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Abstract: For dynamical systems with uncertainty, robust controllers can be designed by
assuming that the uncertainty is bounded. The less we know about the uncertainty in the
system, the more conservative the bound must be, which in turn may lead to reduced control
performance. If measurements of the uncertain term are available, this data may be used
to reduce the uncertainty in order to make bounds as tight as possible. In this paper, we
consider a linear system with a sector-bounded uncertainty. We develop a model predictive
control algorithm to control the system, and use a weighted Bayesian linear regression model
to learn the least conservative sector condition using measurements collected in closed-loop.
The resulting robust model predictive control algorithm therefore reduces the conservativeness
of the controller, and provides probabilistic guarantees of asymptotic stability and constraint
satisfaction. The efficacy of the proposed method is shown in simulation.
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1. INTRODUCTION

Model predictive control (MPC) is a popular method for
controlling systems with complex dynamics, subject to
state and input constraints. The control method solves
an optimization problem at every sampling instant, over
some finite prediction horizon, in order to find a sequence
of control inputs that optimizes the open-loop behaviour.
For complex systems, MPC will often require solving
nonlinear, possibly non-convex, optimization problems,
resulting in a nonlinear MPC (NMPC) scheme.

Even though modern solvers are able to handle NMPC
algorithms, solving the resulting optimization problem is
in general challenging. The main reason is that for non-
convex optimization problems, the solvers are often not
guaranteed to find global minima, and may instead get
stuck in a local minimum. A way to get around this,
is to treat the nonlinearities present in the dynamics as
uncertainties in a linear system. The linear system can
then be controlled using algorithms that are robust with
respect to some bounded uncertainty in the system, by
solving convex optimization problems. In Kothare et al.
(1996), robust MPC schemes are formulated for polytopic
systems and for linear systems with structured uncer-
tainty. A sector bound is particularly suited for modelling
state-dependent uncertainty and is used with a similar
MPC algorithm in Böhm et al. (2010), Böhm et al. (2009),
Nguyen et al. (2018).

For uncertain systems, the smallest possible bound on
the uncertainty may not be known apriori. Using more

conservative bounds will in turn lead to more conservative
controllers and correspondingly reduced control perfor-
mance. If the uncertainty in the system can be measured or
estimated, learning-based methods may be used to provide
robust controllers with improved performance. In Ostafew
et al. (2014), a Gaussian Process (GP) is used to model
the disturbances in a vehicle model. The learned model is
used to enhance a nominal prediction model in an MPC
scheme, resulting in improved path-tracking performance.

A similar approach is taken in McKinnon and Schoellig
(2019), using weighted Bayesian linear regression (wBLR)
to learn unknown dynamics in the prediction model. In
Hewing et al. (2019), GP regression is used to learn
unmodelled dynamics to be used in stochastic MPC.
The learned model complements the prediction model,
and the model uncertainty is used to update the chance
constraints. Compared to using only a nominal model, the
addition of the learned model results in cautious control
with improved performance. A GP model is also used
in Soloperto et al. (2018) to model the uncertainty in a
linear system, ensuring robust constraint satisfaction and
resulting in less conservative control.

In this paper, we consider linear systems with sector-
bounded uncertainties, as in Böhm et al. (2010), Böhm
et al. (2009) and Nguyen et al. (2018). We develop a
robust MPC algorithm similar to the one formulated in
Böhm et al. (2009). However, instead of assuming that
the smallest possible sector is known apriori, we use
measurements of the uncertainty to learn the sector bound.
This is done using a Bayesian linear regression (BLR)
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Nguyen et al. (2018).

For uncertain systems, the smallest possible bound on
the uncertainty may not be known apriori. Using more

conservative bounds will in turn lead to more conservative
controllers and correspondingly reduced control perfor-
mance. If the uncertainty in the system can be measured or
estimated, learning-based methods may be used to provide
robust controllers with improved performance. In Ostafew
et al. (2014), a Gaussian Process (GP) is used to model
the disturbances in a vehicle model. The learned model is
used to enhance a nominal prediction model in an MPC
scheme, resulting in improved path-tracking performance.

A similar approach is taken in McKinnon and Schoellig
(2019), using weighted Bayesian linear regression (wBLR)
to learn unknown dynamics in the prediction model. In
Hewing et al. (2019), GP regression is used to learn
unmodelled dynamics to be used in stochastic MPC.
The learned model complements the prediction model,
and the model uncertainty is used to update the chance
constraints. Compared to using only a nominal model, the
addition of the learned model results in cautious control
with improved performance. A GP model is also used
in Soloperto et al. (2018) to model the uncertainty in a
linear system, ensuring robust constraint satisfaction and
resulting in less conservative control.

In this paper, we consider linear systems with sector-
bounded uncertainties, as in Böhm et al. (2010), Böhm
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1. INTRODUCTION

Model predictive control (MPC) is a popular method for
controlling systems with complex dynamics, subject to
state and input constraints. The control method solves
an optimization problem at every sampling instant, over
some finite prediction horizon, in order to find a sequence
of control inputs that optimizes the open-loop behaviour.
For complex systems, MPC will often require solving
nonlinear, possibly non-convex, optimization problems,
resulting in a nonlinear MPC (NMPC) scheme.

Even though modern solvers are able to handle NMPC
algorithms, solving the resulting optimization problem is
in general challenging. The main reason is that for non-
convex optimization problems, the solvers are often not
guaranteed to find global minima, and may instead get
stuck in a local minimum. A way to get around this,
is to treat the nonlinearities present in the dynamics as
uncertainties in a linear system. The linear system can
then be controlled using algorithms that are robust with
respect to some bounded uncertainty in the system, by
solving convex optimization problems. In Kothare et al.
(1996), robust MPC schemes are formulated for polytopic
systems and for linear systems with structured uncer-
tainty. A sector bound is particularly suited for modelling
state-dependent uncertainty and is used with a similar
MPC algorithm in Böhm et al. (2010), Böhm et al. (2009),
Nguyen et al. (2018).

For uncertain systems, the smallest possible bound on
the uncertainty may not be known apriori. Using more

conservative bounds will in turn lead to more conservative
controllers and correspondingly reduced control perfor-
mance. If the uncertainty in the system can be measured or
estimated, learning-based methods may be used to provide
robust controllers with improved performance. In Ostafew
et al. (2014), a Gaussian Process (GP) is used to model
the disturbances in a vehicle model. The learned model is
used to enhance a nominal prediction model in an MPC
scheme, resulting in improved path-tracking performance.

A similar approach is taken in McKinnon and Schoellig
(2019), using weighted Bayesian linear regression (wBLR)
to learn unknown dynamics in the prediction model. In
Hewing et al. (2019), GP regression is used to learn
unmodelled dynamics to be used in stochastic MPC.
The learned model complements the prediction model,
and the model uncertainty is used to update the chance
constraints. Compared to using only a nominal model, the
addition of the learned model results in cautious control
with improved performance. A GP model is also used
in Soloperto et al. (2018) to model the uncertainty in a
linear system, ensuring robust constraint satisfaction and
resulting in less conservative control.

In this paper, we consider linear systems with sector-
bounded uncertainties, as in Böhm et al. (2010), Böhm
et al. (2009) and Nguyen et al. (2018). We develop a
robust MPC algorithm similar to the one formulated in
Böhm et al. (2009). However, instead of assuming that
the smallest possible sector is known apriori, we use
measurements of the uncertainty to learn the sector bound.
This is done using a Bayesian linear regression (BLR)

model (Murphy, 2012), with weighted data points as in
McKinnon and Schoellig (2019), that is particularly suited
for finding local approximations of nonlinear functions. To
the best of the authors’ knowledge, this has not been done
before. The first contribution of this paper is therefore to
use closed-loop measurements to tighten a sector bound of
an uncertain nonlinear term. Because the wBLR model
estimates distributions rather than deterministic model
parameters, it provides a measure of model uncertainty,
which is used to formulate a stochastic sector bound,
that in turn provides probabilistic stability and constraint
satisfaction guarantees for the closed-loop system. The
third contribution of this paper, is a reformulation of
the optimal infinite horizon problem, formulated in Böhm
et al. (2009), for discrete-time systems.

The paper is structured as follows: Section 2 provides
a description of the problem statement. In Section 3,
we give a brief overview of how wBLR can be used
to learn the sector bound, followed by a description of
the resulting learning-based robust MPC algorithm in
Section 4. Simulation results are provided in Section 5,
and conclusions are given in Section 6.

2. PROBLEM STATEMENT

We consider a subclass of discrete-time nonlinear systems,
namely sector-bounded Lur’e systems, which can be writ-
ten in the form

xk+1 = Axk +Gγ(zk) +Buk,

zk = Hxk,
(1)

where xk is the state vector, uk is the control input and zk
is the input of the nonlinearity γ(z) : R → R for z ∈ R. The
system matrices have dimensions A ∈ Rn×n, B ∈ Rn×m,
G ∈ Rn×1 andH ∈ R1×n. We assume that the nonlinearity
satisfies

(uz − γ(z))(γ(z)− lz) ≥ 0 ∀z, (2)

where u, l ∈ R+, i.e. is bounded by the sector condition as
visualized in Figure 1.
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Fig. 1. Sector-bounded nonlinear function, γ(z).

The system is subject to r polytopic state and input
constraints, of the form

Ck =

{[
xk

uk

]
∈ Rn+m : cjxk+djuk ≤ 1, j = 1, ..., r

}
, (3)

that must be satisfied at every time instant k. The control
objective is to steer the system (1) to the origin, for all
nonlinearities that satisfy the sector condition (2), and for
the input- and state-constraints in (3).

To this end, a sector condition that is as small as possible
can improve the control performance by making it less
conservative. For this purpose, both open-loop and closed-
loop measurements can be used to reduce the bounds
on the uncertainty. In this paper, we focus on the latter
and propose using closed-loop measurements to tighten
an initially conservative sector bound. For systems of the
form (1), where the full state is sampled for k ≥ 0,
we can estimate γ(zk) using the available closed-loop
measurements. For each time step, we use xk+1 and xk,
in combination with (1) and the known system matrices
A, B, G and H, to obtain an estimate of γ(zk).

3. LEARNING THE SECTOR BOUND

The goal of this section is to describe how closed-loop
measurements can be used to learn a sector bound, in
order to make it as tight as possible. For this purpose
we use wBLR, which is an extension of BLR as presented
in Murphy (2012), and a modification of McKinnon and
Schoellig (2019). We assume that we have a dataset of
n training samples, D = {zi, yi}ni=1, with yi = γ(zi).
Consider a local model

yi = wzi + ε, (4)

where zi and yi is the scalar input and output, respectively,
and with zero mean Gaussian noise, ε ∼ N (0, σ2), where
σ2 is the variance. For the sampled region of input space,
we want to approximate a locally linear model of the form

ŷ = wz, (5)

where w is a stochastic variable. Because the available
data points are sampled from a closed-loop system with
a fixed sampling frequency, we use scalar weights li ∈
[0, 1] to determine the importance of each data point as
done in McKinnon and Schoellig (2019). As in McKinnon
and Schoellig (2019), we assume that the data points
are weighted ahead of learning. However, we weigh the
datapoints differently, namely by considering the density
of data points in input space. To this end, the closed-loop
measurements are sorted, and then weighted according to
the input points’ similarity with both the previous and the
next data point. The weight is then scaled using the largest
difference between subsequent data points, according to

li =
0.5‖zi − zi−1‖+ 0.5‖zi − zi+1‖

max({‖z2 − z1‖, . . . , ‖zn − zn−1‖})
, (6)

for 2 ≤ i ≤ n − 1. For the first and last data point we let
li = 0. For a sample zi that is very similar to the previous
sample zi−1 and the next sample zi+1, the weight is small,
li ≈ 0, and the data point will have little influence on
the regression. For the opposite case, the sample will be
weighted with li ≈ 1, and the data point is fully included
in the regression. If all weights are 1, we obtain standard
BLR.

For the weighted data set Dl = {zi, yi, li}ni=1, we assume
that each data point is independent, and distributed
according to
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model (Murphy, 2012), with weighted data points as in
McKinnon and Schoellig (2019), that is particularly suited
for finding local approximations of nonlinear functions. To
the best of the authors’ knowledge, this has not been done
before. The first contribution of this paper is therefore to
use closed-loop measurements to tighten a sector bound of
an uncertain nonlinear term. Because the wBLR model
estimates distributions rather than deterministic model
parameters, it provides a measure of model uncertainty,
which is used to formulate a stochastic sector bound,
that in turn provides probabilistic stability and constraint
satisfaction guarantees for the closed-loop system. The
third contribution of this paper, is a reformulation of
the optimal infinite horizon problem, formulated in Böhm
et al. (2009), for discrete-time systems.

The paper is structured as follows: Section 2 provides
a description of the problem statement. In Section 3,
we give a brief overview of how wBLR can be used
to learn the sector bound, followed by a description of
the resulting learning-based robust MPC algorithm in
Section 4. Simulation results are provided in Section 5,
and conclusions are given in Section 6.

2. PROBLEM STATEMENT

We consider a subclass of discrete-time nonlinear systems,
namely sector-bounded Lur’e systems, which can be writ-
ten in the form

xk+1 = Axk +Gγ(zk) +Buk,

zk = Hxk,
(1)

where xk is the state vector, uk is the control input and zk
is the input of the nonlinearity γ(z) : R → R for z ∈ R. The
system matrices have dimensions A ∈ Rn×n, B ∈ Rn×m,
G ∈ Rn×1 andH ∈ R1×n. We assume that the nonlinearity
satisfies

(uz − γ(z))(γ(z)− lz) ≥ 0 ∀z, (2)

where u, l ∈ R+, i.e. is bounded by the sector condition as
visualized in Figure 1.
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The system is subject to r polytopic state and input
constraints, of the form

Ck =

{[
xk

uk

]
∈ Rn+m : cjxk+djuk ≤ 1, j = 1, ..., r

}
, (3)

that must be satisfied at every time instant k. The control
objective is to steer the system (1) to the origin, for all
nonlinearities that satisfy the sector condition (2), and for
the input- and state-constraints in (3).

To this end, a sector condition that is as small as possible
can improve the control performance by making it less
conservative. For this purpose, both open-loop and closed-
loop measurements can be used to reduce the bounds
on the uncertainty. In this paper, we focus on the latter
and propose using closed-loop measurements to tighten
an initially conservative sector bound. For systems of the
form (1), where the full state is sampled for k ≥ 0,
we can estimate γ(zk) using the available closed-loop
measurements. For each time step, we use xk+1 and xk,
in combination with (1) and the known system matrices
A, B, G and H, to obtain an estimate of γ(zk).

3. LEARNING THE SECTOR BOUND

The goal of this section is to describe how closed-loop
measurements can be used to learn a sector bound, in
order to make it as tight as possible. For this purpose
we use wBLR, which is an extension of BLR as presented
in Murphy (2012), and a modification of McKinnon and
Schoellig (2019). We assume that we have a dataset of
n training samples, D = {zi, yi}ni=1, with yi = γ(zi).
Consider a local model

yi = wzi + ε, (4)

where zi and yi is the scalar input and output, respectively,
and with zero mean Gaussian noise, ε ∼ N (0, σ2), where
σ2 is the variance. For the sampled region of input space,
we want to approximate a locally linear model of the form

ŷ = wz, (5)

where w is a stochastic variable. Because the available
data points are sampled from a closed-loop system with
a fixed sampling frequency, we use scalar weights li ∈
[0, 1] to determine the importance of each data point as
done in McKinnon and Schoellig (2019). As in McKinnon
and Schoellig (2019), we assume that the data points
are weighted ahead of learning. However, we weigh the
datapoints differently, namely by considering the density
of data points in input space. To this end, the closed-loop
measurements are sorted, and then weighted according to
the input points’ similarity with both the previous and the
next data point. The weight is then scaled using the largest
difference between subsequent data points, according to

li =
0.5‖zi − zi−1‖+ 0.5‖zi − zi+1‖

max({‖z2 − z1‖, . . . , ‖zn − zn−1‖})
, (6)

for 2 ≤ i ≤ n − 1. For the first and last data point we let
li = 0. For a sample zi that is very similar to the previous
sample zi−1 and the next sample zi+1, the weight is small,
li ≈ 0, and the data point will have little influence on
the regression. For the opposite case, the sample will be
weighted with li ≈ 1, and the data point is fully included
in the regression. If all weights are 1, we obtain standard
BLR.

For the weighted data set Dl = {zi, yi, li}ni=1, we assume
that each data point is independent, and distributed
according to
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p(y|Z,w, σ2) =

n∏
i=1

N (yi|wzi, σ2)li , (7)

known as the likelihood function, where Z is a matrix
with rows zi and y is a vector with elements yi. For this
likelihood function, the conjugate prior is a Normal Inverse
Gamma (NIG) distribution, resulting in the following
priors for w and σ2 (Murphy, 2012)

p(w|σ2)∼N (w|w0, σ
2V0), (8a)

p(σ2)∼ IG(σ2|a0, b0), (8b)

where w0 is the prior mean and σ2V0 is the prior variance of
the regression weight, and a0 and b0 are the initial param-
eters determining the Inverse Gamma (IG) distribution.
For the specified likelihood (7) and prior (8), one can show
that the posterior distribution over w and σ2 has the form
(Murphy, 2012)

p(w, σ2|Dl) = NIG(w, σ2|wN , VN , aN , bN ), (9)

with

wN = VN (V −1
0 w0 + ZTLy), (10a)

VN = (V −1
0 + ZTLZ)−1, (10b)

aN = a0 +
tr(L)

2
, (10c)

bN = b0 +
1

2
(w0V

−1
0 w0 + yTLy − wNV −1

N wN ),(10d)

where tr(·) is the trace operator, and L is a diagonal
matrix with the data weights li. From the joint posterior
distribution (9), we obtain the marginal distributions for
w and σ2 (Murphy, 2012)

p(w|Dl) = T (w|wN ,
bN
aN

VN , 2aN ), (11a)

p(σ2|Dl) = IG(σ2|aN , bN ). (11b)

In order to define a stochastic model of the sector bound,
we use the uncertainty of w, given by the Student t-
distribution as specified in (11a). To make use of the
stochastic sector bound in the control design, we use the

confidence interval for w to define the upper l̂ and lower û
bound on the local linear approximation of the nonlinear
function γ(z).
Assumption 1. For the local linear approximation ŷ

Pr
(
(ûz − ŷ)(ŷ − l̂z) ≥ 0

)
≥ ps ∀ŷ, (12)

holds with probability, Pr(·), at least ps.

4. LEARNING-BASED ROBUST MPC

For the system (1) and the control objective as described
in Section 2, we propose to use NMPC. The following
Section is dedicated to describing the control design, as
well as analyzing the stability and recursive feasibility of
the closed-loop system.

The basic idea of MPC is to solve an optimal control prob-
lem online, at each time instant k, based on the measured
system state xk|k. The goal of the optimal control problem,
is to find a control sequence that minimizes the infinite
horizon cost function

J∞|k =

∞∑
i=0

F (xk+i|k, uk+i|k), (13)

where i ≥ 0 is the prediction time variable and

F (xk+i|k, uk+i|k) = xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k, (14)

with Q > 0 ∈ Rn×n and R > 0 ∈ Rm×m. Because of
the infinite horizon cost function, the resulting constrained
optimization problem is in general not solvable. This is
overcome by assuming a controller of the form

uk+i|k = Kkxk+i|k, (15)

and at each time instant k calculating a constant feedback
matrix Kk ∈ Rm×n, instead of the complete input tra-
jectory. The resulting optimal control problem is a min-
max problem, that determines the feedback matrix Kk,
that minimizes the upper bound on the infinite horizon
cost. The uncertain nonlinear term is treated as a sector
condition, so that the resulting optimization problem is
convex, which we can solve efficiently and for which we can
find a global minimum. By recalculating Kk, the controller
can be more aggressive as the state evolves closer to the
origin, compared to the corresponding static feedback law
(Kothare et al., 1996).

With the purpose of incorporating the learned sector from
Section 3 in the control design, we define the following
parameters

δ =
û+ l̂

2
, (16)

ν =
û− l̂

2
, (17)

where l̂ and û are the lower and upper bound of the learned
sector, as given by the confidence interval for (11a). The
parameters are used to shift the nonlinearity according to

ϕ(z) = γ(z)− δz. (18)

This is done in order to work with a more convenient
expression for the sector bound in the control design. To
this end, we use (18) to express γ(z) in the original sector
condition (2), and obtain the following inequality

(νz − ϕ(z))(ϕ(z) + νz) ≥ 0, (19)

which implies that

|ϕ(z)| ≤ |νHx|. (20)

Let E := νH ∈ R1×n and rewrite so that

ϕ2(z) ≤ xTETEx, (21)

which in matrix form becomes[
x
ϕ

]T [
ETE 0
0 −1

] [
x
ϕ

]
≥ 0. (22)

We now define
Ā = A+ δGH, (23)

so that the system (1) can be written as

xk+1 = Āxk +Gϕ(zk) +Buk,

zk = Hxk.
(24)

The following Lemma provides conditions for obtaining a
stabilizing feedback law (15) for a system (1) with sector
condition (2) and an upper bound on the infinite horizon
cost (13). This is similar to Lemma 2 in Böhm et al.
(2009),but is modified to apply for discrete-time systems
and formulates a convex optimization problem without
having to fix any of the optimization variables. The Lemma
is also similar to Theorem 1 in Kothare et al. (1996), but
is derived using the sector condition as formulated in (2).

Lemma 1. Let Assumption 1 hold, so that for system (1),
with a sector bound as given by (2), and for the matrices
Ξ = ΞT > 0 ∈ Rn×n, Y ∈ Rm×n, and scalars λ > 0,
α > 0, the following inequality



Ξ Y TR
1
2 ΞQ

1
2 ΞET ΞĀT + Y TBT

R
1
2Y αI 0 0 0

Q
1
2Ξ 0 αI 0 0

EΞ 0 0 λ 0
ĀΞ +BY 0 0 0 Ξ−GλGT



≥ 0.

(25)
is satisfied. For K = Y Ξ−1 and P = αΞ−1, it holds that

a. The feedback law uk+i|k = Kxk+i|k asymptotically
stabilizes the system (1), with the sector-bounded
nonlinearity described by (2).

b. V (xk|k) = xT
k|kPxk|k is an upper bound on the infinite

horizon cost (13).

Proof. We define λ = α
τ and use that P = αΞ−1, K =

Y Ξ−1. After some matrix manipulations we take the Schur
complement to the matrix (25), and obtain that

[

(Ā+BK)TP (Ā+BK)
−P +Q+KTRK + τETE

]
(Ā+BK)TPG

GTP (Ā+BK) GTPG− τ


 ≤ 0.

(26)
Applying the lossless S-procedure, see e.g. Boyd et al.
(1994), to (26), it follows that vTQv ≤ 0, with vT =[
xT ϕ

]
and

Q =



[
(Ā+BK)TP (Ā+BK)

−P +Q+KTRK

]
(Ā+BK)TPG

GTP (Ā+BK) GTPG


 ≤ 0,

(27)
holds for all x = xk+i|k and ϕ = ϕ(zk+i|k) that satisfies
(22). This holds probabilistically under Assumption 1. The
inequality (27), is equivalent to

xT ((Ā+BK)TP (Ā+BK)− P +Q+KTRK)x

+ϕGTP (Ā+BK)xk + xT (Ā+BK)TPGϕ

+ϕGTPGϕ ≤ 0.

(28)

For a feedback law uk+i|k = Kxk+i|k and a quadratic

function of the form V (xk|k) = xT
k|kPxk|k where V (0) = 0

and P > 0, we then know that at sampling time k and
i ≥ 0

V (xk+i+1|k)− V (xk+i|k)) ≤
−(xT

k+i|kQxk+i|k + uT
k+i|kRuk+i|k).

(29)

Thus, for Q > 0 and R > 0, V (xk|k) = xT
k|kPxk|k is

a Lyapunov function and the control law asymptotically
stabilizes the system (1), proving part (a) of Lemma 1.

Using that x∞|k = 0, so that V (x∞|k) = 0, and summing
(29) from i = 0 to i = ∞, we get

J∞|k ≤ V (xk|k), (30)

i.e. V (xk|k) is an upper bound on the infinite horizon cost
J∞|k, proving part (b) of Lemma 1.

The following Lemma is used for showing constraint sat-
isfaction:

Lemma 2. The ellipsoid Ek = {xk ∈ Rn : xT
k Pkxk ≤ αk}

is contained in the constraint set Ck, as described in (3),
at time instant k if and only if

(cj + djKk)(αkP
−1
k )(cj + djKk)

T ≤ 1, j = 1, . . . , r. (31)

Proof. See e.g. Boyd et al. (1994).

Using the results from Lemma 1, we state the following
theorem for an NMPC controller with probabilistic stabil-
ity and constraint satisfation guarantees, that minimizes
the upper bound on the infinite horizon cost function (13).
This is a discrete-time version of Theorem 1 in Böhm et al.
(2009). Contrary to this theorem, all matrix inequalities
are linear, making the resulting optimization problem eas-
ier to solve.
Theorem 1. Let Assumption 1 hold, so that for the sys-
tem (1), with a sector-bounded nonlinearity (2), an NMPC
scheme is given by solving the following optimization prob-
lem:

min
αk,Ξk,Yk,λk

αk (32)

subject to [
1 xT

k|k
xk|k Ξk

]
≥ 0

(33a)


Ξ Y T
k R

1
2 ΞkQ

1
2 ΞkE

T ΞkĀ
T + Y T

k BT

R
1
2Yk αkI 0 0 0

Q
1
2Ξk 0 αkI 0 0

EΞk 0 0 λk 0
ĀΞk +BYk 0 0 0 Ξk −GλkG

T



≥ 0

(33b)[
1 cjΞk + djYk

(cjΞk + djYk)
T Ξk

]
≥ 0

(33c)

j = 1, ..., r

with Pk = αkΞ
−1
k and Kk = YkΞ

−1
k . The NMPC scheme

has the following properties:

a. The optimization problem is feasible for all future
time instants k if it is feasible at k = 0.

b. The solution to the optimization problem (32)-(33)
minimizes the upper bound V (xk|k) = xT

k|kPkxk|k on

the infinite-horizon cost (13) at each time instant k.
c. If the optimization problem (32)-(33) is feasible at

k = 0, then the control law

uk+i|k = Kkxk+i|k, i ≥ 0, (34)

asymptotically stabilizes the origin of the system (1),
with sector condition (2) and state and input con-
straints (3) for all times k ≥ 0.

Proof. The proof is divided into three parts, to show that
the properties (a)-(c) hold.
Part (a): As only (33a) depends on xk|k, we know that
the solution to the optimization problem (32)-(33) satisfies
constraints (33b) and (33c). As inequality (33b) is identical
to (25) from Lemma 1, (29) in combination with (33a)
means that xT

k+1|kPkxk+1|k ≤ xT
k|kPkxk|k ≤ αk. Hence,
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Lemma 1. Let Assumption 1 hold, so that for system (1),
with a sector bound as given by (2), and for the matrices
Ξ = ΞT > 0 ∈ Rn×n, Y ∈ Rm×n, and scalars λ > 0,
α > 0, the following inequality



Ξ Y TR
1
2 ΞQ

1
2 ΞET ΞĀT + Y TBT

R
1
2Y αI 0 0 0

Q
1
2Ξ 0 αI 0 0

EΞ 0 0 λ 0
ĀΞ +BY 0 0 0 Ξ−GλGT



≥ 0.

(25)
is satisfied. For K = Y Ξ−1 and P = αΞ−1, it holds that

a. The feedback law uk+i|k = Kxk+i|k asymptotically
stabilizes the system (1), with the sector-bounded
nonlinearity described by (2).

b. V (xk|k) = xT
k|kPxk|k is an upper bound on the infinite

horizon cost (13).

Proof. We define λ = α
τ and use that P = αΞ−1, K =

Y Ξ−1. After some matrix manipulations we take the Schur
complement to the matrix (25), and obtain that

[

(Ā+BK)TP (Ā+BK)
−P +Q+KTRK + τETE

]
(Ā+BK)TPG

GTP (Ā+BK) GTPG− τ


 ≤ 0.

(26)
Applying the lossless S-procedure, see e.g. Boyd et al.
(1994), to (26), it follows that vTQv ≤ 0, with vT =[
xT ϕ

]
and

Q =



[
(Ā+BK)TP (Ā+BK)

−P +Q+KTRK

]
(Ā+BK)TPG

GTP (Ā+BK) GTPG


 ≤ 0,

(27)
holds for all x = xk+i|k and ϕ = ϕ(zk+i|k) that satisfies
(22). This holds probabilistically under Assumption 1. The
inequality (27), is equivalent to

xT ((Ā+BK)TP (Ā+BK)− P +Q+KTRK)x

+ϕGTP (Ā+BK)xk + xT (Ā+BK)TPGϕ

+ϕGTPGϕ ≤ 0.

(28)

For a feedback law uk+i|k = Kxk+i|k and a quadratic

function of the form V (xk|k) = xT
k|kPxk|k where V (0) = 0

and P > 0, we then know that at sampling time k and
i ≥ 0

V (xk+i+1|k)− V (xk+i|k)) ≤
−(xT

k+i|kQxk+i|k + uT
k+i|kRuk+i|k).

(29)

Thus, for Q > 0 and R > 0, V (xk|k) = xT
k|kPxk|k is

a Lyapunov function and the control law asymptotically
stabilizes the system (1), proving part (a) of Lemma 1.

Using that x∞|k = 0, so that V (x∞|k) = 0, and summing
(29) from i = 0 to i = ∞, we get

J∞|k ≤ V (xk|k), (30)

i.e. V (xk|k) is an upper bound on the infinite horizon cost
J∞|k, proving part (b) of Lemma 1.

The following Lemma is used for showing constraint sat-
isfaction:

Lemma 2. The ellipsoid Ek = {xk ∈ Rn : xT
k Pkxk ≤ αk}

is contained in the constraint set Ck, as described in (3),
at time instant k if and only if

(cj + djKk)(αkP
−1
k )(cj + djKk)

T ≤ 1, j = 1, . . . , r. (31)

Proof. See e.g. Boyd et al. (1994).

Using the results from Lemma 1, we state the following
theorem for an NMPC controller with probabilistic stabil-
ity and constraint satisfation guarantees, that minimizes
the upper bound on the infinite horizon cost function (13).
This is a discrete-time version of Theorem 1 in Böhm et al.
(2009). Contrary to this theorem, all matrix inequalities
are linear, making the resulting optimization problem eas-
ier to solve.
Theorem 1. Let Assumption 1 hold, so that for the sys-
tem (1), with a sector-bounded nonlinearity (2), an NMPC
scheme is given by solving the following optimization prob-
lem:

min
αk,Ξk,Yk,λk

αk (32)

subject to [
1 xT

k|k
xk|k Ξk

]
≥ 0

(33a)


Ξ Y T
k R

1
2 ΞkQ

1
2 ΞkE

T ΞkĀ
T + Y T

k BT

R
1
2Yk αkI 0 0 0

Q
1
2Ξk 0 αkI 0 0

EΞk 0 0 λk 0
ĀΞk +BYk 0 0 0 Ξk −GλkG

T



≥ 0

(33b)[
1 cjΞk + djYk

(cjΞk + djYk)
T Ξk

]
≥ 0

(33c)

j = 1, ..., r

with Pk = αkΞ
−1
k and Kk = YkΞ

−1
k . The NMPC scheme

has the following properties:

a. The optimization problem is feasible for all future
time instants k if it is feasible at k = 0.

b. The solution to the optimization problem (32)-(33)
minimizes the upper bound V (xk|k) = xT

k|kPkxk|k on

the infinite-horizon cost (13) at each time instant k.
c. If the optimization problem (32)-(33) is feasible at

k = 0, then the control law

uk+i|k = Kkxk+i|k, i ≥ 0, (34)

asymptotically stabilizes the origin of the system (1),
with sector condition (2) and state and input con-
straints (3) for all times k ≥ 0.

Proof. The proof is divided into three parts, to show that
the properties (a)-(c) hold.
Part (a): As only (33a) depends on xk|k, we know that
the solution to the optimization problem (32)-(33) satisfies
constraints (33b) and (33c). As inequality (33b) is identical
to (25) from Lemma 1, (29) in combination with (33a)
means that xT

k+1|kPkxk+1|k ≤ xT
k|kPkxk|k ≤ αk. Hence,
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the solution to the optimization problem at time k is also
a solution at time k + 1. By induction, feasibility at time
k + 1 leads to feasibility at k + 2, k + 3, . . .
Part (b): From Lemma 1 we have that V (xk|k) is an upper
bound on the cost function (13) at time k. Because (33a)
is equivalent to xT

k|kPkxk|k ≤ αk, minimizing αk implies

minimizing the upper bound on the cost function.
Part (c): We now consider stability for when P is re-
calculated at every sampling instant, k. From Lemma
1, we have that applying the control law (34), leads
to xT

k+1|kPkxk+1|k ≤ xT
k|kPkxk|k. At the next sam-

pling instant, the previous solution to the optimiza-
tion problem is feasible, but not necessarily optimal, i.e.
xT
k+1|k+1Pk+1xk+1|k+1 ≤ xT

k+1|k+1Pkxk+1|k+1. Combining

these two inequalities, yields xT
k+1|k+1Pk+1xk+1|k+1 ≤

xT
k|kPkxk|k. Thus, x

T
k|kPkxk|k is a strictly decreasing Lya-

punov function for the closed-loop system, implying that
xk|k → 0 as k → ∞.
It remains to show constraint satisfaction. Having satisfied
the conditions of Lemma 1, we know that the state lies
in the ellipsoid Ek = {xk ∈ Rn : xT

k Pkxk ≤ αk}. From
Lemma 2, Ek lies in the constraint set Ck if (31) holds.
It can be shown that (33a) is equivalent to (31). We
let uk+i|k = Kkxk+i|k replace u in (3), so that Ck ={
xk ∈ Rn : (cj + djKk)xk ≤ 1, j = 1, ..., r

}
, followed by

some matrix manipulation. Because Ek is invariant, and
contained in the constraint set Ck, all states are guaranteed
to satisfy input and state constraints.

Remark 1. Closed-loop stability, input and state con-
straint satisfaction are guaranteed probabilistically by fea-
sibility of the linear matrix inequalities at initial time.
Because we consider a confidence interval at every time
step, the resulting probability may be smaller than that
given by Assumption 1.
Remark 2. For some initial conditions the sector condi-
tion may be too restrictive, so that the set of linear matrix
inequalities does not have a feasible solution. Reduction
of the conservative sector using learning will increase the
number of feasible initial conditions.

5. SIMULATION RESULTS

To test the proposed control design, we consider the
dynamics of a flexible link robotic arm, as given in e.g
Böhm et al. (2009). The system is discretized using the
forward Euler method, to obtain the same form as (1),
resulting in

A =




1 1 0 0
−48.6∆t −0.25 −48.6∆t 0

0 0 1 ∆t
19.5∆t 0 −16.7∆t 1


 , B =




0
21.6∆t

0
0




GT = [0 0 0 −3.33∆t] , H = [0 0 1 0] ,
(35)

with time step ∆t = 0.01s. For the robotic arm we have

that [x1, x2, x3, x4]
T

=
[
θ1, θ̇1, θ2, θ̇2

]T
, where θ1, θ2 are

angles, and θ̇1, θ̇2 are angle rates. The nonlinearity, given
by

γ(zk) = sin(zk) + zk, (36)

is assumed unknown, but estimated as described in Section
2. The following state and input constraints apply

uk ∈ [−1.5, 1.5], x1,k, x3,k ∈ [−π

2
,
π

2
], k ≥ 0. (37)

The control objective is to steer the system (35) to the
origin. In the control design, we used matrices

Q = diag([1, 0.1, 1, 0.1]), R = 0.1. (38)

A conservative sector was defined using the prior distribu-
tion for w and σ2 (8). The parameters of the prior distri-
bution were specified such that the resulting conservative
sector was contained within the first and third quadrant of
the input coordinate plane. We used w0 = 3.0 and σ2V0 =
2.25, with a0 = 90, b0 = 50. The conservative sector was
then defined using the 95% confidence interval for the prior
distribution, and is visualized in Figure 2. The first simu-
lation was run for initial condition x0 = [1.2, 0.1, 0.1, 0.1],
with the conservative sector formulation. The closed-loop
measurements were then sorted, and weighted according
to (6). The weighted data set was then used to train the
wBLR model, using the equations (10). A 95% confidence
interval for the posterior distribution of w (11a), resulted
in the following upper bound, û = 2.63, and lower bound,

l̂ = 1.39, for the learned sector. The learned sector is
visualized in Figure 2.
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Fig. 2. A conservative (blue) and a learned (orange) sector
bound on the nonlinear function, γ(z).

For the next 20 simulations, the MPC algorithm was tested
with two versions of the sector, namely

(1) the conservative sector, as defined above
(2) the sector learned offline with data from the first

simulation

The optimization problem (32)-(33) was solved using
CVXOPT in Python (Andersen et al., 2013). We tested
20 different initial conditions in a region around x0 =
[1.2, 0, 0, 0], according to

x̃i,0 = xi,0 + [−δ, δ], i = 1, . . . , 4 (39)

with δ = 0.2. The simulation results for when both sectors
were feasible in closed-loop, are plotted in Figure 3 and
4. In order to compare the closed-loop performance, we
calculated the closed-loop cost according to

φ =

ksim∑
k=1

xT
kQxk + uT

kRuk, (40)
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Fig. 3. Simulation results generated using (1) a conservative sector (blue), (2) a sector learned offline (orange).
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Fig. 4. Control inputs using a conservative (blue) and
a learned (orange) sector bound on the nonlinear
function, γ(z).

resembling (14), but summed over the simulation length
denoted by the time index ksim. Using the conservative
sector, fewer of the initial conditions rendered feasible
optimization problems due to a more conservative sector
bound in Theorem 1. Table 1 shows the mean of (40)
for all simulations where both versions of the sectors
were feasible, and in addition the total number of feasible
simulations.

For the proposed control design optimization is performed
at every time step in order to recalculate K. Because
the resulting optimization problem is convex, this can be
solved very efficiently. For high frequency systems, opti-
mization may also be done at a lower frequency than con-

Table 1. Comparison of closed-loop
performance

MPC scheme w/ φmean Num. of feasible simulations

(1) Conservative sector 171.97 10
(2) Learned sector 156.55 20

trol, maintaining stability but with a small performance
loss in between updates of K.

Simulations verify that the proposed design can be used for
robust control of linear systems with sector-bounded un-
certainties, where the sector bound is not initially known.
The stochastic sector allows for a conservative initial for-
mulation, based on a best guess on the uncertainty. By
exploiting available closed-loop measurements, the uncer-
tainty of the initial, stochastic sector can be reduced,
resulting in a smaller sector bound. For the smaller sector
the quadratic cost of the input and state is reduced, and
the feasible region of the optimization problem is enlarged.

6. CONCLUSION

In this paper, we have shown how measurements in closed-
loop can be used to define a stochastic sector condition,
for robust control of linear systems with sector-bounded
nonlinearities. A wBLR model is trained with closed-loop
measurements of the nonlinearity, and used to reduce con-
servativeness of the robust controller. The proposed MPC
design is tested in simulations of a flexible link robotic arm.
Comparing the closed-loop performance for a conservative
sector with a sector that incorporates learning, shows that
the latter reduces the quadratic cost of the state and
input over the simulation length, and results in a enlarged
feasible region for the control optimization problem. The
approach is currently limited to systems without distur-
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resembling (14), but summed over the simulation length
denoted by the time index ksim. Using the conservative
sector, fewer of the initial conditions rendered feasible
optimization problems due to a more conservative sector
bound in Theorem 1. Table 1 shows the mean of (40)
for all simulations where both versions of the sectors
were feasible, and in addition the total number of feasible
simulations.

For the proposed control design optimization is performed
at every time step in order to recalculate K. Because
the resulting optimization problem is convex, this can be
solved very efficiently. For high frequency systems, opti-
mization may also be done at a lower frequency than con-

Table 1. Comparison of closed-loop
performance

MPC scheme w/ φmean Num. of feasible simulations

(1) Conservative sector 171.97 10
(2) Learned sector 156.55 20

trol, maintaining stability but with a small performance
loss in between updates of K.

Simulations verify that the proposed design can be used for
robust control of linear systems with sector-bounded un-
certainties, where the sector bound is not initially known.
The stochastic sector allows for a conservative initial for-
mulation, based on a best guess on the uncertainty. By
exploiting available closed-loop measurements, the uncer-
tainty of the initial, stochastic sector can be reduced,
resulting in a smaller sector bound. For the smaller sector
the quadratic cost of the input and state is reduced, and
the feasible region of the optimization problem is enlarged.

6. CONCLUSION

In this paper, we have shown how measurements in closed-
loop can be used to define a stochastic sector condition,
for robust control of linear systems with sector-bounded
nonlinearities. A wBLR model is trained with closed-loop
measurements of the nonlinearity, and used to reduce con-
servativeness of the robust controller. The proposed MPC
design is tested in simulations of a flexible link robotic arm.
Comparing the closed-loop performance for a conservative
sector with a sector that incorporates learning, shows that
the latter reduces the quadratic cost of the state and
input over the simulation length, and results in a enlarged
feasible region for the control optimization problem. The
approach is currently limited to systems without distur-
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bances and with a certain constraint formulation. Further
work will aim to investigate similar control design for a
broader class of Lur’e systems and constraint formulations.
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Böhm, C., Findeisen, R., and Allgöwer, F. (2010). Robust
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