no/en/startpage1/Market1/Model-of-the-national-rail-network/

	Drawing with SAT: four methods and A tool for producing railway infrastructure schematics
	Abstract
	1 Introduction
	2 Problem definition and formalization
	2.1 Linear positioning system
	2.2 Track network representation
	2.3 Linear schematic track drawing
	2.4 Linear schematic symbol placement

	3 Model definitions and drawing algorithms
	3.1 Vertical ordering relation on edges
	3.2 Level-based linear programming encoding
	3.3 Direct grid-based SAT encoding
	3.4 Cross-section SAT encoding
	3.5 Level-based SAT encoding
	3.6 Symbols and labels
	3.7 Quality and performance evaluation

	4 Software tool support for railway infrastructure design
	5 railplot: a scriptable plotting tool for railway infrastructure
	6 Conclusions and future work
	Acknowledgements
	References

