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Abstract— Learning-based controllers, and especially
learning-based model predictive controllers, have been used
for a number of different applications with great success. In
spite of good performance, a lot of these cases lack stability
guarantees. In this paper we consider a scenario where the
dynamics of a nonlinear system are unknown, but where input
and output data are available. A prediction model is learned
from data using a neural network, which in turn is used in
a nonlinear model predictive control scheme. The closed-loop
system is shown to be input-to-state stable with respect to
the prediction error of the learned model. The approach is
tested and verified in simulations, by employing the controller
to a benchmark system, namely a continuous stirred tank
reactor plant. Simulations show that the proposed controller
successfully drives the system from random initial conditions,
to a reference equilibrium point, even in the presence of noise.
The results also verify the theoretical stability result.

I. INTRODUCTION

In the last decades, model predictive control (MPC) has es-
tablished itself as the most important method for constrained
control. MPC is a powerful control design because it enables
the user to add constraints on a system’s states and control
inputs, in addition to optimize the different states and control
objectives. Recent successes in the field of machine learning
have contributed to an increased interest in the combination
of the two, namely learning-based MPC.

MPC uses a prediction model to optimize the predicted
behavior of a system over a limited time horizon. It is well
known that the performance of an MPC scheme is closely
related to the accuracy of its prediction model. In some cases
it may be hard or impossible to create an accurate prediction
model from first principles. An example is when either
the entire or parts of the system dynamics are unknown.
However, if data is available, machine learning methods can
be used to remedy this.

The literature on general learning-based MPC is vast. For
a more thorough overview, the reader is referred to [1]. In
the following we focus on a scenario where either the entire
or parts of the system dynamics are unknown, but with data
available, so that a prediction model can be built or improved
offline. In order to be used in MPC, the resulting prediction
model should be accurate, while at the same time not too
computationally complex.
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Different learning methods have been used for building
or improving prediction models from data, suited for MPC.
In [2], Gaussian process (GP) regression is used to improve
a nominal model by learning a disturbance model, used to
design an MPC algorithm for a mobile robot. Similarly, in
[3], GPs and local linear regression methods are compared
in order to improve the prediction model of a robot. Because
GPs are known to scale poorly with the number of data points
used in training, learning-based MPC has been tested using
sparse GPs, such as in [4]. Neural networks (NNs) have also
proven to be highly flexible function approximators, and have
become state-of-the art for a variety of challenging tasks,
ranging from image analysis and classification to language
processing [5], [6]. This learning method has also proved
effective for learning the dynamics of nonlinear systems
[7], [8], [9]. Consequently, NNs have been used to build
prediction models suited for MPC, such as in [10], [11],
[12], [13].

For safety-critical applications, a necessary aspect of
learning-based MPC, is being able to prove stability of
the closed-loop system. For many references on learning-
based MPC, this is currently missing. In [14], stability is
analyzed for a general class of learning-based MPC, where
the dynamics are divided into a nominal, linear model and
a function to be learned. Using that the amplitude of the
learned function is bounded, robust stability is proved for the
linear MPC. Because the bound must hold for all unmodelled
nonlinearities in addition to model errors, the assumption
is rather conservative. In [15] and [16] the entire system
dynamics are learned, using GPs and parameter optimized
kinky inference (POKI) respectively, and stability is proved
assuming boundedness of the modeling uncertainty. Stability
is analyzed for learning-based MPC using neural networks,
such as in [17] and [18]. However, both of these references
consider more complex MPC designs than the design we
consider in this paper.

This work is inspired by the stability analyses done in [15]
and [16], but is adapted to a case where the system dynamics
are learned using a NN. The main contributions of this paper
are:

• Design of an output MPC scheme using a nonlinear
autoregressive model with exogenous input (NARX)
prediction model learned using a NN

• Conditions for which the closed-loop system is input-
to-state stable (ISS) with respect to the prediction error

• Implementation and testing of the control design for a
benchmark system
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The rest of the paper is organized as follows. In Section II
the problem statement of this paper is outlined. A detailed
description of the prediction model is given in Section III,
and in Section IV the NN used to learn the prediction model
is presented. Subsequently, the stability of the resulting
controller is analyzed in Section V. Section VI describes the
continuous stirred tank reactor (CSTR) for which the MPC
design was tested. Simulation results are presented in Section
VII. Finally, conclusions are given in Section VIII.

II. PROBLEM STATEMENT

We study nonlinear discrete-time systems, where yk ∈ R
is the measured output and uk ∈ R is the control input. It is
assumed that the dynamics can be described using a NARX
model, given by

yk+1 = f(xk, uk) + wk, (1)

where the output is corrupted by noise, wk, which is assumed
to lie in a compact setW , that is wk ∈ W ⊂ R. The input is
subject to hard constraints, uk ∈ U , and the output is subject
to soft constraints, yk ∈ Y . The NARX state vector is given
by

xk = [yk, . . . , yk−my
, uk−1, . . . , uk−mu

], (2)

where my and mu denotes the number of previous outputs
and inputs used to describe the next output, so that xk ∈
Rmy+mu+1.

It is assumed that the system dynamics of the plant are
unknown, and that f(·, ·) from (1) is an unknown function,
but that input and output data are available. The data is used
to build a prediction model

ŷk+1 = f̂(xk, uk). (3)

Throughout this paper, (̂·) will be used to denote either
variables that are, or functions that are used to make,
predictions. We want to steer the process from random initial
conditions, within the given input and output sets, to a
desired reference equilibrium point, given by (xref , uref),
where xref ∈ Rmy+mu+1 and uref ∈ R. To this end, we
design an MPC scheme, using the the prediction model from
(3).

Remark 1. Here, we have considered a case which is single-
input single-output. However, the control design and the
stability results in this paper can easily be extended to the
multi-input multi-output case.

III. DATA-BASED PREDICTION MODEL

A. NARX prediction model

In the MPC algorithm we consider prediction of the state.
We therefore reformulate the NARX model into a state space
representation on the form

xk+1 = F(xk, uk, ek)

yk = cᵀxk + wk,
(4)

where cᵀ = [1 0 . . . 0] and ek represents modeling
uncertainty, in the form of a prediction error, introduced

because we will use the prediction model from (3). The
prediction error denotes the difference between the true
model (1) and the learned prediction model (3)

ek := yk+1 − ŷk+1

= f(xk, uk) + wk − f̂(xk, uk).
(5)

Using the definition of the NARX state vector from (2), the
vector-valued function from (4) is given by

F(xk, uk, ek) = [f̂(xk, uk) + ek, yk, ..., yk−my+1,

uk, ..., uk−mu+1].
(6)

We now define the nominal state space model, for which
F̂(xk, uk) , F(xk, uk, 0). This is written as

F̂(xk, uk) = [f̂(xk, uk), yk, ..., yk−my+1, uk, ..., uk−mu+1],
(7)

where the first argument can be either the previous predicted
state, x̂k, or the true state known from measurements, xk,
and is used to obtain the next state prediction x̂k+1 =
F̂(xk, uk).

IV. NARX NEURAL NETWORK

When a multi-layer perceptron (MLP) network is used
to approximate the function f(·) in a NARX model, the
resulting structure is known as a NARX network [19]. Here,
a single hidden layer is proposed for approximation. It has
been shown that a single hidden layer feedforward NN with
a sufficient number of neurons, is capable of approximating
any continuous function to an arbitrary degree of accuracy
[20], [21].

Training of a NARX network can be done in two different
modes [19]. If the network is in so-called series-parallel
mode, the previous outputs are actual values of the system’s
output. This can be written as

ŷk+1 = f̂NN(yk, ..., yk−my
, uk, ..., uk−mu

). (8)

If the network is in parallel mode, predicted past outputs are
used to predict the next output, according to

ŷk+1 = f̂NN(ŷk, ..., ŷk−my , uk, ..., uk−mu). (9)

In parallel mode, the NARX network is a recurrent neural
network (RNN), with feedback connections enclosing the
layers of the network.

Series-parallel mode is generally preferred in training if
the actual values of the system’s outputs are available. This
has two benefits, the first being that using the actual output
values gives better accuracy. In addition, the series-parallel
architecture results in a purely feedforward network, so that
static backpropagation methods can be used during training.

In order to make predictions, the NARX network should
be converted to parallel mode after training. When the NARX
network is making multi-step ahead predictions, the true
output values will no longer be available, and in parallel
mode the network will instead use its own output predictions.
A NARX network in parallel mode is visualized in Figure
1.



Fig. 1: Visualization of a NARX network in parallel mode,
reproduced from [22].

V. STABILIZING DATA-BASED MPC

In the following section, we define a nonlinear MPC
scheme that uses the nominal model (7) learned from data
using a NARX network. The following notation is used. A
continuous function α : R≥0 → R≥0 is a class K-function
if α(0) = 0 and it is strictly increasing. A class K-function
that is also unbounded, that is α(s) → ∞ as s → ∞, is a
class K∞-function. A function β : R≥0 × R≥0 → R≥0 is
a class KL-function if β(s, t) is of class K with respect to
s, β(s, t) is decreasing with respect to t and β(s, t)→ 0 as
t→∞. We will use ‖·‖ to denote the 2-norm.

A. Optimal control problem

MPC is based on solving an open-loop optimization prob-
lem at every time step. In each iteration the optimization
routine will minimize a given cost function.

Because we want the MPC scheme to drive the process to
a reference state, we use a positive definite stage cost that
penalizes deviations from the reference, given by `s(·, ·). A
barrier function, `b(·), is added to the total stage cost, in
order to fulfill soft output constraints, that is to ensure that
the output stays in a certain set, Y ⊆ R, if possible. Based
on the stability analysis in Section V-B, `b(·) is designed
such that

`b(ŷk) ≥ αb(d(ŷk,Y)) (10)

and `b(ŷk) = 0 ∀ ŷk ∈ Y , where αb(·) is a class K-function
and d(·) is the shortest distance from a point ŷk ∈ R to the
set Y ⊆ R.

The total stage cost is then

`(x̂k, uk) = `s(x̂k − xref , uk − uref) + `b(ŷk), (11)

where (xref , uref) denotes the reference equilibrium point.
Using the stage cost (11) and the nominal model (7), the
final optimization problem is formulated. Note that this is

done without defining a terminal constraint [23], resulting in

min
uk

N−1∑
i=0

`(x̂k+i|k, uk+i|k) + λVf (x̂k+N |k − xref)

s.t ∀i ∈ [0,N− 1] :

x̂k+i+1|k = F̂NN(x̂k+i|k, uk+i|k)

x̂k|k = xk

ŷk+i|k = cᵀx̂k+i|k

uk+i|k ∈ U ,

(12)

where (̂·) denotes predicted variables. We let F̂NN(·, ·)
denote the nominal state space model (7), using the neural-
based prediction model (9). The control sequence ap-
plied over the prediction horizon N is given by uk =
{uk|k, ..., uk+N−1|k}. The optimization problem is subject to
hard input constraints, where U is the set of feasible inputs.
In order to guarantee stability, we make use of a terminal
cost Vf (·) and an associated terminal control law κf (·). The
terminal cost is weighted by a design parameter λ ≥ 1 and
xk is the initial condition of the NARX state.

B. Stability

We want to consider ISS of the closed-loop system

xk+1 = F(xk, κMPC(xk), ek), (13)

where κMPC(xk) is the nominal controller resulting from the
optimization problem (12), and F(xk, κMPC, ek) is the true
model given by (6). The stability proof for the learning-based
MPC in [15] and [16] is here adapted for an MPC scheme
where the prediction model is approximated by an NN.

Definition 1. A system xk+1 = F(xk, κMPC(xk), ei) is ISS
if there exists a class KL-function β and a class K-function
γ such that

‖xk‖ ≤ β(‖x0‖ , k) + supi=0,...,kγ
(
|ei|
)

(14)

for all initial conditions x0, modeling uncertainties ei and
for all k ≥ 0.

We first establish stability in the nominal case, for which the
prediction error is assumed to be zero, so that the true and
predicted state is the same. We then consider robust stability,
when the prediction error is non-zero, but bounded. For the
nominal case, we want to establish that the control error,
x̃k = xk − xref , converges asymptotically to zero.

For now, we consider the following closed-loop system
using the nominal model (7), with the neural prediction
model (9)

x̃k+1 = F̂NN(xk, κMPC(xk))− xref

= F̃NN(x̃k, κMPC(x̃k)).
(15)

We make use of the following assumptions regarding the
total stage cost, `(xk, uk), the terminal cost, Vf (·), and the
terminal controller, κf (·).

Assumption 1. There exists a terminal control law κf (x̃k),
a control Lyapunov function Vf (x̃k) and a region defined by



Ω = {x̃k ∈ Rmy+mu+1 : Vf (x̃k) ≤ α}, where α > 0, such
that ∀x̃k ∈ Ω the following holds

1)

α1(‖x̃k‖) ≤ Vf (x̃k) ≤ α2(‖x̃k‖),
Vf (F̃NN(x̃k, κf (x̃k))− Vf (x̃k)

≤ −`(x̃k + xref , κf (x̃k)),

(16)

2)
κf (x̃k) ∈ U , cᵀ(x̃k + xref) ∈ Y, (17)

where F̃NN(·, ·) is the nominal model (15), `(·, ·) is the stage
cost (11), xref is the reference state, α1(·) and α2(·) are class
K∞-functions and U , Y are compact input and output sets,
respectively.

Assumption 2. There exists a class K∞-function, αy(·),
such that the stage cost (11), satisfies `(xref , uref) = 0
and `(x̃k + xref , uk) ≥ αy(‖x̃k‖) for all uk ∈ U , where
(xref , uref) denotes the reference equilibrium point.

We now propose the following theorem, which is an adaption
of Theorem 4 in [23].

Theorem 1. Let Assumptions 1-2 hold, and let κMPC(x̃k)
be the resulting control law of the optimization problem in
(12). Then ∀λ ≥ 1, where λ is a weighting factor, there exists
a domain of attraction, XN (λ), defined without terminal
constraint, such that for all initial conditions x0 ∈ XN (λ),
the closed-loop system (15) is asymptotically stable at the
origin.

Proof: Having satisfied Assumption 1-2, Theorem 4 in
[23] states that the controller resulting from the solution of
the optimization problem (12) will stabilize the system (15)
asymptotically in the set xk ∈ XN (λ). For the complete
proof the reader is referred to [23].

The weight of the terminal cost, λ, can be used to adjust
the size of the domain of attraction. The greater λ, the larger
is XN (λ), but the worse is the approximation, λVf (·), of the
optimal cost.

Having established that the nominal system is asymptoti-
cally stable, the robust case will now be considered. To that
end, we make use of the following assumptions:

Assumption 3. There exists a constant µ < ∞, such that
the prediction error (5) is bounded ∀k |ek| ≤ µ.

Remark 2. The prediction error encompasses the approx-
imation error as well as the measurement noise. The mea-
surement noise is assumed to lie in a compact set and is
therefore bounded. In general it is not possible to prove that
the approximation error of NNs is bounded. However, this is
still a commonly used assumption [24], [25], [26]. In this
case we can argue that if the prediction error is bounded
on the training set, and the training data is representative
of data seen in closed-loop operation, then Assumption 3 is
reasonable.

Assumption 4. The nominal model F̂NN(xk, κMPC(xk))
from (7) is uniformly continuous in xk for all xk ∈ XN (λ).

Remark 3. The nominal model F̂NN(xk, κMPC(xk))
will be uniformly continuous, if the prediction model
f̂NN(xk, κMPC(xk)) is uniformly continuous. This is ensured
by choosing uniformly continuous activation functions for the
neurons in the layers of the NARX network. All the commonly
used activation functions in RNNs, such as the sigmoid,
tanh and ReLU function, are uniformly continuous as their
derivatives are uniformly bounded. Considering the interval
[0,∞), all the above-mentioned activation functions are in
addition continuously differentiable, which is a stronger
continuity property than uniform continuity.

The following theorem is an adaption of Theorem 4 in [27].

Theorem 2. Let κMPC(xk) be the predictive controller
derived from the optimal control problem (12) and let
Assumptions 1-4 hold. Then, Ωr ⊆ XN (λ) is a robust
invariant set for a sufficiently small bound on the uncertainty.
The system (13) fulfills the ISS property within the robust
invariant set Ωr.

Proof: Satisfaction of Assumptions 1-2 guarantees
asymptotic stability of the nominal system (15) as stated by
Theorem 1. If Assumption 3 and 4 also hold, then Theorem 4
of [27] holds directly. Satisfaction of Theorem 4 guarantees
ISS for the closed-loop system (13).

Remark 4. Because the continuity requirement to the neural-
based prediction model relates to the choice of activation
functions, the user has freedom to select a different number of
hidden layers as well as other network architectures, such as
other standard RNNs. Nonetheless, MPC is a computational
heavy control design, because an optimization problem is
solved at every iteration. This provides a valid argument for
keeping the architecture as simple as possible in a neural-
based MPC.

Remark 5. ISS can also be shown by establishing uniform
continuity of the optimal cost, by adding some additional
assumptions regarding the terminal cost and the stage cost
used in the objective function. For details, the reader is
referred to C1 in Proposition 1 in [27].

VI. CASE STUDY

To test the performance and robustness of the proposed
MPC design, the CSTR process is considered. This is often
used as a benchmark process for learning-based MPC.

A. The continuous stirred tank reactor
A CSTR process describes the reaction where a reactant

is converted from A → B [28]. The following differential
equations are used to model this process

ĊA(t) =
q0
V

(CAf − CA(t))− k0e
−E
RT (t)CA(t) (18a)

Ṫ (t) =
q0
V

(Tf − T (t))− ∆Hrk0
ρCp

e
−E
RT (t)CA(t) (18b)

+
UA

V ρCp
(Tc(t)− T (t)) (18c)

Ṫc(t) =
Tr(t)− Tc(t)

τ
, (18d)



TABLE I: CSTR process parameters

Param. Definition Value
q0 Reactive input flow 10 l/min
V Liquid volume in the tank 150 l
k0 Frequency constant 6·1010 l/min
E/R Arrhenius constant 9750 K
−∆Hr Reaction enthalpy 10000 J/mol
UA Heat transfer coefficient 70000 J/(min K)
ρ Density 1100 g/l
Cp Specific heat 0.3 J/(g K)
τ Time constant 1.5 min
Cf CA in input flow 1 mol/l
Tf Input flow temperature 370 K

where CA [mol/l] is the concentration of the reactant, T [K]
is the temperature in the tank, Tc [K] is the temperature of
the coolant, and Tr [K] is the coolant temperature reference.
For this control problem we have input and output according
to u = Tr and y = CA. The model parameters are given in
Table I, and are similar to those used in [15] and [16]. We
define the following input constraints, U = {335 K ≤ Tr ≤
372 K}, and output constraints, Y = {0.35 mol/l ≤ CA ≤
0.65 mol/l}.

B. Obtaining the dataset

The model equations in (18) were used in simulation and
for generating training data, but otherwise assumed unknown.
The equations were implemented in MATLAB, discretized
using Euler’s method and sampled at Ts = 0.5 min. An
input signal was designed to do open-loop simulations. The
requirement for input design for system identification is that
the data needs to be persistently exciting, i.e the data must
contain sufficiently many distinct frequencies [29].

The input signal was designed to cover the relevant area
of input-output space, considering the input and output
constraints. To this end, the system was excited by a total
of 7 sweeping chirp signals, with different amplitudes and
length. A total of 17500 data points were used to train the
NN. As the resulting training data covers a large part of
the input-output space which is considered in closed-loop
operation, we assume that a bounded prediction error for the
training data implies a bounded prediction error in closed-
loop operation.

C. Training the NARX network

Training the NARX network was done in MATLAB, using
a series-parallel architecture, as described in Section IV. All
data was normalized ahead of training, so that all values fall
within a range [−1, 1]. This was done to compensate for the
input data having different scales, as both past inputs and
past outputs are fed to the NN. For a NARX network, the
size of the input layer is dictated by the number of input
and output delays in the NARX model, given by mu and
my . Different architectures were tested, until we obtained
satisfactory performance, using a single hidden layer, with
10 neurons, and mu = 1 and my = 2 as the number of
input and output delays, respectively. The sigmoid function
was used in the neurons in the hidden layer, and a linear

activation function was used in the output neuron. The data
was split randomly into a train, test and validation set, that
corresponded to 70/15/15 % of the data, respectively. A
Levenberg-Marquardt algorithm was used for optimization
during training. Early stopping was used to prevent the model
from overfitting. For multi-step ahead prediction, the NARX
network was converted to parallel mode (9).

The resulting architecture of the NN represents a trade-off
between modeling flexibility, needed to capture the system
dynamics, and computational complexity for the resulting
control design. An independent dataset with noise, was set
aside for validation, not previously seen in training. To
quantify the prediction accuracy on the separate validation
dataset, the mean squared error (MSE) is introduced

MSE =
1

Npred

Npred∑
k=1

‖yk − ŷk‖2. (19)

The validation results are seen in Figure 2, where the NN is
tested for Npred = 30, initialized using noisy measurements.
For the given prediction horizon we get MSE = 2.84 · 10−6.
Here the prediction horizon is relatively long, and the multi-
step ahead prediction is fairly accurate for the unseen valida-
tion data. In closed-loop model-based control the prediction
horizon will be often be shorter, and we conclude that the
prediction model should be suited.
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Fig. 2: Top: random steps in the coolant temperature refer-
ence. Bottom: true and multi-step ahead predictions of the
concentration, with the network in parallel mode, using a
separate validation set not previously seen by the network.
The output is shown in original scale. The multi-step ahead
prediction seems to be fairly accurate for a random input
sequence, and for that reason more complex and larger
architectures are avoided in order to keep the prediction
model simple.

D. Control of the reactor

The control objective is to drive the process from a
random initial condition, to a reference equilibrium point.



The following quadratic stage-cost was used

`s(xk − xref , uk − uref) = (xk − xref)
ᵀQ(xk − xref)

+(uk − uref)ᵀR(uk − uref),
(20)

where xref = [yref , yref , yref , uref ], for the selected choice of
mu and my , as addressed in Section VI-C. The optimization
problem defined in (12) was solved using fmincon in
MATLAB. The prediction horizon was set to N = 5, and
we used Q = diag(50, 0, 0), R = 0.2 and λ = 1.

E. Finding the reference equilibrium point

Because we consider a system with unknown dynamics,
the input reference corresponding to the output reference, is
not necessarily known. Here it is assumed that the input and
output reference point is known a priori, namely uref = 356
K and yref = 0.439 mol/l. If this is not the case, the learned
prediction model can be used to obtain an estimate of the
corresponding input reference, by solving an optimization
problem. See for example [12].

F. Soft output constraints

A barrier function was added to the stage cost to account
for soft output constraints. The following barrier function
was adopted from [15], [16]

`b(yk) = ζ

(
1− e

−d(yk,Y)

δ

)
, (21)

where δ = 1, ζ = 100 and d(·) is given by

d(y,Y) = infz∈Y ‖z − y‖∞ , (22)

where ‖·‖∞ denotes the infinity norm. For the benchmark
system, this means that the coolant temperature reference
will not exceed its limit, since input constraints are hard,
while the concentration limit is ”desirable”, given by soft
output constraints.

G. Finding the terminal cost

The selected terminal controller and the terminal cost are
defined as κf (x̃k) = Kᵀx̃k + uref and Vf (x̃k) = x̃ᵀ

kPx̃k

[30], where x̃k = xk − xref . The terminal cost is found by
solving the LQR problem for the linearized model around
the reference point, where P is the solution to the discrete
Ricatti equation.

The linearized model is found using the learned prediction
model. For the choice of my and my , the NARX state vector
is given by xk = [yk, yk−1, yk−2, uk−1], and consequently
the linearized model should be on the form
yk+1

yk
yk−1
uk

 =


a11 a12 a13 a14
1 0 0 0
0 1 0 0
0 0 0 0



yk
yk−1
yk−2
uk−1

+


b11
0
0
1

uk.
(23)

Because the learned model is not defined explicitly, the
linearized model is obtained numerically [15], [16]. The

coefficients of the linearized system can be approximated
accoording to

a11 =
∂f̂NN

∂yk
, a12 =

∂f̂NN

∂yk−1
, a13 =

∂f̂NN

∂yk−2

a14 =
∂f̂NN

∂uk−1
, b11 =

∂f̂NN

∂uk
,

(24)

where f̂NN(·, ·) is the prediction model (9). The coefficients
in (24) were evaluated at (uref , yref) and (yref + ∆, uref +
∆), where ∆ represents a small perturbation. We used ∆ =
0.015, found by trial and error.

The coefficients for the linearized system evaluated at the
reference point, were found to be a11 = 2.1742, a12 =
−1.5402, a13 = 0.3958, a14 = −0.0003 and b11 = 0.0.
Using dlqr in MATLAB, the following gain and solution
to the Ricatti equation were found:

Kᵀ =
[
−838.08 897.23 −300.55 0.20

]
, (25)

P = 106


1.5672 −1.6776 0.5619 −0.0004
−1.6776 1.7959 −0.6015 0.0004
0.5619 −0.6015 0.2015 −0.0001
−0.0004 0.0004 −0.0001 0.0000

 .
(26)

Assumptions 1-4 from Section V-B are fulfilled given the
choice of the terminal cost and terminal controller, the
selected total stage cost, composed of (20) and (21), the
considerations regarding the prediction error in closed-loop
operation and the selected NN architecture and activation
functions. By Theorem 2, the considered closed-loop system
is ISS.

VII. SIMULATION RESULTS

In order to evaluate the performance of the MPC-NN,
using the NARX network as the prediction model, an MPC
scheme using the ordinary differential equations (ODEs)
(18), was implemented. To determine the terminal ingredients
for this controller, the linearization of the system was also
done numerically, as described by (24), but using the ODEs
to determine the coefficients. The same MPC parameters
were used for both the MPC-NN and the MPC-ODE design.

For each controller, simulations were run for t = 15 min.
For each simulation random initial conditions were selected
from the valid input and output sets. The measurements were
corrupted by 2.5% sensor noise. A total of 100 simulations
were run to test for different realizations of noise and initial
conditions. The following performance index was used to
evaluate the controller performance

φ =
1

Nsim

Nsim∑
j=1

tsim∑
k=1

`(xj
k, u

j
k), (27)

where xk and uk are the resulting state and control input
for each iteration, tsim is the number of time steps in one
simulation and Nsim is the number of simulations.

In simulations the MPC-ODE design was expected to be
superior, because the true model was used as the prediction
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Fig. 3: Results from 100 simulations. The thick line repre-
sents the emperical mean, and the shaded area represents
±σ. In each figure, the upper subplot shows the coolant
temperature reference and the bottom subplot shows the
concentration. Note that the input constraints are hard, while
the output constraints are soft.

model. Comparing the closed-loop results seen in Figure 3(a)
and 3(b), we see that the MPC-NN performs almost as good
as the ideal controller. This was also verified by the evaluated
performance index (27), which was found to be φODE =
273.86 and φNN = 281.44. For the tested scenario where
the system dynamics are unknown, but input-output data is
available, the proposed learning-based MPC design obtained
close to ideal behavior.

Simulation results show that the MPC-NN successfully
steered the system from all tested random initial conditions,
to the reference equilibrium point, even in the presence of
noise. In Figure 4 we also see that the one-step prediction
error stays small and bounded for all realizations of noise.
This is important with respect to Assumption 3 in the stabil-
ity proof. The initial peak in the one-step prediction error is
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0.025

Fig. 4: The one-step prediction error for the prediction
model used by the MPC-NN. The thick line represents the
empirical mean, and the shaded area represents ±σ from 100
simulations.

due to the fact that at the beginning of each simulation, the
network is initialized using only one noisy, random initial
condition.

VIII. CONCLUSION

We have presented a nonlinear model predictive control
scheme that uses a learned prediction model. The prediction
model was learned based on past input and output data,
using a neural network. The proposed controller is proved to
be input-to-state stable with respect to the prediction error,
assuming that the latter is sufficiently bounded. Because this
is an output feedback MPC algorithm, full state information
is not necessary, so the control design may be applied to
systems where the state might not be measured. The control
design was implemented and tested for a continuous stirred
tank reactor. Compared to an ideal MPC implementation,
the learning-based MPC design performed almost as good.
Simulations also show stability of the controlled system for
all investigated cases, and supports the assumption that the
prediction error is bounded.

In future work, we will investigate the effect of training the
neural network using noisy data. Also, it could be interesting
to consider how to implement hard output constraints for the
investigated MPC design.
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