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ABSTRACT

Autoencoder techniques find increasingly common use in reduced order modeling as a means to create
a latent space. This reduced order representation offers a modular data-driven modeling approach for
nonlinear dynamical systems when integrated with a time series predictive model. In this letter, we
put forth a nonlinear proper orthogonal decomposition (POD) framework, which is an end-to-end
Galerkin-free model combining autoencoders with long short-term memory networks for dynamics.
By eliminating the projection error due to the truncation of Galerkin models, a key enabler of the
proposed nonintrusive approach is the kinematic construction of a nonlinear mapping between the
full-rank expansion of the POD coefficients and the latent space where the dynamics evolve. We test
our framework for model reduction of a convection-dominated system, which is generally challenging
for reduced order models. Our approach not only improves the accuracy, but also significantly reduces
the computational cost of training and testing.

Keywords Reduced order models, data-driven modeling, autoencoders, long short-term memory networks

1 Introduction

Full order models (FOMs) based on the solution of the Navier-Stokes equations, e.g., direct numerical simulations, large
eddy simulations, and Reynolds averaged Navier-Stokes simulations, have made a tremendous impact in the numerical
simulation of high Reynolds number fluid flows. However, current FOMs cannot be used effectively in multiple-query
simulations (e.g., uncertainty quantification, optimization, and control) because of their prohibitively high computational
cost. Reduced order models (ROMs), on the other hand, are efficient low-dimensional models created from available
data. ROMs have been often used as surrogate models for structure-dominated problems. However, although traditional
projection-based ROMs work in simple, canonical test problems, they generally fail (or require a significantly large
number of basis functions) for convection-dominated flows because a low-dimensional ROM basis cannot accurately
represent the complex dynamics.

Among fluid dynamicists, projection-based truncated methods are quite popular. Practitioners often utilize the proper
orthogonal decomposition (POD) method to generate a set of orthonormal basis functions, or a reduced order repre-
sentation [1]. After a suitable basis is chosen, the Galerkin projection is generally used to project the dynamics of
the equation onto the subspace spanned by a truncated set of basis functions (e.g., see the Galerkin POD (GPOD)
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Figure 1: Illustration of the research methodology: (i) Galerkin POD modeling – an intrusive approach, which has
been the workhorse for most projection-based ROM applications, (ii) convolutional autoencoder modeling – a modular
nonintrusive ROM framework that can be built from data without requiring access to the underlying governing equations,
and (iii) the proposed nonlinear POD modeling approach that utilizes the autoencoder technology on a manifold defined
by the full-rank POD coefficients (i.e., considering 99.9% of the relative information content). The elimination of the
subspace projection error stemming from the truncation is a major advantage of the proposed nonlinear POD method
over the Galerkin POD approach, especially for the nonlinear dynamical systems with slow decay in the Kolmogorov
N-width, such as convection-dominated flows studied in this paper. The proposed nonintrusive approach has also two
other advantages over the convolutional autoencoder model. First, it can reduce the computational cost of the training
process since it involves significantly fewer trainable parameters. Second, it ensures an accurate implementation of the
boundary conditions since the spatial variations are naturally embedded in the reduced order representation.

approach in the top panel of Figure 1). Although time-periodic or quasi-time-periodic dynamical systems can be easily
represented by a small number of POD modes, convection-dominated unsteady flows might require a large number
of POD modes. Therefore, a significant projection error is often introduced by a truncation process. This projection
error increases for dynamical systems when the Kolmogorov N-width [2, 3] increases. The Kolmogorov N-width is an
approximation theory concept that determines the linear reducibility of the underlying systems, which can be connected
to the POD spectrum [4].

The emerging autoencoder (AE) technology provides a powerful alternative way of generating a reduced order
representation, often called latent space or finite-dimensional manifold. In recent years, there has been an ever-
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increasing interest in discovering inertial manifolds of partial differential equations (PDEs) using autoencoders [5–9].
Convolutional AE (CAE) is a promising approach that has been utilized in fluid dynamics applications [10–19]. CAEs
are often combined with a time series prediction approach to model the evolving dynamics of the latent space [20]. A
self-attention mechanism is also used within the CAEs to enhance the feature extraction ability of the network [21, 22].
A combination of principal component analysis (PCA) with Gaussian process regression has been investigated in the
development of digital twins of reacting flow applications [23]. These approaches bypass the Galerkin projection and
hence become fully nonintrusive [24–27], building an end-to-end ROM solely from available data without requiring any
knowledge of the underlying evolution equations. However, the number of trainable parameters might quickly reach
millions even for two-dimensional PDE settings [28]. Moreover, the padding approaches that are available in most
CAE architectures might pose additional challenges in representing the desired boundary conditions unless specific
customization is embedded.

In this letter, we introduce a simple and modular nonintrusive Galerkin-free ROM framework for unsteady flows
by employing ideas from POD-based and AE-based ROM approaches (see the bottom panel in Figure 1). In our
methodology, we first apply the POD procedure to generate a set of orthonormal basis functions. Instead of truncating
the number of modes, we consider an almost full-rank POD expansion defined by 99.9% of the relative information
content (RIC) measure, and perform an inner product between snapshots and the POD modes to obtain the set of POD
coefficients. We then construct a plain multilayer perceptron AE for finding the embedding of these POD coefficients
(which requires substantially fewer trainable parameters compared to those required by the convolutional AEs) to
generate a nonlinear mapping between these POD coefficients and a latent space constructed with only a few parameters
in the bottleneck layer. Finally, we utilize a recurrent neural network approach for integrating evolution dynamics of the
latent space. In this modular way, we utilize the best features of all relevant approaches. Specifically, POD is utilized in
ranking the structural content using a linear spatiotemporal decomposition, AE is used in nonlinear dimension reduction,
and LSTM is integrated for the time series prediction. Following the established name convention of nonlinear PCA
(NLPCA) [29–32], we call our approach nonlinear POD (NLPOD).

We note that previous studies aimed at leveraging the synergy between POD and AEs. One notable example is
their use together with dynamic mode decomposition approaches [33–35]. In particular, the combination of POD
with AE has been exploited to efficiently reveal Koopman invariant subspaces [36]. Furthermore, the idea of using
POD and AE to develop a constrained Koopman neural network framework has been proposed by Puligilla and
Jayaraman [37]. Although most ROM efforts aim at providing a predictive model trained with ample amount of data
with carefully-designed experiments to be operated in real-time, ROM can also act as a method for data compression
to mitigate challenges related to data storage and transfer. For instance, Carlberg et al. [38] applied PCA to reduce
the dimensionality of the vector of local encodings across the entire spatial domain to facilitate data I/O in large-scale
simulations.

The combination of POD/PCA and AE has been also utilized for model order reduction, similar to the NLPOD
methodology. Casas, Arcucci, and Guo [39] retained all the principal components (PCs) of urban air pollutant data and
applied a fully connected AE onto these PCs for further reduction. They found that the PC-AE requires substantially
fewer trainable parameters than an equivalent fully connected AE on the full-space. This approach was adopted by
Phillips et al. [40] with an additional step of linearizing the decoder mapping from the latent variables to the scalar fluxes
to reduce the computational costs of solving eigenvalue problems using the power iteration method. This combination
was also employed by Kosut, Ho, and Rabitz [41] in the quantum physics community as a better alternative than using a
plain-vanilla AE approach.

In the present study, we apply AE onto the coefficients of a RIC-guided POD expansion of parameterized convection-
dominated flows. The truncation of basis function beyond a prespecified RIC value helps to filter out redundant and
noisy signals before passing them to the AE. It also provides an informed trade-off between accuracy and storage
requirements. Furthermore, we discuss in detail the benefits of using POD as an upper layer for the interface with the
physical space, compared to CAEs. This includes computational aspects (e.g., training and deployment costs) and
physical insights (e.g., respecting boundary conditions, symmetries, and conservation laws). Furthermore, we explore
the applicability of NLPOD for time-dependent parametric systems, where we augment the bottleneck layer of the
autoencoder with the operating parameters to enhance the latent space discovery. We highlight that NLPOD provides a
robust end-to-end ROM data compression framework built using significantly fewer trainable parameters than CAEs.
Moreover, NLPOD can easily handle data on unstructured and non-uniform grids. Our approach could be well suited for
the digital twin applications, where fast transfer learning procedures are often desired when new training data streams
are incorporated [42].

3



A PREPRINT

2 GPOD modeling

In standard Galerkin-based ROMs, a handful of orthonormal basis functions are predetermined with the assumption
that the solution approximately lives in the subspace spanned by these bases. POD provides a systematic way for
building such basis functions from collected data sets (often called snapshots). Arguably, the simplest way to perform
POD involves the singular value decomposition (SVD). For instance, assuming that the state variable is denoted by
u(x, t) ∈ RN (where N is the spatial resolution), a data matrix A ∈ RN×m can be formed by stacking m temporal
snapshots as A = [u(x, t1), u(x, t2), . . . , u(x, tm)]. Then, an SVD can be applied either directly onto A (or onto its
mean-subtracted/shifted version) as follows:

A = UΣV∗, (1)
where U and V are orthogonal matrices representing the left and right singular vectors of A, respectively, while Σ is a
diagonal matrix containing the corresponding singular values, σk, in descending order. The columns of U define the
sought POD modes, U = [φ1, φ2, . . . ]. Moreover, the inherent sorting of the singular values provides a valuable feature
of POD since the most important modes are placed first and the RIC values of the leading r modes can be defined as

RIC(%) =

∑r
k=1 σ

2
k∑m

k=1 σ
2
k

× 100, (2)

where σk is the kth singular value. Then, a rank-r approximation of the state variable can be written as a linear
superposition of the contributions of these first r modes as follows:

u(x, t) =

r∑
k=1

ak(t)φk(x). (3)

In order to compute (evolve) the time-dependent coefficients ak(t), Galerkin-based methods perform a projection of the
governing equations onto the corresponding POD modes to yield a system of r ordinary differential equations for the
vector of coefficients ak as follows:

da

dt
= f(a). (4)

Due to the quadratic nonlinearity in most fluid flow systems, the online computational cost of the Galerkin POD (GPOD)
approach scales cubically with the number of retained modes. Thus, a modal truncation is performed to achieve a
computational gain from GPOD. Nonetheless, most convection-dominated flows cannot be simply described using
Eq. 3 if r is small, which leaves us working in under-resolved regimes, where there are both a representation error and a
closure error [43].

3 CAE modeling

In order to mitigate the deficiency of POD in providing a compact set of basis function, CAE frameworks have shown
substantial success in providing a compressed latent space that defines a nonlinear manifold on which the system’s
dynamics evolves more accurately than on the linear manifold defined by a similar POD compression. The CAE starts
with an encoding process that involves applying a series of convolutions and nonlinear mappings onto the input snapshot
data to shrink the dimensionality down to a bottleneck layer representing the low rank or latent space embedding. An
inverse mapping from the latent space variables to the physical space is performed by another set of deconvolutions and
nonlinear mappings, defining the decoding part. For example, denoting the encoder function as η and the decoder as ζ,
we can represent the manifold learning through autoencoder as follow,

η, ζ = argmax
η,ζ

‖A− (η ◦ ζ)(A)‖, (5)

η : u(x, t) ∈ RN → z ∈ Rr, (6)

ζ : z ∈ Rr → u(x, t) ∈ RN , (7)

where z represents the low order code at the bottleneck. Note that η and ζ are parameterized by the neural network
weights and biases, which are learned in the training process.

For the temporal dynamics, a surrogate model emulator is constructed to evolve the latent variables onto the manifold
revealed by the CAE. In the present study, we utilize the capabilities of the long short-term memory (LSTM) networks
in sequential data prediction to propagate the latent variables in time. Despite the success and popularity of CAEs in the
past few years, there still exist potential limitations to their applications in fluid flows. Below, we highlight a few of
them.
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• The number of trainable parameters quickly explodes with the dimensionality of input data and complexity of
the CNN architecture. As a result, proper training requires a prohibitively large number of training samples
and a long training time.

• The design of CNNs often involves padding operations, and physically-consistent boundary conditions are
not guaranteed unless custom padding is adopted (e.g., for periodic boundary conditions). Thus, it is more
challenging to impose general boundary conditions in CAEs.

• It is rarely possible to physically and/or mathematically interpret the CAE latent space. Therefore, the use of
CAE to extract and analyze the underlying coherent structures is limited.

• Plain CAEs do not guarantee conservation properties (e.g., continuity) unless additional constraints are
explicitly imposed [44].

• There are no clear estimates for error bounds given a latent space dimension, and the output totally depends
on the architecture hyperparameters and the training process. Thus, it is not possible to evaluate how much
accuracy is gained/lost by varying the dimensionality of the latent space. Similarly, there is no information
regarding the relevant importance of different latent variables.

• CNNs have been intrinsically designed to process data that are uniformly sampled in the spatial domain.
However, in computational disciplines, we often encounter data that are defined on non-uniform grids. Plain-
vanilla CAEs cannot be applied in these cases unless a mapping of the original data onto a uniform grid is
employed [45].

4 NLPOD modeling

In the proposed NLPOD framework, we aim at utilizing the capabilities of both the GPOD and CAE modeling
approaches while mitigating their potential limitations. In particular, we are interested in promoting the following key
benefits of the POD methodology:

• There is a rich history of POD developments for large scale problems, which makes the compression step more
computationally efficient than training CAE, e.g., by using randomization and streaming algorithms.

• By construction, the POD basis functions respect the underlying boundary conditions prevailing in the input
data sets. Therefore, the reconstructed fields from POD are supported by physically consistent boundary
conditions.

• The flow fields reconstructed using POD satisfy the conservation laws, which improves the physical soundness
of the resulting ROM.

• There exists a clear mathematical and physical definition of the resulting POD modes, which renders POD as a
useful tool for further analysis and interpretation of the dominant patterns [46].

• Each mode is associated with a metric of its relative importance and contribution to the overall informa-
tion/variance in the given data sets. Therefore, error bounds have been proved for a given level of data
compression.

• POD is not restricted to specific representation of the flow field variables. For example, POD can be
easily extended to data defined on non-uniform or unstructured grids by employing different types of inner
products [47] and numerical integration schemes.

However, in order to accurately describe convection-dominated flows, a large number of POD modes is often required,
which increases the computational cost of solving the ROM if a Galerkin projection is used. We mitigate this limitation
by inserting a second layer of compression that uses a standard feed-forward neural network AE for the POD coefficients.
In particular, we first employ the standard POD algorithm to efficiently decrease the dimensionality of the input field
u(x, t) to near full-rank approximation as follows:

u(x, t) =

n∑
k=1

ak(t)φk(x), (8)

where n is the number of modes that capture the required amount of information (e.g., RIC = 99.9%). Then, we train
the AE to learn the underlying nonlinear correlations between the coefficients {ak(t)}nk=1 to yield a further encoded
latent space z ∈ Rr, where r � n. Next, we exploit a simple LSTM architecture to evolve z forward. Finally, we
utilize the decoder part of the trained AE to recover the full-rank POD expansion coefficients. With this, we provide an
end-to-end Galerkin-free ROM that enables us to efficiently preserve the aforementioned merits of POD. Moreover,
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the AE component of the NLPOD is trained onto the POD coefficients, so its architecture becomes independent of the
dimensionality of the full order data. Therefore, training NLPOD is significantly more efficient than training CAE
directly onto the input field data.

5 Results and discussion

We showcase the performance of the NLPOD framework using the Marsigli flow problem, where a fluid is placed into
two partitions with different temperatures. The separating barrier is removed instantaneously to allow the fluids to
slide over each other in a convection-dominated and buoyancy-driven manner. More details on the problem setting
can be found in Refs. [48, 49]. In order to decrease the computational cost of training the CAE, in the present study,
we consider a uniform Cartesian grid of 512× 64. We collect spatio-temporal data corresponding to different values
of Reynolds number (Re) to provide a parameterized time-dependent setup. In particular, we store 200 snapshots at
each value of Re ∈ {700, 900, 1100, 1300} and use them for the offline training phase (i.e., m = 800). We then test the
performance of GPOD, CAE, and NLPOD at Re = 1000, which is not included in the training data set. In order to
improve the accuracy of AEs, we augment the bottleneck layer with the Reynolds number as an additional input feature.
In other words, the decoder function for the CAE (defined in Eq. 7) becomes ζ : z ∈ Rr ∪ Re ∈ R→ u(x, t) ∈ RN .
For the NLPOD, it is rather defined as ζ : z ∈ Rr ∪ Re ∈ R→ a ∈ Rn. We train the AEs and LSTMs separately for
the sake of simplicity and to facilitate the CAE and NLPOD combinations with different time series prediction tools.

100 101 102
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Figure 2: The relative information content for different numbers of retained modes. While the first 2 POD modes
have only a 76.76% RIC, the leading 74 POD modes have a 99.9% RIC of the spatiotemporal temperature field data.
Therefore, the proposed autoencoder is built to learn a latent space from 74 POD coefficients.

We aim at approximating the temperature fields and assume that our target low order compression is r = 2. For the
given problem, Figure 2 shows that 2 POD modes capture only 76.76% of the information, and at least 74 POD modes
are required to attain a RIC value of 99.9% (i.e., rank-n approximation with n = 74). In the top panels of Figure 3,
we plot the temperature fields at t = 6 and t = 8 from the FOM solver and the GPOD results for r = 2 and r = 74.
Although the GPOD provides good accuracy with r = 74, the online computational cost is relatively high (around
10 minutes, compared to a fraction of a second for GPOD for r = 2). Therefore, we train AE onto the 74 POD
expansion coefficients a(t) ∈ R74 to learn a zipped latent space for z(t) ∈ R2. Similarly, we train a CAE to reduce the
dimensionality of the temperature field from u(x, t) ∈ R512×64 to a latent space for z(t) ∈ R2.

The reconstructed temperature fields from NLPOD and CAE frameworks are shown in Figure 3, where we can see
that the NLPOD predictions are more accurate than the CAE predictions. In order to provide an estimate of the model
uncertainty in the output results, we utilize an ensemble-based framework, where we train different networks with
different weight initializations (i.e., by changing the seed number). We find that the latent space revealed by CAE varies
significantly with the initial weights specification. Therefore, we perform the training with 30 different initializations,
and select 10 cases, corresponding to the highest performance on the validation data sets, to build our ensemble. We
can observe the non-smoothness of the contour lines at different places in the CAE results, which indicates a non-
physical behavior and/or insufficient latent space. Moreover, there is an evident problem in reconstructing the boundary
conditions with CAE. Although this boundary condition issue can be reduced with proper padding methods, it requires
additional case-specific customization of the neural network architecture. On the other hand, these complications are
naturally mitigated in the NLPOD results since the restriction step and the prolongation process back to the FOM space
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Figure 3: Predictions of temperature fields using FOM, compared to GPOD, CAE, and NLPOD modeling approaches.
Training NLPOD is significantly faster than training CAE while the computational efficiency (running time) of NLPOD
becomes in the same order with GROM (r = 2), and it is significantly faster than GROM (r = 74). Note that CAE
can yield physically-inconsistent results and fails to capture the accurate boundary conditions. Outputs of CAE and
NLPOD represent the ensemble-averaged predictions from 10 different neural network weight initializations.

are performed under the physically accurate POD umbrella. We also emphasize that in our experiments the training
time of the CAE is significantly larger than the training time of the NLPOD (even using GPU capability), while the
online deployment time for both cases is around half a minute. Thus, as shown in Table 1, NLPOD is both more
accurate and more efficient than the CAE. Moreover, standard deviation data obtained from an ensemble of 10 different
runs (i.e., runs trained using different weight initializations) clearly show that the uncertainty of the reconstruction is
significantly lower in the NLPOD approach than in the CAE approach. Quantitatively, the standard deviation of the
CAE reconstructions is about 55% of their mean value, while the standard deviation of the NLPOD reconstructions is
only 4% of their mean value.

Table 1: Comparison of performance metrics for the NLPOD and CAE methodologies. Training times are reported
only for autoencoder part since LSTM training and deployment times are similar in both cases. We perform numerical
experiments using two different versions of tensorflow without∗ and with∗∗ GPU support. The data in the table
correspond to the mean value ± the standard deviation, obtained from an ensemble of 10 different runs.

Model CAE NLPOD Gain [CAE/NLPOD]
Number of trainable parameters 2,194,499 40,516 54.16
CPU training time [s]∗ 1239.05± 32.30 14.16± 0.44 87.48
GPU training time [s]∗∗ 123.30± 2.09 56.2± 0.80 2.19
MSE of reconstruction (without LSTM) (7.18± 3.93)× 10−4 (1.25± 0.05)× 10−4 5.75
MSE of prediction (with LSTM) (1.53± 0.75)× 10−3 (3.61± 0.74)× 10−4 4.24
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6 Conclusions

In conclusion, CAE technology has been shown to be a crucial dimensionality reduction approach for nonintrusive
modeling and prediction of fluid flows. However, the CAE training time could be significant for high-dimensional
systems often encountered in fluid dynamics applications. On the other hand, the intrusive projection-based approach
has been the workhorse principle for reduced order modeling of fluid flows. The governing equations of fluid flows
possess a quadratic nonlinearity. Therefore, POD-based methods, often combined with the Galerkin projection, yield
a coupled dynamical system with computational complexity of O(r3), where r is the number of retained modes. To
become computationally tractable, these projection-based methods truncate the reduced order representation (r < n),
where n is the full rank of snapshot data matrix. Unfortunately, this truncation leads to a large projection error, especially
for convection-dominated flows. In this work, we introduce a robust nonintrusive method that combines POD and
multilayer perceptron autoencoders to generate a projection-error-free reduced order representation (with significantly
reduced training time), and integrate this latent space with LSTM recurrent neural networks for its dynamics. Our
results for modeling a lock-exchange density current problem show a substantial performance improvement over both
nonintrusive convolutional AEs and intrusive Galerkin ROMs.

This is the first step toward building robust end-to-end Galerkin-free nonintrusive models for convection-dominated
flows. Our future efforts will aim at extending this autoencoder-based framework to more complex higher-dimensional
multiphysics problems in fluid dynamics. We highlight that advanced hyperparameter selection studies may be
conducted for performance boost. Furthermore, instead of a deterministic autoencoder, one can utilize a variational
autoencoder to perform probability distribution modeling of the latent space. It is also worth noting that the NLPOD
approach is not restricted to a specific methodology of time series prediction. Although we introduce our results using
LSTMs, NLPOD is equally applicable with other techniques [50], including sparse regression [51], Gaussian process
regression [52], Seq2seq algorithms [53], temporal fusion transformers [54], and auto-regression methods. One can
also replace LSTM with neural ODEs [55] to accommodate varying time stepping discretization. Lastly, the proposed
NLPOD ROM framework can be seamlessly integrated with the physics-guided machine learning [56] to reduce the
uncertainty of the nonintrusive model.
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