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Abstract: Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive,
portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as
individual finger-tapping, particularly using one hand, have been not investigated using fNIRS
technology. Twenty-four healthy volunteers participated in the individual finger-tapping experiment.
Data were acquired from the motor cortex using sixteen sources and sixteen detectors. In this prelim-
inary study, we applied standard fNIRS data processing pipeline, i.e. optical densities conversation,
signal processing, feature extraction, and classification algorithm implementation. Physiological
and non-physiological noise is removed using 4th order band-pass Butter-worth and 3rd order
Savitzky–Golay filters. Eight spatial statistical features were selected: signal-mean, peak, minimum,
Skewness, Kurtosis, variance, median, and peak-to-peak form data of oxygenated haemoglobin
changes. Sophisticated machine learning algorithms were applied, such as support vector machine
(SVM), random forests (RF), decision trees (DT), AdaBoost, quadratic discriminant analysis (QDA),
Artificial neural networks (ANN), k-nearest neighbors (kNN), and extreme gradient boosting (XG-
Boost). The average classification accuracies achieved were 0.75± 0.04, 0.75± 0.05, and 0.77± 0.06
using k-nearest neighbors (kNN), Random forest (RF) and XGBoost, respectively. KNN, RF and
XGBoost classifiers performed exceptionally well on such a high-class problem. The results need
to be further investigated. In the future, a more in-depth analysis of the signal in both temporal
and spatial domains will be conducted to investigate the underlying facts. The accuracies achieved
are promising results and could open up a new research direction leading to enrichment of control
commands generation for fNIRS-based brain-computer interface applications.

Keywords: functional near-infrared spectroscopy (fNIRS); finger-tapping; classification; motor cortex;
machine learning

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a portable and non-invasive brain
imaging modality for continuous measurement of haemodynamics in the cerebral cortex of
the human brain [1]. Over the last decade, the method has gained popularity due to its
acceptable temporal and spatial resolutions, and its easy-to-use, safe, portable, and afford-
able monitoring compared to other neuroimaging modalities [2]. fNIRS has been used to
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monitor a variety of cognitive activities, such as attention, problem-solving, working mem-
ory, and gait rehabilitation [3]. The underlying theory behind fNIRS functionality is based
on optical spectroscopy and neurovascular coupling [1,4]. Optical spectroscopy uses the
interaction of light with matter to measure certain characteristics of molecular structures,
while neurovascular coupling defines the relationship between local neuronal activity and
subsequent changes in cerebral blood flow due to cerebral activity [5–7]. It is known that
most of the biological tissue is transparent to the near-infrared range (700–900 nm). The
near-infrared window commonly used in fNIRS is 690–860 nm [8]. Haemoglobin is a pro-
tein that is responsible for delivering oxygen throughout the body via red blood cells. This
protein is the major absorbent within the near-infrared range of light ( def. 700–1100 nm).
In summary, the continuous-wave fNIRS machine uses two near-infrared wavelengths
to measure the relative change in oxygenated haemoglobin (∆HbO) and deoxygenated
haemoglobin (∆HbR) in cerebral activation.

The most common brain areas studied in neuroimaging are the cerebral prefrontal
and motor cortex, particularly for cognitive and motor tasks [9,10]. Since the beginning of
the 19th century, the finger-tapping test has been used in various brain studies to assess the
motor abilities and accessory muscular control [11]. Various brain and non-brain signals
were obtained during the finger-tapping task to access the motor abilities and differentiated
movements. Investigating finger movements is particularly important in the field of the
brain-computer interface to decode the neurophysiological signal and generate control
commands for external devices [9,12]. Individual finger movements were classified with
an average accuracy of 85% using electromyogram (EMG) bio-signals while performing
finger-tapping tasks [13]. Similarly, in another study using surface EMG, individual and
combined finger movements were classified with an average accuracy of 98% on healthy
and 90% in below-elbow amputee persons [14]. These higher classification accuracies
of finger movements may be best for prosthetic hand development. Other modalities
predicting dexterous individual finger movements include ultrasound imaging from the
forehand and differentiating finger movements with a higher precision of 98% accuracy [15].
Most brain imaging modalities are limited to the movement of larger body parts, such
as the upper and lower limbs. However, it is essential to decode dexterous functions
from brain signals in case where other types of brain imaging are difficult to implement.
Among invasive brain signals, electrocorticography (ECoG) was shown to differentiate
between individual finger movements with acceptable classification accuracies [12,16,17].
However, to the best of the author’s knowledge, only one study was found during a
literature review that utilized noninvasive brain signals, i.e., electroencephalography (EEG)
signals, to decode individual finger movements. The study found a broadband power
increase and low-frequency-band power decrease in finger flexion and extension data when
EEG power spectra were decomposed in principal components using principal component
analysis (PCA). The average decoding accuracy over all subjects was 77.11% obtained with
the binary classification of each pair of fingers from one hand using movement-related
spectral changes and a support vector machine (SVM) classifier.

The prevalent motor execution task in fNIRS-based studies includes tapping of one
or more fingers, single hand-tapping, both hand-tapping, right and left finger-tapping
and hand-tapping. In the study, left and right index finger-tapping was distinguished
with a classification accuracy of 85.4% using features from the vector-based phase and
linear discriminant analysis [18]. In [19], three different tasks, i.e. right and left-hand
unilateral complex finger-tapping, and foot-tapping, were performed. The classification
accuracy achieved using SVM was 70.4% for the three-class problem. In single-trail clas-
sification for a motor imaginary with thumb and complex finger-tapping task achieves
an average accuracy of 81% by simply changing the combination of a set of channels,
time intervals, and features [20]. In [21] thumb and little finger were classified with an
accuracy of 87.5% for ∆HbO data. Deep learning approaches are also becoming popular
for the classification of these complex finger movements. In a study [22], using conditional
generative adversarial networks (CGAN) in combination with convolutional neural net-
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works (CNN), the left finger, right finger, and foot-tapping tasks were differentiated with
higher classification accuracy of 96.67%. In one of the recent studies, left and right index
finger-tapping were distinguished with a different tapping frequency using multilabeling
and deep learning [23]. Different labels were assigned to right and left finger-tapping
with different tapping frequencies labels such as rest, 80 bpm, and 120 bpm. With this
complex combination using deep learning approach the average classification accuracy
achieved was 81%. The aforementioned studies are difficult to compare since different
models and finger-tapping exercises were conducted. However, according to the literature,
the differentiation of finger movement patterns is very challenging using fNIRS. This fact
is supported by legacy studies that show that there is no significant statistical difference
between fNIRS signals recorded from primary- and pre-motor cortices during sequential
finger-tapping and whole-hand grasping [24]. Furthermore, the dynamic relationship be-
tween the simultaneously activated brain regions during the motor task is becoming better
understood. An interesting study conducted by Anwar et al. [25,26] describes the effective
connectivity of the information flow in the sensorimotor cortex, premotor cortex, and
contralateral dorsolateral prefrontal cortex during different finger movement tasks using
multiple modalities such as fNIRS, fMRI, and EEG. It was found that there is an adequate
bi-directional information flow between the cortices mentioned above. The study also
concluded that, compared to fMRI, fNIRS is an attractive and easy to use alternative with
an excellent spatial resolution for studying connectivity. In this perspective, multi-modal
fNIRS-EEG is also an appealing alternative to fMRI. Hence, it is essential to study the
flow and connectivity of individual finger movement from the motor cortex using fNIRS
or multi-model integration of EEG-fNIRS. The multi-model EEG-fNIRS integration was
shown to enhance classification accuracy [27], increase the number of control commands,
and reduce the signal-processing time [4,28].

It has been unclear whether fNIRS signals have enough information to differentiate
between individual finger movements. Some underlying limitations of fNIRS may be the
reason for this drawback, such as comparatively low temporal resolution (1–10 Hz for com-
mercially available portable devices), depth sensitivity of about 1.5 cm (depending upon
source-detector distance, which is typically 3 cm), and spatial resolution up to 1 cm [29].
To shed light on this research area, the study is conducted to investigate the detection of
individual finger-tapping tasks using fNIRS. Also, the study is a step forward towards
understanding the dynamic relationship between the brain regions that are simultaneously
activated during motor tasks. We believe that the advances made in sophisticated machine
learning algorithms could help to identify individual finger movements from potential
fNIRS signals. This study is structured and reported in accordance with the guidelines
published in [30]. The following sections will address materials and methods (Section 2),
results and discussion (Section 3) and conclusion (Section 4).

2. Materials and Methods

The section on materials and methods describes procedure followed during experi-
mental design, data collection, and processing.

2.1. Participants

Twenty-four healthy right-handed participants, 18 males (M) and 6 females (F), se-
lected from random university population participated in the experiment. The ages of the
participants were for male (mean age± standard deviation; range) (M = 30.44± 3.03; range:
24–34 years), and female (F = 29.17± 3.06; range: 24–34 years). The healthy young partici-
pants were selected in the age range of 25–35 years because the frequency of finger-tapping
can vary between different age groups. The inclusion criterion for right-handedness was
that the participants had to write with the right hand. The participants had normal vision or
corrected to normal vision. Exclusion criteria include neurological disorders or limitation
of motor abilities in any hands or finger. For ethical statements, please see Section 4.
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2.2. Instrumentation

A continuous-wave optical tomography machine NIRScout (NIRx Medizintechnik
GmbH, Germany) was used to spontaneously acquire brain data at one of the labora-
tories under the ADEPT (Advanced intelligent health and brain-inspired technologies)
research group at Oslo Metropolitan University, Norway. The data acquisition used two
wavelengths, i.e., 760 nm (λ1) and 850 nm (λ1) with a sampling rate of 3.9063 Hz.

2.3. Experimental Setup and Instructions

The experiment was performed in a relatively controlled environment. The environ-
mental light, including monitor screen brightness, was shielded to minimise any influences
during stimuli changes in the presentation. A black over-cap was used to further reduce
the effect of surrounding light further, as shown in Figure 1C. The experiment was con-
ducted in a noise-free room. A visual presentation of resting and task (finger-tapping
corresponding to each finger) was displayed on the computer monitor to the participants.
Before starting the actual experiment, the participants were given implicit instructions
about the experimental protocol and procedure. Practice sessions were conducted before
the experiment. The finger-tapping task was performed at a medium-to-fast pace but not
with any specific frequency. The number of repetitions of experiments for each participant
was dependent upon the comfort and convenience of the participants. No investigation
was conducted during any inconvenience and discomfort experienced by the participant,
resulting in unwanted signals such as frustration interference in brain signals. Data were
acquired using commercial NIRx software NIRStar 15.1. The complete experimental setup
is shown in Figure 1.

Figure 1. (A) Experimental setup; (B) optodes arrangement; (C) overcap to reduce external light;
(D) optodes holder.
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2.4. Experimental Design

The experiments were designed using blocks of rest (initial rest, final rest, and inter-
stimulus rest) and task (thumb, index middle, ring, and little finger-tapping) of the right
hand as shown in Figure 2. An optimal baseline period of 30 s was set up before and
after the first and last task, respectively. The stimuli duration necessary to acquire an
adequate and robust haemodynamic response corresponding to finger-tapping activity
was set to 10 s [31]. The single experimental paradigm consists of three sessions of each
finger tapping trial. The total length of an experiment was 350 s. The single trial includes
10 s rest followed by 10 s of the task. Experiments were repeated for each participant from
one to three times in a single day depending upon his/her comfortability. The rest and task
blocks were presented using NIRX stimulation software NIRStim 4.0.

Figure 2. Experimental paradigm visualization. Single experiment consists of three sessions of each
finger tapping trail. Single trial consists of 10 s task and 10 s finger tapping.

2.5. Brain Area and Montage Selection

Before placing the NIRScap on the participant’s head, cranial landmarks (inion and
nasion) were marked to locate Cz. The emitter and detector were placed in accordance
with 10-5 international positioning layout. The distance between source and detector was
kept at 3 cm using optode holders. Sixteen emitters and sixteen detectors were placed over
the motor cortex in accordance with standard motor16x16 montage available in NIRStar
v15.2, as shown in Figure 3A,B. The source-detectors were placed over the frontal lobe
(F1, F2, F3, F4, F5, F6, F7, and F8), frontal-central sulcus lobe (FC1, FC2, FC3, FC4, FC5,
and FC6), central sulcus lobe (C1, C2, C3, C4, C5, C6), central-parietal lobe (CP1, CP2, CP3,
CP4, CP5, and CP6), and the temporal-parietal lobe (T7, T8, TP7 and TP8). The data were
collected from both the left and right hemispheres for further research work. However,
in this particular work, only the channels of the left hemisphere were only further analysed.
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Figure 3. (A) Source-detector placement over motor cortex. Figure 3A Colour code: Red (source),
Blue (detector), Green (channels), and black colour represent channel numbers. (B) Demonstration of
total haemoglobin changes over motor cortex during index finger tapping.

2.6. Signal Prepossessing

Signal processing was performed using commercial fNIRS data processing software
nirsLAB (v2019014) [32] and Matlab®. Signal were pre-processed in nirsLAB, for diverse
tasks such as removing discontinuities, spikes, and truncation of the data points before and
after the first and last stimuli appeared, respectively. Bad channels were identified using
the criterion of the gain setting of three and coefficient of variation (CV) of 7.5% in nirsLAB.
The coefficient of variation is equal to a hundred times the standard deviation divided by
the mean value of the raw data measurements. A large value for CV is an indication of
high noise. The gain setting was set to eight for all the data processed. Optical densities
were converted into haemoglobin concentration change using Modified Beer–Lambert Law
in nirsLAB (see details in Section 2.7).

2.7. Modified Beer–Lambert Law (MBLL)

The changes in optical densities were converted using MBLL into ∆HbO (Equation (1a))
and ∆HbR (Equation (1b)). The parameter for MBLL, such as the differential path length
factor (DPF) and molar extinction coefficients (using standard W.B Gratzer spectrum) for
∆HbO and ∆HbR, are shown in Table 1. The molar concentration and MVO2Sat value are
set as 75 µM and 70%, respectively.

∆HbOi(k) =

(
ελ1

∆HbR
∆ODλ2 (k)

DPFλ2

)
−

(
ελ2

∆HbR
∆ODλ1 (k)

DPFλ1

)
li
(

ελ1
∆HbRελ2

∆HbO − ελ2
∆HbRελ1

∆HbO

) (1a)

∆HbRi(k) =

(
ελ2

∆HbO
∆ODλ1 (k)

DPFλ1

)
−

(
ελ1

∆HbO
∆ODλ2 (k)

DPFλ2

)
li
(

ελ1
∆HbRελ2

∆HbO − ελ2
∆HbRελ1

∆HbO

) (1b)

where, ∆HbOi and ∆HbRi: concentration changes of ∆HbO and ∆HbR, ε(λ): extinction
coefficient corresponding to wavelengths and haemoglobin concentrations, ∆OD: variation
in optical density at kth sample, DPF(λ): differential path length factor, i: ith channel
pair representation of emitter-detector, λ1 and λ2: two working wavelengths of fNIRS
system, ελ1

HbR,ελ2
∆HbO, ελ2

∆HbR and ελ1
∆HbO: extinction coefficients of ∆HbO and ∆HbR at two

different wavelengths.
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Table 1. Parameters for Modified Beer–Lambert Law (MBLL).

Wavelength
(nm)

DPF (cm) ∆HbO
(1/cm)(moles/L)

∆HbR
(1/cm)(moles/L)

760 7.25 1466.5865 3843.707

850 6.38 2526.391 1798.643

2.8. Signal Filtration

The spontaneous contamination from physiological and non-physiological noise in
fNIRS data, such as heart rate ('1 Hz), respiration ('0.2 Hz), Mayer waves ('0.1 Hz),
and very low frequency (≤0.04, VLF) was removed by applying subsequent filters. Non-
physiological noise refers to motion artefacts, measurements noise and machine drift
due to the temperature changes in the optical system. The stimulation frequency for
the given experimental paradigm was (1/20 s = 0.05 Hz). The stable 4th order band-
pass Butter-worth filter with a low and high cut-off frequency of 0.01 Hz and 0.15 Hz,
respectively [33], was applied to remove the noises. To avoid phase delay in filtering,
the built-in MATLAB® command ’filtfilt’ was used. Furthermore, smoothing of the fNIRS
signal was done by applying the Savitzky-Golay filter with the optimal order and frame
size recommended in [34]. In [34], the recommended filter order and frame size is three
and nineteen, respectively, for a frequency band of 0.03–0.1 Hz. We used the same order
and frame size because our band of frequencies are quite similar.

2.9. Feature Extraction

The most common statistical features (descriptive and morphological) used in fNIRS
are signal mean, peak, minimum, Skewness, Kurtosis, variance, median, and peak-to-
peak [35–38]. The window length was set to 10 s, which is equal to the task period.
The descriptions of the extracted features are shown in Table 2 from ∆HbO data.

Table 2. Spatial feature extracted from ∆HbO.

Sr.
No.

Statistical Feature Mathematical Formulation/Description

1. Signal Mean

Signal mean is calculated as:
µw = 1

Nw
∑kU

k=kL
4HbXwwhere,

µw: Mean of window
w: sample window
Nw : Number of sample in the window
kL: Lower limit of the window
kU : Upper limit of the window
4HbXw: Stands for ∆HbO or ∆HbR

2. Signal Peak (Signal
maximum)

The feature select the maximum value in the win-
dow.

3. Signal Minimum The feature minimum value in the window.
4. Signal Skewness Signal skewness is calculated as:

skeww = Ex(∆HbXw−µw)3

σ
3

where, Ex is the expectation, µ is the mean, and σ is
the standard deviation of the haemoglobin ∆HbXw

5. Signal Kurtosis Signal Kurtosis is calculated as:

Kurtw = Ex(∆HbXw−µw)4

σ
4

where, Ex is the expectation, µ is the mean, and σ is
the standard deviation of the haemoglobin ∆HbXw
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Table 2. Cont.

Sr.
No.

Statistical Feature Mathematical Formulation/Description

6. Signal Variance Signal variance is the measure of signal spread.
7. Signal Median Median is the value separating the higher half from

the lower half of values in the time window.
8. Peak-to-peak Peak-to-peak is computed as the difference between

the maximum to the minimum value in the time win-
dow.

2.10. Classification

Eight commonly used classifiers were evaluated to check the robustness of modern
machine learning algorithms for decoding dexterous finger movements. The classifiers
included Support vector machine (SVM), Random Forest (RF), Decision tree (DT), Ad-
aboost, Quadratic discriminant analysis (QDA), Artificial neural networks (ANN), k-nearest
neighbours (kNN), and Extreme Gradient Boosting (XGBoost). The different classifiers’
parameters are shown in Table 3.

Table 3. Classifier parameters.

Classifiers Parameters Setting

QDA priors = None, reg_param = 0.0

AdaBoost n_estimator = 10, random_state = 0, learning_rate = 1.0

SVM Kernal = rbf, degree = 3, random_state = None

ANN hidden layers = (5, 2), solver=’lbfgs’, random_state = 1, max_liter = 300,

Decision Tree criterion = entropy, random_state = 0

kNN n_neighbors = 5

Random Forest n_estimators = 10, criterion = entropy, random_state = 0

XGBoost booster = gbtree, verbosity = 1, nthread = maximum number of threads

2.11. Performance Evaluation

Each classifier was mostly evaluated using different performance measures, like
accuracy, precision, recall, F1 score, receiver operating characteristic curve/ROC curve,
and confusion matrix [39]. All these measures can be derived from the so-called true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). Reporting
single metrics does not give us a complete understanding of the classifier behavior. Hence,
it is important to at-least report a few of these parameters to gain a complete understanding
of the classifier behaviour. In this study, we have reported accuracy, precision, recall and F1
score. Accuracy is the ratio between correctly classified points to the number of total point.
The accuracy gives the probability of correct predictions of the model. However, in the
case of highly imbalanced data sets, the model that deterministically classifies all the data
as the majority class will yield higher classification accuracy, which makes this measure
unreliable. The confusion matrix summarizes the predicted results in table format with
visualisation of all the above-mentioned four parameters (TP, FP, TN, FN) of the classifiers.
Precision and recall give us an understanding of how useful and complete are the results,
respectively. F1 score is the harmonic mean of precision and recall. All these parameters
are discussed in the results section, where we discuss the performance of the classifier in
decoding individual finger-tapping.
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3. Results and Discussion

In this study, we classified individual finger tapping of right-handed people using
fNIRS signals. For that purpose, eight different spatio-statistical features were extracted
from ∆HbO, as shown in Table 2. Furthermore, we also compared and evaluated the
performance of different classifiers, such as SVM, RF, DT, Adaboost, QDA, ANN, kNN
and XGBoost, as shown in Figure 4. Table 4 shows the four important performance
measures among all of the subjects for the respective classifiers. It was noted that the
kNN, RF and XGBoost classifiers yielded maximum classification accuracies, 0.75 ± 0.04,
0.75 ± 0.05, and 0.77± 0.06, respectively. We applied the student’s t-test to validate whether
or not these classifier’s accuracies were statistically discriminant or not with respect to
the rest of the classifiers. The p-values obtained among kNN, RF, and XGBoost were not
statistically significant, since all the classifiers yielded a similar accuracy. On the other hand,
the p-values using either classifiers kNN, RF or XGBoost versus all of the other classifiers
were less than 0.05 for all ∆HbO signals, which establish the statistical significance of
these classifiers performance. Previous studies showed that thumb finger-tapping gives a
higher level of cortical activation among other fingers [40], which is also supported by our
current study as shown in Figure 5f–h. Moreover, the highest peaks in ∆HbO signal which
corresponds to higher brain activity during thumb finger-tapping can be seen in Figure 6.

Figure 4. Comparison of different classifiers on basis of performance parameters (accuracy, precision,
recall F1score).
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Table 4. Subject-wise comparison of classifiers performance parameters (accuracy, precision, recall,
F1 score); ’S’ stands for subject followed by number.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5. Confusion metrics for all classifiers for subject one (S01); Classes are labeled as ’0’, ’1’, ’2’, ’3’, ’4’ and ’5’,
which stands for ’Rest’, ’Thumb’, ’Index’,’Middle’, ’Ring’, and ’Little’ finger-tapping classes, respectively. (a) Quadratic
discriminant analysis (QDA). (b) AdaBoost. (c) Support vector machine (SVM). (d) Decision tree (DT). (e) Artificial neural
networks (ANN). (f) k-nearest neighbors (kNN). (g) Random forest (RF). (h) Extreme Gradient Boosting (XGBoost).

Overall, it was noted that most of the classes were misclassified as a rest class, and
KNNs were therefore unable to classify the index finger correctly. We tested kNNs on
different neighbours (such as 5, 10, and 15), five of which performed better than others,
whereas RFs performed poorly on classifying the middle finger. Similarly, like kNNs, we
also tested RFs on different estimators and got the best results at 10 number of estimators.
On the other hand, XGBoost only classified little fingers poorly. In general, KNNs, RFs,
and XGBoost performed well.

One of the core objectives of the brain-computer interface is to achieve a maximum
number of commands with good classification accuracy. If we look at the previous literature
in the field of fNIRS demonstrates that most of the work utilized either two-class, three-
class, or four-class classification . While classifying two commands using fNIRS-based brain
signals Power et al. achieved an average classification accuracy of 0.56 for two tasks [41].
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Hong et al., achieved an average classification accuracy of 0.75 for three commands [42].
Similarly, several studies have reported classification results for four-class classification
as well [43]. To the best of the author’s knowledge, this is the first work that has reported
good accuracies for five class-classification in the field of fNIRS. In this work, the achieved
classification accuracies are far above the chance level (i.e., 0.2), which shows that machine
learning can result in a potential increase in the number of commands in the field of
fNIRS-based brain imaging.

In future, the signals will be studied in depth to gain a better understanding and
more precise understanding of the cortical hemodynamics response precisely. After all,
the attributes of different brain regions and with repetition of trails could vary for the
same experimental paradigm [44]. Selection of trails or active channels using the 3-gamma
function, changing the window length, detection of initial dip, vector phase analysis,
and optimal feature extraction are the future directions for data analysis that could help to
increase the classification accuracy. Furthermore, deep learning approaches, including deep
belief and convolutional neural networks models, could also help to increase classification
accuracy [45]. Moreover, activation of the left and right finger-tapping is dominant in
premotor and SMA areas comparative to motor execution finger-tapping [46]. In future
work, we will focus on averaging over this region of interest to gain a better idea of which
activation regions corresponding to different finger-tapping. Trail-to-trail variability in
fNIRS signal for finger-tapping tasks could be reduced using seed correlation methods
that can enhance the classification accuracy [47]. We also envisage to using estimation
algorithms such as the q-step-ahead prediction scheme and the kernel-based recursive
least squares (KRLS) algorithm to reduce the onset delay of the ∆HbO changes due to
finger-tapping for real-time implementation in the BCI system [21,48–50]. In the study,
we considered only ∆HbO data. The reason for selecting ∆HbO is that in the field of
fNIRS-based brain imaging, although both ∆HbO and ∆HbR are indicators of cerebral
blood flows. However, ∆HbO is more sensitive than ∆HbR [51,52]. As far as ∆HbT and
cerebral oxygen exchange COE are concerned, the quantities are dependent on HbO and
HbR [53]. In future, ∆HbR and total haemoglobin changes ∆HbT changes will also be
considered in ordered to achieve understanding. Moreover, only left hemisphere channels
were considered in the study. Investigating the dynamic relationship between the brain
regions simultaneously activated during finger-tapping would be an interesting direction
for the future study. In recent studies, different stimulation durations were investigated to
find the appropriate duration that can shorten the command generation time [54]. Keeping
in mind the findings of these studies, shorter stimulation durations will also be investigated
in the future.

Figure 6. Oxygenated haemoglobin Signal for complete experimental trail.
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4. Conclusions

Despite the outstanding performance of modern machine-learning algorithms, using
functional near-infrared spectroscopy to classify movements from delicate anatomical
structures, such as individual finger movements, is very challenging. This work presents
a classification of individual finger movements (six classes) from the motor cortex. We
have applied eight different classifiers, ranging from simple to sophisticated machine-
learning algorithms. Quadratic discriminant analysis (QDA), AdaBoost, Support vector
machine (SVM), Artificial neural networks (ANN), and Decision tree (DT) performed
poorly, with an average classification accuracy of below 60%. On the other hand, other
classifiers such as k-nearest neighbours (kNN), Random forest (RF) and Extreme Gradient
Boosting (XGBoost) performed exceptionally well for such high-order data, with an average
classification accuracy of 0.75± 0.04, 0.75± 0.05 and 0.77± 0.06, respectively. These are
preliminary results from this novel research direction. In future, more in-depth analysis
of the temporal and spatial domain will be conducted to understand the signals better.
Achieving better classification accuracy could be a quantum leap for control command
enrichment in brain-computer interface applications.
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