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Abstract— In this paper we propose a method for adaptive
sampling using Unmanned Aerial Vehicles (UAVs) in oil spill
management. The goal is to measure and estimate oil spill
concentrations at the sea surface, while at the same time
identify the leak rates of sources at known positions. First we
construct a cost which approximates the benefit of sampling
locations at specific times. This cost is based on measures of
observability and of persistency of excitation for the oil spill
model. A receding horizon Mixed-Integer Linear Programming
(MILP) problem is solved in order to find UAV trajectories
which are optimal with respect to the cost. For UAV trajectory
tracking we use a Lyapunov based controller. The oil spill con-
centration measurements taken by the UAVs by following these
tracks are used in an adaptive observer, which provides state
(concentration) and parameter (leak rate) estimates. Under the
assumption that the sampling strategy described above lead to
uniform complete observability and persistency of excitation,
we prove Uniform Global Asymptotic Stability (UGAS) of the
state estimation, parameter identification and UAV trajectory
tracking errors. Finally, we provide a simulation of the proposed
strategy, and compare it with two other strategies.

I. INTRODUCTION

In this paper the goal is to measure and estimate the
states of a Distributed Parameter System (DPS) using UAVs
equipped with the appropriate sensors and communication
units. We will employ a strategy called adaptive sampling
where the times and locations for taking new measurements
are proposed based on a model of the process and previous
measurements. For illustration purpose we apply our findings
in an application within oil-spill management. Oil-spill man-
agement can be defined as the process of detecting, tracking
and cleaning up after an oil-spill. We will here solve the
specific task of estimating the oil spill concentration on the
sea surface, and at the same time identify the leak rates of
two moving ships at known positions.

Numerous works have considered the problem of finding
trajectories of sensor nodes in order to estimate states and
identify parameters of DPSs in an optimal manner, e.g. [1],
[2], [3], [4], [5], [6], [7].

The main contribution of this paper is the proposal of
a new sampling strategy, for which we can provide strong
stability guarantees of the state estimation, parameter iden-
tification and trajectory tracking errors. A Mixed Integer
Linear Programming (MILP) problem is solved in order to
find trajectories for the UAVs which maximize measures
of observability and persistency of excitation, while at the
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same time satisfy collision avoidance and anti-winding con-
straints. In particular, the formulation of the objective is new
compared to [8]. The state estimator and UAV controller,
although similar to [4], [6], have some characteristic and
new properties:
• We consider the joint state estimation and parameter

identification problem, where as only the state estima-
tion problem was considered by [4].

• In [4] and [6] the closed-loop and open-loop linear DPS
state matrices, respectively, are assumed to be exponen-
tially stable. In this paper this assumption is replaced
by the weaker requirement that the state- and output
matrix pair is uniform completely observable. We argue
that this is a reasonable assumption, as our sampling
strategy is aimed at satisfying this requirement.

• Under our assumptions we are able to prove UGAS
of the equilibrium point of the combined state- and
parameter error dynamics and UAV tracking error dy-
namics. In [4] only stability was proved (although their
Lyapunov analysis also included collision avoidance and
network constraints, which is handled by the trajectory
planner in this paper).

II. MODELING

A. Continuum Model

We consider an open, connected spatial domain Ω of
interest, where we want to measure and estimate the DPS
state. Let the distributed parameter be given by c(p, t), which
represent the concentration of oil at the sea surface at some
time t, and at a position p = [x , y ]> ∈ R2 in east- and north
directions, respectively. The concentration is assumed to
follow the advection-diffusion Partial Differential Equation
(PDE):

∂c(p, t)

∂t
+∇(a(p, t)c(p, t)) = ∇(d∇c(p, t)) + f(p, θ, t) ,

(1)
with boundary and initial conditions

∂c(p, t)

∂µ
= κ(p) , for p ∈ Σ1 ⊆ ∂Ω (2)

c(p, t) = ρ(p) , for p ∈ Σ2 ⊆ ∂Ω (3)
c(p, 0) = c0(p) , for p ∈ Ω . (4)

where a(p, t) is the velocity field causing advection, d is
the diffusion constant, f(p, θ, t) represents source terms, ∂Ω
is the boundary of Ω ⊂ R2, and Σ1,Σ2 ⊆ ∂Ω such that
Σ1 ∪Σ2 = ∂Ω. The set Σ1 contains the Neumann boundary
conditions, where as Σ2 contains the Dirichlet boundary
conditions. Out of simplicity we will assume that only the
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source terms f are dependent on the vector of unknown
parameters, θ ∈ RNθ . We spatially discretize the advection-
diffusion equation using a second-order central discretization
scheme, where we for simplicity assume a rectangular area
of interest, such that Ω̄ := Ω ∪ ∂Ω = [0, Lx ]× [0, Ly ], with
spatial discretization step size dxy . The average value of c
in the grid cells can then be approximated by the following
Ordinary Differential Equation (ODE):

ċ = A(t)c+B(t)θ , (5)

where A ∈ RNxNy×NxNy is a (known) state matrix repre-
senting advection- and diffusion effects, B ∈ RNxNy×Nθ is a
(known) input matrix representing the effects from the source
terms. Nx and Ny are the number of interior grid cells in
the east- and north directions, respectively, such that Lx =
dxyNx and Ly = dxyNy . The value of c(p, t) at some location
p = pm,n = [dxym, dxyn]>, with (m,n) ∈ INx

1 × INy
1 , and

where
Iba := {a, a+ 1, . . . , b}, a, b ∈ Z , (6)

is given by cm,n, and are arranged in the state vector c ∈
RNxNy in an east-to-west then south-to-north ordering, also
called natural ordering [9, page 631].

B. Measurement Matrix Model

By primarily relying on measurements from UAVs
equipped with the appropriate sensors, the output equation
can be written

y = C(q(t))c , (7)

where C(q(t)) := col [C1(q1(t)), . . . , CN (qN (t))] with Ci
being the output matrix of sensor i, q := col [q1, . . . , qN ], and
qi = [xi, yi]> ∈ R2 being the time-varying position of UAV
number i in the east- and north directions, and N being the
total number of UAVs. The realization of the measurement
operator C(q(t)) used in this paper is taken from [6].
Since the model is spatially discretized we use weighting
surfaces to describe how the sensors measure the discretized
process variables. We assume that the grid points of the
discretized process are coarsely distributed, at least compared
to the field-of-view of the sensor on board the UAV, which
means that at most the four closest discretization points
will influence the measurement operator. Mathematically,
this means that for any given position qi ∈ Ω, and for any
discretization point (m,n) ∈ INx

1 × INy
1 ,

wm,n(qi) > 0 ⇐⇒
∣∣qi − qm,n∣∣∞ < dxy , (8)

where wm,n is a weighting surface, qm,n = [dxym, dxyn]>.
Then, by assuming that the position of the
UAV qi is contained in a box of the grid cells
(pv,w, pv+1,w, pv+1,w+1, pv,w+1), the measurement matrix
Ci(qi) ∈ R4×NxNy , can be written as [6]

Ci(qi) =

[wv,w(qi)]1,(w−1)Nx +v + [wv+1,w(qi)]2,(w−1)Nx +v+1+

[wv,w+1(qi)]3,wNx +v + [wv+1,w+1(qi)]4,wNx +v+1 ,

(9)

where the weighting functions are indexed in correspondence
with the order of the state vector (natural ordering), and
where [a]i,j is an all-zero matrix with appropriate dimen-
sions, except at index (i, j) where the element is a.

C. Input Matrix Model Moving Sources

We consider the oil spill being caused by a number
of moving sources, and that we try to identify the leak
rate of each of them. The number of moving sources
is therefore equal to the number of unknown parameters,
Nθ. The position of the sources are given by ξ(t) :=
col [ξ1(t), . . . , ξNθ (t)], with ξi(t) ∈ R2 being the time-
varying position of source number i in the east- and north
directions. In a similar way as we use weighting func-
tions to describe how the sensors measure the discretized
process variables in the measurement model, we will em-
ploy a weighting function to describe how the motion of
the sources influences the process variables. Let B(ξ) :=
[B1(ξ1), . . . , BNθ (ξNθ )]. If the position of the leaking source
ξi is contained in (pv,w, pv+1,w, pv+1,w+1, pv,w+1) the ma-
trix Bi(ξi) ∈ RNxNy , can be written as

Bi(ξi) =

[wv,w(ξi)](w−1)Nx +v,1 + [wv+1,w(ξi)](w−1)Nx +v+1,1+

[wv,w+1(ξi)]wNx +v,1 + [wv+1,w+1(ξi)]wNx +v+1,1 ,
(10)

where the weighting functions and the matrix [·] were intro-
duced in the previous section.

D. UAV Model

We assume that the UAVs are fully actuated (holonomic),
and the model for the UAVs motion is given by

q̇i =ri (11)

ṙi =M−1
i (−Diri + fi) , (12)

for any i ∈ IN1 , where qi, ri, fi ∈ R2 are the position-,
velocity and control force vectors of vehicle i, respectively,
in the east- and north directions, and where Mi, Di ∈ R2×2

are matrices of constant parameters for mass-, and damping
effects, respectively.

III. ESTIMATION AND MOTION PLANNING

We will now give an overview of the proposed estimation,
identification and trajectory planning strategy. The purpose
behind each part of the strategy is motivated with the oil spill
example introduced in Section I, and illustrated in Figure 1.
State- and parameter estimator: This is a centralized
estimator located at the ground control station. In the oil spill
example the state matrix A(t) depends on the weather- and
ocean data, the input matrix B(t) depends on the motion
of the source ships which is assumed available through
broadcast (e.g. using the Automatic Identification System
(AIS) which is required used internationally for most ships
over a certain size), and the output matrix C(q(t)) depends
on the positions q of the UAVs. In this paper an adaptive
observer is used to estimate the state vector and identify
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Fig. 1. Motion planning strategy: The source motion ξ(t), weather- and
ocean data a(x, t) and measurement from the UAVs y(q(t)) are used in the
centralized state- and parameter estimator. Based on ξ(t) and a(p, t), the a
cost Uobsv

kmn is created emphasizing where and when to make measurements,
based on observability and persistency of excitation measures. This cost
matrix is used by the trajectory planner, to find the trajectories which over
the predicted horizon are optimal. Trajectory qref

i , r
ref
i is transmitted to UAV

i and used as a reference for a Lyapunov based tracking controller.

unknown parameters.
Cost approximator: The knowledge of the current state,
the state matrix A(t) and the input matrix B(t) is used to
approximate the cost of sampling the distributed process a
specific location at a specific time. In this paper, we calculate
an observability measure based on the least singular value
of the observability matrix of the extended system, that is, a
system where the state vector is extended to also include the
unknown parameters. Improving the observability measure
by taking measurements at the best locations and times would
consequently lead to reduced state estimation and parameter
identification errors.
Trajectory planner: The approximated cost function is then
used in a MILP planning problem over a finite horizon.
The optimization problem includes collision avoidance con-
straints and anti-winding constraints. As the output of the
planning problem is an ordered set of discrete positions for
each of the UAVs, interpolation is used to create smooth
reference signals for the tracking controller.
Tracking controller: Finally a tracking controller based on
Lyapunov theory is implemented to make the UAVs track
the references created by the trajectory planner.

A. Tracking controller

Let qref
i (t), rref

i (t) ṙref
i (t) be sufficiently smooth reference

signals generated by the trajectory planner. Then, by defining
q̃i(t) := qi(t) − qref

i (t) and r̃i(t) := ri(t) − rref
i (t), as the

position- and velocity errors, the error dynamics with respect

to the reference motion is given by
˙̃q =r̃ (13)
˙̃r =− ṙref +M−1(−D(r̃ + rref) + f) , (14)

where q̃ = col[q̃1, . . . , q̃N ], r̃ = col[r̃1, . . . , r̃N ],
qref = col[qref

1 , . . . , q
ref
N ], rref = col[rref

1 , . . . , r
ref
N ], M :=

blkdiag[M1, . . . ,MN ], D := blkdiag[D1, . . . , DN ], and
where we have assumed that rref

i = q̇ref
i for any i ∈ IN1 .

Our feedback controller, similar to the controller derived
by vectorial backstepping for a mass-damper-spring system
in [10, Page 277], is given by:

f(t) = Mṙvir +Drvir −Kproq̃ −Kder(r̃ + Λq̃) , (15)

with rvir := rref − Λq̃ being a virtual reference signal,
Λ := blkdiag[Λ1, . . . ,ΛN ] with Λi ∈ R2×2 a posi-
tive definite diagonal matrix for any i ∈ IN1 , Kpro :=
blkdiag[Kpro

1 , . . . ,Kpro
N ] with Kpro

i ∈ R2×2 a symmetric
positive definite matrix for any i ∈ IN1 , and Kder :=
[Kder

1 , . . . ,Kder
N ] with Kder

i ∈ R2×2 a positive definite matrix
for any i ∈ IN1 . The motivation behind requiring Λ, Kder,
Kpro as diagonal or block diagonal matrices, is to maintain
a decentralized implementation, where the motion of one
vehicle is independent of the motion of the others, except
through the reference trajectory. For future reference, we
notice that the closed-loop error dynamics can now be written
as

˙̃q = r̃ (16)
˙̃r = −Λr̃ +M−1(−(D +Kder)(r̃ + Λq̃)−Kproq̃) . (17)

B. State- and parameter estimator
Here, we apply the adaptive observer of [11]. The main

motivation for using this observer is that uniform asymp-
totic stability of the state- and parameter estimation errors
are guaranteed with relaxed assumptions compared to the
Kalman filter, see [11] for details. First, through output
injection, equations (5) and (7), are transformed to

ċ =Acl(t, q)c+B(t)θ + L(t)y , (18)
y =C(q)c , (19)

where Acl(t, q) = A(t) − L(t)C(q), and L(t) is a time
varying matrix to be designed. Again we emphasize that θ
is an unknown constant parameter. By defining the dynamic
transformation z(t) = c(t)−Ψ(t)θ, where Ψ(t) ∈ RNxNy is
the solution to the equation

Ψ̇ = Acl(t, q)Ψ +B(t) , (20)

with some user specified, finite initial condition Ψ(0) = Ψ0,
the transformed system can be written

ż =Acl(t, q)z + L(t)y , (21)
y =C(q)[z + Ψ(t)θ] . (22)

The adaptive observer proposed in [11], [12] for this system
is

˙̂z =Acl(t, q)ẑ + L(t)y , (23)
˙̂
θ =γΨ>(t)C>(q)[y − C(q)ẑ − C(q)Ψ(t)θ̂] , (24)



where θ̂ is the estimate of the unknown parameter θ, and
γ ∈ RNθ×Nθ is a user specified positive definite, diagonal
matrix.

C. Closed-loop system

To analyse the convergence and stability properties of the
system we will now calculate the closed-loop dynamics.
To that end define χ := col[χ1, χ2, χ3], where χ1 =
col [χ11, χ12] = col [q̃, r̃] is the tracking error of the con-
troller, χ2(t) = θ− θ̂(t) is the parameter identification error
and χ3(t) = z(t)− ẑ is the state estimation error. These error
variables are the solutions to

χ̇1 = A1χ1 (25)
χ̇2 = f2(t, χ11)χ2 + g2(t, χ11)χ3 (26)
χ̇3 = A3(t, χ11)χ3 (27)

where A1 is given by (28),

f2(t, χ11) := −γΨ>(t)C>(t, χ11)C(t, χ11)Ψ(t) , (29)

g2(t, χ11) := −γΨ>(t)C>(t, χ11)C(t, χ11) , (30)

and finally A3(t, χ11) := Acl(t, χ11 + qref(t)). With a slight
abuse of notation, we have redefined the measurement matrix
to emphasize that it depends on both the state and reference
trajectory, that is C(t, χ11) := C(χ11 + qref(t)) = C(q). We
see that by moving the dependence on the unknown parame-
ter from the state equation in (18)-(19) to the output equation
in (21)-(22), the dynamics of the state estimation errors (27)
becomes independent of the convergence of the parameter
identification error. We see that the stability properties of
(27) depends on the motion of the UAVs through C(t, χ11)
and L(t), since A3(t, χ11) = A(t) − L(t)C(t, χ11). The
second term on the right hand side of (26) vanishes with
the state estimation error χ3. If this term is ignored, (26) is
exponentially stable if the persistency of excitation condition
is satisfied [11].

D. Main result

Before we present the main result, we will present some
needed assumptions.

Assumption 1: There exist a positive constant c0 such that
|qref(t)| < c0 and |rref(t)| < c0 for any t ≥ 0.

Assumption 2: The matrices A(t) and B(t) of (5) are
known, and there exist positive constants c1 and c2 such
that

∣∣A(t)
∣∣ ≤ c1 and

∣∣B(t)
∣∣ ≤ c2 for any t ≥ 0.

Assumption 3: The measurement matrix C(t, χ11) (recall
C(t, χ11) := C(χ11 + qref(t)) = C(q) with C(q) of (7))
is known, and for bounded arguments χ11 and qref(t) there
exists a constant c3 such that

∣∣C(t, χ11)
∣∣ ≤ c3 for any t ≥ 0.

Assumptions 1-3 are reasonable from a practical viewpoint
and simplifies our analysis.

Assumption 4 (Assumption on observability): The pair
(A(t), C(t, χ(t))) is uniformly completely observable, cf.
[13].

Assumption 5 (Assumption on persistency of excitation):
There exist positive constants t0, T and µ such that
G(t0, t+ T ) ≥ µI holds for any t ≥ t0, where

G(t0, t+ T ) =∫ t+T

t0

Ψ>(τ)C>(τ, χ11(τ))C(τ, χ11(τ))Ψ(τ) dτ .
(31)

Remark 1: Notice that in Assumption 5 the assumption
is on persistency of excitation of Ψ(·). However, since Ψ
is dependent on B(·) through (20) it is in essence also a
persistency condition on B. This means that the motion of
the leaking ships can influence the persistency of excitation
condition.
Assumption 4 and 5 are highly dependent of the positions
of the UAVs, q through the measurement matrix C(t, χ11),
where χ11 = q̃ = q − qref. The objective of the trajectory
planner of Section III-F is therefore to find reference trajec-
tories qref(t) such that the assumptions are satisfied.

From the dual to [14, Lemma 1] we have that due to
Assumption 2, Assumption 4 is equivalent to the existence of
a constant δ such that the observability Gramian W defined
as

W (t, t+ δ) =∫ t+δ

t

Φ>(τ, t)C>(τ, χ11(τ))C(τ, χ11(τ))Φ(τ, t) dτ
(32)

satisfies 0 ≤ c6(δ) ≤W (t, t+δ) ≤ c7(δ) for some constants
c6, c7, and Φ(·, ·) is the state transition matrix associated
with (5). This means that it is possible to render the state
estimation error dynamics (27) Uniformly Exponentially
Stable (UES) by an appropriate choice of the observer gain
matrix L(t) introduced in (18). For instance, it can be chosen
by Kalman filter design as in [15], [16, Theorem 1], [17]:

L(t) = P3(t)C>(t, χ11(t))R−1
3 (t) (33)

where P3(t) is the solution to the forward differential Riccati
equation,

Ṗ3 =A(t)P3(t) + P3(t)A>(t) +Q3(t)

− P3(t)C>(t, χ11(t))R−1
3 (t)C(t, χ11(t))P3(t)

(34)

with P3(0) positive definite and symmetric, and where Q3(t),
R3(t) satisfies the following assumption:

Assumption 6: The user specified matrices Q3(t), R3(t)
are both positive definite and uniformly bounded, that is,
there exist constants c8 and c9 such that

∣∣Q3(t)
∣∣ ≤ c8 and∣∣R3(t)

∣∣ ≤ c9 are satisfied for any t ≥ 0.
This choice for L(t) was used in [18], where the objective
is similar to that of this paper.

We are now ready to state the main result:
Theorem 1: Under Assumptions 1-6 the equilibrium point

χ = 0 of (25)-(27) is UGAS.
The proof of the theorem is given in the Appendix.

E. Cost approximator

The purpose of the cost approximator is to construct the
matrix U obsv

kmn, which elements are correlated to the benefit
of taking measurements at some grid point (m,n) in the



A1 :=

[
0 1

−M−1((D +Kder)Λ +Kpro) −Λ−M−1(D +Kder)

]
(28)

discretized area, at k time steps into the future. The construc-
tion of U obsv

kmn, is based on the observability Gramian of the
extended system. In fact, to take the motions of the sources
into account when calculating the observability measure, we
rewrite the state equations, (5)-(7), as:

˙̃c =Ã(t)c̃ , (35)

y =C̃(q(t))c̃ , (36)

with

Ã(t) =

[
A(t) B(t)

0 0

]
, (37)

c̃ =

[
c
θ

]
, C̃(q(t)) =

[
C(q(t)) 0

]
, (38)

where an interesting property of this extended system is given
in the next theorem:

Theorem 2: Let Assumption 2 hold. Then uniform com-
plete observability of the pair (Ã(t), C̃(q(t))), implies As-
sumption 4 and Assumption 5, that is uniform complete
observability of (5)-(7) and persistency of excitation on Ψ(t).

Proof: By Assumption 2, the matrices Ã(t) and C̃(q(t))
are uniformly bounded. Uniform complete observability
of the pair (Ã(t), C̃(q(t))) implies that the observability
Gramian of the extended system (35)-(36) is positive definite
and bounded. In [12, Appendix] it is shown that the observ-
ability Gramian associated with the pair (Ã(t), C̃(q(t))) of
the extended system, has G of (31) and W of (32) along its
diagonal. The conclusion follows.

To get information about where measurements should be
taken, we will in the following explain the construction of
the three-dimensional matrix U obsv

kmn which approximates how
beneficial it is to make measurements in a certain area (m,n)
at some time step k. First, consider Ω̄ divided into equally
large non-overlapping areas, such that the areas make up
the whole of Ω̄, and predict the effect on the observability
Gramian of the extended system by static measures in each
of these areas for some prediction horizon. The areas can
consist of multiple grid cells, such that Dxy = γxydxy , where
γxy ∈ Z and Dxy is the length of the sides of the square
areas. The prediction is based on actual measurements for a
horizon TH into the past and assumed static measurements
taken at area (m,n) for a horizon TH into the future. The
observability Gramian associated with the extended system
is given by

W̃ t
m,n(TH , TH) =∫ t

TH

Φ̃>(τ, TH)C̃>(q(τ))C̃(q(τ))Φ̃(τ, TH) dτ

+

∫ TH

t

Φ̃>(τ, t)C̃>(Qm,n)C̃(Qm,n)Φ̃(τ, t) dτ ,

(39)

where Φ̃(·, ·) is the state transition matrix associated with
(35) and Qm,n = [Dxym,Dxyn]. At each time step k =

t/Dt ∈ I
NH
1 , where Dt is the sample interval of the motion

planner and NH = TH/Dt − 1, and for any, m ∈ INx /γx
1 ,

n ∈ INy/γy
1 take

U obsv
kmn = 1/σmin(W̃ k

m,n) . (40)

Here, σmin(·) is the minimum singular value. For simplicity
of implementation we integrate forward in time the system
of differential equations

d

ds
W̃ t
m,n(TH , s) =Φ̃>(s, TH)C̃>(s)C̃(s)Φ̃(s, TH) ,

d

ds
Φ̃(s, TH) =Ã(s)Φ̃(s, TH)

(41)

where Φ̃(TH , TH) being the identity matrix is used as initial
condition, similar to what is done in [19, Page 21].

F. Trajectory planner

The planning problem follows closely the approach of [8],
and the interested reader is referred thereto for more details.
The objective function to be minimized is given by

Jobsv =

N∑
i=1

NH∑
k=1

Nx∑
m=1

Ny∑
n=1

U obsv
kmnΓikmn , (42)

which quantify the benefit at being at a specific position
at a specific time. Here, U obsv

kmn is given by (40) which
contain the unobservability index of area (m,n) at some
time step k, while Γikmn = 1 if UAV i is in area (m,n)
at time step k, and Γikmn = 0 otherwise. The solution
to the optimization problem is an ordered set of positions
(centres of the considered areas) for each of the UAVs, and
interpolation is therefore used to create smooth reference
trajectories.

IV. SIMULATIONS

We will in this section consider joint estimation of con-
centration in an offshore oil spill and identification of the
constant leak rates from two sources. The region we consider
is Ω̄ = [0, 500] × [0, 500]. The UAV model and controller
parameters are found in Table I, the cost approximator and
trajectory planner parameters in Table II and finally the
observer parameters in Table III. Cubic spline interpolation
is used to find the reference trajectories qref, rref and ṙref

from the positions found by solving the MILP problem in the
trajectory planner. In the implementation of the measurement
model we follow [6]: We define wm,n(qm,n) = 1 and



TABLE I
UAV MODEL AND TRACKING CONTROLLER PARAMETERS

Parameter Value Parameter Value

q1(0) (25, 25)>m r1(0) (13, 13)>m s−1

q2(0) (100, 100)>m r2(0) (15, 15)>m s−1

Di 1 kg s−1 Mi 30 kg

Kpro
i diag (1.3159, 1.3159) Kder

i diag (6.2835, 6.2835)
Λi diag (0.001, 0.001)
N 2

TABLE II
COST APPROXIMATOR AND TRAJECTORY PLANNER PARAMETERS

Parameter Value Parameter Value

Dxy 50 m γxy 1

wm,n(qm±1,n±1) = 0, and we get that

wm,n(p) =



(x−xm−1)(y−yn−1)

(xm−xm−1)(yn−yn−1) , (x , y) ∈ [xm−1, xm]× [yn−1, yn]
(x−xm)(yn−y)

(xm+1−xm)(yn−yn−1) , (x , y) ∈ [xm, xm+1]× [yn−1, yn]
(xm−x )(y−yn)

(xm−xm−1)(yn+1−yn) , (x , y) ∈ [xm−1, xm]× [yn, yn+1]
(xm+1−x )(yn+1−y)

(xm+1−xm)(yn+1−yn) , (x , y) ∈ [xm, xm+1]× [yn, yn+1]

0 , otherwise.

(43)

The oil spill parameters of the simulation is given in Table
IV. We use a similar flux field as in [2], which is given by

a(t, p) =
12

3600

(
y − x − t

6
,
t(2x − 1000)

600
+ y − 1000

)>
.

(44)
We consider only Dirichlet boundary conditions in this
example, so Σ1 = ∅ and Σ2 = ∂Ω. For illustration purpose
we will assume two leaking sources. The motion of the first
source term is given by

ξ1(t) =500

(√
5

4
sin

(
ω1t

600
+ ω0

)
,

0.5 +

√
5

4
cos

(
ω1t

600
+ ω0

))>
,

(45)

with ω1 = 2 arcsin(0.2
√

5) and ω0 = arcsin(0.4
√

5), where
as the motion of the second is given by ξ2(t) = 1

2ξ1(t). The
DPS system is simulated for 30 seconds before the estimation
based on measurements from the UAVs is started. For the
parameter update law (24), we use γ = I .

TABLE III
OBSERVER PARAMETERS

Parameter Value Parameter Value

P3(0) 100I Ψ(0) 0
R(t) = R I Q(t) = Q I

TABLE IV
OIL SPILL PARAMETERS

Parameter Value Parameter Value

Lx , Ly 500 m c(0) 0 g m−2

dxy 50 m θ(t) , ∀t ∈ [−50, 300] 0.05 g s−1

Nx , Ny 9
d 60× 10−6 m2 s−1
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Fig. 2. Oil management: Parameter identification errors with different types
of planning strategies. θ1 and θ2 are the leak rates from the two sources.
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Fig. 3. Oil management: State estimation errors with different types
of planning strategies. χ3 is the estimation error for the sea surface oil
concentration.

The parameter identification and state estimation errors
are illustrated in Figure 2 and Figure 3. We have compared
the results using the motion planning strategy proposed in
this paper, referred to as Adaptive path, with two other
approaches. In the Static approach two sensor nodes are
taking measurements at some static locations (150, 300) and
(450, 300). In the Circular path approach the two sensors
fly in circular motions around the same two locations with
radius of 50 meters, and with a path period of 100 seconds.
In all cases the state and parameter estimators used are
identical. Obviously more thorough simulations would be
required to assert that the proposed strategy is definitely
better, the results from this simple example suggest that
the adaptive sampling strategy leads to faster state- and
parameter convergence. The resulting oil-spill concentration
estimation errors and UAV paths from the strategy proposed
in this paper are illustrated in Figure 4-6 for different time
instants (t ∈ {0, 100, 300}).

V. CONCLUSIONS

In this paper we have proposed an adaptive sampling
strategy for a UAV sensor network. A trajectory planner is
introduced in order to improve observability of the system,
and to prevent the mobile sensors to be stuck around some
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Fig. 4. Oil-spill management: Snapshot of state estimation error surface∣∣χ3(0)
∣∣. The system has been simulated for 30 second prior to this snapshot.

local minima. The trajectory tracking control strategy is
based on Lyapunov analysis, and we show UGAS of the
closed-loop estimation, identification and trajectory tracking
errors. Our approach is applied to an oil-spill example, and
the benefits of the method is supported by simulations.
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APPENDIX

To prove Theorem 1 the following propositions and lem-
mas will be needed:

Proposition 1: The equilibrium point χ1 =
col[χ11, χ12] = 0 of χ̇1 = f1(t, χ1) is UGES.

Proof: Let V1 := 1
2χ
>
1 P1χ1, with

P1 :=

[
Kpro ΛM
MΛ M

]
. (46)

We see that the Lyapunov function is lower and upper
bounded by α1(s) = λmin(P1)s2 and α1(s) = λmax(P1)s2,
respectively. Furthermore, V̇1 ≤ W1(χ1), where W1(χ1) :=
χ1Q1χ1 is positive definite, with

Q1 :=

[
Kpro + Λ(D +Kder)Λ Λ(D +Kder)

(D +Kder)Λ D +Kder

]
. (47)

The conclusion follows by standard arguments.
Lemma 1: Under Assumption 2 and 4 there exist con-

stants c10, c11 such that

c10I ≤ P3(t) ≤ c11I , (48)
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Fig. 5. Oil-spill management: Snapshot of state estimation error surface∣∣χ3(100)
∣∣. The motions of the UAVs are illustrated with black (UAV 1)

and white (UAV 2) lines.

for any t ≥ 0.
The lemma is taken from [16, Lemma 1] which proof is
contained in [20] and [21].

Proposition 2: Under Assumption 2, 4 and 6, the equilib-
rium point χ3 = 0 of (27) is Uniformly Globally Exponen-
tially Stable (UGES).

Proof: This follows from [16, Theorem 1]. In fact,
take V3(t, χ3) = χ>3 P

−1
3 χ3 as a Lyapunov function

candidate. We use that Ṗ−1
3 (t) = −P−1

3 (t)Ṗ3(t)P−1
3 (t),

and find that V̇3 = −χ>3 (P3(t)Q3(t)P3(t) +
C>(t, χ11)R−1

3 (t)C(t, χ11))χ3. Since positive definiteness
of P3(t) and its inverse follows from Lemma 1, and Q3(t)
is positive definite by Assumption 6, V̇3 ≤ −c8|χ3|2 /c210,
and by standard arguments the equilibrium point of (27) is
UGES.

Lemma 2: Under Assumption 2, 4 and 6, there exists a
c4 > 0 such that∣∣Ψ(t)

∣∣ ≤ c4 , for any t ≥ 0 , (49)

where Ψ(t) is the solution to (20).
Proof: Since the system Ψ̇ = Acl(t, q)Ψ is UGES by

similar argument as in Proposition 2, and the input B(t) of
(20) is bounded by Assumption 2, the conclusion follows.

Lemma 3: Under Assumptions 1, 2, 4, 5 and 6, Assump-
tion 1 of [22] is satisfied. That is, the equilibrium point
χ2 = 0 of χ̇2 = f2(t, χ11, χ2) is UGAS.

Proof:
∣∣Ψ(t)

∣∣ is bounded by Lemma 2 and by Assump-
tion 3,

∣∣C(t, χ11)
∣∣ is bounded for bounded qref(t) and χ11

which holds by Assumption 1 and Lemma 1, respectively.
Therefore UGAS of the equilibrium point χ2 = 0 of
χ̇2 = f2(t, χ11, χ2) follows from [23, Theorem 2.16] due
to persistency of excitation, Assumption 5.
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Fig. 6. Oil-spill management: Snapshot of state estimation error surface∣∣χ3(300)
∣∣. The motions of the UAVs are illustrated with black (UAV 1)

and white (UAV 2) lines.

Lemma 4: Under Assumptions 1-6, the solutions to (25)-
(27) are Uniformly Globally Bounded (UGB).

Proof: Due to Propositions 1 and 2, χ1(t) and χ3(t)
are UGB. Then, using Assumption 3 and Lemma 2 the inter-
connection term g2(t, χ11)χ3 in (26) is uniformly bounded.
Since the equilibrium point χ2 = 0 of χ̇2 = f2(t, χ11, χ2)
is UGAS, due to Lemma 3, a bounded input will provide a
bounded state, and the conclusion follows.

We are finally ready to give the proof of the main result:
Proof: [Proof of Theorem 1] Due to Proposition 1,

Proposition 2 and Lemma 4, the equilibrium points of (25)
and (27) are respectively UGES and UGAS, and the solutions
of (25)-(27) are UGB. Finally, since χ̇2 = f2(t, χ11, χ2) is
UGAS by Lemma 3 the conclusion holds by [22, Lemma 2].
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