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Abstract

Purpose: Neuroscience data is spread across a variety of sources, typi-
cally provisioned through ad-hoc and non-standard approaches and for-
mats, and often has no connection to the related data sources. These make
it difficult for researchers to understand, integrate, and reuse brain-related
data. The aim of this study is to show that a graph-based approach offers
an effective mean for representing, analysing, and accessing brain-related
data, which is highly interconnected, evolving over time, and often needed
in combination.

Approach: We present an approach for organising brain-related data
in a graph model. The approach is exemplified in the case of a unique
data set of quantitative neuroanatomical data about the murine basal
ganglia — a group of nuclei in the brain essential for processing infor-
mation related to movement. Specifically, the murine basal ganglia data
set is modelled as a graph, integrated with relevant data from third-party
repositories, published through a Web-based user interface and API, anal-
ysed from exploratory and confirmatory perspectives using popular graph
algorithms to extract new insights.

Findings: The evaluation of the graph model and the results of the
graph data analysis and usability study of the user interface suggest that
graph-based data management in the neuroscience domain is a promising
approach, since it enables integration of various disparate data sources,
and improves understanding and usability of data.

Originality: The study provides a practical and generic approach for
representing, integrating, analysing, and provisioning brain-related data,
and a set of software tools to support the proposed approach.
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1 Introduction

The brain is the organ humans rely on the most but understand the least. In
order to understand the brain’s structure and function, researchers need data. In
this respect, neuroscience data, primarily representing the features of the brain
and information related to brain-related research, has increased significantly
over the past decade due to the advances in technology (Fan & Markram (2019)).
The data that exists about the brain already is in large quanta, complex, and
spread across repositories in multiple formats. As an example of this complexity,
brain-related data can represent a part of the human brain’s 86 billion neurons,
and for each neuron, any of the approximately 7000 connections (synapses)
(Herculano-Houzel (2009), Drachman (2005)). The existing neuroscience data,
however, is spread across a variety of sources, typically provisioned through
ad-hoc and non-standard approaches and formats, and often has no connection
to the related data sources (Bassett et al. (2018)). These primarily hinder the
reuse, integration, and sharing of data (Teeters et al. (2008)) and it becomes
increasingly difficult for researchers to combine and use relevant data. Therefore,
there is a need to examine how neuroscience data can be modelled and stored
to facilitate integration and reuse. Existing research on managing brain-related
information mostly works towards the standardisation of metadata, aiming to
make it easier for researchers to find and reuse data (Amunts et al. (2016),
Gardner et al. (2012), Sivagnanam et al. (2013)). This research stream, however,
mainly focuses on metadata management for data sets and little on managing
the actual data.

In this respect, graph data models and databases provide performance, flex-
ibility, and agility (Fernandes & Bernardino (2018)) and open up the possibility
of using well-established graph analytics solutions (Needham & Hodler (2019));
however, there is little research on graph-based data representation as a mech-
anism for integration, analysis, and reuse of neuroscience data. Therefore, in
this article, we address the following research questions:

1. Can graph-based representation of brain-related data facilitate the inte-
gration of data from a variety of neuroscience data sets?

2. Can a graph model provide a better understanding of the data in a brain-
related data set?

3. To what extent can a graph-based approach to neuroscience data manage-
ment improve the usability of the data?

To this end, in this article, we show that a graph-based approach offers
an effective mean for representing, analysing, and accessing brain-related data
by presenting an approach for organising brain-related data in a graph model
enabling integration of various disparate data sources, and improving the un-
derstanding and usability of data. The approach is exemplified in the case
of a unique data set of quantitative neuroanatomical data about the murine
basal ganglia (Bjerke et al. (2020)) — a group of nuclei in the brain essential



for processing information related to movement. Specifically, the murine basal
ganglia data set is modelled as a graph, integrated with relevant data from third-
party repositories, published through a Web-based user interface and API, and
analysed from exploratory and confirmatory perspectives using popular graph
algorithms to extract new insights. Through exploratory and confirmatory anal-
ysis, we managed to find interesting findings and answer specific questions. The
evaluation of the graph model and the results of the graph data analysis and
usability study of the user interface suggest that graph-based data management
in the neuroscience domain is a promising approach. The study presented in
this article provides a practical and generic approach for representing, integrat-
ing, analysing, and provisioning brain-related data, and a set of software tools
to support the proposed approach.

The rest of the article is structured as follows. In Section 2 provides the
background information, while Section 3 presents the related work. Section 4
describes the data sets and Section 5 presents the design and implementation of
the proposed solution. Section 6 presents the evaluation, while finally, Section
7 concludes the article.

2 Background

In this section, we provide some background information on neuroscience and
graph-based data representation in order to facilitate comprehensibility of rest
of the article for researchers with different backgrounds (e.g., neuroscience and
computer science).

2.1 Neuroscience

The brain is a large and complex organ that, together with the spinal cord, con-
stitutes the central nervous system (CNS) (Kandel et al. (2000)). Neuroscience
typically divides the brain into different parts based on each region’s functional,
connectional, or structural properties. The exact division varies across the lit-
erature, but Kandel et al. (2000) specify six main parts. These can be grouped
into the three parts presented, namely cerebrum, brainstem, and cerebellum.
Cerebrum consists of the cerebral cortex and subcortical nuclei. The cerebral
cortex is the outer layer of the cerebrum and is responsible for most human
cognitive abilities. The subcortical areas lie, as the name suggests, beneath the
cortex. It consists of three compounds where one of them is the basal gan-
glia (Kandel et al. (2000)). The brain includes numerous different cell types,
broadly categorised as glial cells and neurons (Campbell et al. (2011)). Neu-
rons are the cells that process and transport information throughout the CNS.
They communicate through connections called synapses. The brain glial cells
are non-neural, meaning they do not transfer signals directly. Instead, the glia
cells provide support and regulate the functioning of the neurons (Campbell
et al. (2011)). Much of brain-related research investigates the cells in the brain.
Many disease studies use rats or mice for their research, since rodents have a



shorter lifespan and researchers can observe them in controlled environments.

There are differences in the division, region naming, and which parts of the
brain a defined region contain (Swanson (2000)). When a neuroscientist makes
an observation, it is vital to communicate the observation’s location in the brain
(Bjerke et al. (2018)). In science, a nomenclature defines a system for naming
within a specific area (Merriam-Webster.com dictionary (n.d.)). In neuroscience,
a brain region nomenclature is a framework for naming and defining the areas of
the brain. When studying the brain, such nomenclatures help researchers pre-
cisely define which region or part of the brain the data reference (Bowden et al.
(2012)). Neuroscience researchers utilise brain atlases for matching the location
of their findings. In this study, we refer to the term “brain atlas” as the more
narrow description of atlases used for reference, also called reference atlases. A
reference brain atlas is a map of the brain for a specific species, containing images
of the brain and borders between regions in the context of those images (Bjaalie
(2002)). In relevance to anatomical naming, reference atlases employ a specified
nomenclature (Bjaalie (2002)). The nomenclatures of the most renowned brain
atlases at a given time are what researchers usually choose as nomenclature in
a study or research experiment (Bota & Swanson (2010)). For example, when
measuring cell-counts in a region, researchers can report which atlas nomen-
clature they have used to specify the given region. That atlas nomenclature
is then the nomenclature used in that experiment or research. This reporting
is essential for other researchers to obtain the correct location of the research
observations. Another area of anatomical naming considers cell types. Neuro-
science research is often not concerned with counting or observing all neurons,
but rather specific neurons, such as neurons which express particular neuro-
transmitters (Shepherd et al. (2019)). Researchers can name the neurons based
on what they express, where they exist in the brain, or their structure, based
on the research focus (Hamilton et al. (2012), Petilla Interneuron Nomenclature
Group (PING) (2008), Shepherd et al. (2019)). The many ways researchers can
describe a cell type cause a lack of consensus on the criteria for defining neuron
types (Hamilton et al. (2012)). For clarity, researchers should explicitly report
what defines a specific cell type in their research (Shepherd et al. (2019)).

The basal ganglia are not a concrete part of the brain but a collective term
for a group of nuclei. In humans and other mammals, the basal ganglia are
significantly involved with movement and, to some degree, emotions, and mem-
ories (Gerfen & Bolam (2016), Middleton & Strick (2000)). Much of the basal
ganglia’s clinical significance is related to movement disorders like Huntington’s
disease and Parkinson’s disease (Obeso et al. (2008), Bunner & Rebec (2016)).
Basal ganglia studies are often related to specific diseases, producing a predom-
inance of data about brain regions and cell types relevant to the disease.

2.2 Graph-based data representation

Many real-world scenarios are naturally structured as graphs, such as social
networks and neuron connectivity. Graph-based data representation provides a
way to represent such real-world structures directly. Graph-based data repre-



sentation entails all representations of data that utilise a graph model. There
are various types of graphs. Discrete mathematics defines a graph, or a simple
graph, as a set of vertices (nodes) and edges (relationships). Nodes connect
through edges, and all edges in a graph go between two nodes in the node-set
(Cormen et al. (2009), Diestel (2017)).

Graph databases are utilised to use graph models. Robinson et al. (2013)
define a graph database as a database management system with Create, Read,
Update, and Delete (CRUD) methods that expose a graph data model. When
defining graph databases, there is a separation between native and non-native
implementations (Needham & Hodler (2019), Fernandes & Bernardino (2018)).
A native graph database as a graph database that has a graph data model in
the underlying storage. It processes the data using index-free adjacency, mean-
ing that the connected database entries (nodes) point to each other’s physical
location (Robinson et al. (2013)). A relational data model can also be viewed
as a graph, but with limitations. ER diagrams, commonly used to model and
presents relational databases, are graphs where the tables represent nodes, and
the foreign-keys define named relationships. The graph databases’ ease of chang-
ing schemas provides flexibility; graph databases do not have strict predefined
schemas that all nodes of a particular type need to follow. Instead, one can de-
fine what needs to be there as the database and application evolve, representing
the domain model. The non-strict schemas also supply the agility advantage,
allowing the database to change with the domain requirements (Fernandes &
Bernardino (2018)). In this study, we focus on NoSQL databases (Han et al.
(2011), Cattell (2011)). NoSQL databases perform fast read and write proce-
dures, support large data sets, and deal well with dynamic data, both changes in
the schema and the data size (Robinson et al. (2013), Han et al. (2011), Cattell
(2011), Hecht & Jablonski (2011)).

A graph database exposes a graph data model. Angles & Gutierrez (2008)
define a graph database model as a model where the data structure (schema) is
modelled as a graph and where the data manipulation uses graph-based opera-
tions. There are many different graph data models, but the two most common
are the property graph model and the RDF graph model. A property graph
model is a graph model with nodes and relationships where both the nodes and
the relationships can have properties. The model categorises the nodes with one
or more labels, and the relationships are named and directed (Robinson et al.
(2013)). The RDF is a standard model, developed under the World Wide Web
Consortium (W3C), enabling the encoding, exchange, and reuse of structured
metadata Miller (1998). The goal was to make a framework for all the World
Wide Web resources to improve programmatic discovery and access to these
sources (Miller (1998), Pérez et al. (2009)).

Graph analytics includes all approaches to analyse graph-based data (Need-
ham & Hodler (2019)). Scarselli et al. proposed a graph neural network (GNN)
model that utilised existing neural network methods on data represented in
a graph model (Scarselli et al. (2008)). Graph neural networks (GNNs) have
gained some use over the past decade (Zhou et al. (2018)). There are many
scenarios for using GNNs to predict and classify graph data models. Some are



related to traditional machine-learning tasks, such as models for text and image
classification. Other scenarios are more specific to data naturally structured as
graphs, such as disease classification, protein interface prediction, and knowl-
edge graph completion and alignment (Zhou et al. (2018)). Traditional graph
algorithms include path finding and search, community detection, centrality,
and similarity. Path finding and search algorithms are concerned with graph
search by traversing the graph (Needham & Hodler (2019)). Community detec-
tion algorithms discover communities in a graph (Needham & Hodler (2019)).
Centrality algorithms measure which nodes are the most influential and have an
extensive impact on the graph (Newman (2018)). Finally, similarity algorithms
measure the similarity of nodes by comparing node pairs (Newman (2018)).

3 Related work

Researchers generally separates data into multiple types (e.g., clinical and ge-
netic) and modalities (e.g., species and diseases) and process data at different
levels National Academies of Sciences, Engineering, and Medicine (2020). From
the data processing point of view, the data could be categorised into three lev-
els: (1) raw data, (2) derived data, and (3) metadata. Raw data entails direct
research measurements and can be neuroimages, electrode recordings, or other
direct measurements. Researchers analyse the raw data to provide insights and
this process yields the derived data. Examples of derived data are quantitations
(objects of interest counts), distributions, or morphologies (an object’s physical
structure). Metadata defines the characteristics of this data, being the “data
about data”. Metadata covers all the information related to an experiment and
can include data about the methodology, specimens, and specific chemical so-
lutions of the research. There are several initiatives for sharing data in order to
advance brain research. Many of the initiatives are complementary and attempt
to build on each other’s data.

For example, there exist research on creating common frameworks for neural
data. Hamilton et al. (2012) proposed an ontological approach for describing
neurons and their relationships. Due to the numerous ways research can identify
neurons, it is unlikely that a standard naming format for the data can exist.
Consequently, research and data initiatives have created guidelines on how to
handle the data, with the central notion being the data must be made available
and machine-readable (Akil et al. (2011), Ascoli (2012)). Therefore, in the
followings, we review initiatives focusing on providing data and graph-based
approaches in neuroscience. None of the approaches reviewed integrate disparate
research data while maintaining the metadata, which is the aim of this study.

3.1 Neuroscience data intiatives

We first consider repositories of data sets, which entails initiatives collecting
and providing research data from multiple sources, including publications and
data sets. The goal is to make neuroscience research more available to deal



with the data quality challenges. Some of these are general-purpose, and oth-
ers are specialised for a research area or data set (Amunts et al. (2016), Sicilia
et al. (2017), Gardner et al. (2012), KnowledgeSpace (n.d.)). Another essential
brain-related data initiative type is brain atlases. We particularly focus on ref-
erence brain atlases, which are maps of the brain, including defined brain region
borders. Researchers use these atlases as reference tools to answer questions
about location in the brain (Bjaalie (2002)). In comparison to the repositories
of data sets, atlases come from one data source. Although brain atlases do not
integrate research data directly, they are essential for neuroscience data inte-
gration as they provide location references for research and standardisation of
these locations (Bjerke et al. (2018)). The final initiative type that we consider
is neuroscience databases. A neuroscience database is broadly a database con-
sisting of brain-related data. These initiatives integrate data from one or many
sources, such as research papers or other databases, into a common database
(at any or all data levels). The murine basal ganglia database is an example of
such an initiative (Bjerke et al. (2019)).

3.2 Graph-based approaches

Graph-based data representation in neuroscience has primarily focused on knowl-
edge graphs for organising research and networks for the brain’s neural connec-
tions. We can consider two main approaches to graph-based data representation
in neuroscience as two sides of a scale. On the one side, we have the knowl-
edge graph approaches that utilise graph models for managing research meta-
data to integrate multiple data sets. On the other side, we have approaches
that integrate research data into a complete model and remove all metadata
references. The first type of brain-related initiatives include EBRAINS and
KnowledgeSpace utilising knowledge graphs to enrich data and improve search
engines that retrieve research papers and data sets (EBRAINS (n.d.), Knowl-
edgeSpace (n.d.)). Both initiatives provide powerful graph models that simplify
data discovery; however, they do not change or connect the data in the papers,
data sets, and models contained in the knowledge base. Another direction of
computational neuroscience that utilises graph principles is the study of neural
connections in the brain, called connectomics. Connectomics is an extensive
research field, including numerous research papers and large initiatives, such as
the five-year Human Connectome Project (Van Essen et al. (2013)). Connec-
tomics presents an example of data that is naturally structured as a graph and
that can benefit from graph-based data representation; however, it has no direct
reference to the employed techniques.

4 Data sets

In this section, we first describe the murine basal ganglia data set, the main
data set used in this study. Then we describe our efforts for finding related data
sets that could be integrated with the murine basal ganglia data set and the



results.

4.1 The murine basal ganglia data set

The murine basal ganglia data set, created by Bjerke et al. (2020), consists of
quantitative neuroanatomical data about the healthy rat and mouse basal gan-
glia, collected from more than 200 research papers and data repositories. The
data set contains three distinct information types: quantitations (counts), dis-
tributions, and cell morphologies. The counts and distributions regard either
entire cells or specific parts of the cell, while the morphologies describe the cell’s
physical structure. The data set is publicly available through EBRAINS as an
Access database and a set of CSV-files (Bjerke et al. (2019)). The data set’s
primary usage is for researchers to find and compare neuroanatomical informa-
tion about the basal ganglia brain regions. In addition to the data set, Bjerke
et al. (2020) published a paper describing the data set development process and
their findings.

The data set contains metadata and derived data. The murine basal ganglia
data set contains metadata about the experiments, analyses, and specimens,
connected to experimental results and derived data, representing cell counts
and cell structures in specific regions. Moreover, it contains general cell types
and brain regions used to reference the derived research results. All the data
in the murine basal ganglia data set are in a tabular format. The brain regions
in the data set come from two nomenclatures, provided by the Waxholm Space
(WHS) rat brain atlas for the rat species and the Allen Mouse Brain Atlas
(AMBA) for the mouse species. The data set does not contain raw data or
externally referenced files with data.

Figure 1 illustrates the murine basal ganglia database directly represented as
a conceptual graph, where nodes represent the database tables, and edges rep-
resent the foreign keys. It depicts the data structure, including the connectivity
information. The nodes are marked with one of four colours. These colours rep-
resent four node-categories we derived from investigating the data in discussion
with a neuroscience expert. The following list presents these categories with
associated colours:

e Ezperiment data (purple): The nodes representing experiments and the
related experiment data.

e Sources of information (green): The nodes representing external sources of
information. This category includes the sources (journals) that published
the experiments and the nomenclatures used to define the brain regions.

e Specimen data (yellow): The nodes representing the experiment’s speci-
mens and the properties of these.

e Neuroanatomical data (orange): The nodes representing neuroanatomical
data about brain regions and cells with classifications and areas.
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Figure 1: The structure of the original murine basal ganglia database, presented
as a graph.

4.2 Related data sets

We evaluated of a set of related initiatives that publicly provide neuroscience
data in order to identify data sets that overlap with the murine basal ganglia
data set for the integration purposes. This section does not include a complete
overview of all available neuroscience data initiatives and does not perform an in-
depth examination of each source. Instead, it provides an examination of what
data we can obtain and integrate from such initiatives. The overall methodology
to investigate the initiatives was to visit the data source and look for available
data sets and programmatic data access. For the initiatives that provided data
programmatically, we searched with the term “basal ganglia” and some specified
basal ganglia related regions. Where we managed to obtain relevant data, we



consulted an expert to evaluate if the data was related to the basal ganglia.
Further, we evaluated if the data was overlapping with the murine basal ganglia
data set. If these criteria were met, the data could be integrated into the murine
basal ganglia graph model. In summary, we analysed each initiative against the
following criteria: (i) serves data programmatically, (ii) has data related to the
basal ganglia, (iii) and provides data that could be connected to murine basal
ganglia.

The intiatives considered were: (1) EBRAINS! (repository, multiple species),
(2) Neuroscience Information Framework? (repository, multiple species), (3) Zen-
odo? (repository, multiple species), (4) Knowledge-Space* (repository, multiple
species) (5) Waxholm Space (WHS) rat brain atlas® (atlas, rat), (6) Allen Insti-
tute for Brain Science® (atlas and repository; human and mouse), (7) The Blue
Brain Cell Atlas (BBCA)7(data set, multiple species), (8) Brain Architecture
Management System (BAMS)®(data set, rat), (9) NeuroMorpho.Org? (Data set,
multiple species), (10) and InterLex through SciCrunch!® (repository data set,
multiple species).

Figure 2 summarises our investigation, presenting data sources that we can
collect data from. Brain Architecture Management System (BAMS) contains
basal ganglia related information extendable with the murine basal ganglia data
set; however, it does not provide the data programmatically. BAMS Website
presentes the data in tables, that could be accessed programmatically to extract
the data. InterLex through SciCrunch provides an API'! where one can get
descriptions based on InterLex’s ontological identifiers. In the murine basal
ganglia data set, many of the cell types have ontological identifiers recorded.
These identifiers could be used to connect the information to the cell types
in the database. NeuroMorpho.Org provides an API'? where researchers can
find a neuron by id or name. With the inspiration of looking for identifiers
in the murine basal ganglia data set, we observed that the nodes with cell
morphologies (the structure of the cell) also had identifiers for the neurons
mapping to NeuroMorpho.Org. It is important to note that this is not an in-
depth analysis. Some of the initiatives that we found unsuited for integration
might fulfil all the criteria, but not in a way we managed to observe at the time
of the study.

'https://ebrains.eu

2https://neuinfo.org

Shttps://zenodo.org

4https://knowledge—space.org

Shttps://www.nitrc.org/projects/whs-sd-atlas

6https://alleninstitute.org/what—we—do/brain—science

"https://portal.bluebrain.epfl.ch/resources/models/cell-atlas

Shttps://bamsi.org

9http://neuromorpho.org

Ohttps://scicrunch.org/scicrunch/interlex/dashboard

Mhttps://scicrunch.org/browse/api-docs/index.html?url=https://scicrunch.org/
swagger-docs/swagger. json

2http://neuromorpho.org/apiReference.html
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Figure 2: Overview and result of initiatives investigated for data overlap with
the murine basal ganglia data set.

5 Design and implementation

In this section, we describe the proposed solution, including design and imple-
mentation, for graph-based data modelling and integration of neuroscience data.
Software components brought together for data analytics and a Web interface
developed for end-user access to data is described in this section as well.

5.1 Architecture

Figure 3 depicts a high level overview of the architecture with different com-
ponents. We designed and implemented a graph model for the murine basal
ganglia data set, chose a Graph Database Management System (GDBMS), and
migrated the data from the relational database into the graph database, Neo4;.

11
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Figure 3: High-level architecture of the proposed solution.

Further, we designed and implemented the integration of data from related neu-
roscience data sources and the technical solution for graph-based data analysis.
To provide Web-based access to the graph data, we designed and implemented
a Web application and API. The following list presents the main components
in Figure 3:

1. The common graph model: 1t is based on a native database management
system.

2. Integration of external data: This includes external data sources as iden-
tified earlier.

3. Graph analytics: Tools and approaches used to analyse the graph data
based on the techniques described earlier.

4. Web-based data access: A Web-based access interface to the data based
on the graph model.

5.2 Graph-based data modelling

We designed a graph model for the murine basal ganglia data set. Figure 4
presents the high-level design of the graph model based on the murine basal

12
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Figure 4: The high-level design of the graph model of the murine basal ganglia
data set.

ganglia data set. We involved researchers from the Faculty of Medicine at the
University of Oslo, while designing the data model.

In addition to specific design choices in consultation with the experts such as
new relationships and node labels, we followed a general approach!® for convert-
ing a relational database model into a graph model: (i) a table becomes a node
label; (ii) each row in the table becomes a node of that label; (iii) each column of
the row becomes a property of the node; (iv) foreign keys become relationships;
(v) and join-tables become relationships with properties. The resulting graph
model is a directed multigraph, since the relationships have direction and some
node pairs have multiple relationships. It also contains a self-loop on the brain
region node type. Further, the graph is connected, as there is a path between
all the nodes in the graph. We decided to model the graph after what was ap-
propriate for the domain model and requirements and chose to adjust analysis
methods accordingly.

13nttps://neo4j.com/developer/relational-to-graph-modeling
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Figure 5: Integration of data from external sources.

CellType

5.3 Data onboarding and integration

We onboarded data from the relational database to a graph database. We
employed Neo4j as it implements native graph storage, provides integration
with many programming languages, has fast create-retrieve-update-delete pro-
cedures, is popular and well documented, and can apply graph algorithms on
the data. Extract-Load-Trasnform (ETL) tools help extract data from a source,
transform it to fit the destination database’s schema, and load it into the desti-
nation database (Ozsu & Valduriez (2019)). Neo4j provides such as tool, Neo4j
ELT'4, that automatically maps a relational database to a graph database.
However, our graph model did not directly map from the relational model, and
it would not be replicable. As a result, we implemented a data migration solu-
tion rather than directly mapping the data to perform the migration on multiple
occasions and promote reuse by others. We used a Jupyter Notebook project
containing the relational database as CSV-files to migrate the data into the
graph model format in a Neo4j database instance. Afterwards, we integrated
the three external sources identified earlier with murine basal ganglia data. The
source code for data integration and onboarding along with the data sets are
available online!®.

From BAMS, we found brain region connectivity information possible to in-
tegrate with the murine basal ganglia data. We concluded that the retrieved
BAMS connectivity information should be stored in new nodes to clarify the
data’s origin. We stored the BAMS brain regions in nodes with a designated
node label and to presented the connectivity information through relationships
between the BAMS region and basal ganglia data set’s regions. To connect these
regions, we performed a manual mapping between them. An expert mapped
the brain regions defined in BAMS with the brain regions defined in the murine

Mhttps://neo4dj.com/developer/neodj-etl
15https://github.com/marenpg/jupyter_basal_ganglia
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Figure 6: Solution design of the graph data analysis.

basal ganglia data set, and we stored the mapping in the data migration solu-
tion. Further, we extracted new relationships between the basal ganglia brain
regions while maintaining a direct reference to the original data source. For
the integration of cell descriptions from InterLex with the murine basal gan-
glia data set, we stored the descriptions in new nodes with a designated label.
The cell types, cell groups, and cell classes in the murine basal ganglia data
set contain unique identifiers from different neuroanatomical ontologies. Inter-
Lex has cell descriptions connected to multiple ontological identifiers. Based
on this, we connected cell types, cell groups, and cell classes to cell descrip-
tions based on the cell type’s ontological identification attribute. The final part
of the data integration extended the data set with digital cell reconstructions
from NeuroMorpho.Org. NeuroMorpho.Org provides identifiers to the digital
reconstructions, and some of the cell morphology nodes in the murine basal
ganglia data set have an attribute for such an identifier. As with the other two
initiative’s data, we created a new node label to store these constructions and
connect the cell morphology nodes with the digital reconstructions by matching
the morphology identifiers. Figure 5 presents how data from these three sources
connect to the murine basal ganglia data.

5.4 Graph analytics

We used following tools in order to realise graph analytics and visualisation and
Figure 6 presents our solution for graph data analysis.

Neo4j Graph Data Science Library'®: The Neo4j graph data science library
provides a wide range of algorithms to run on projected graphs. A graph pro-
jection is a subset of the graph and can be created in Neo4j by either specifying

16https://neodj.com/docs/graph-data-science/1.3
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node labels and relationship labels or Cypher queries. The general process of
running graph algorithms with this tool is to load the desired graph projection,
run the algorithms on the projection, and finally output the result and option-
ally write the values back to the database. As the murine basal ganglia database
is in Neo4j, Neodj’s graph data science library is a natural choice of tool to run
algorithms on the data set.

NetworkX'™: NetworkX is a Python package where one can create, manipu-
late, and study networks. It provides a wide range of algorithms and supports
many graph file formats. Multiple Python packages provide implementations
of graph algorithms. However, the Python package manager, PyPi'®, provides
an API that can provide how many times Python projects have downloaded
a package over the past 365 days. Searching this list for the term “network”
returns the package NetworkX as the most popular. Due to its popularity and
wide availability of documentation and support, it was chosen.

Gephi'?: Gephi is an open-source software program for exploring and manip-
ulating networks (Bastian et al. (2009)). The program provides both advanced
visualisation and the possibility to manipulate the data directly in the program.
In this study, the primary use of Gephi was to provide visualisations of the find-
ings provided by the other tools. As presented above, it is possible to visualise
data in both NetworkX and Neo4j. However, Gephi is very powerful in han-
dling large amounts of data and provides multiple graph data layout algorithms.
Gephi was chosen for data visualisation based on the ease of use, community
support, and powerful visualisation.

5.5 Web-based access

We developed an API (available online?’) and a Web application (applica-
tion?tand source code?? are available online) to improve researchers’ access to
the data programmatically and through a user interface. The Web and API
application was built based on the GRANDStack?? architecture, which consists
of GraphQL, React, Apollo, and Neo4j. This approach was chosen so that
other researchers use the least possible effort to integrate the different compo-
nents. GraphQL?? is a schema-based API query language that fits well with
highly interconnected data where the user of the API often needs data of mul-
tiple types simultaneously (Wieruch (2018)). As the structure allows flexible
and customised queries, it is also appropriate when the use cases differ between
users or are not clearly defined. React?® is a popular JavaScript library de-
veloped by Facebook for building user interfaces (Wieruch (2018)). React is

Thttps://networkx.org/

8nttps://pypi.org

https://pypi.org/
2Onttps://github.com/marenpg/basal _ganglia_api
2Inttps://basal-ganglia.herokuapp.com
22nttps://github.com/marenpg/basal _ganglia_client
23nttps://grandstack.io

24nttps://graphql.org

>https://reactjs.org
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Figure 7: Analyses page of the Web application.

the most popular JavaScript library per August 2020, based on downloads from
the JavaScript package manager npm?. Apollo?” works as the connector be-
tween the client and GraphQL API applications by offering plenty of libraries
assisting effective implementation in a development stack that utilises GraphQL
(Wieruch (2018)). Thus, Apollo was the natural choice for these applications.

The Web application consists of three top-level pages: one for cell types, one
for brain regions, and one for analyses — see Figure 7. We also designed a page
for each distinct cell type, brain region, and analysis. We chose to represent
the data interconnectedness by linking the endpoints. A user can start at any
entry point and find data regarding all three areas. A cell type links to brain
regions and analyses, a brain region link to cell types and analyses, and a specific
analysis links to at least one brain region and cell type. With these choices, the
user interface followed the structure of the graph model.

The analyses page: This page displays a table of the analyses reported in
the data set. On this page, the researcher can filter the results or search for
analyses through a search field. The filter includes the data type, which is
either a quantitation, distribution, or morphology. When a researcher selects
an analysis, it opens a page with information about the selected analysis dis-
played in tabs. The information on the first tab differs for the three data types.

26https://www.npmjs . com
2"https://www.apollographql.com
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For quantitations, it presents the quantification or counting information. For
example, how many investigated cell types the researcher observed in the inves-
tigated region or regions. For a distribution, the tab presents how the object of
interest distributes. Finally, for morphologies, the tab presents an illustration
of the cell morphology, collected from NeuroMorpho.org, together with detailed
information about the investigated cell morphology. The remaining tabs on the
analysis page are alike for all three data types. There is a tab with animal infor-
mation that presents specimen information, including weight, age, species, and
strain. The next tab displays data acquisition, presenting the research methods
used to extract the analysis result, including information about the microscope
used, the antibody used, and sectioning details. The anatomical metadata tab
contains information about the investigated brain region and region zone and
metadata about what the researchers have included in the original publication.
Next, the source tab includes a reference to the original publication, including
publication year and journal. Finally, there is a tab with similar analyses. The
analyses presented in this tab are results from the graph data analysis.

The cell type page: On this page, the user can search for cells, or select
them by their cell class or cell group, presented in a tree structure. When the
researcher selects a cell type, a pane opens up and presents the cell type with
a definition from InterLex, if one exists. In this pane, there are two tabs, one
for brain regions and one for analyses. The brain region pane presents all the
regions where experiments have recorded the cell type. Selecting a region directs
the researcher to the information page of that region. In the analyses tab, the
researcher can see all analyses that investigate the selected cell type. Selecting
an analysis from the list navigates the user to the information page of that
analysis.

The brain regions page: This page presents all regions related to the basal
ganglia for mice and rats in two tree structures. The researcher can search for
a region and filter on species. Selecting a region opens up a side pane like with
the cell types. There are two tabs for the mouse brain regions and three for the
rat brain regions in this pane. The third tab presents connectivity information
derived from BAMS. In this tab, the user can see the regions connected to
the selected region and filter on direction and strength. Selecting a connection
displays the original connectivity information from BAMS with citations and
links to where we have collected the connection. The two other tabs are cell
types and analyses. The analyses tab displays a list of the analyses that have
investigated the selected brain region. The cell type tab presents all the cell
types that experiments have recorded in the selected region.

6 Evaluation
We successfully integrated the relevant data sets increased the connections to the
three primary access nodes: cell types, brain regions, and analyses. Compared

to the original database structure, the graph model presents higher connectivity
for these nodes. The database generated in this study consists of 9539 distinct
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nodes with 46 distinct node labels, 29807 distinct relationships, and 66 distinct
relationship types. Further, we extended the data set with 142 nodes with
three labels from integration with external sources. Eighty of these nodes were
brain regions from BAMS. The integration added 351 new distinct relationships,
where 335 of these represent brain region connectivity. This shows that a graph-
based representation of brain-related data facilitate the integration of data from
a variety of neuroscience data sets. In what follows, we present:

1. The results of a set of data analyses we conducted on the resulting inte-
grated graph in order to demonstrate that a graph-based approach could
help gaining a better understanding of the data for brain-related data sets;
and

2. The results of the user study for the Web access interface built on top of
the graph model in order to show that a graph-based data organisation
could improve accessibility of the brain-related data.

6.1 Data analysis

We considered data analysis from exploratory data analysis and confirmatory
data analysis perspectives (Hartwig (1979)). The former aims at obtaining
general information about the data and the latter to answer specific questions,
while the latter is concerned with proving or answering a specific hypothesis or
question. We developed a Jupyter Notebook project containing the complete
algorithm set-up for the graph data analysis and made it available online?®.
We first visualised the entire graph to see if we could observe any clustering.
To visualise the entire graph, we loaded all the nodes and relationships into
the visualisation tool Gephi. Figure 8 presents this visualisation which uses the
ForcedAtlas2 graph layout algorithm (Jacomy et al. (2014)). From the entire
graph visualisation, we observed that the data naturally groups into two almost
separate clusters. There is a large cluster on the right side and a smaller cluster
on the left side, with some nodes combining them. Investigating the smaller
cluster, we identify that it solely consists of data concerning considered papers
and their exclusion reason. It is only source nodes that combine the two clus-
ters. We utilised community detection algorithms to investigate the graph data
structure, specifically the Label propagation algorithm (LPA) and Louvain al-
gorithm. We chose these algorithms as the LPA performs community detection
based on the structure, while the Louvain algorithm applies heuristics based
on the nodes’ modularity. A suitable method for finding influential nodes in a
graph is to run centrality algorithms. There are multiple centrality algorithms.
We applied the PageRank algorithm (e.g., Figure 9) and betweenness centrality
algorithm in Neo4j, and the closeness centrality, the betweenness centrality, and
the HITS algorithm from NetworkX. We chose these algorithms as they imple-
ment differing measures for centrality, including direct and indirect influence.
We used a node Similarity algorithm through the Neo4j GDS library to analyse

28nttps://github.com/marenpg/jupyter_basal_ganglia
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Figure 8: The murine basal ganglia data set visualised using the ForcedAtlas2
layout algorithm in Gephi.

similarities. We chose to use the Neo4j Node Similarity algorithm mainly due
to its efficiency for comparing all of the graph’s nodes. Figure 9 presents the
nodes representing sexes and analyses and their relationships. The middle large
cluster represents males, the bottom cluster represents females, and the top
cluster represents both sexes. The neuroscience expert stated that it is common
knowledge that most research uses male specimens.

We evaluated the results with an expert and Table 1 summarises the findings
and evaluations from the exploratory graph data analysis. In summary, the
information extracted with graph data analysis provided a good understanding
of the structure and content of the data set.

Result - information Algorithms Evaluation

Cell type information: The
most investigated cell type
category is “Expressing”

Louvain,

LPA, PageRank This is already known.

Data structure: Community Louvain,

around the data set species. LPA This is already known.

Expected as it is known
that solution information
is poorly reported but
fascinating to observe for
this data.

Data quality: Chemical solution

Unspecified is the second most PageRank,
used anesthetic and fourth most Louvain
used perfusion fix medium.

20



Data quality: The second most

Unexpected and
interesting as it will make

. ) PageRank
used software is Unspecified. ageran the research results
challenging to reuse.
.Source. inforrr.lati.on: The most Already known as the
influential publications are . .
) . original database paper by
Neuroscience, Brain Research, PageRank .
. Bjerke et al. also stated
and Journal of Comparative this
Neurology. ’
Cell type information: Neuron PageRank, Exl?ected as }t s the
. . . Closeness easiest for scientists to
is the most investigated cell type. .
centrality observe.
11 infa ion:
Ce 1?ype information . PageRank, Already known due to
Tyrosine hydroxylase expressing .
Closeness TH-cells relevance in
(TH) cells are the second most . . v 1
. . centrality Parkinson’s disease.
investigated cell type.
Interesting as it implies
Cell type information: Most of that neuroscience knows
. . . . PageRank,
the experiment investigate entire much more about the
HITS
neurons. whole cells than the
sub-cellular entities.
Method information: Expected as it is a ver
“Bright-field microscope” is the PageRank P . Y
. common microscope.
most used microscope type.
Method information:
Immunohistochemistry is the Expected based on the
most used visualisation method, PageRank data Bjerke at al.
histochemistry the second most. collected.
No difference between species.
Method information: Tyrosine
hydroxylase and Rabbit antibody PageRank Expe(.:ted as the data .
are the most used reporter contains many TH studies.
targets.
Method information: “Goat Unexpected and interesting
. e e ey PageRank, . .
anti rabbit_biotin” is the most HITS as it can tell us something
used Reporter. about the data quality.
Method inf ion: Th . .
ethod in Oljm?tlo.n © Not evident but of little
most used sectioning instrument . .
- » PageRank interest as cutting
is “Cryostat”, followed closely by .
« . . ” instruments are mundane.
Freezing microtome”.
Brain region information:
. PageRank,
The data set contains the most
. . . Betweenness Already known from the
information about the brain .
. centrality, Node data set paper.
region caudoputamen for both o
similarity

species.
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Brain region information: Expected, but interesting

. . Bet o L

Most of the data investigates the cLweenness as it displays a bias in the

. centrality
rostral region zone. data.
Brain region information:
When a study investigates the Already known as they are
internal segment region, they also  Node similarity =~ sub-regions of the same
investigate the external segment region.

region.

Expected as researchers
use other age categories
mostly for research specific
to the age category.

Specimen information:
“Adult” is the age category, most  PageRank
often used (big difference).

Specimen information: Most
influential strain is Wistar for PageRank
rats, C57BL6 for mice.

Expected as these are
common strains.

Expected, but interesting
PageRank as it displays a bias in the
research.

Specimen information: “Male”
is the most influential sex.

Table 1: Graph data analysis results and evaluation.

In the confirmatory data analysis part, we aimed to find similar analyses
based on a specific criteria. The analysis nodes represent one of the data sets’
three primary entry points and are what researchers often use when comparing
results. We were interested in finding analyses investigating the same cell type
in the same brain region and having the same object of interest. As with the
exploratory data analysis, we utilised the Neo4j implementation of the Node
Similarity algorithm. Compared with the exploratory data analysis, we used a
slightly adjusted graph projection because we only want the analyses that were
entirely similar with respect to cell type, brain region, and object of interest. We
created a graph projection containing only the four relevant labels with a direct
relationship between them. The node similarity algorithm ran on this projection
with degree-cutoff set to 3 and similarity-cutoff set to 1 and configured to write
the relationship back to the graph for the nodes that matched the criteria. These
efforts created a relationship between the analyses with the same cell type, brain
region, and object of interest. Figure 10 presents the analyses (in orange) in
the data set connected to the specified nodes and species. The yellow nodes
represent the two species in the data set, and the central node in the middle is
the cell type “neurons”.

We evaluated the result by querying nodes and nodes found similar and
manually verified that they match the requirements presented and the results
are correct. We managed to find similar analyses successfully with a few lines
of code.
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Figure 9: Graph-visualisation of analyses and the sex they study from the
murine basal ganglia data set.

6.2 User study

We applied formative testing for testing the usability of the Web interface. The
following list presents the steps of the usability testing performed:

1. The observer introduces the study and the Web application.

2. The observer describes how to think-aloud and encourages the user to
apply the technique.

3. The observer presents the tasks to the user and explains that there will
be no communication during the tasks, and if the user can not complete
a task, they should continue with the next.

4. The user performs the tasks while thinking out loud.
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Figure 10: The data set analyses with related nodes.

5. The observer interviews the user to evaluate the user’s overall experience.

We contacted neuroscience and medicine faculties from multiple universities.
However, all the researchers who expressed interest in participating were from
the University of Oslo. We verified that the participants were researchers, often
working with publicly available data. The test was executed remotely using
an online conferencing solution. Between each participant, we performed small
adjustments to the applications according to feedback. The users completed the
tasks sequentially. There were total of 4 participants and 28 tasks (leading to
112 observations) performed by the participants. The tasks are listed in Table
2.

# Task Type

1a Can you find how many analyses have been Task
performed on Rattus norvegicus?

1b Can you find how many analyses have been Task

performed on Mus musculus?
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How many morphology analyses have been

2 performed on the species Mus musculus? Task

3 How many analyses, performed on rat, have used Task
the antibody with unique id RRID:AB_476894
How many analyses are performed on a juvenile rat

4 (19-28 days)? Task
Can you find the study by Fujiyama (2016) among

5 Task
the analyses?
In the study by Fujiyama (2016), how many axonal

5a varicosities in total were observed in the substantia  Sub-task
nigra?

5b In t}.ns study, what was the weight range of the Sub-task
specimens used?

5¢ In which journal was this study published? Sub-task

6 See if you can find the study by Echeverry (2004) Task
on NADPHD expressing neurons?.

6a In this study, what part of the Caudoputamen was Sub-task
covered?
How many analyses that have been performed on

7 .. Task
the rat substantia nigra?

8 Can you find the number of regions that are Task
connected to the rat Caudoputamen?
Which of the connected regions does the

8a Caudoputamen have a very strong, afferent Task
relationship to?

8b Can you find how these relationships were derived?  Sub-task
In the mouse Caudoputamen, how many mixed

9 Task
class neuron cell types are observed?
For this region, can you find how many analyses are

10 . . Task
performed on dopamine 1 receptor expressing cells?
Staying on this page, can you get back all the

11 Task
analyses performed on mus musculus?

12 See %f you can find a morphology analysis of Task
medium spiny neuron cells.

12a Select one of these morphologies. Sub-task

12b From w}.uch repository was the morphology Sub-task
illustration collected?

13 I:Iow many cells are”returned when searching for Task

dopamine receptor”?
14 Can you find a description of the cell type “Glia”? Task
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14a Where was this description collected from? Sub-task

Calretinin expressing interneuron is the cell type
15 investigated in a number of analyses, can you find Task
how many?

Can you find how many brain regions Calretinin

15a . . Sub-task
expressing interneuron are observed in?
Can you find the number of analyses concerning

15b Calretinin expressing interneuron in the substantia Sub-task
nigra?

16 Can you find the sources and repositories that have Task

contributed to the website data
Table 2: The tasks used in the usability study.

The first participant failed in one task (Task 9), partially completed two (Tasks
5a and 12b), and completed the rest successfully. The second participant completed
two tasks partially (Tasks 5a and 9), and the rest fully, while the third participant
completed two tasks partially (Tasks 2 and 6) and rest successfully. Finally, the last
participant completed all the tasks successfully. The first two participants struggled
with task 5a and task 9, while the third participant experienced some struggles with
the filter function. Task 5.1 regards finding the total number of axonal varicosities
observed by Fujiyama in 2016 in the substantia nigra. After observing the two first
participants struggling with finding this number, we adjusted the interface to present
this number more clearly, and according to the final usability tests, this was successful.
Task 9 asks the user to find the number of mixed-class neurons observed in the mouse
caudoputamen. When the user selects a cell type, the resulting page presents all the
cell types observed in that region. The goal was that the user should count the number
of mixed-class neuron cell types on this page. For the first two participants, this was
not clear. The first participant also struggled with Task 12, where the user was to find
a morphology illustration’s source repository. We updated the page to reference the
morphology repository more clearly, and the next participants found it with ease.

The third participant struggled with the filter-function at the beginning of the
test, which caused the unsatisfactory completion of Task 2 and Task 6. However, the
participant learned how it worked and managed all the subsequent tasks. In summary,
the user feedback improved the applications to a point where the users managed to
complete almost all tasks confidently. Further, the participants grew more confident
throughout the usability test. In the user interviews, performed right after the tasks,
we asked the users about their overall user experience. All the participants had an
overall good impression. They felt they understood the application and that the
interface provided the necessary entry points for finding data relevant to them. One
participant suggested the possibility for community building, such as having a contact
page with more information and sharing data.

7 Conclusions

In this study, we presented a graph-based approach for representing neuroscience data,
exemplified with the murine basal ganglia data set. We addressed multiple ways of
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working with a graph model in the neuroscience domain from a data management
perspective based on the proposed data set graph model. The study described how
data from external sources can integrate with neuroscience data in a graph model,
applications for Web-based access to improve the usability of the data, and the use
of graph analytics to extract new information and improve the understanding of the
data. Further, the study presented evaluations of the developed software, the usability
of the data, and the results obtained by applying graph algorithms. We presented
definite advantages of graph-based data representation through our work, including
ease of data analysis, support for data integration, and availability through Web-based
data access. Many of the presented areas of graph-based data representation in the
neuroscience domain are still uncharted terrain. It is relevant to continue evaluating
the implications of graph-based data representation and work to solve the challenges
with data management in the field of neuroscience.

Regarding the future work, firstly, while extending the murine basal ganglia graph
model with data from other neuroscience data initiatives, it was challenging to obtain
information about the content the initiatives provided, programmatic data access, and,
occasionally, the data format. We suggest that further research performs a thorough
review of neuroscience data initiatives and present what data are available from where
and how the researchers can access the data, preferably including the data formats.
Another approach could be to look at standardisation for programmatic access to neu-
roscience data. Secondly, further research can investigate a graph-based approach for
representing other data types (Reutter (2020)) to observe if the benefits and challenges
are different for these and on a larger data set in combination with other graph ana-
lytics techniques to evaluate the scalability related to querying performance (da Silva
& Maia (2019), Tjendry & Istiono (2020)) and usability (Soylu et al. (2018)) related
to data integration, access, and analytic processes.
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