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ABSTRACT
With the rise of focus onmanmade changes to our planet andwildlife therein, more andmore emphasis
is put on sustainable and responsible gathering of resources. In an effort to preserve maritime wildlife
the Norwegian government decided to create an overview of the presence and abundance of various
species of marine lives in the Norwegian fjords and oceans. The current work evaluates the possibility
of utilizing machine learning methods in particular the You Only Look Once version 3 algorithm to
detect fish in challenging conditions characterized by low light, undesirable algae growth and high
noise. It was found that the algorithm trained on images collected during the day time under natural
light could detect fish successfully in images collected during night under artificial lighting. The
overall average precision score of 88% was achieved. Later principal component analysis was used to
analyse the features learned in different layers of the network. It is concluded that for the purpose of
object detection in specific application areas, the network can be considerably simplified since many
of the feature detector turns our to be redundant.

1. Introduction
Coastal areas surrounding the Oslo fjord are some of the

most populous areas in Norway which relies heavily on the
well being of the fjord. Unfortunately the ecological con-
dition is deteriorating leading to a decline in the population
of several marine species. This has resulted in a need for
greater environmental commitment to the area. The Norwe-
gian government launched a project called Frisk Oslofjord
- (Healthy Oslo Fjord) Frisk Oslofjord. Production of new
knowledge and a basis for future management, test and veri-
fication of new technologies, and awareness creation are the
major goals of the project. To this end one of the main activ-
ities in the project is to prepare detailed ecological maps of
the Oslo fjord. These maps are expected to show the class of
marine species and their locations at any particular time for
better and accurate biomass estimation. Such information
can be extremely useful for new upcoming technologies like
Digital Twin Rasheed et al. (2020). As of today the map-
ping is conducted manually by inspecting images and then
recording the findings. However, with the recent success of
Artificial Intelligence (AI) and Machine Learning (ML) in
image classification, text interpretation and big data analy-
sis, new possibilities are opening up to automate the work-
flow. For example, Olsvik et al. (2019), Choi (2015), and
Xu and Matzner (2018) have shown the power of computer
vision and ML, not only in identifying, but also classifying
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various marine species. Xu and Matzner (2018), utilizing
You Only Look Once (YOLO) algorithm achieved a mean
average precision score of 53.92% on a combination of three
distinct datasets. Choi (2015) reported an F1-score of 84.8%
for classification tasks. Detection of coral reef fishes in un-
derwater images was studied using convolutional neural net-
works by Villon et al. (2016, 2018). In this work differ-
ent post-processing decision rules were used to identify 20
fish species thereby taking into account the marine biodi-
versity in a cost-effective manner. The authors highlighted
the promise of deep learning for monitoring fish biodiver-
sity cheaply and effectively with an identification accuracy
of 94.9%, which is greater than the rate of correct identi-
fication by humans (89.3%). Sung et al. (2017) reported
93% classification accuracy. Their study was based once
again on the YOLO algorithm. Fish detection system un-
der a variety of benthic background and illumination con-
ditions was investigated by combining convolutional neu-
ral network (CNN) and long short-term memory (LSTM)
networks by Labao and Naval Jr (2019). Combining prin-
cipal component analysis (PCA), CNN and support vector
machine (SVM) Sun et al. (2018) achieved a 95.18% fish
recognition accuracy. More recently, Jalal et al. (2020), with
an F1-score of 95.47 on the LIFECLEF 2015 (Joly et al.
(2015)) claim to have outperformed all previousmodels used
on the dataset. In another study Cai et al. (2020) proposes an
approach combining YOLO version 3 (YOLOv3) with Mo-
bileNetv1 (Howard et al. (2017)) for fish detection in real
breeding farm which can give accurate count of the fishes.
These approaches, owing to the ease of automation, can al-
low mapping of the fjords and ocean in general, with much
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higher spatio-temporal resolutions. However, despite the huge
potential of exploitation of theML based approach, the tech-
nology is not perfect Tu (1996) Abbe and Sandon (2018).
Moniruzzaman et al. (2017) surveyed deep learningmethods
on underwater marine object detection and automated ap-
proaches for monitoring of underwater ecosystem. He con-
cludes that the algorithms which can give super-human per-
formance in image classification in good daylight might suf-
fer to make correct classifications / detections in underwater
scenarios where the visibility is highly diminished due to
poor lighting conditions. Moreover there is little insight into
the exact working of these algorithms something that is de-
sirable to explain the detection capability of the algorithm.
Thus there are two basic aspects that distinguish this work
from the previous studies mentioned above:

• Evaluation of the performance of the model on noisy
images recorded under poor lighting conditions with
problematic algae growth on the camera lens. In the
Norwegian fjord these are major issues.

• Explanation of the inner working of the algorithm.
This is intended for optimizing the algorithm so that
they can be deployed and trained quickly as and when
required onboard.

We start this paper with a brief overview of the theory
behind the algorithms used for object detection followed by
information regarding the collection and processing of data.
After this, results related to the prediction capability of the
ML algorithm are presented followed by some insights into
its inner workings. Lastly, the main take away from the cur-
rent study is presented.

2. Theory
2.1. YOLO

The ML method utilized in this work is based on the
YOLO architecture which is one of the most efficient and ac-
curate algorithms for object detection in complicated scenes
(Redmon and Farhadi (2018)). So far, the algorithm has
been adopted formany applications including chemical sens-
ing and detection of gas emission (Monroy et al. (2018)),
anthracnose lesion detection on plant surfaces (Tian et al.
(2019)), small target detection from drones (Xu et al. (2018)),
traffic monitoring (Barthélemy et al. (2019)), plate recogni-
tion (Laroca et al. (2018)), pedestrian detection (Qu et al.
(2018)), and autonomous driving (Choi et al. (2019)). Since,
one of the objectives of the current study is to present an in-
sight into the inner workings of the algorithm, we first give
its brief but sufficient description. In a nutshell, YOLO is a
Fully Convolutional Network (FCN) (Redmon and Farhadi
(2018)). It uses a feature extractor with residual blocks con-
sisting of 53 convolutional layers. A unique feature of this
algorithm is that the detections are conducted at distinct lay-
ers throughout the network. In Figure 1 the entire structure
of the network is shown. On the far left of the network one
can see the layer through which the input images are fed in.
This is followed by a gray box indicating YOLO’s feature

extractors. The feature extractors, as the name implies, are
responsible for bringing out important features from the in-
put images. It consists of 23 residual blocks, each of which
is built up of convolutional layers with 3×3 and 1×1 feature
extractors. Batch normalization is applied in every convolu-
tional layer to regularize the model, thus avoiding overfit-
ting without the invocation of dropout (Redmon and Farhadi
(2016)). The batch normalization is simply the normaliza-
tion of the output of one layer by subtracting the batch mean
and dividing by the batch standard deviation before passing
it onto the next layer. 3×3 feature extractors with stride 2 are
used when downsampling the feature maps. YOLO uses no
form of pooling in contrast to most other FCNs (Zhao et al.
(2018)). This is because pooling often results in a loss of
low-level features (Kathuria (a)).

Since YOLO is a FCN, it is invariant to the size of the in-
put images. However, for mere convenience (for example in
batch processing of images and parallelization on GPUs) the
dimensions of all the images are kept the same. Detections
aremade at layers 82, 94 and 106. By the time an input image
transverses down to the first detection layer, its size shrinks
by a factor of 32. Thus with an input image of size 416×416
the feature map at this layer will be 13 × 13. After the first
detection, the layer prior to the detection is upsampled by a
factor of 2. In Figure 1, this corresponds to the last purple
layer before the first orange layer. After a few more convolu-
tional operations the resulting layer is concatenated with the
feature map from an earlier layer having the identical size. In
Figure 1, this corresponds to the concatenation of layers 61
and 86 to produce layer 87. The next detection is extracted at
layer 94 after which the exact same procedure repeats once
more. If the input image was 416 × 416, the feature maps in
layer 94 and later 106 would be of size 26 and 52, respec-
tively. Extraction of detections at three locations within the
network is an added feature of the third version of YOLO.
According to the authors it improves the detection of small
objects since it is able to capture more fine-grained features
(Redmon and Farhadi (2018)). The output of the network is
formulated as a three dimensional (3D) tensor and its dimen-
sions are presented in Equation 1:

Output = S × S × [B ∗ (5 + C)] (1)
where S is the number of grid-cells, B the bounding boxes
per grid cell and C the number of classes to detect. In Figure
2 an illustration of the feature map in a detection layer is
presented. A bounding box is displayed as a red rectangle
and the orange square is the grid cell that is at the center of
the bounding box. This cell contains a long row of values.
The pair (tx, ty) is the center of the box relative to the boundsof the grid cell the box belongs to. The pair (tw, tℎ) is thewidth and height of the box relative to the whole image. The
confidence score po, sometimes called objectness score, tells
us how certain it is that there is an object inside the box, and
also how accurately the box encloses the object. Formally
we have:

po = Pr(Object) ∗ IOUtrutℎ
pred . (2)
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Figure 1: The structure of the entire YOLO v3 network. Illustration inspired by Kathuria (b)

where Intersection Over Union (IOU) is mathematically de-
fined as:

IOU =
area of overlap
area of union (3)

IOU (Equation 3) is ameasure of howmuch two shapes over-
lap. A high IOU means that the two shapes almost perfectly
overlap each other. An IOU of zero would correspond to the
two shapes not overlapping at all. If there is no object inside
the box the IOU should be zero. If there is an object in the
cell the confidence score should equal the IOU. The class
probabilities pi are formally defined as follows:

pi = Pr(Classi|Object) (4)
This probability is called the Conditional Class Probability
(CCP), and it is a measure of how likely it is, given that
there is an object, which belongs to a certain class. Prior to
the third version of YOLO, softmax activation was applied

on the output of the conditional class probabilities (Redmon
et al. (2015)). This is now changed to the sigmoid activation
function in the YOLO version 3.
2.2. Evaluation Metrics

There are many metrics that can be used to evaluate the
performance of an ML algorithm. Here, we will present the
most common, ubiquitous metrics. The definitions are ob-
tained from Gopalakrishna et al. (2013), Flach (2019) and
Everingham et al. (2010). In order to refresh the understand-
ing of what the metrics convey in the current context, a sim-
ple scenario is constructed. Let us say that we have an al-
gorithm that can predict the location and class of fish in im-
ages. The image in reality may or may not contain any fish
but when it contains, the region containing the fish is also
labelled. If a particular region contains a fish and the algo-
rithm predicts it correctly, we have a so called True Positive
(TP). If the algorithm does not detect any fish in the region
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Figure 2: Explanation of YOLOs output tensor. Illustration
inspired by Kathuria (a)

Figure 3: A confusion matrix relating TP, TN, FP and FN

and the labeled data confirms this then this is referred to as
a True Negative (TN). False Positives (FP) tell that fish is
detected by the algorithm when none existed in the labelled
image. False Negatives (FN) tell that the algorithm failed to
detect a fish that was actually there in the image. Figure 3
summarizes all these possibilities.

TP, TN, FP, FN are used in combination to construct
other indicators like Precision, Recall, F1-score and Aver-
age Precision (AP) which are generally more concise and
better measures of the performance of an algorithm. Preci-
sion, given by Equation 5, is a measure of how precise the
predictions are. It gives us the percentage of predictions that
agree with the ground truth as follows:

Precision = TP
TP + FP (5)

Recall, given by Equation 6, tells us how good the algorithm
is in finding all the TPs in an image, which is given as:

Recall = TP
TP + FN (6)

For most applications, one wants to find the parameter
that leads to the best combined precision and recall. To this
end, the F1-score (Equation 7) is designed as follows:

F1-score = 2 ⋅ Precision ⋅ Recall
Precision + Recall (7)

Another important measure is the Average Precision (AP)
score defined as

AP@IOU =
∑

n

Recalln − Recalln−1
Precisionn (8)

Here we note that there are many different formulations of
AP. We have chosen to formulate it the same way that scikit-
learn does (Pedregosa et al. (2011)). The @IOU refers to
the fact that one must define when a prediction is accurate
enough (i.e., TP ). For example, how precisely a bounding
box must encapsulate an object to be detected. This is done
by setting an IOU threshold. Typically the AP is calculated
for an IOU ≥ 0.5. From Equation 8, it can be seen that cal-
culating the AP is the same as calculating the area under the
precision-recall curve.
2.3. Principal Component Analysis

Aswe have seen, the YOLO architecture consists of large
number of hidden layers and within each layer there are mul-
tiple convolutional filters that are learned. Interpreting such
a model boils down to analyzing the feature maps (which are
the result of convolutional operation) extracted from each
layer. A simple question that arises is that if so many filters
and layers are actually required for the task of fish detection
? To answer this question Principal Component Analysis
(PCA) was applied on the feature maps extracted from each
layer and analyzed. The PCA process provides an efficient
way to compress data and explain variance of the data better
than any other linear combination Jolliffe (2002) of the orig-
inal feature maps. Although the geometric approach to PCA
is due to Karl Pearson Pearson (1901), a more systematic ap-
proach to PCA is due to Harold Hotelling Hotelling (1933).
In last few decades, there have been numerous studies to
examine ways to nonlinearly generalize PCA. These meth-
ods often define a curve in latent space which minimize the
mean squared error of all variables. Yet, the smoothness of
the curve can be varied by the method. For example, an au-
toassociative or autoencoding neural network model Kramer
(1991), Hsieh (2001, 2009) and a kernel PCA Schölkopf
et al. (1998) can be considered two successful approaches
of such a nonlinear PCA (NLPCA) framework. Moreover,
other nonlinear dimensionality reduction techniques, such
as principle curves Hastie and Stuetzle (1989), locally lin-
ear embedding Roweis and Saul (2000), isomap Tenenbaum
et al. (2000) and self-organized map Kohonen (1982) ap-
proaches, can also be regarded as a discrete version ofNLPCA.
However, the NLPCA are themselves too complex to inter-
pret and hence, within the current study, we have not con-
sidered these methods. PCA owing to its simplicity is cho-
sen, and our findings as will be seen later justify the choice.
Through this exercise there are basically two goals to be
achieved:

1. To visualize as much of the information in the fea-
ture maps as possible, without displaying every single
map.

H. Stavelin et al.: Preprint submitted to Elsevier Page 4 of 15



Object Detection on Marine Data

Figure 4: The measurement station. The leftmost glass dome
is the camera. The red cylinder is the sonar and the blue and
black cylinder on the right is the artificial lighting source

2. To find out if the feature maps contain truly distinct
features, making them necessary for the network or the
feature extractors used in the network are redundant.

The feature maps are naturally two dimensional (2D) so
they are flattened an stacked as rows in amatrix which is sub-
jected to PCA. If there are 32 feature maps of size 13 × 13
these are grouped together so as to have a matrix of dimen-
sions 32×(13 ∗ 13) = 32×169. PCA can then be applied to
this matrix. The result of this is a list of components ordered
based on the level of variance they capture. Two situations
are worth noting: The first is when one component explains
all the variance in the dataset. In this case the feature maps
contain a clear pattern since they are all the same. The sec-
ond extreme case is when all the components explain similar
levels of variance. In this case there is no clear pattern in the
feature maps, indicating that they are all very different from
each other.

3. Data
The measurement station at Fulehuk in Norway can be

seen in Figure 4. The station has a camera, a sonar and an
artificial lighting source. It was deployed on the ocean floor
about 30 meters below the water surface. It is oriented such
that it looks from the ocean floor up at the water surface. The
camera is a Goblin Shark and records 1080p at 30 fps with a
horizontal angle of view of 92◦ in water Ivesdal. The sonar
is a Simrad ES200-7CDK Split Kongsberg. The data was
recorded between March and August 2019. The hardware
was initially setup such that the camera and sonar would
continuously capture data while artificial lighting would be
enabled during nighttime. In order to lessen the data bur-
den, images were uploaded to the storage container at 6 sec-
onds intervals during March and much more infrequently
(minutes to hours) during June, July and August. Further-
more, during March there was no artificial lighting during
the night. For June, July and August artificial lighting was
enabled both during the day and night time. A team of divers
occasionally cleaned the camera lens to arrest excessive al-
gae growth.

Parameters Values
batch 64
subdivisions 16
width 416
height 416
channels 3
momentum 0.9
decay 0.0005
angle 0
saturation 1.5
exposure 1.5
hue .1
learning rate 0.001
burn_in 1000
max_batches 500200
policy steps
steps 400000, 450000
scales .1,.1

Table 1
YOLO parameters used in this study

4. Implementation and Set-up
Setting up the YOLO network requires an initial set of

weights and a configuration file. A pretrained set of weights
called “darknet53.conv.74”was obtained fromRedmonsweb-
site Redmon. These weights were trained on the ImageNet
dataset. The configuration file contains the entire network
structure. All the general parameters are listed in Table 1.
Width and height of the images were set to 416 to keep train-
ing time low. The number of filters in the three output layers
had to be adjusted to accommodated the additional number
of classes to be classified. Based on the article by Redmon
and Farhadi (2018), the number of filters in the output layers
should comply with the following equation:

Filtersn = (C + 5) ∗ 3 (9)
The YOLO algorithm was trained in two stages (see Fig-

ure 5). To prepare the labelled data for the first stage, 510
images from the month of March were selected and hand la-
belled to create a perfect ly balanced dataset. LabelImg, as
it supports the YOLO data format, was used to label the im-
ages Tzutalin (2019). None of the images corresponded to
the night conditions under artificial lighting was included in
the training set. The data set was split in the ratio 90:10 cor-
responding to the training and test sets. The trained model
from the first stage was used to pseudo-label 3000 new im-
ages from the same month. While the correctly labelled im-
ages were used to augment the data as it is, the images cor-
responding to false positives and false negatives were man-
ually corrected before including in the data set. Once again
the additional data was divided into training and test sets in
the same ratio as used earlier and the second stage training
was conducted. Additional images from the months of June
and July were also selected as test data to test the model per-
formance beyond the month of March.
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Figure 5: An overview of the training process

5. Results and Discussions
In Figure 6 a set of images containing fish from March

to August can be seen. It is clear that the data quality varies
a lot and that the size and illumination of the fish is not uni-
form. The fish consistently appears more distinct during the
night because of the use of artificial lighting that gets re-
flected off their shiny surfaces. For the month of March the
artificial lighting was still not operational resulting in pitch
dark images recorded during the night. The growth of al-
gae on the lens negatively impacted the image quality. The
lens was cleaned from time to time but as can be seen in
the images the cleaning was not fully effective. However,
these are some of the practical limitations expected in the
prevailing conditions in the Norwegian fjord. The norm for
all YOLO-libraries is to display training per iterations and
not per epochs. However, the conversion process from itera-
tions to epochs is quite simple, and it is shown in Equation 10
as follows:

epochs = batchsize ∗ iterations
In

(10)

The batch size is set to 64 and the number of images are
given by In. Precision, recall and F1 are calculated at a lowerconfidence thresholds of 0.25.
Training Stage One: In Table 2, performance of the trained
model from the first stage on the test data from the month of
March is presented. Based on Equation 10, 1000 iterations
correspond to roughly 140 epochs. Beyond the 2000 itera-
tions the gain in accuracy was only marginal. However, the
training was continued for 4000 iterations to ensure that no
substantial improvements could be made beyond it. It was
observed that the metrics started fluctuating beyond it. The
best metrics were obtained at the iteration number 4200. At
this point the trained model had a recall of 69%, precision of
74% and F1 score of 72%.
Training Stage Two: In Table 3 the progress during the
training at stage two, where ∼ 2700 images were used is
shown. Due to the increased dataset size, 1000 iterations
corresponded to roughly 24 epochs. It can be seen from the

Iterations AP@50 Precision Recall F1
1000 0.3881 0.53 0.50 0.51
2000 0.6003 0.72 0.64 0.68
3000 0.5974 0.72 0.61 0.66
4000 0.6015 0.73 0.62 0.67
4200 0.6338 0.74 0.69 0.72

Table 2
Performance of the trained model from stage two on the test
data consisting of 51 images

Iterations AP@50 Precision Recall F1
1000 0.8118 0.83 0.81 0.82
2000 0.8274 0.79 0.84 0.81
3000 0.8595 0.83 0.88 0.85
4000 0.8679 0.82 0.87 0.85
5000 0.8475 0.85 0.84 0.84
-
8000 0.8809 0.83 0.87 0.85

Table 3
Performance of the trained model from stage two on the test
data consisting of 300 images

Table 3 that the increase in the size of the dataset greatly im-
proves all the performance metrics, achieving a AP of 0.88
and F1-score of 0.85 despite the noisy dataset. It is, how-
ever, reasonable to think that better results could be achieved
if the the training data quality could be improved. The lim-
iting quality of the data is probably due to the authors in-
ability to correctly label the data by hand. This is because
of the fact that in some images it was almost impossible to
distinguish fish from other objects leading to ambiguities in
around 5% of the hand labelled images. Unfortunately there
was no better way to improve the labelling. We can only
assume that our ability to correctly classify fishes with 95%
surpassed human accuracy of 89.3% reported by Villon et al.
(2016, 2018). The network at stage two was initialized with
the trained weights from first stage. It is observed that most
of the learning once again happens in the first 1000 itera-
tions. The training was run for another 7000 iterations but
without any significant improvement in the performance. At
this stage the precision, recall and F1 score was 83%, 87%
and 85% respectively.
5.1. Visual Predictions on Unseen Images
Prediction on the data from March: In Figure 7 some
detections made on unseen data from March can be seen.
It is clear that the algorithm is able to satisfactorily detect
the fishes in the image. This is to be expected as an F1-
score of 0.85was achieved after the second round of training.
When inspecting all the data from March it was noticed that
the images throughout the month were similar and hence the
training set was indeed representative of the test set. This is
reflected in the performance of the algorithm on unseen data
from March as seen in Figure 7.
Prediction on data from June and July: When themodel
trained was applied to data from other months (eg. June and
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(a) Daytime during March (b) Nighttime during March

(c) Daytime during June (d) Nighttime during June

(e) Daytime during July (f) Nighttime during July

(g) Daytime during August (h) Nighttime during August
Figure 6: Some samples from the different time periods. We have good conditions during March, but complete darkness at night.
During June there is large amounts of algae on the lens. Between June and July the lens was cleaned and the camera angle
changed

July), mixed results were obtained as can be seen in Fig-
ure 8. On the left hand side of Figures 8a, 8b and 8c it looks
like twigs or perhaps pieces of plastic from the rig is being
marked as fishes. Another example of this is in Figure 8a

where the eye of a large fish is marked as a fish. This in-
dicates that the trained model is not sufficiently robust to
outliers, noise and significantly changed conditions during
these months compared to March. One positive observation
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Figure 7: Image from 03.03.2019 with predicted bounding
boxes

is that in many of the images (eg. Figure 8), a large num-
ber of fish got successfully detected both during the day and
during the night. Especially in Figure 8b one can notice that
the trained model did fairly well in detecting every tiny fish
in abundance. However, at the same time there are also a
reasonable number that went undetected.

In Figure 9 some exampleswhere the algorithm performed
particularly poorly are presented. One can see that some-
times even large fishes can go undetected. Another problem
that is encountered is that occasionally multiple bounding
boxes are allocate to the same fish (Figure 9b). Furthermore,
the rope seen in this image is being detected as a fish. From
this we know that the algorithm does not have to see an en-
tire fish to mark it as a fish. This is good in the sense that
it can detect fish that are not completely within the field of
view of the camera but leads to several errors as shown here.
The algorithm rarelymarks algae as fishwhich is impressive.
For example in Figure 9b it could have been a possibility to
mistake algae for fish. Why the algorithm does not do this is
unclear. Perhaps it uses the blurriness of the algae to deter-
mine they are not fish or perhaps it could be attributed to the
overall shape of the algae. Last but not the least it should be
noted that the algorithm is able to detect fish during a variety
of lighting conditions as seen in Figure 8. As explained in
Section 4, the algorithm had never seen images under arti-
ficial lighting conditions during the training. In most of the
images the bounding boxes are correctly placed around the
fishes. We remark that the precision is very high while re-
call is quite low. This could be attributed to the following
two reasons:

1. The images in the test set are quite different from those
in the training data. The different environmental con-
ditions unseen during the training step disturb the pre-
dictive ability of the model.

2. When images are input to YOLO they are downscaled
to 416 × 416. This results in a loss of resolution and
hence a loss of information required for correct detec-
tion and classification.

5.2. Insights into the Inner Workings of the FCN
In order to understand the inner workings of the net-

work, feature maps from the hidden layers were extracted.

(a)

(b)

(c)
Figure 8: Some predictions on data sampled from 23. June
2019

From the description of the feature extractor in Redmon and
Farhadi (2018) it is known that the first layer of the network
has 32 filters of size 3×3. In reality these filters are 3×3×3
because color images have three channels. It should be noted
that 32 is actually the lowest number of filters in any layer.
Some layers in the network has up to 1024 filters making the
task of visualizing and interpreting them individually almost
impossible. It is worth stressing that the result produced by
the convolution operation on the colored images do not ac-
tually produce feature maps that can be visualized in a com-
prehensible way. This is because the resulting matrix values
are not confined to the 0-255 interval. Therefore, to actually
create visualisations, the values were normalized and the de-
fault colormap “viridis” from Matplotlib was applied. The
colormap maps low values to dark blue and high values to

H. Stavelin et al.: Preprint submitted to Elsevier Page 8 of 15



Object Detection on Marine Data

(a) Nighttime 10.07.2019

(b) Daytime 08.08.2019
Figure 9: Some especially poor detections from July and Au-
gust

yellow. The image that was fed as input to the trained net-
work from which intermediate feature maps were extracted
is given by Figure 7. In Figure 10 we see some plots of the
intermediate feature maps produced in the very first convo-
lutional layer of the network. Based on these maps it seems
that the filters produce every imaginable variant of the fea-
ture map. Some filters blur the images while others sharpen
it. Some even seems to produce the negative. In Figure 10d
there are strong gradients highlighting edges while in Fig-
ure 10e the image is almost completely smooth. In Figures
10c and 10d one can see that edges are detected on opposite
sides. In Figure 10c left-edges are detected, while in Fig-
ure 10d right-edges are detected. In Figures 10a and 10b we
see inverse values. Using the negative might be one of the
reasons why the network seems to detect fish both with and
without the presence of artificial lighting. This also explains
why it doesn’t matter to the network whether the fishes are
dark or light in color.

In Figure 11 images reconstructed in deeper layers are
displayed. When comparing Figures 10 and 11 one notices
that the images have different aspect ratios. When looking
at the results from the first layer one can look at the results
using the original aspect ratio of the images that were put
in. However, as an image passes through the network, more
and more information seems to “bleed” onto the originally
unused top and bottom margins of the image. It seems like
YOLO tries to store as much information as possible.

In the layers closer to the input layer (e.g. Figures 11a,

11b, 11c) one can see that the images closely resemble the
original image. Gradually as one traverses through the lay-
ers the images become coarser. In Figures 11e and 11f one
can see that the fish and some algae are very prominent. In
these images the algae is brighter than the fish. It might be
that high values in these specific images in these specific lay-
ers means that an object should be ignored, as labels around
algae are undesirable. In Figure 11k a reconstructed image
from the 81st layer of the network is shown. This layer con-
sists of 1024 feature maps of size 13 × 13. It is based on the
images in this layer that the first prediction is made. When
one has traversed this far into the network it is virtually im-
possible to recognize what information the different pixels
encode. However, it is to be noted that the original aspect
ratio border seems to have vanished, and that information
seems to be stored in the entire image. One can recall that
YOLO makes detections at three different scales. As one
moves past the first detection layer the network starts to scale
up the image. In Figure 11l one can see an image from the
layer before the second detection. It is still virtually impossi-
ble for a human to harness any meaningful information from
these images. However, one sees that some horizontal lines
have started to appear. It seems like YOLO is starting to
reconstruct the original image. After the second detection
layer YOLO further scales up the image. In the four layers
prior to the third and last detection, the images start to make
a bit more sense. In Figure 11m one can recognize blobs
that correspond to the fish that is to be detected. It is evident
that YOLO is able to “remember” what the original image
looked like. From this layer onwards, and to the end, these
blobs become more and more distinct as can be seen in Fig-
ures 11n, 11o and 11p. Thus for the very last detection layer
the network can perhaps create bounding boxes around the
brightest pixels. Furthermore, one can notice that in Figure
11p the fishes are represented by blocks of bright and dark
pixels together. It can also be observed that the restored top
and bottom margins of these images contain very little vari-
ance. It seems that in this detection layer most of the infor-
mation is retrieved from the values within the original aspect
ratio.

The discussion so far is based on a handful of images
extracted from each layer. As explained earlier there can be
up to 1024 feature maps in some of the layers which are hu-
manly impossible to interpret. In order to develop some sta-
tistical understanding of different layers we conducted PCA
on the feature maps extracted from each layer individually
Mishra et al. (2017). Figure 12 gives the plots of the ratio
of variance for the 5 most prominent principal components.
It appears that for our early layers, as can be seen in Figures
12a and 12b, almost all the variance can be explained using
a single component. Gradually, as one moves through the
layers it seems that more and more information is spread out
across the feature maps within a layer. In other words the
feature maps become more and more distinct within each
layer. All the feature maps in the first layer are quite alike,
while the feature maps are all very different in the 81st layer.
However, in the next layer (Figure 12f), a mode collapse is
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(a) (b)

(c) (d)

(e) (f)
Figure 10: Images extracted from the first convolutional layer in the network

observed. Seemingly, the output filters are able to extract
some pattern from the 81st layer. If all the components were
equally contributing that could indicate that no pattern was
found in the data. Perhaps the filters in the early layers per-
form similar operations, while in the later layers the opera-
tions become more specialised. If this is the case it would
make sense that the deeper layers contain more distinct data.
We recall that YOLO is a large FCN capable of detecting and
classifying several thousand classes simultaneously and that
it might be an overkill to just detect one class, as is being
done here. Perhaps PCA would give very different results
if the network was trained on a different dataset with more
classes. It might be that this kind of PCA could be used

as an optimization technique on FCNs. If most of the vari-
ance is explained by one, or a few, principal components,
perhaps the number of filters in that layer could be reduced.
This could be implemented to reduce run times of FCNs.
This could be done by first training the network and then
running PCA and reducing the amount of filters in the lay-
ers that are mostly explained by a few principal components.
Then the network could be retrained and PCA re-calculated.
This could be done until the accuracy starts to drop below
a certain threshold, in relation to the original accuracy of
the network. This would greatly increase training times, but
could speed up test times while still maintaining almost the
same accuracy as the original network. This could in addi-
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(a) L1: conv (b) L2: conv (c) L6: conv (d) L7: conv

(e) L8: conv (f) L9: shortcut (g) L20: conv (h) L21: conv

(i) L40: conv (j) L41: shortcut (k) L81: conv (l) L94: conv

(m) L103: conv (n) L104: conv (o) L105: conv (p) L106: conv
Figure 11: Feature maps from intermediate layers in YOLO. Detections are made at layer 82, 94 and 106

tion make it easier to interpret and explain the network as a
simplified network is nevertheless easier to analyze.

In Figure 13 one can see visualizations made by con-
structing images from only the most, and second most im-
portant components produced by the PCA. In Figure 12a we
observe that by just using the first component we retain al-
most all the variance. This is in correspondence with what

we see in Figures 13a and 13b. There is seemingly very little
information in the second image that one can not be found in
the first. We see from Figures 13c and 13d that the images
have started to become more distinct. In Figure 12c we see
that about 50% of the variance in this image is explained by
the first principal component. In the 81st layer, as seen in
Figures 13e and 13f, we see that the principal components
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(a) L1: N=32 (b) L2: N=64 (c) L10: N=64

(d) L20: N=128 (e) L81: N=1024 (f) L82: N=18
Figure 12: Bar plots: PCA analysis of intermediate layers. N is the number of feature maps.

starts to hone in on certain regions. This is especially inter-
esting when we look at a normal image from the same layer,
as seen in Figure 11k, which mostly looks like noise. In
this layer the principal components explain almost the same
amount of variance as can be seen in Figure 12f.

6. Conclusion
In this paper we utilized YOLO to detect fish in images

recorded under water and provided insight into the internal
workings of the algorithm. The major findings of the project
can be enumerated as follows:

• The work presented in this report makes a significant
contribution to theHealthyOslo fjord project by build-
ing a workflow that can be used to generate labelled
data from images using semi-supervised learning. The
current trained model already has a F1-score of 0.85
and has been used to generate labelled dataset that will
also provide labels to the sonar data that was acquired
during the same field campaign.

• We showed that using YOLO as a semi-supervised al-
gorithm bears some merit. Using a tiny amount of
hand labeled data to pseudo-label a lot of data greatly
reduced the manual labor involved.

• One important conclusion is that the trained algorithm
was robust against the lighting conditions. The model
trained on images taken during the day could still per-
formwell on images taken under artificial lighting con-
ditions at night.

• Internal layers of YOLO network were illustrated and
PCAwas utilized to extract information from the thou-
sands of filters used in the network. Investigating the
variance ratio vs principle component plots for the dif-
ferent layers, we observed that most of the variance in
the reconstruction of the images using the trained fil-
ters in the first few layers can be explained by a single
component. The number of components required to
explain the variance in the deep layers gradually in-
creases. This hints at the fact that for detecting single
class object (fish in this case)

Despite the interesting results presented in the article,
there are several aspects in the current work that requires
more in-depth investigation. We used a very complicated
network to detect only a single class (of fish). It would be
interesting to see how the network behaves if it is utilized to
do multiclass object detection and classification. Also it will
be valuable to explore the possibility of employing PCA to
optimize the network.
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