Chapter 4

Model-based Continuous
Deployment of SIS

By Nicolas Ferry, Hui Song, Rustem Dautov, Phu Nguyen
and Franck Chauvel

Copyright © 2021 Nicolas Ferry ez al.
DOI: 10.1561/9781680838251.ch4

The work will be available online open access and governed by the Creative Commons “Attribution-Non
Commercial” License (CC BY-NC), according to https://creativecommons.org/licenses/by-nc/4.0/

Published in DevOps for Trustworthy Smart loT Systems by Nicolas Ferry, Hui Song, Andreas Metzger and Erkuden
Rios (eds.). 2021. ISBN 978-1-68083-824-4. E-ISBN 978-1-68083-825-1.

Suggested citation: Nicolas Ferry, Hui Song, Rustem Dautov, Phu Nguyen and Franck Chauvel. 2021. “Model-

based Continuous Deployment of SIS in DevOps for Trustworthy Smart IoT Systems. Edited by Nicolas Ferry, Hui
Song, Andreas Metzger and Erkuden Rios. pp. 59-93. Now Publishers. DOI: 10.1561/9781680838251.ch4.

now

the essence of knowledge

http://dx.doi.org/10.1561/9781680838251.ch4
https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.1561/9781680838251.ch4

4.1 Introduction

Smart IoT Systems (SIS) are characterized by the presence of software deployed
along the entire loT-Edge-Cloud continuum. Software defines the behaviour of the
SIS, and such behavior keeps evolving during the entire system life cycle following
the ever-changing system context. This evolution may be realized as self-adaptation
(such as the use of online learning for dynamic adaptation, as elaborated in Chap-
ter 6) or manual reconfiguration of the existing software, but, very often, it requires
releasing new versions of software. On the one hand, this evolution characteristic
of SIS is typically conflicting with the traditional IoT systems vision consisting
of devices with immutable code, once deployed at the factories. There must be
new approaches for supporting the evolution of SIS. DevOps, on the other hand,
promotes the idea of continuously delivering new software updates. Indeed, the
DevOps movement promotes an iterative and incremental approach enabling the
continuous evolution of software systems. Embracing DevOps can support the
continuous evolution of SIS and improve their trustworthiness (e.g., security).
As an evolution of the DevOps movement, DevSecOps [30] promotes security
as an aspect that must be carefully considered in all the development and oper-
ation phases for the continuous evolution of systems to be secure. However, how

59

60 Model-based Continuous Deployment of SIS

to effectively deploy the software update to the computing continuum is a main
obstacle to enable DevOps or DevSecOps for SIS as it requires the capability of
continuous deployment of software at all levels.

Continuous and automatic software deployment is still an open question for SIS,
especially at the Edge and IoT ends. The state-of-the-art Infrastructure as Code
(IaC) solutions are established on a clear specification about which part of the soft-
ware goes to which types of resources. This is based on the assumption that in
the Cloud it is easy to obtain the exact computing resources as required. However,
this assumption is not valid on the Edge and IoT levels. A typical SIS in produc-
tion often contains hundreds or thousands of heterogeneous and distributed devices
(also known as a fleer of 1o T/Edge devices'), each of which has a unique context, while
their connectivity and quality are not always guaranteed. The major challenges are
as follows:

® How to automate the deployment of software on heterogeneous devices pos-
sibly with limited or no direct Internet access?

® How to manage variants of the software which fit different types or contexts
of Edge or IoT devices in the fleet?

® How to ensure the trustworthiness of the deployed software whilst the quality
of the underlying resources are not guaranteed?

In the ENACT project, we focus on the problem of automatic software develop-
ment for SIS, and our research attempts to address these challenges resulted in two
complementary prototype tools for the deployment of SIS at two different layers:
() GENESIS targets at the device layer, providing a unified way to deploy software
on heterogeneous devices, including those without direct internet connection; (ii)
DivEnact targets at the fleet layer, allowing developers to deploy software into the
abstract fleet as a whole instead of focusing on concrete individual devices. The
tool maintains the software variants and assigns them automatically to the devices
according to their contexts. With trustworthiness (e.g., security) being a concern
cross-cutting both layers, our tools provide solutions that contribute making the
deployment and the SIS trustworthy. At the device layer, we support the specifi-
cation and deployment of security and privacy mechanisms together with the SIS
software in a DevSecOps fashion. Moreover, we provide the novel rolling deployment
method to guarantee the availability of the deployed software as well as to handle
errors during a deployment, i.e., in addition to the main software, we also deploy a

1. Similar to a fleet of vehicles in a transportation company, a fleet of devices are owned by the same application
providers and distributed to different places or users. Devices in a fleet conduct relatively independent tasks,
whilst coordinated by the application provider from a global perspective.

The State of the Art 61

backup copy which will replace the main one when necessary without delay. At the
fleet level, we maintain the software diversity within the fleet for security purposes.

Model-Driven Engineering (MDE) is the scientific basis underlying both
GENESIS and DivEnact. MDE is a branch of software engineering that aims at
improving the productivity and cost-effectiveness of software development by shift-
ing the paradigm from code-centric to model-centric. It has shown to be effective in
supporting design activities [42]. This approach, which is commonly summarised
as “model once, generate anywhere”, is particularly relevant to tame the complexity
of developing heterogeneous systems such as SIS. Models and modelling languages
as the main artefacts of the development process enable developers to work at a
high level of abstraction by focusing on deployment concerns rather than imple-
mentation details.

This chapter is organized as follows. Section 4.2 provides an overview of the cur-
rent state of the art and of the practice for the automatic deployment of SIS. Sec-
tion 4.3 introduces our solutions for the automatic deployment of SIS, first describ-
ing how they can be integrated in order to form a coherent deployment bundle and
then detailing each our two enablers: GENESIS and DivENACT. Section 4.4 focus
on the support offered by our solutions to ensure the trustworthiness deployment
of SIS. Finally, Section 4.5 draws some conclusions.

4.2 The State of the Art

Software deployment has been evolving from deployment of component-based
commercial desktop software [39], deployment of component-based distributed
applications [25], to deployment on Cloud resources, and more recently deploy-
ment for loT systems along the entire IoT-Edge-Cloud continuum. Even though
some core concepts from deployment of component-based applications such as
capability, port in [25] can be inherited for deployment on Cloud or IoT resources,
they need to be tailored and customized to fully address the specificities of these
environments.

4.21 On the Deployment at the Device Layer

For some years now, multiple tools have been available on the market to support
the deployment and configuration of software systems, e.g., Puppet,” Chef.” These
tools were first defined as configuration management tools aiming at automating

2. hups://puppet.com/

3. heps://www.chef.io/chef/

https://puppet.com/
https://www.chef.io/chef/

62 Model-based Continuous Deployment of SIS

the installation and configuration of software systems on traditional I'T infrastruc-
ture. Recently, they have been extended to offer specific support for deployment on
Cloud resources. Meanwhile, new tools emerged and were designed for deployment
of Cloud-based systems or even multi-Cloud systems (i.e., systems deployed across
multiple Clouds from different providers) such as CloudMF [19], OpenTOSCA
[43], Cloudify,” and Brooklyn.” Those are tailored to provision and manage virtual
machines or PaaS solutions. In addition, similar tools focus on the management
and orchestration of containers, e.g., Docker Compose,” Kubernetes.” As opposed
to hypervisor virtual machines, containers leverage lightweight virtualization tech-
nology, which executes directly on the operating system of the host. As a result,
the container engine shares and exploits a lot of resources offered by the operating
system thus reducing containers’ footprint. These characteristics make container
technologies suitable not only for the Cloud, but also for Edge devices [13].

Besides, a few tools, such as Resin.io (Balena)® and ioFog,” are specifically
designed for the IoT. In particular, Resin.io provides mechanisms for (i) the auto-
mated deployment of code on devices, (ii) the management of a fleet of devices,
and (iii) the monitoring of the status of these devices. Resin.io supports the fol-
lowing continuous deployment process. Once the code of the software component
is pushed to the Git server of the Resin.io Cloud, it is built in an environment
that matches the targeted hosting device(s) (e.g., ARM for a Raspberry Pi) and a
Docker image is created before being deployed on the hosting device(s). However,
Resin.io offers limited support for the deployment and management of software
components on tiny devices that cannot host containers.

Regarding the deployment of elements of hardware and software that are to oper-
ate in harmony within a networked system, the Software Communications Archi-
tecture (SCA) [1] and IoT deployment share some basic concepts. The SCA is an
open architecture that specifies a standardized infrastructure for a software-defined
radio (SDR). However, the SDR SCA specification requires an SCA-compliant
system for elements of hardware and software to operate within. In other words,
the SCA is tightly tied to the specific needs for standardizing the development
of SDRs, which is much less heterogeneous than the IoT domain in terms of

4. hep://cloudify.co/

5. https://brooklyn.apache.org

6. https://docs.docker.com/compose/
7. hutps://kubernetes.io

8. https://www.balena.io/

9. htps://iofog.org/

http://cloudify.co/
https://brooklyn.apache.org
https://docs.docker.com/compose/
https://kubernetes.io
https://www.balena.io/
https://iofog.org/

The State of the Art 63

communication means, systems of systems, which may span all the layers of Cloud,
Edge, IoT devices. Moreover, the SCA does not have any concept about supporting
the deployment on devices not directly accessible.

In [34], we conducted a systematic literature review (SLR) to systematically study
aset of 17 primary studies of orchestration and deployment specifically for the IoT.
We found a sharp increase in the number of primary studies published in two-
three recent years. We also found that most approaches do not really support the
IoT deployment and orchestration at low-level IoT devices. As for the continuous
deployment tools mentioned before, these approaches mainly focus on the deploy-
ment of software systems over edge and Cloud infrastructures whilst little support
is offered for the IoT space. When this feature is available, it is often assumed that a
specific bootstrap is installed and running on the loT device. A bootstrap is a basic
executable program on a device, or a run-time environment, which the system in
charge of the deployment rely on (e.g., Docker engine). Approaches such as Calvin
run-time [28], WComp [27], or D-LITE [10], D-NR [24] all rely on their specific
run-time environment where mechanisms such as dynamic component loading or
class loading are typically used. There is a lack of addressing the trustworthy aspects
and advanced support in the deployment and orchestration of the IoT.

To the best of our knowledge, none of the approaches and tools aforementioned
have specifically been designed for supporting deployment over the whole IoT,
Edge, and Cloud infrastructure. In particular, they do not provide support for
deploying software components on IoT devices with no direct or limited access
to internet. In addition, we also identified they do not offer support for including
security concerns as core concepts in the tool and/or language.

4.2.2 On the Deployment at the Fleet Layer

While all these solutions discussed above are focusing on the deployment of a soft-
ware system, they typically do not offer specific support for the management of a
fleet of devices or a fleet of systems, which basically consists in managing large set
of deployments with those solutions.

To the best of our knowledge, there is no effective solution to this fleer deploy-
ment problem. The start-of-the-art Infrastructure as Code (IaC) tools automate
the deployment of one application on one device, or a predefined set of devices,
but lack the support for distributing multiple variants across a large fleet. They
also do not provide sufficient automated support for updating devices with con-
strained resources and limited (or none) Internet connectivity [34]. Such embedded
and microcontroller-enabled devices traditionally have been flashed with ‘one-off’
firmware not intended to be updated in the future, but they are not often seen
as active contributors to the common pool of shared computing resources, which

64 Model-based Continuous Deployment of SIS

can be iteratively assigned and deployed with updated firmware. This has also led
to the so-called concept of IoT-edge-cloud computing continuum, where comput-
ing and storage tasks are distributed across all three levels. On the other hand, the
mainstream loT/Edge fleet management platforms offer tools to maintain multi-
ple deployments, the fleet of devices, and their contexts, but developers still need
to manually designate which deployment goes to which device.

Another relevant reference architecture for deploying component-based appli-
cations into heterogeneous distributed target systems is described in [37]. In par-
ticular, the proposed architecture includes the concept of Planner — a component
responsible for matching software requirements to available platform resources and
deciding whether a component is compatible with a device. These existing specifi-
cations remain implementation-agnostic and only describe the high-level concepts.
Software diversity is a new dimension of architecture-level properties, which is both
a result of the hardware heterogeneity and a method toward more secure system.
The fleet deployment approach provides a implementation-level support to our
theoretical approaches towards a more diverse software [29, 45].

The assignment problem (such as assigning software components to the devices
in an IoT fleet) frequently appears in ICT scenarios, where some resources
need to be allocated to available nodes, often taking into consideration various
context-specific characteristics [38, 40]. The research community has come up
with multiple algorithms, ranging in their computational complexity, complete-
ness, preciseness, etc. Many of these approaches treat assignment as a collection of
constraints, which need to be satisfied in order to find an optimal solution in the
given circumstances [2, 7]. The approaches based on Satisfiability Modulo Theories
(SMT) are specifically popular and efficient due to their expressively and rich mod-
elling language [8]. In this respect, a relevant approach that also makes use of SMT
and Z3 Solver is described by Pradhan ez al. [41]. The authors introduce orchestra-
tion middleware, which continuously evaluates available resources on Edge nodes
and re-deploys software accordingly. Similar goal is pursued by Vogler ez a/. in [46],
where authors report on a workload balancer for distributing software components
at the Edge. Multiple approaches specifically focus on the autonomic and wireless
nature of IoT devices and contribute to energy-efficient resource allocation, where
the primary criterion for software deployment is energy efficiency [47]. A main
obstacle for using SMT in practice is the gap between real platforms and the math-
ematical model.

Model-based techniques are often used to support DevOps. Combemale
et al. [12] present an approach to use a continuum of models from design to run-
time to accelerate the DevOps processes in the context of cyber-physical systems.
Artavc et al. [3] uses deployment models on multiple Cloud environments, which
is a promising way to support the smooth transition of software from testing to

Overview of the ENACT Deployment Bundle 65

production environments. Looking at approaches targeted at particular application
domains, Bucchiarone ez /. [9] use multi-level modelling to automate the deploy-
ment of gaming systems. In [16, 17], the authors apply model-driven design space
exploration techniques to the automotive domain and demonstrate how different
variants of embedded software are identified as more beneficial in different con-
texts, depending on the optimisation objective and subject to multiple constraints
in place. To solve this optimisation problem, the authors also employ the SMT
techniques and the Z3 solver implementation.

4.3 Overview of the ENACT Deployment Bundle

The ENACT approach to automatic software deployment is implemented as a pro-
totype deployment bundle with two enablers, i.e., GENESIS and DivEnact, support-
ing automatic deployment at the device and fleet layers, respectively.

Figure 4.1 illustrates how the ENACT deployment bundle is used in a typical
SIS. The illustrative SIS has six subsystems, each of which is in charge of a particular
business task, such as serving a user, monitoring a room, etc. Such a subsystem is
usually composed by at least one edge device and several loT devices such as sensors
and actuators. For the sake of simplicity, we do not show all the IoT devices. These
subsystems form the fleet of this SIS. Since each subsystem contains one main edge
device as the main contact point, or gateway with the back-end service, we also refer
to such fleet as an edge fleer. A fleet is normally distributed, with the edge devices
(together with its IoT devices) serving different customers or tenants, and deployed
in different locations. The developers often maintain one or several edge devices at
their own premises for testing or trial purposes.

GitHub
Action

GeneSIS g R
GUI v
DivEnact

leet

T f N
() O -
EmpE = R oW
©(=) O @

Developers Users

Figure 4.1. The ENACT deployment bundle.

66 Model-based Continuous Deployment of SIS

GENESIS supports the automatic deployment within a local subsystem, for exam-
ple the deployment on the devices located on the developers’ side. In such case,
the developers can directly interact with the GENESIS engine hosted on the local
edge device, and use it as the bridge to further deploy required code to the associ-
ated IoT devices. In the development phase, developers define a deployment model
in the GENESIS modelling language specifying which software artefacts should
be deployed onto which devices. Once the development phase completed, in the
deployment phase, the same deployment model, or a slightly modified one, will be
provided to the GENESIS deployment engine, running either on a local machine or
the edge device. The engine will install or update the software artefacts according
to the deployment model.

DivEnact handles a different automatic deployment problem at the fleet level.
When the developers want to release the new version of their application to pro-
duction, they need to deploy software artefacts to all the devices on the users’ sites.
They cannot extend the deployment model to include every device in the fleet,
because such a huge model is not maintainable, especially when the devices keep
joining and exiting the fleet. Instead, since each user has a subsystem similar to the
one at the developers’ side, the developers can provide the deployment models they
developed in the previous phase for the local subsystem to DivEnact. The latter
maintains the list of all subsystems, and sends the deployment model to the devices
before invoking the GENESIS engine running on the edge device of the subsystem,
to eventually deploy the software artefacts according to the deployment model.
Within a fleet, the subsystems have different contexts, such as the device capacity,
the connectivity, the user preferences, etc., and developers need multiple variants of
their software to fit different contexts. DivEnact accepts multiple deployment mod-
els representing different software variants and configurations, coming for a series
of releases, and automatically assign them to the proper subsystems. For the sake
of availability, we recommend running the main service of DivEnact in the Cloud,
with a light-weight DivEnact broker running on edge devices of each subsystem.

Next, we present GENESIS and DivEnact, detailing their main innovations as
well as how they contribute ensuring the trustworthiness of SIS.

4.31 GENESIS

GENESIS enables the continuous orchestration and deployment of Smart [oT Sys-
tems throughout the [oT-Edge-Cloud continuum. Given a description of a deploy-
ment topology, GENESIS deploys and configures the needed software components,
by connecting to the hardware (or software) nodes. This topology, the so-called
deployment model, only prescribes what components must be deployed, how a
single component can be deployed, and how they connect to each other. GENESIS

Overview of the ENACT Deployment Bundle 67

automatically derives how to deploy them. Therefore, GENESIS is composed of two
key components: (i) a domain-specific modelling language for specifying deploy-
ment models, and (ii) an execution engine to enact the provisioning, deployment
and adaptation of a SIS. We refer the reader to [20] for more details about the
GENESIS modelling language.

The target user groups of GENESIS are mainly DevOps engineers, software devel-
opers, and software architects. The GENESIS modelling language has been con-
ceived so the deployment model can act as a touch point between development
and operation activities. DevOps teams can use it to deploy either in development,
staging or production environments. It is also worth noting a deployment model
written using the GENESIS modelling language is independent of the underlying
technologies, i.e., GENESIS can deploy components anywhere in the IoT-Edge-
Cloud continuum: from microcontrollers without direct Internet access to virtual
machines running in the Cloud.

The main task of the GENESIS deployment engine is to reconcile two views of
the system: the deployment model given by the user, and the current state of the
running infrastructure, assuming that software components may already be running
on the infrastructure, for example, as a result of a system upgrade. To reconcile
these two views, the GENESIS deployment engine adheres to the “models@runtime”
architectural pattern [6]. It compares these two views and deduces what changes the
adaptation engine must carry out on the running infrastructure to align it with the
prescription, i.e., the deployment model given by the user. After the deployment,
the engine synchronizes the current GENESIS model with the actual deployment
result. Such synchronization will ensure that all the tools in future DevOps cycles
will leverage an up-to-date deployment model.

The GENESIS deployment engine is non-invasive, meaning it does not require
any GENESIS bootstrap or agent running on a target device to deploy software
on it. However, when decided by the DevOps engineer, the GENESIS deployment
engine can deploy on a target device a monitoring agent. This agent is an instance
of netdata'’ and provides information about the performance and health status of
a device, including data about software components it hosts.

Finally, the deployment engine can delegate parts of its activities to deployment
agents running in the field. It is not always possible for the GENESIS deployment
engine to directly deploy software on all hosts. For instances, tiny devices do not
always have direct access to the Internet or even the necessary facilities for remote
access (in such case, the access to the Internet is typically granted via a gateway)
or for specific reasons (e.g., security) the deployment of software components can

10. hteps://github.com/netdata/netdata

https://github.com/netdata/netdata

68 Model-based Continuous Deployment of SIS

only be performed via a local connection (e.g., a physical connection via a serial
port). In such case, the actual deployment of the software on the device has to be
delegated to the gateway locally connected to the device. The GENESIS deployment
agent aims at addressing this issue. It is generated dynamically by GENESIS based on
the artefact to be deployed and its target host, and is implemented as a Node-RED
application. We refer the reader to [20, 21] for more details.

GENESIS comes with a set of predefined component types that can be seamlessly
instantiated in deployment models. In addition, GENESIS embeds a plugin mech-
anism that enables the dynamic loading of new component types. A components
type repository is scanned by the GENESIS execution engine before each deploy-
ment ensuring all available types are loaded before a deployment model is analyzed

and deployed.

4.3.2 DivEnact

While GENESIS focus on the deployment of a single system, DivEnact, the
diversity-oriented fleet deployment enabler, is an implementation of our concept
of fleet deployment. Fleet deployment is an automatic software deployment support
for IoT/Edge applications, which allows developers to deploy software artefacts
onto a fleet of devices as an abstract whole, without concerning about the con-
crete devices and their contexts in the fleet. The automatic fleet deployment tool,
such as DivEnact, will maintain the devices and their contexts in the fleet, the soft-
ware variants, and assign the variants to the appropriate devices depending on their
contexts.

DivEnact utilizes Azure IoT Edge to maintain a list of edge devices, together
with their contexts and run-time status. Developers provide DivEnact with a set of
deployment models (typically GENESIS models), each of which specifies a partic-
ular software artefact, together with the specification about how to configure and
deploy it on an Edge device. In order to facilitate the definition of similar deploy-
ment models, we also introduce the concept of deployment zemplates and variants.
A template defines the common parts among a number of deployment models, and
a variant further instantiates the template as a deployment model. A common use
case for this is to define a deployment model for a particular software, and then
use variants to represent the different versions of this software. After receiving all
the deployment models, DivEnact automatically assigns them to the list of edge
devices, and enacts the deployment model on each edge devices to finalize the local
deployment.

Figure 4.2 illustrates the technical architecture of the DivEnact tool. The DivE-
nact tool is designed and implemented following the established Model-View-
Controller (MVC) design pattern for client-server application systems.

Overview of the ENACT Deployment Bundle 69

Microsoft Azure ;1
kL

[Ap]

Deployment commands
Fleet monitoring information

—| Controller: DivEnact back-end [«—
nede

User interaction Constraint solver @ CRUD operations on

(input + output) devices,
templates, and variants

Information o
display
View: DivEnact GUI Model: DivEnact repository

g L
<> Ant Design 0 mongoDB. | ;_-}g

CouchDB

DivEnact

Figure 4.2. The architecture of DivEnact.

The DivEnact knowledge base stores various deployment- and fleet-related
artefacts and is modified by the DivEnact back-end upon the user input received
through the graphical user interface. The modification actions (CRUD - create,
read, update, delete) are implemented on top of standard APIs and libraries. The
model itself is spread across the following three repositories. MongoDB database
is installed locally, along with a DivEnact instance, and serves to store information
about templates and variants unique to each application system. There is a cen-
tralised repository in CouchDB for storing various ENACT artefacts, including
deployment models used by DivEnact. In particular, the CouchDB database stores
previously designed GENESIS deployment models that are to be enacted on low-
level IoT devices as part of the “last mile deployment”. Azure [oT Hub Cloud portal
keeps track of registered devices in the fleet and existing deployments. The infor-
mation obtained from the hub reflects the current state of all the devices through
continuously updated digital twins, as well as deployments applied to these devices
(i.e., software modules currently deployed and running on each device).

The DivEnact graphical user interface remains the main point of interaction
with the user. The main functionality is structured across several functions, i.e., the
editing and maintenance of templates, variants, deployment models, devices and
the assignment.

The back end of the DivEnact tool is implemented in Node.js. It receives REST-
ful requests originating from the user’s graphical interface and manipulates the
data model accordingly. It also interacts with the Azure IoT Hub API to update
some information about the devices in the fleet and trigger deployments. The back

70 Model-based Continuous Deployment of SIS

end also implements the actual diversification functionality (described in the next
subsections) by receiving the input model from the user and passing it to the under-
lying Python script. Upon execution, the calculated solution is passed back to the
user for the final approval.

The main function of the back end is the automatic assignment of deployment
models into the list of devices, considering the constraints, the deployment pref-
erences, the resource optimization, etc. We have implemented two experimental
assignment approaches, using constraint solving and resource assignment theories
as the back end mechanisms. The details of these two approaches can be found in
our recent publications [15, 44].

4.4 Trustworthy Deployment

As explained before, ensuring the trustworthiness of the deployment and of the SIS
is critical and challenging. It is a concern that crosscuts both the device or at fleet
layers. In the following we detail how GENESIS and DivEnact help addressing this
challenge. Our effort is concentrated on three complementary directions, i.e., how
to increase the availability of deployed system; how to automatically deploy the
required security mechanisms together with the application; and how to maintain
the software diversity across the whole fleet.

4.41 Deploying Availability Mechanisms

Availability refers to “the ability of the system to mask or repair faults such as the
cumulative service outage period does not exceed a required value over a specified
time interval” [4, p. 174]. Availability is a primary concern for business stakehold-
ers because service interruptions often translate into money loss. The failure of an
electricity meter for instance may affect the capacity of the electricity company to
properly bill its customers.

Availability, as any extra-functional requirements, does not affect the system
function, but rather affects its architecture. Building high-availability systems
requires additional components to detect, repair, or even prevent faults, such as
monitors, watchdogs, replicas, or voting mechanisms to name a few. Availability
tactics are now well documented, so we refer the reader to [4, Chap. 5] for an
introduction.

Many things can go wrong in Smart IoT Systems, including incorrect algo-
rithms, network failure and delays, hardware failure, etc. In the following, we focus
on scheduled outages, which are interruptions of service needed because of soft-
ware upgrade, and internal faults, which are faults that occur because of defects

Trustworthy Deployment 71

in the source code of the components. In other words, the availability support we
present hereafter contributes (i) improving trustworthiness of a SIS by maximis-
ing its availability (by minimizing downtime during upgrades); and (ii) improving
deployment trustworthiness by modifying a system and its deployment only if the
deployment process is successful (i.e., old version of a software is removed only if
the new version is up and running).

We extended GENESIS with the ability to deploy mechanisms that cope with
these two kinds of fault. To mask internal faults, GENESIS deploys multiple
instances of the same service/component (so called replicas) behind a proxy. When
one replica fails, the proxy can query another replica. To mask scheduled outages,
GENESIS provides zero-downtime upgrades. We leverage the same architecture and
deploys the new version (behind the proxy) before to decommission the older one.
That way, there is always a replica available and upgrades do not affect availability.

Modern execution platforms such as Docker or AWS already implement vari-
ous availability mechanisms, and, they have strategies for both scheduled outages
and fault-tolerance. Docker Swarm for instance performs zero-downtime upgrades
by deploying new services instances before to decommission the older ones. The
challenge is that, from a deployment perspective, the availability tactics are tightly
coupled to the underlying execution platform. Changing platform requires chang-
ing the deployment configuration.

To decouple availability from deployment platform, GENESIS captures these
deployment tactics independently of the underlying platform. If the platform
already provides mechanisms (such as Docker Swarm), GENESIS uses those, other-
wise it deploys built-in components to implement the selected tactics. In the fol-
lowing, we illustrate three scenarios that show how GENESIS copes with scheduled
outages and internal faults.

1. Initial Deployment: GENESIS deploys the system following the availability
tactics selected by the user.

2. Internal Faule: A fault occurs in the system and we explain how the mecha-
nisms that GENESIS has deployed deal with that fault, so that it is not visible
to the end-user.

3. Zero-downtime Upgrades: The user requests the deployment of a new ver-
sion of the system and we illustrate how GENESIS leverage the underlying
mechanisms to minimize service disruption.

4.411 Using built-in components on top of docker

By default, GENESIS does not make any assumption of the capability of the plat-
form where it should install a component. It could be a very fully featured platform
such as Docker Swarm (see Section 4.4.1.2) or simply an operating system offering

72 Model-based Continuous Deployment of SIS

remote access (through SSH, Telnet, etc.). We detail here the later case, that is when
the host is a bare OS. Recall that GENESIS uses two strategies to improve availabil-
ity: Replication to deal with internal faults, and zero-downtime deployment to deal
with scheduled outages. To implement these two strategies, we need three capabil-
ities that are provided by additional components:

® Routing, that is, the capability of redirecting incoming traffic to a selected
replica. Network proxies provide this and in GENESIS, we selected Nginx.

® Error detection, that is, the capability to proactively detect replicas that have
failed (for whatever reasons). We used a watchdog, that is a component that
periodically connects to the replicas and runs a so-called “health check”. The
health check is an application specific behaviour that confirms that the repli-
cas is up and running. It could be requesting a predefined resource using
HTTRP, checking the status or OS-level services, or any other “quick-check”.
In GENESIS, we have implemented simple watchdogs using Shell scripts and
CRON tasks.

o Spatialisolation, that is, the capability to deploy multiple instances of the same
application with guarantees that they can access external resources (network
port, files on disks, etc.) without stepping on each other. GENESIS uses con-
tainers (i.e. Docker in the current implementation) to ensure spatial isolation
of replicas, but other container technologies such as LXC apply.

Scenario 1: Initial Deployment

The first step is for GENESIS to ensure that the underlying host offers “spatial iso-
lation” guarantees. To do so, GENESIS first installs Docker as container offer such
guarantees. Figure 4.3 below illustrates how GENESIS interacts with the host to
install docker and to create a “replicable image” of the software stack.

Given a component to deploy, GENESIS first connects to the host through SSH
and installs Docker (Step 1). Then GENESIS configures Docker in remote mode
so that other components (including itself) can access it through the network.
Then, GENESIS creates a new temporary container (by default, using the image
“debian:10-slim”) and installs the underlying software stack. To do this, GENESIS
traverses the underlying software stack and installs all underlying components by
triggering the associated SSH commands into the container (Step 6, 7 and 8). Once
the stack is installed and configured, GENESIS converts it to a separate Docker
image, that it later uses to install multiple replicas (Step 9). Finally, GENESIS destroy
the temporary container. At this stage, GENESIS has enforced spatial isolation, and
can then proceeds with replication and zero-downtime upgrades.

Once Docker is operational and the component to install is available as a
Docker image, GENESIS proceeds with the two remaining capabilities, namely

Trustworthy Deployment 73

% Host
GeneSIS

<<create>> X
l—P tmp :Container

User

I

| |

| deploy(a) _|
| .
1 install
| Docker
| |
| . |
I activate remote modg >
| |
| create container ol
[|
| |
|
|
|
L

loop [over the underlying softwarp stack] i

|
downloabl
T

y

- |
install |

|
onfigurk
T

Y_.J3

A 4

save(container)

o
P43
o
bl

Figure 4.3. Automatically converting SSH resources into a Docker image. GeneSIS con-
nects to the host, and execute all SSH commands into a new container, which it then
saves as a new “ready to use” image.

detecting errors and routing as shown on Figure 4.4. First GENESIS installs the
proxy component through Docker (Step 1 and 2). Then, it installs the watchdog
and configures it with the endpoints of the Docker host, the proxy and with the
number of replicas to maintain (Step 2 and 3). For each missing replica, the watch-
dog requests Docker to provision a new instance of the image built in Scenario 1
and then the watchdog start checking the health of each replica periodically (Step
6 and 7). As soon as a replica is detected as healthy, the watchdog registers it to the
proxy (Step 8), which uses it process user requests (Step 9 and 10).

Scenario 2: Fault tolerance

We now turn to the second scenario where one replica fails and we explain on
Figure 4.5 how the watchdog detects and reacts to such a failure. The main mech-
anism to detect failure is the health check. Since a health check is an application-
dependent behaviour, the user must provide it as a script to be executed periodically

74 Model-based Continuous Deployment of SIS

% Host
GeneSIS Docker
User
|
|
1 <fcreatet
1 Proxy
: T
2 <kcreate>> :
T | Watchdog
|
|

configure |

| T
| |
| |
| f
| |
| |
| |
| r
| |
| | |
| | 13 >
| | | | I
: : loop) [for the nuniber of needed replica] |

y |
| | | ' |
| | | spawl\ new replica I
| | ™ | |
I I I | 5<<create>> |
: : | t t rX: Replica

|

| | | : | |
l { I ! |6 nean check
| I | : | I
| | | | 7 0K |
| | | | | ¢ I
: : : | 8register(rX) | |
I I I .' ; I
| | | | | :
: g 9 reqyest ! ~J : |
I I | I
| | | 10 rdquest N
| | | | =1
| | | |
| | | |

Figure 4.4. Configuring watchdogs and proxies to improve availability.

by the watchdog. GENESIS defines the interface of the health check script as fol-
lows. The health check must accept the endpoint of the replica to query as its sole
input parameter and must output the replica status in return through its exit code:
Zero if the replica is healthy and any other value otherwise. This gives the user the
capability to integrate any application-specific health check logic. The listing below
shows one such health check script based on the HTTP status code, returned by a
service.

1 #!/bin/bash

> ENDPOINT="${1}"

; response=$(curl --write-out '%{http_code}’ --silent --output /dev/null”

${ENDPOINT}")
« if ["${response}” != 200]
5 then

6 exit 1
fi

Listing 4.1. A Sample health-check script.

Trustworthy Deployment 75

Docker Host

6 <<create>>

| : I |
| 5 switch r3: Replica

7 health check

Container
Proxy Watchdog | r1: Replica | r2: Replica
I I I !
| | | |
| : |
| | | |
: ! check health? :]
	2 timgout	
]		
b		
L 3 <<destroy>> X		
4 failure of(r1)	:	
1		
1		

9 register replica(r3)
| |
| |
| |

————

Figure 4.5. Masking internal faults to improve availability.

Note that this architecture can only detect replicas’ failure as fast as the watchdog
waits between two health checks. Besides, for the failure to be invisible to the user,
there must at least two replicas, for the proxy to switch between them as soon as a
delegation fails. Finally, transient phenomena such as network delays may be mis-
taken for replica failures and lead to unnecessary starts and stops of the container.

Scenario 3: Zero-downtime Upgrades

Finally, GENESIS leverages these proxy and watchdog to guarantee zero-downtime
upgrades, as shown on Figure 4.6.

When the user requests an upgrade, that is the deployment of a new version,
GENESIS first builds a new docker image of the software stack, including this new
version. We described this process in Figure 15. Once this new image is ready,
GENESIS request the watchdog to perform the upgrade (Step 2). The watchdog
thus provisions new instance of the new version (Steps 3 and 4) and, once these
new replicas are operational, the watchdog registers them to the proxy (Steps 4, 5, 6
and 7). At that stage, incoming requests from the user are still delegated to the older
version (Steps 8 and 9). Only once all replicas of the new version is operational, then
the watchdog starts to decommission the older versions (Steps 10 and 11).

76 Model-based Continuous Deployment of SIS

% Host.
| GeneSIS | Docker | | Proxy | I Watchdog | V1: Replica |

User
| T T T

|
|
|
|
Build image of V2 |
(see Scenario 1) |
|
|
|
I

|
2 upprade to V2
I

| |
| 1 update deployment _ |

h 4

100p for all needkd replica)
Y

| |
| 3 gpawn V2 |
e e

| 1

4 «creale»

T
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|

>II V2: Replica |

5 healtt) check? J
t >

|

|

|
|
|
|
|
|
|
|
|
|

7 register(V2)
==

8 request

|
[l
|
>
>
|
|

9 request

V.

loop] [for all old réplicas]

|
10|stop(V1)
——
I

11 stop

|
|
|
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
k +
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

e e s T i R

|
'
|
|
|
I
|
|
|

Figure 4.6. Using proxy and watchdog to guarantee zero-downtime upgrades.

4.41.2 Using docker swarm

In many cases, developers do not choose the platform on which their software runs:
It may result from organizations” policies, customer requirements, etc. Platform
such as Kubernetes, Docker Swarm or Rancher for instance all implement availabil-
ity tactics, including replication and zero-downtime releases. Should the user use
such platform, GENESIS can exploit these native features to ensure fault-tolerance
and zero-downtime upgrades. Docker swarm already implements routing among
multiple replicas and fault detection. GENESIS therefore delegates these features to
Docker Swarm. We briefly example how GENESIS handles our three scenarios using
Docker Swarm.

Scenario 1: Initial deployment

This step is the simplest as we assume here that the host already runs Docker Swarm
and that it therefore already guarantees spatial isolation. Here, GENESIS simply
requests Docker Swarm to deploy the given number of replicas of a given Docker
image.

Trustworthy Deployment 77

Scenario 2: Fault tolerance

This is also fully transparent from the GENESIS standpoint. When GENESIS del-
egates the deployment to Docker Swarm it specifies the number of replicas and
the health check script to be used to detect faults. It is docker swarm that period-
ically checks the replicas status, provisions new ones if some have failed and route
incoming requests accordingly.

Scenario 3: Zero-downtime redeployment

Further Docker Swarm also offers various strategies to upgrade a service (i.e., the
set of replicas in Docker Swarm parlance). Among many options, Docker Swarm
lets the user specify the “update order”. If this order is “stop-first”, then Docker
Swarm first stops all the replicas of the older version, and only then starts pro-
visioning replica for the new version. By contrast, if the update-order is “start-
first”, then Docker Swarm provisions all new replicas before to decommissions, as
GENESIS would do without Docker Swarm (see Figure 18). This “start-first” option
let Docker Swarm minimize service interruptions.

4.41.3 Limitations

The support for availability tactics in GENESIS is limited to Docker platform,
although the general principle applies regardless of the underlying technology and
other can extend GENESIS and support other technologies. In addition, there are
other types of faults that the current tactics cannot deal with. Hardware failure for
instance would take down the whole host and therefore all the replicas at once.
To tackle hardware failure, replication would have encompassed hardware, but
this goes beyond GENESIS whose mission is to provide platform agnostic deploy-
ment. Nevertheless, using the ENACT framework, the Root Cause Analysis enabler
can be used to monitor and identify such failures and DevOps engineers can use
GENESIS to migrate the software components on a new host, benefiting from
its platform independence. Programming faults are also not dealt with. Because
GENESIS is oblivious to the inner working of the components it deploys, all repli-
cas are similar and fail in a similar manner. For instance, if a defect in the code
lead to a fault of one replica (say because of invalid user input), then all replicas
will exhibit this fault. Only diversification techniques [5] could help having repli-
cas whose behaviours differ from one another, and that exhibit different failure
profiles.

Improving availability from a pure deployment perspective, as GENESIS pro-
vides, is bound to stateless components that can be easily replicated. Replicating
a component that persists state requires some modification of its code. Either we
separate its state from its application logic (using a local database, for instance) and

78 Model-based Continuous Deployment of SIS

we ensure that all replica can access this single data source. Alternatively, each repli-
cas also have its own local copy but we must now define a strategy to ensure the
correct and timely synchronization of the multiple copies of the state, and possible
conflicts. Modern database engines offer such mechanisms and would need to be
integrated with GeneSIS in an ad-hoc manner. Edge platforms however often only
pass data further on to Cloud services, and are thus likely to be stateless, or can
simply leverage a local database as a cache, a strategy that the GeneSIS availability
mechanisms handles.

Finally, on an Edge platform there are resources that cannot be replicated and
that would require further investigation. A serial link for instance cannot be shared
between replicas and, in this case, dedicated, application-specific logic must be in
place to ensure consistent behaviour between all the replicas.

4.4.2 GeNESIS for Continuous Deployment Supporting
DevSecOps

GENESIS empowers a DevOps team to cope with security and privacy concerns of
SIS as it natively offers support for including, as part of the deployment models,
concepts to express security and privacy requirements and for the automatic deploy-
ment of the associated security mechanisms [20]. More importantly, GENESIS
enables the continuous enhancement of security controls in a DevSecOps cycle to
keep security mechanisms up-to-date and well-aligned with the evolution of SIS,
as well as addressing loT security risks that are always evolving.

In this sub-section, we present the latest development of GENESIS for better
supporting the continuous deployment and enhancement of security controls that
can refine or override the associated (default) security and privacy mechanisms of
the IoT platforms such as SMOOL [36] or FIWARE [11]. Such security mecha-
nisms are further elaborated in Chapter 7. More specifically, GENESIS provides a
generic way for a DevOps team to extend such existing security mechanisms with
other (third-party) security mechanisms to provide enhanced security controls in a

DevSecOps fashion.

4.4.21 GENESIS for the specification and deployment of security
components

To better support DevSecOps, GENESIS promotes specifying security mecha-
nisms as explicit elements in the deployment model, instead of hidden (and thus
tightly coupled) in the source code, so that developers can see and change the
security mechanisms in the deployment model level. This includes specifying
security requirements and capabilities, and supporting the deployment of secu-
rity mechanisms as components reusable in different scenarios. Compared to the

Trustworthy Deployment 79

previous GENESIS version reported in [21], we have built a new library of off-the-
shelf security components that can be selected for instantiating in the deployment
model. More importantly, we provide DevOps teams with mechanisms to configure
security components and inject fine-grained security policies into deployment com-
ponents (without modifying their business logic), enabling their seamless integra-
tion with third party security mechanisms (services, libraries, etc.). These supports
can ease the development, integration, and deployment of SIS with continuously
enhanced security mechanisms (see Section 4.4.2.2).

GENESIS supports the deployment of security components as any other software
components in the way that their deployment and configuration can be defined via
exposed APIs and configuration files. A security component to be deployed together
with an IoT application can be declared in GENESIS with “security capabilities” in
a provided port. A required port of a software component that requires a match-
ing security capability can be bound with the provided port of the security com-
ponent that provides such security capability. Before enacting a deployment, the
GENESIS deployment engine validates the correctness of the provided deployment
model. In particular, it ensures that the required “security capabilities” match the
provided ones.

GENESIS allows specifying the deployment of security mechanisms and policies
built on top of loT platforms. We present here its application to the SMOOL loT
platform, which is used in our ENACT project. Similar approach can be applied
to other IoT platforms. At the development phase (as well as at the deployment
phase presented below), GENESIS provides the support to relieve developers from
manually specifying and maintaining security monitoring and control mechanisms
in the code of a SMOOL client. Instead, a developer can define its own SMOOL
client, focusing on its business logic. We integrated the SMOOL client wizard with
ThingML'". As a result, a single Eclipse IDE can be used to generate the code of
a SMOOL client, which can then be directly used as part of a ThingML program.
The proper Maven manifests are automatically created facilitating the building and
release of the desired application. This means that the DevOps team can quickly
develop the business logic of the SIS based on the SMOOL platform, including nec-
essary security mechanisms. DevOps teams can define SMOOL clients that lever-
age built-in security properties to check and enforce security concepts on messages
requiring security controls.

The SMOOLs default security enforcement can be done with the
SMOOL clients built-in security metadata checker to verify messages exchanged

11. htps://github.com/TelluloT/ThingML

https://github.com/TelluIoT/ThingML

80 Model-based Continuous Deployment of SIS

among them. In cases where a deeper control is needed, a specialised security meta-
data checker can be included in SMOOL clients, with additional privileges to watch
and process the security metadata in messages exchanged, in the same way it is
done with business logic concepts such as sensed temperature or gas values. This
provides a fine-grained control on critical messages that may have a significant secu-
rity impact in the [oT system such as orders to actuators. More precisely, a client
code can conduct security checks based on policies to be fulfilled by ontology con-
cepts by using any of these options: (i) the default security metadata checker (for
minimal configuration), (ii) a custom security metadata checker implemented in
the development phase (for full control of security), and (iii) a custom security
metadata checker for integration with external security services. Whatever security
options, GENESIS provides support for easily configuring the security mechanisms
and how they should be integrated and deployed with the SIS. Thanks to ThingML,
GENESIS provides advanced support for the three options.

To support the first option, GENESIS enables the DevOps team to specify explic-
itly the default security policy that must be enforced by the Security checker. To
support the second option, where the DevOps team can implement its own ad-hoc
security checker, GENESIS provides the means to automatically inject this security
checker into the code of the component to be deployed and to rebuild the compo-
nent automatically. More precisely, when deploying this security component, the
GENESIS deployment engine injects the security policy into the ThingML code of
the SMOOL client. This code injection is done before GENESIS triggers the com-
pilation of this code to generate the actual implementation of the SMOOL client
with the corresponding security policy.

To support the third option, GENESIS not only injects the security checker code
that integrates with a third party security solution (e.g., Casbin'* or the Context-
aware Access Control mechanism [23], or a “gatekeeper” in [33]) but it can also
deploy the latter. At the deployment phase, a SMOOL client can be deployed by
GENESIS as any other software components. Once the SMOOL client has been
developed, the developer can specify how to deploy it together with the security and
monitoring mechanisms that should apply to its SMOOL client. GENESIS will then
inject within the SMOOL client the necessary code to perform the security checks
before actually deploying it. To do so, we created a generic security component
that represents a SMOOL client as a deployable artefact. This client can follow any
of the security check options discussed above and is implemented with ThingML
code, which integrates (i) the necessary SMOOL libraries, (ii) the SMOOL client
business logic, (iii) and the security logic. The main rationale behind this choice is

12, hteps://casbin.org/

https://casbin.org/

Trustworthy Deployment 81

the following. ThingML offers an extra abstraction layer that provides the ability to
wrap the code and dependencies that compose a SMOOL client and to inject into
it the necessary security code. In addition, it provides GENESIS with a standard and
platform-independent procedure to generate, compile, configure, and deploy the
implementation of the security mechanisms. A similar approach could be applied
to other IoT platforms. In this way, GENESIS allows DevOps teams to reconfigure
and update security mechanisms by design, in line with the evolution of IoT appli-
cations and the development of security and privacy risks. In the next section, we
present more details on the DevSecOps support.

4.4.2.2 The DevSecOps support for the continuous enhancement
of security mechanisms

SIS typically expose a broad attack surface and their security must not be an
afterthought [22]. The ability to continuously evolve and adapt these systems to
their dynamic environment is decisive to ensure and increase their trustworthiness,
quality, and user experience. This includes security mechanisms, which must evolve
along with the SIS, continuously fixing security defects and dealing with new secu-
rity threats [32, 35]. Following the DevSecOps principles [30], there is an urgent
need for supporting the continuous deployment of SIS, including security mech-
anisms, over loT, Edge, and Cloud infrastructures [31]. The DevOps movement
promotes an iterative and incremental approach enabling the continuous evolution
of software systems. As an evolution of the DevOps movement, DevSecOps pro-
motes security as an aspect that must be carefully considered in all the development
and operation phases for the continuous evolution of systems to be secure.

In this section, we present how GENESIS can enable the continuous enhance-
ment of security controls in a DevSecOps cycle: from development to operation.
GENESIS also supports the adaptation of the system having enhanced security
mechanisms or updated security policies with minimal impact on the already deliv-
ered and under operation. Our approach [18, 20, 21] for the continuous deploy-
ment of SIS with enhanced security mechanisms can serve the DevOps team in
both adaptation and evolution of the SIS. First, GENESIS supports for evolving SIS
with updated security mechanisms according to a new development cycle. Second,
GENESIS supports for adapting security enforcement to improve how the IoT sys-
tem operates securely. This DevSecOps support leverages the GENESIS * necessary
mechanisms, interfaces, and abstractions to dynamically adapt the deployment and
configuration of a SIS as presented earlier. We elaborate more on the two kinds of
DevSecOps support in the following paragraphs.

First, GENESIS supports for evolving SIS with updated security mechanisms
according to a new development cycle. In this line of adaptation, the SIS in opera-
tion is evolving with new business logic components or even new physical devices

82 Model-based Continuous Deployment of SIS

r;ﬁ,T GeneSIS @ Model ¥ & Deployment ¥ i= Logs

APP_Server loT Smart_Space

AppToSMOOL o 'SMOOL2HOMEIO

BuildingControl

MQTTBroker HomelO

Figure 4.7. An initial version of a smart home system (deployment view).

being added resulting in the need for enhancing security mechanisms accordingly.
We demonstrate this support using a smart home simulation called HomelO."
More details on the deployment demo using the HomelO simulation can be found
in this video.' In the smart home system, there are [oT applications (e.g., UserCom-
JfortApp) that get access to sensors’ data (e.g., temperature) from the smart home to
make decisions and send commands to control the actuators, e.g., window blinds.
The applications interact with the smart home devices and services via the SMOOL
platform (in the middle of Fig. 4.7). GENESIS can easily support for the deploy-
ment of components that are either built on top of the existing IoT platforms like
SMOOL or are independent of any loT platform because of its generic approach for
specifying deployment components. However, to make GENESIS even more useful
in practice, we have developed GENESIS to ease the integration of IoT platform-
specific components (e.g., SMOOL clients) and IoT platform-independent com-
ponents (e.g., third-party security mechanisms like Casbin presented below) from
development to operation.

In the initial version of the smart home system, there is the EnergyEfficiency appli-
cation, which gets access to sensors’ data to make decisions for energy efficiency
and send commands to control the actuators, e.g., window blinds. In particular,
it maximizes the exploitation of daylights and regulates the in-door temperature
whilst minimizing the energy consumption. If the room is bright because of day-
light, it will switch off the LED-lights, and vice versa. On the other hand, if the
room temperature is high, the application may need to close the window blinds to

13. https://realgames.co/home-io/

14. hteps://youtu.be/yQIXYWu-EZM

https://realgames.co/home-io/
https://youtu.be/yQ9XYWu-EZM

Trustworthy Deployment 83

prevent sunlight heating the room. The EnergyEfficiency application interacts with
the smart home devices via the SMOOL platform. There are two notable secu-
rity mechanisms associated in this first version of the smart home. The first one
is a secure API gateway (Express Gateway'’) that allows secure remote API access
to the EnergyEfficiency application. The second one is a SecurityEnforcer by default
of the SMOOL middleware that enforcing the security check for the data passing
through, e.g., only allowing genuine actuation commands to be sent to the actu-
ators of the smart home. The latest version of GENESIS has provided a built-in
support to ease the specification of the Express APl Gateway in the deployment
model. Adding a new instance of Express APl Gateway is easy. The remaining
work for the DevOps team is to specify the configuration files of the API gate-
way, which define how the API of the EnergyEfficiency application can be securely
accessed.

In IoT platforms like SMOOL, there are often default security enforcements.
For example, the actuation orders must be checked before they are actually sent
to the actuators. This check (embedded in the SMOOL2HOMEIO component,
Fig. 4.7) makes sure only genuine actuation commands can be sent to the actuators.
In other words, the SMOOL platform allows to check for actuation commands
with valid security tokens. All the IoT apps must send actuation commands with
valid security tokens.

However, during the evolution of the smart building system, new applications
can be added, and new physical devices can also be added. In the subsequent devel-
opment cycle, another application called UserComfortApp has been added to the
smart home system. Moreover, the smart home system can also have new loT
devices such as AirQualitySensor or SmartDisplay as shown in Fig. 4.8.

New security requirements come up because the smart building system must
control which apps can access which actuators. This means that more fine-grained
security control must be introduced, which may not be available in the IoT plat-
form. GENESIS should support for seamlessly integrating new (third-party) security
mechanisms into the [oT platforms. In this new development cycle, not only that
the secure API gateway must be updated with a new configuration file, but also the
DevOps team needs to introduce a new security mechanism that can enhance the
fine-grained control of how different applications can access to the sensors and
actuators of the smart home system. GENESIS has a generic support for seamlessly
integrating and deploying any advanced security mechanism together with the IoT
platform in use, e.g., the SMOOL platform. More specifically, in this example,
the DevOps team develop an access control mechanism based on an open source

15. https://www.express-gateway.io/

https://www.express-gateway.io/

84

Model-based Continuous Deployment of SIS

O Model v & Deploymen

‘5& GeneSIS

APP_Server

R

ApPTOSMOOL

tv iE Logs

loT_Smart_Space

Arduino1
N

uildin¢Control

Figure 4.8. New applications and new |oT devices can be added in a development cycle.

GeneSIS 0 Model v & Deployment

@

APP_Server

ApRToSMOOL

v

tade-RF"

S

it i= Logs

loT_Smart_Space

Arduino1
-

uildin¢Control

Figure 4.9. An e

framework called jCasbin, '

nhanced security control has been added.

and then specify the integration point with the IoT

platform in use (with GENESIS support, see Fig. 4.9). During the deployment pro-

cess, GENESIS compiles the i

ntegration code before orchestrating the deployment

of the integrated components.

To enable such DevSecOps adaptation support, GENESIS not only provides the

modelling language embedded in a web UI for specifying the components of such

IoT platforms, but also the r

econfiguration and rebuild of these components (for

integrating new security mechanisms with the loT platform) before deployment

(for adaptation or for a new development cycle). For example, in the SMOOL

16. https://casbin.org/

https://casbin.org/

Trustworthy Deployment 85

{
"name": "a2c50bfd-dd18-427c-b23c-3b612b655f2f",
“capabilities": {
"_type": "/capability/security_capability",
"name": "a_capability",
"control_id": ",
"description”: ""
L
"port_number": "80",
“isMandatory": false
i
1

file:
D:\\Tmp\\SMOOL\\2020-08-smool_enact\\ENACTProducer\\thingmI\\serviceEndpoint_java.thingml

security_policy:

[
[
"BlindPositionActuator”,
"Authentication"

1
] z

target_language:
java

config_name:
ENACTProducer

security_checker:

C:\\Users\\phun\\Dropbox\\SecurityChecker.java

© Edit Containment ® GoTo!

Figure 4.10. An enhanced security control has been added.

platform, each SMOOL producer or consumer is associated with a security checker
for checking the security key of sensor data or actuation commands. GENESIS allows
updating the configuration of the security checker (e.g., by injecting new config-
uration to overwrite the default one), and automatically rebuilding the SMOOL
producer or consumer including the reconfigured security checker. By doing so,
GENESIS enables the DevOps team to make reconfiguration or redevelopment and
redeployment easily for the evolution of SMOOL producers or consumers includ-
ing security checkers. Figure 4.10 shows an example of the GENESIS’s UT for extend-
ing the SecurityChecker (in SMOOL2HOMEIO) to become a security enforcement
point of the external access control service. Thanks to ThingML support within
GENESIS, the extended SecurityChecker is compiled in the SMOOL2HOMEIO
component for a new version of SMOOL2HOMEIO to be deployed that works
as a security enforcement point of the external access control service.

This approach is what we call the DevSecOps adaptation support for the co-
evolution of business logic components and the security mechanisms. This means

86 Model-based Continuous Deployment of SIS

that when new business logic components require security mechanisms to evolve,
GENESIS can support for the adaptation, even including the integration of the loT
platform with other (third-party) security mechanisms.

After the successful deployment, GENESIS allows dynamic adaptations that can
be triggered at any point, manually or automatically for adapting security enforce-
ment to improve how the IoT system operates securely. In this line of adaptation,
new security policies or configurations can be updated dynamically for the security
mechanisms that are in operation. For example, the role-based access control policy
can be easily updated according to new requirements. The trigger of such adapta-
tion can be manually, but also can be automatically from a risk assessment process
or after a reasoning process of actuation conflict management.

In summary, with the support from GENESIS, the DevOps team can develop
a new version of the smart home system together with enhanced security mecha-
nisms according to its evolution. The deployment of this new development cycle
can be triggered manually from GENESIS’s GUI. After the successful deployment,
GENESIS also allows dynamic adaptations that can be triggered at any point, man-
ually or automatically for adapting security enforcement to improve how the loT
system operates securely. In both ways presented so far, GENESIS allows DevSecOps
teams to reconfigure and update security mechanisms by design, in line with the
evolution of loT applications and the development of security and privacy risks.

It is important to note that in this chapter we have not addressed the security of
the build and deployment pipeline itself. The security of this pipeline is critical to
protect the integrity of the code and the systems being deployed. For the production
environment, GENESIS must adhere to the secure deployment practice.'” One of
the main principles in secure deployment is to support automatic testing as part of
the deployments to gain confidence in the security of the code (see Section 8.2 for
Test and Simulation).

4.4.3 Software Diversity Within IoT Fleet

Software diversity in an IoT fleet, i.e., deploying variants of software on different
devices, creates a moving target for malicious attacks, and therefore improves the
overall security of the system. The DivEnact tool assigns the available variants to
the fleet of devices and maintains the balance between the variants. The remaining
questions is how to obtain functionally-equivalent variants.

The ENACT IoT diversity-by-design tool takes as input a single deployment
or behaviour specification and generates multiple diverse specifications. Within a
DevOps context, it is important and necessary to keep the diversity generation fully

17. hteps://owaspsamm.org/model/implementation/secure-deployment/

https://owaspsamm.org/model/implementation/secure-deployment/

Trustworthy Deployment 87

automatic, instead of relying on developer’s manual effort to diversify systems (such
as the traditional N-Version Programming approach). Developers can focus on a
single line of code to achieve frequent iteration, and the diversification tool, as part
of automatic building step, will generate diversified versions automatically [14].

Automated diversity is a promising means of mitigating the consequences of a
security breach. However, current automated diversity techniques operate on indi-
vidual processes, leveraging mechanisms available at the lower levels of the software
stack (in operating systems and compilers), yielding a limited amount of diver-
sity. In this section, we present a novel approach for the automated synthesis of
diversified protocols between processes. This approach builds on (i) abstraction,
where the original protocol is modelled by a set of communicating state machines,
(ii) automated synthesis, applying mutation operators onto those protocols, which
produces semantically-equivalent, yet phenotypically-different protocols, and (iii)
automated implementation of these protocols through code generation.

The tool is currently in an experimental stage. Automatic diversity of communi-
cation protocols is a novel technology, yet without convincing implementation and
applications, to the best of our knowledge. Therefore, our focus is currently on the
theoretical feasibility of the idea and the experimental evaluation of its effects. In
the next step, we will improve the user experience of the tool and its applicability
to practical scenarios.

Mass-produced software applications denote clonal applications, with thousands
or millions of identical siblings. Think of, for example, a popular mobile application
installed on millions of mobile phones, or software embedded into a widely-used
connected device. To mitigate the risks of such large mono-cultures, diversity is
typically automatically introduced either in a generic way, typically at the OS level,
oblivious of the actual logic and semantics of the software, or in some very specific
places, typically low-level libraries reused across applications, in order to improve
security. This leaves most of the actual business logic unchanged, unaffected by
the diversity. In addition, diversity often affects individual processes, but leaves the
communication between processes intact.

A more holistic approach to diversity is challenging. Consider a typical client-
server application, where multiple clients interact with a server, and where each
client has a different implementation, and a different way of communicating with
the server. This would significantly hinder a hacker, be it a human being or a
machine, when attempting to generalize an attack through all possible protocols.
This would make large-scale exploits a time-consuming and costly endeavour for
hackers. Yet, the engineering, e.g., the production, maintenance and integration,
of such levels of diversity raises several challenges. How to ensure that each imple-
mentation still behaves as specified? How to ensure that each client is still able
to communicate with the server, without information loss or distortion? How to

88 Model-based Continuous Deployment of SIS

ensure that different clients are fundamentally (i.e., sufficiently) different, and not
merely cosmetically different? How to keep the development and operation costs
of a diversified system significantly lower than the cost of mitigating large scale
attacks?

We have seen that abstraction, synthesis and automated implementation can
yield a convincing solution to introduce a wide diversity into protocols, for example
between a device and a gateway, or a web/mobile app and a server. This approach:

e abstracts protocols into (i) a structural view describing the messages to be
exchanged, and (ii) a behavioral view based on state machines describing how
those messages are exchanged between the participants, including sequencing
and timing.

® combines and applies a number of atomic mutations to this protocol model,
yielding a large number of diversified protocols, which operate differently,
still with the same semantics.

® automatically implements protocols, diversified or not, by generating fully
operational code targeting C, Go, Java and JavaScript, able to run on a wide
range of platforms.

Our empirical assessment indicated that this approach implies a reasonable over-
head in terms of execution time, memory consumption and bandwidth, fully com-
patible with the requirements of mass-produced software. We also showed that this
approach could generate a significant amount of diversity. Our assumption was that
this diversity would contribute to the diversity-stability hypothesis, i.e., this would
make the whole ecosystem more robust by making it less likely for an exploit to
propagate to the whole population. In other words, if the protocol between a spe-
cific client and the server could be observed, analysed and eventually understood,
this would not systematically imply that all other diversified protocols could be
understood following the very same procedure. In this section, we briefly describe
the mechanisms and the corresponding tools we developed to automatically gener-
ate the diverse protocols. Technical details and the experiment results can be found
in our conference paper [29].

Our approach relies on ThingML [26] for the specification of protocols.
ThingML provides a way to formalize the messages involved in protocols, in a com-
parable way to what Protocol Buffer proposes. In addition, ThingML provides a
mean to formalize the behavior of protocols through state machines. ThingML
specifications are both human-readable and machine-readable, which makes it
possible to analyse protocols at a high-level of abstraction and to fully automate
the implementation of those protocols through code generation. In the next-sub-
section, we present relevant aspects of ThingML on our motivating example.

Conclusions 89

We model communication protocols as a set of communicating state-machines,
encapsulated into components. A protocol typically involves two roles: (i) a client,
i.e., a device, a web-browser or a mobile app, and (ii) a server, i.e., a gateway or a
Cloud back-end. The clients and the server need to agree on a common API. Since
communication is typically asynchronous in a distributed system, the common API
is specified as a set of messages. Next, this API is imported by the client component
and the server component, and the messages are organized into ports.

The ultimate goal of our approach is to diversify the wire image of protocols.
Diversifying the wire image of protocols basically means shuffling the sequence of
bytes exchanged over the network e.g., turning the payloads while ensuring the
interoperability between the client and the server.

4.5 Conclusions

This chapter summarizes our effort in the ENACT project towards automatic
software deployment for Smart IoT Systems. Automatic deployment is a corner-
stone of DevOps, as it connects development with operation, and ensures that
changes on the software will be placed into the production in a correct and
prompt way.

Although there are already mature deployment solutions for Cloud computing
in the market, automatic deployment for smart [oT systems is still an open problem.
The main challenges are from two fundamental characters of smart IoT systems:
First, an loT application involves software running at all types of resources along
the Cloud-Edge-IoT continuum, and it is difficult to provide a consistent way to
support the deployment on all those different types of resources. Second, an loT
application in the production stage usually contains many subsystems of Edge and
IoT devices, each of which serves a particular user or manages a particular part of
the physical world. It is difficult to deploy a new change on the software to all those
subsystems regardless of the different contexts and status among them.

During the ENACT project, we conducted research aiming at these two chal-
lenges, resulting in two ENACT enablers, namely GENESIS and DivEnact. We
briefly introduced how these enablers work, both as individual tools and as an inte-
grated deployment bundle for the automatic deployment of SIS. More details about
the theories, implementations and use cases can be founded in our recent publica-
tions [15, 44]. In this chapter, we focused on the mechanisms and practices of using
these tools to ensure the trustworthiness of the deployment software, including the
availability of software components on unstable resources, the deployment support
of security and privacy mechanisms, and the automatic generation and maintenance
of software diversity towards a more secure systems.

920 Model-based Continuous Deployment of SIS

In the next step, we will extend the concepts and implementation of auto-
matic deployment into the more general edge computing domain, providing an
engineering solution for the core problem of edge computing, i.e., the distribu-
tion and offloading of computation among the complex and dynamic resources.
Currently, the deployment is driven by manually define deployment models which
embeds the resource allocation and the constraints about software-device mapping.
An important future plan is to introduce intelligence into automatic deployment,
which learns from historical deployments and their effects to automatically assign
software parts to the proper resources.

References

[1] C. R. Aguayo Gonzalez, C. B. Dietrich, and J. H. Reed. “Understanding the
software communications architecture”. In: JEEE Communications Magazine
47.9 (2009), pp. 50-57.

(2] Carlos Ansétegui ez al. “Satisfiability modulo theories: An efficient approach
for the resource-constrained project scheduling problem”. In: Ninth Sympo-
sium of Abstraction, Reformulation, and Approximation, 2011.

(3] Matej Arta et al. “Model-driven continuous deployment for quality devops”.
In: Proceedings of the 2nd International Workshop on Quality-Aware DevOps.
2016, pp. 40—41.

(4] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
3rd. Addison-Wesley Professional, 2012. ISBN: 0321815734.

[5] Benoit Baudry and Martin Monperrus. “The Multiple Facets of Software
Diversity: Recent Developments in Year 2000 and Beyond”. In: ACM Compus.
Surv. 48.1 (Sept. 2015). ISSN: 0360-0300. DOI: 10.1145/2807593. URL:
https://doi.org/10.1145/2807593.

[6] Gordon S. Blair, Nelly Bencomo, and Robert B. France. “Models@run.time”.
In: IEEE Computer 42.10 (2009), pp. 22-27.

[7] Miquel Bofill ez al. “Solving constraint satisfaction problems with SAT mod-
ulo theories”. In: Constraints 17.3 (2012), pp. 273-303.

[8] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar.
“Satisfiability modulo theories and assignments”. In: International Conference
on Automated Deduction. Springer. 2017, pp. 42-59.

[9] Antonio Bucchiarone, Antonio Cicchetti, and Annapaola Marconi. “Exploit-
ing multi-level modelling for designing and deploying gameful systems”. In:
2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems (MODELS). IEEE. 2019, pp. 34—44.

[10] Sylvain Cherrier ez al. “D-lite: Distributed logic for internet of things services”.
In: 2011 International Conference on and 4th International Conference on Cyber,
Physical and Social Computing. IEEE. 2011, pp. 16-24.

https://doi.org/10.1145/2807593

References 91

[11] E Cirillo ez al. “A Standard-Based Open Source lIoT Platform: FIWARE.
In: [EEE Internet of Things Magazine 2.3 (2019), pp. 12-18. DOIL:
10.1109/I0TM.0001.1800022.

[12] Benoit Combemale and Manuel Wimmer. “Towards a Model-Based DevOps
for Cyber-Physical Systems”. In: Soffware Engineering Aspects of Continuous
Development, 2019.

[13] Rustem Dautov and Hui Song. “Towards Agile Management of Containerised
Software at the Edge”. In: 2020 IEEE Conference on Industrial Cyberphysical
Systems (ICPS). Vol. 1. IEEE. 2020, pp. 263-268.

[14] Rustem Dautov and Hui Song. “Towards IoT Diversity via Automated Fleet
Management”. In: MDE4IoT/ModComp@ MoDELS. 2019, pp. 47-54.

[15] Rustem Dautov, Hui Song, and Nicolas Ferry. “A Light-Weight Approach to
Software Assignment at the Edge”. In: 2020 IEEE/ACM 13th International
Conference on Utility and Cloud Computing (UCC). IEEE. 2020, pp. 380-385.

[16] Johannes Eder ez a/. “Bringing DSE to life: exploring the design space of an
industrial automotive use case”. In: 2017 ACM/IEEE 20th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS). IEEE.
2017, pp. 270-280.

[17] Johannes Eder ez /. “From deployment to platform exploration: automatic
synthesis of distributed automotive hardware architectures”. In: Proceedings
of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems. 2018, pp. 438-446.

[18] Nicolas Ferry and Phu H. Nguyen. “Towards Model-Based Continuous
Deployment of Secure loT Systems”. In: 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C). 2019, pp. 613—-618.

[19] Nicolas Ferry ez al. “CloudMF: Model-Driven Management of Multi-Cloud
Applications”. In: ACM Transactions on Interner Technology (TOIT) 18.2
(2018), p. 16.

[20] Nicolas Ferry ez al. “Continuous Deployment of Trustworthy Smart IoT Sys-
tems’. In: The Journal of Object Technology (2020).

[21] Nicolas Ferry e al. “Genesis: Continuous orchestration and deployment of
smart [oT systems”. In: 2019 IEEE 43rd Annual Computer Software and Appli-
cations Conference (COMPSAC). Vol. 1. IEEE. 2019, pp. 870-875.

[22] M. Frustaci ez al. “Evaluating Critical Security Issues of the IoT World: Present
and Future Challenges”. In: [EEE Internet of Things Journal 5.4 (2018),
pp. 2483-2495. DOL: 10.1109/JI0T.2017.2767291.

(23] Anne Gallon ez /. “Making the Internet of Things More Reliable Thanks to
Dynamic Access Control”. In: Security and Privacy in the Internet of Things:
Challenges and Solutions 27 (2020), p. 61.

92 Model-based Continuous Deployment of SIS

[24] Nam Ky Giang ez al. “Developing IoT applications in the fog: a distributed
dataflow approach”. In: Internet of Things (IoT), 2015 5th International Con-
ference on the. IEEE. 2015, pp. 155-162.

[25] Object Management Group. “Deployment and Configuration of Compo-
nent-based Distributed Applications Specification”. In: OMG Available Spec-
ification Version 4.0 formal/06-04-02 (20006).

[26] Nicolas Harrand ez /. “ThingML: A Language and Code Generation Frame-
work for Heterogeneous Targets”. In: Proceedings of the ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and Systems.
MODELS 16. Saint-malo, France: Association for Computing Machinery,
2016, pp. 125-135. ISBN: 9781450343213.

[27] Stéphane Lavirotte er al. “A generic service oriented software platform to
design ambient intelligent systems”. In: Proceedings of the 2015 ACM Inter-
national Conference on Pervasive and Ubiquitous Computing. ACM. 2015,
pp- 281-284.

[28] Amardeep Mehta ez al. “Calvin Constrained-A Framework for IoT Applica-
tions in Heterogeneous Environments”. In: 37th International Conference on
Distributed Computing Systems. IEEE. 2017, pp. 1063—-1073.

[29] Brice Morin ez al. “Engineering software diversity: A model-based approach
to systematically diversify communications”. In: Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems. 2018, pp. 155-165.

[30] Hévard Myrbakken and Ricardo Colomo-Palacios. “DevSecOps: A Multivo-
cal Literature Review”. In: Software Process Improvement and Capability Deter-
mination. Ed. by Antonia Mas ez al. Cham: Springer International Publishing,
2017, pp. 17-29. ISBN: 978-3-319-67383-7.

(31] NESSI. Cyber physical systems: Opportunities and challenges for soft- ware, ser-
vices, cloud and data. NESSI White paper. 2015.

[32] P. H. Nguyen ez al. “SoSPa: A system of Security design Patterns for System-
atically engineering secure systems”. In: 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Languages and Systems (MODELS).
2015, pp. 246-255. DOI: 10.1109/MODELS.2015.7338255.

[33] Phu H. Nguyen, Phu H. Phung, and Hong-Linh Truong. “A Security Pol-
icy Enforcement Framework for Controlling IoT Tenant Applications in
the Edge”. In: Proceedings of the 8th International Conference on the Inter-
net of Things, IOT 18. Santa Barbara, California, USA: ACM, 2018. ISBN:
9781450365642.

[34] Phu H. Nguyen ez al. “Advances in deployment and orchestration approaches
for IoT — A systematic review”. In: 2019 IEEE International Congress On Inter-
net of Things (ICIOT). Milan, Italy: IEEE, 2019, pp. 53-60.

References 93

[35] Phu H. Nguyen ez al. “An extensive systematic review on the Model-Driven
Development of Secure Systems”. In: Information and Software Technology
68 (2015), pp. 62-81. ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.
infsof.2015.08.006. URL: http://www.sciencedirect.com/science/article/pii/
$0950584915001482.

[36] Adrian Noguero, Angel Rego, and Stefan Schuster. “Towards a Smart Appli-
cations Development Framework™. In: Social Media and Publicity 27 (2014).
URL: https://bitbucket.org/jasonjxm/smool, %202011-2020.

(371 OMG. Deployment and Configuration of Component-based Distributed Appli-
cations Specification, v4.0. Tech. rep. Object Management Group, Inc., 2006.
URL: https://www.omg.org/spec/DEPL/4.0/PDF.

[38] Temel Oncan. “A survey of the generalized assignment problem and its
applications”. In: INFOR: Information Systems and Operational Research 45.3
(2007), pp. 123-141.

[39] Allen Parrish, Brandon Dixon, and David Cordes. “A conceptual foundation
for component-based software deployment”. In: Journal of Systems and Sofi-
ware 57.3 (2001), pp. 193-200. ISSN: 0164-1212.

[40] David W Pentico. “Assignment problems: A golden anniversary survey”. In:
European Journal of Operational Research 176.2 (2007), pp. 774-793.

[41] Subhav Pradhan ez 2/ “Chariot: Goal-driven orchestration middleware for
resilient IoT systems”. In: ACM Transactions on Cyber-Physical Systems 2.3
(2018), pp. 1-37.

[42] Davide Di Ruscio, Richard E Paige, and Alfonso Pierantonio, eds. Special issue
on Success Stories in Model Driven Engineering. Vol. 89, Part B. Elsevier, 2014.

[43] Ana C Franco da Silva ez al. “OpenTOSCA for IoT: automating the deploy-
ment of IoT applications based on the mosquitto message broker”. In: Pro-
ceedings of the 6th International Conference on the Internet of Things. ACM.
2016, pp. 181-182.

[44] Hui Song e al. “Model-based fleet deployment of edge computing applica-
tions”. In: Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. 2020, pp. 132-142.

(45] Hui Song ez al. “On architectural diversity of dynamic adaptive systems”. In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 2. IEEE. 2015, pp. 595-598.

[46] Michael Vogler ez al. “A scalable framework for provisioning large-scale IoT
deployments”. In: ACM Transactions on Internet Technology (TOIT) 16.2
(2016) pp. 1-20.

[47] Changsheng You ez al. “Energy-efficient resource allocation for mobile-edge
computation offloading”. In: IEEE Transactions on Wireless Communications

16.3 (2016) 1397-1411.

https://doi.org/10.1016/j.infsof.2015.08.006
https://doi.org/10.1016/j.infsof.2015.08.006
http://www.sciencedirect.com/science/article/pii/S0950584915001482
http://www.sciencedirect.com/science/article/pii/S0950584915001482
https://bitbucket.org/jasonjxm/smool,%202011-2020
https://www.omg.org/spec/DEPL/4.0/PDF

