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When major disruptions occur in a rail network, the infrastructure manager and train operating companies

may be forced to stop trains until the normal status is recovered. A crucial aspect is to identify, for each

train, a location (a safe place) where the train can hold during the disruption, avoiding to disconnect the

network and allowing a quick recovering of the plan, at restart. We give necessary and sufficient conditions

for a safe place assignment to have the desired property. We then translate such conditions into constraints

of a suitable binary formulation of the problem. Computational results on a set of instances provided by a

class 1 U.S. railroad show how the approach can be used effectively in the real-life setting that motivates

the study, by returning optimal assignments in fractions of second.
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1. Introduction

When a disruption occurs on a railway network, parts of the network may become unavailable for

inbound trains, and decisions must be taken to mitigate the impact on overall traffic. This generally

requires train movements to be re-planned in short time, that is, to take appropriate rerouting and
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rescheduling decisions. Arguably the most critical issue is to avoid creating deadlocks, a situation that

arises when a group of trains is positioned in such a way that none can move due to other trains in the

group blocking their path. When, given the trains’ positions, a deadlock is unavoidable, we say that

the trains are bound-to-deadlock. Bound-to-deadlock scenarios may vary in terms of number of trains

involved and distance between them based on the railway layout. For a more in-depth discussion on

deadlocks we refer to Dal Sasso et al. (2021). Deadlocks are more prone to occur during disruptions,

as the capacity of the network is often abruptly reduced, and traffic controllers (dispatchers) face

unfamiliar and critical circumstances. In order to prevent deadlocks and in general to mitigate the

negative effects of a disruption, dispatchers are required to implement specific recourse actions,

sometimes based on predefined rules. For instance, the Norwegian infrastructure manager Bane

NOR issues a list of such rules1. These rules define how to move or where to stop the trains in the

affected region during the disruption, with some key objectives. Firstly, to leave, if possible, a viable

path in the network with no obstructions, so as to allow possible work/maintenance trains to reach

the disruption site(s). Secondly, to quickly return to the normal traffic regime once the disruption

is over. Finally, to ensure continuity in the service offered to passengers, by taking recourse actions

such as minimizing cancellations, adding short-turn trains and substituting missing segments with

alternative bus transport, etc.

Indeed, most of the contributions presented in the literature on disruption management deal with

(some of) these three issues. We refer the reader to Cacchiani et al. (2014), Corman and Meng

(2015), and Ghaemi, Cats, and Goverde (2017b) for an extensive review on the subject. According

to the topography of the infrastructure, the strategies used to manage a disruption are classified

in short-turning/cancelling trains or stopping trains. The first approach is usually applied to short-

line networks, as the ones in the European countries, where trains can be more easily rescheduled

(see Ghaemi, Cats, and Goverde (2017a), Louwerse and Huisman (2014), Veelenturf et al. (2016),

Schöbel (2007), and Schöbel (2009)). On the other hand, long-distance high-speed railway lines,

such as the Chinese and the Japanese ones, usually need to stop trains on tracks or in stations for

the time needed to recover from the disruption (see Hirai et al. (2009), Zhan et al. (2015), Zhan

et al. (2019)).

Other aspects of the problem are considered in Zhu and Goverde (2019) and Zhu and Goverde

(2020) that take into account the uncertainty of the disruption duration. Moreover, the resilience of

a railway network is introduced in Zhou, Wang, and Yang (2019), by considering proactive (planning

a robust system) and reactive (efficiently recovering from a disruption) issues.

1 These rules are called action cards and can be found in BaneNOR (2021). The text is in Norwegian. The first set

of action cards, namely 1A to 1K, concerns the Asker-Drammen line. For instance, action card 1A describes what to

do with the trains when Drammen station is closed
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Despite quite a large scientific literature on disruption management algorithms, we are not aware

of existing real-life implementations. Note that such practical implementations will become indis-

pensable once Autonomous Traffic Management Systems (ATMSs) will be used extensively. ATMSs

are software components capable of generating routes and schedules (or movement plans) in real-

time for the trains in a given region and planning horizon. An ATMS must solve repeatedly, and

in short time, a difficult optimization problem, because the returned plan should minimize some

measure of the overall train delays. The scientific literature on train scheduling is very extensive

and dates back almost half a century (for extensive surveys, see Cacchiani et al. (2014), Corman

et al. (2011), Fang, Yang, and Yao (2015), Josyula and Törnquist Krasemann (2017), Lamorgese

et al. (2018), Mannino, Lamorgese, and Piacentini (2017), Wen et al. (2019)). Nevertheless, until

now, there have been only a handful of real-life implementations (Lamorgese et al. (2018)), and in

any case rather small in size or restricted to special cases; the implemented solution approaches are

typically limited to simple local heuristics, and most research advances remain on paper or, at best,

at the prototype level.

However, the landscape has changed quite rapidly over the past few years. Some infrastructure

managers in Europe, such as Bane NOR in Norway (see BaneNOR (2018)) and DSB in Denmark

(see DSB (2020)), and others, have issued tenders for the renewal of their TMS systems which

include some explicit requirements for autonomous and optimized real-time scheduling functions.

In North-America, class 1 railroads Norfolk Southern and BNSF deployed General Electric’s move-

ment planner, which incorporates some optimization capabilities (see Bollapragada et al. (2018));

moreover, BNSF is directly involved in advanced research on dispatch optimization (Borraz-Sánchez,

Klabjan, and Uygur (2020)). The General Electric movement planner was recently rolled out also

by Aurizon in Australia (see Aurizon (2020)). Far from being exhaustive, the above examples show

that the interest in ATMSs is on the rise, and the penetration of such tools, or at least the awareness

of their potential, is growing in the industry.

Train scheduling problems in different regions of the world share a common core problem, but may

also differ significantly in certain aspects. For example, in Europe rail traffic is largely focused on

operating passenger services, with the Infrastructure Manager (IM) being a single, public authority,

and train operating companies competing to provide services to passengers and, to a lesser extent,

to ship freight. In other markets, such as the North American one, the rail industry is predominantly

shaped by freight-hauling companies, with most companies owning and operating their rail network.

Freight traffic presents some fairly different challenges from passenger traffic. Firstly, train traffic

is often "un-scheduled", that is, no official timetable to adhere to exists. Secondly, railway business

rules in America are somewhat more relaxed than in Europe, where trains generally have rigid routes
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between stations and certain train movements cannot be automated for (passenger) safety concerns.

Finally, and perhaps more importantly, freight trains are typically much longer than passenger

ones, which drastically amplifies the challenge described above in dealing with disruptions and their

aftermath.

The Safe Place Assignment Problem (SPAP) tackled in this paper follows a protocol (later denoted

as SP-protocol) adopted by a large class 1 North-American railway to manage disruptions. The

problem consists in finding, for each train affected by the disruption, a location on its path where

the train can be safely parked during the critical situation, allowing traffic to route around it.2 A

good location for holding a train is called safe place (a more formal definition is presented in the

following section). This safe place assignment serves the purpose of avoiding that trains drive past

the last location where they can be safely parked, which could otherwise lead to further blockages

and deadlocks. Currently, the safe place assignment is decided by experienced dispatchers in a greedy

fashion. The ILP approach developed in this paper will allow to find an optimal assignment in a

fraction of a second even for large instances (see Section 5), and can provide a strong support to

dispatchers in their task.

Another application of the SPAP is related to the current usage of ATMSs. Since an ATMS solves

instances of a hard optimization problem in very limited computational time, it may in general fail to

return a plan. This can happen for different reasons. One possibility is that a solution exists, but the

algorithm is not able to find it. Another is that the problem is infeasible, but the algorithm is not able

to prove infeasibility. Infeasible instances correspond to so called bound-to-deadlock configurations,

because if trains proceed from their current positions they will inevitably end up in a deadlock.

Depending on the underlying algorithm used for planning, in these cases the ATMS may still be able

to provide a partial plan, that is, a (feasible) plan that however spans a shorter planning horizon.

Indeed, scheduling algorithms based on a "rolling horizon" paradigm, which tackle the problem

by solving conflicts in a chronological order, are quite common in these applications (Zhan et al.

(2016)). This approach mimics the most common planning process of human dispatchers, that can

therefore be seen as a particular rolling horizon algorithm. The routes and schedules of such partial

plan become input to the SPAP problem. Finding a solution to the SPAP problem for these plans

adds an additional level of safety, as dispatchers are provided with the last safe location for a train

to drive within the plan’s horizon. Trains would not be automatically let past these locations until

a complete plan is available, or only when the dispatchers take direct control of the situation.

Despite its significant practical relevance, the SPAP problem (in any of its variants) are rarely

addressed in the scientific literature. We are only aware of two other papers on the subject.

2 We note that the word "safe" here does not refer to the risk of accidents or damages to the infrastructure or rolling

stock, which is responsibility of the safety layer of the signalling system
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Zhan et al. (2019) presents a mixed integer program derived from Zhan et al. (2015) for reschedul-

ing and/or stopping and/or canceling and/or assigning to safe places the long-distance and short-

distance trains operating in the high-speed railway system connecting Beijing and Shanghai. The

Petri-net-based model proposed in Hirai et al. (2009) assigns trains to safe places once the set

of cancelled trains has been fixed and the tracks that should be unoccupied have been identified.

Moreover, the model provides the sequence of atomic movements that vehicles have to perform to

reach the stop location produced as output. Unfortunately, the resulting algorithm does not scale

well and cannot solve real-world instances in a reasonable amount of time.

In the next sections, we present a purely binary programming model to solve the SPAP, adhering

as much as possible to a given plan and fulfilling some residual capacity requirement of the network.

Basic definitions and properties are given in Section 2 and Section 3. The resulting mathematical

optimization model is described in Section 4. Finally, computational results over a set of realistic

instances are presented in Section 5.

2. Networks, trains and schedules

In this section we give a formal definition of the key elements of the SPAP, namely the railway

network, trains and their movements.

The railway can be decomposed in sub-networks called lines. Lines can be traversed by trains in

two directions, conventionally called east-bound and west-bound. A train running west-bound and a

train running east-bound can share some tracks of the network. Trains running in opposite directions

will traverse shared tracks in opposite order.

Rail line network. A schematic representation of a portion of rail line is shown in Figure 1. Here,

solid segments represent tracks, while the small squares at the extreme of each track denote different

objects: orange and blue squares correspond to signal points, locations where a signal is present and

trains will stop (assuming a red light). The black squares represent bifurcation points, where a track

splits into two (or two tracks converge). Notice that bifurcations actually identify track portions of

different length for the different railway branches, while we model them as points. In fact, the length

difference of using a reverse switch or not will be reflected on the length of occupied track portions,

without the need of knowing the exact position of the ideal bifurcation point. Signal points are

partitioned into east-bound signal points (where east-bound trains can stop) and west-bound signal

points (where west-bound trains can stop). The track between two successive points p, q (either

signal or bifurcation) is called segment and denoted as the unordered pair of extremes {p, q}. In

Figure 1, the orange squares are the east-bound signal points, (denoted by si, with i odd), while the

blue squares (si, with i even) are the west-bound signal points. The black squares (denoted by bi,

i∈N+) are the bifurcation points. {b4, s8},{s1, s2},{b4, s9}, . . . are segments. Following the planned
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Figure 1 Schematic railway networks. Figure 1a shows a single track area, where stations are linked by only one track,

while Figure 1b shows a portion of multiple track network, where more than one track enter/exit a station

or a crossover.

movement of trains through the line, two "opposite" partial orders can be defined over the points

and segments of a line network: an east-bound order, corresponding to the order in which tracks

are traversed by an east-bound train, and a west-bound order. Note that if p1, p2 (s1, s2) are two

points (segments), then p1 ≺ p2 (s1 ≺ s2) in the east-bound order if and only if p2 ≺ p1 (s2 ≺ s1) in

the west-bound order.

Definition 2.1. A rail path is an alternating sequence of points and segments of the line that is

ordered either west-bound or east-bound.

In Figure 1, PW = (s5,{s5, s6}, s6,{s6, b3}, b3,{b3, s7}, s7,{s7, s8}, s8) is a (west-bound) rail path

and PE = (s14,{s14, s13},s13,{s13, b5}, b5,{b5, s10}, s10) is an east-bound rail path. Note that, accord-

ing to the definition, the alternating sequence (s5,{s5, s6}, s6,{s6, b3}, b3,{b3, s4}, s4) is not a rail

path, because it is ordered neither west-bound nor east-bound. Observe that the initial position of

an X-bound train, from its head to its tail, defines an X-bound rail path. We say that two rail

paths intersect if they share at least a segment.

Train movements Let t be an X-bound train, with X ∈ {east,west}. The movement of t across

the network is identified by the movement of its head. The route Rt of a train t ∈ T is the rail

path obtained by concatenating the segments occupied by the train in its initial position, with the

X-path followed by the head of t from origin to destination across the line. For our purpose we

can decompose such movement into a discrete sequence of elementary movements, or steps, from

an X-bound signal to the next X-bound signal on Rt, and we can assume that, at the end of each
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Figure 2 Examples of blocking paths occupied by trains. Trains t and z are east-bound trains having their heads at

signal point s4. We have that P (t, s4) = ({s4, s3}) and P (z, s4) = (s4, {s4, s3}, s3, {s3, b2}, b2, {b2, s2},

s2).

elementary movement, the head of the train is always facing a signal (point) in such direction. After

each elementary step, the train can stop at the signal point or proceed with the next step. Depending

on its length from head to tail, a train t will then be occupying a portion of the line which cannot be

occupied by other trains. This portion starts at the signal point faced by the head of t and includes

all the segments physically occupied by the train from head to tail. However, for safety reason, the

portion of line forbidden to other trains (blocked segments) is extended "backward" on Rt from the

segment containing the tail of t until a segment containing a signal point (in any direction) is met.

This motivates the following definition:

Definition 2.2. Let t be a X-bound train, with X ∈ {east, west}, let Rt be the route of t and

assume that the head of t is at the X-bound signal point s. Then we associate with t, s a blocking

path P (t, s) as follows:

1. P (t, s) is a sub-path of Rt with head-point at s

2. The tail-point of P (t, s) is a signal point

3. P (t, s) contains all segments physically occupied by t

4. P (t, s) is minimal

. Condition 4 implies that any rail path satisfying conditions 1, 2 and 3 contains P (t, s). To better

grasp this definition we can look again at Figure 2. Suppose, the tracks {s4, s3}, {s3, b2}, and {b2, s2},

have length, respectively, 2100, 900 and 400 m and assume that an east-bound train t has its head

at signal s4. Now, if the length of a train t is ≤ 2100 m, then t occupies only the segment ({s4, s3}).

On the other hand, if a train z has length 2450 m then z blocks the entire blocking path (s4, {s4, s3},

s3, {s3, b2}, b2, {b2, s2}, s2).

Note that the route Rt of t can also be viewed as an ordered sequence of blocking paths, which

in turn corresponds to the ordered sequence of elementary movements of t. Also observe that two

blocking paths of the same train can overlap on some segments. We let P(t) = {P (t, s) : s∈Rt} be

the set of all blocking paths associated with a train t.
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Blocking paths and train scheduling. Summarising, when a train t is at a signal point s, it is

actually blocking, or virtually occupying, all segments in the blocking path P (t, s). Blocking paths

play a central role when coordinating trains through the network because two trains can never

occupy overlapping blocking paths at the same time. A train plan specifies the route for each train

t and the schedule of t, i.e. the time train t enters each blocking path in its route.

If Pt is a blocking path on the route Rt of t and Pz is a blocking path on the route Rz of another

train z, and Pt and Pz intersect, we say that there is a potential conflict between t and z, and either

t moves through Pt before z moves through Pz, or vice versa. Any feasible schedule for the trains

in the network establishes which train goes first for any potential conflict.

Disjunctive Graph. Assuming train routes are given, the problem of finding a feasible (or opti-

mal) train schedule can be regarded as a job-shop scheduling problem with blocking and no-wait

constraints (Mascis and Pacciarelli (2002)). We can associate with any train scheduling instance

a disjunctive graph. Disjunctive graphs were introduced in the context of production scheduling

(Balas (1969)), but they can be exploited to represent any problem in which we need to schedule

a set of events. A disjunctive graph is a triple G= (N,E,D). The nodes N are in correspondence

with the events to be scheduled (e.g. start of operations, landing times of airplanes, project mile-

stones, etc.). A schedule is a vector τ ∈ IRN
+ which associates a time with every event in N . N

contains a special node o, called origin, which represents the event start schedule. All other events

are scheduled after o and, in our context, we may assume τo = 0. The set E of directed edges (or

arcs) represents time precedence relations between events. In particular, a directed edge (u, v) ∈E
of length luv ∈ IR represents a constraint of the form τv − τu ≥ luv. Also, since no events can start

before the origin o, we have τv − τo ≥ 0, for v ∈N \ {o}, and edge (o, v) ∈E, for v ∈N \ {o}, with
lov = 0. Finally, each element d ∈D, called disjunctive arc (see Figure 3), is an unordered pair of

directed edges d= {(u, v), (q, r)} which represents the alternative sequencing of four (not necessarily

distinct) events, namely any feasible schedule must satisfy either τv− τu ≥ luv, or τr− τq ≥ lrq, with
luv, lqr ∈ IR.

So, given an instance defined by a disjunctive graph G = (V,E,D) together with a distance

vector l, in order to find a feasible schedule of the corresponding scheduling problem, we must

decide, for each disjunctive arc, which of the two directed edges has to be "satisfied". A selection

is a set S of directed edges which intersects exactly once all disjunctive arcs. Then a schedule is

feasible if, (i) for each edge (u, v) ∈E, we have that τv ≥ τu + luv and (ii) for each disjunctive arc

d= {(u, v), (q, r)} ∈D, we have τv − τu ≥ luv, or τr − τq ≥ lrq, with luv, lqr ∈ IR. The following is a

key result in job-shop scheduling (Pinedo (2009)):

Theorem 2.3. An instance of scheduling problem with associated disjunctive graph G =

(N,E,D) admits a feasible schedule if and only if there exists a selection S such that the graph

G(S) = (N,E ∪S) does not contain a strictly positive directed cycle.
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Figure 3 A disjunctive graph. The dashed edges form a disjunctive arc.

In particular, given a feasible schedule τ ∈ IRN
+ , we can immediately derive a selection S(τ) such

that G(S) does not contain directed cycles, by letting, for each {(u, v), (q, r)} ∈ D, (u, v) ∈ S if

τu ≥ τv + luv, and (q, r) ∈ S otherwise. On the other hand, given a selection S such that G(S)

does not contain a strictly positive directed cycle, one can easily derive a feasible schedule τ(S) by

applying a longest path tree algorithm to the digraph G(S) = (N,E ∪ S) with edge lengths l (see

Pinedo (2009)).

The following observations are useful for the sequel of the paper.

1. Determining the feasibility of a generic instance of job-shop scheduling problem is NP-complete

(see Pinedo (2009)), and this holds also for job-shop scheduling problems with blocking and

no-wait constraints (Mascis and Pacciarelli (2002)).

2. Let c : IRN
+ → IR be a cost function. Finding the feasible schedule τ such that c(τ) is minimized

is computationally a difficult problem. If c is monotone non decreasing, let τ ∗ be the minimum

cost schedule, and let S∗ = S(τ ∗) be the selection associated with τ ∗. Then the optimal schedule

τ ∗u , for u∈N , equals the length of a longest path from the origin o to u∈N in G(S∗). On the

other hand, given a selection S, finding the associated feasible schedule τ ∗(S) which minimizes

a non-decreasing cost function is computationally easy, as it corresponds to computing a longest

path tree in G(S).

It follows from the above discussion that we can immediately associate a disjunctive graph G=

(N,E,D) and a distance vector l with an instance of the train scheduling problem in normal traffic

regime (i.e. with no ongoing disruption). In particular, we let the set of nodes contain all of the

blocking paths, i.e. N = {o} ∪ {P ∈ P(t) : t ∈ T}. Also, for t ∈ T and P ∈ P(t), we let σ(P ) be

the blocking path next to P on the route Rt of train t. Then edge (P,σ(P )) ∈ E and its length

lP,σ(P ) > 0 is the minimum time required by the head of t to travel from the head point of P to

the head point of σ(P ). Finally, let Pt and Pz be two intersecting blocking paths of the route of
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train t and z, respectively. Since t cannot be in Pt while z is in Pz, then either (i) t enters the

blocking path σ(Pt) following Pt before z moves through Pz, or (ii) z enters the blocking path σ(Pz)

following Pz before t moves through Pt. Condition (i) is represented by the directed edge (σ(Pt), Pz)

with length lσ(Pt),Pz = ε, whereas condition (ii) is represented by the directed edge (σ(Pz), Pt) with

length lσ(Pz),Pt = ε.3 Therefore, the disjunctive decision can be represented by a disjunctive arc

{(σ(Pt), Pz), (σ(Pz), Pt)} ∈D. It is not difficult to see that, due to the particular form of the length

vector l, if G= (N,E,D) is the disjunctive graph associated with an instance of train scheduling

and S is a selection, then any cycle in G(S) is strictly positive.

So, the condition of Theorem 2.3 can be stated simply as G(S) is acyclic (i.e. with no directed

cycles). By extension, we say that S is an acyclic selection of G.

Note that the main task of train dispatchers is to solve "conflicts" between trains, that is, deciding

the order in which the trains will travel through the conflicting blocking paths. From a mathematical

standpoint, solving a conflict amounts to selecting an edge in a disjunctive arc. Now, from time to

time it may happen that decisions taken by dispatchers lead to a bound-to-deadlock configuration, i.e.

a situation in which a feasible schedule no longer exists. Theorem 2.3 tells us that the corresponding

selection induces a directed cycle in a certain disjunctive graph associated with the train scheduling

instance. In the next section we will show how disjunctive graph and selection can be exploited in

order to find a suitable set of safe places for trains during disruptions.

3. The Safe Place Assignment Problem

As mentioned in the introduction, a major goal of disruption management is to avoid deadlocks when

trains resume their trip. Disruptions reduce the capacity of the network and may force dispatchers

to hold a subset of trains, as their final destination is no longer reachable. As these disruptions

may last for a long time, it is crucial to avoid that trains "pile" around the disruption, as trains

should be able to reach their destination once the disruption is lifted. Moreover, depending on the

type of disruption, it may be required that emergency vehicles reach the disruption location. These

requirements introduce the idea of assigning “safe” places to the trains, that are locations where the

trains can stop without impeding entirely the traffic flow.

In the rest of this section we describe an optimization model to support the SP-protocol for

disruption management developed by a Class 1 North-American railway operator. As mentioned

in the introduction, when a major disruption occurs dispatchers may not be able to stick to the

(real-time) plan they initially established. The SP-protocol enforces that affected trains hold at

3 Where ε > 0 represents the generic clearing time of the resource.
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some location along their planned routes, until the disruption is over and regular traffic is restored.

Now, an X-bound train t can only stop at an X-bound signal, and therefore the set of potential

holding places is in correspondence to the X-bound signal points in Rt. Moreover, because t will

indeed virtually occupy an entire blocking path, we can say that the set of (potential) safe places

for t is the set P(t) of its blocking paths. Thus, the Safe Place Assignment Problem consists in

assigning a safe place P t ∈ P(t) to each train t. In finding the best possible holding locations, i.e.

the safe places, the SP-protocol pursues three distinct and somehow conflicting objectives:

O1 The primary goal is to avoid that when the disruption is lifted trains are bound-to-deadlock.

O2 Secondly, to leave some paths free of trains so that worker trains can reach the disrupted area.

O3 Finally, to "push" trains as far along their routes as possible, so as to mitigate the impact of

the disruption in terms of train delays.

Objectives O1 and O2 are conditions imposed on the feasible assignments and will be translated

into constraints of the ILP formulation in Section 4. In contrast O3 only affects the objective function

of the formulation. Notice that this SP-protocol has been defined according to the requirements of

one railway operator. The particular type of trains and layout of the railway network considered

may affect the definition of the preferred, or even of the feasible safe places assignments. However,

the formulation presented in this paper is flexible and can be adapted to different requirements. As

an example, if the preferred policy is not to push all the trains as far as possible, but there is a

special focus on not stopping passengers trains outside of a station, this could be easily integrated

in the model by modifying the objective function.

Implementing goal O1. We start the discussion with how to pursue goal O1. We assume that,

before the disruption occurs, trains run through the network according to a feasible plan which

specifies the routing R and the schedule τ for all trains. As described in Section 2, we can associate

with R a disjunctive graph G= (N,E,D) with arc lengths l, which represents our instance at the

moment the disruption strikes. Note that the planned schedule τ induces a selection S = S(τ), and

G(S) is acyclic. However, as a consequence of the disruption, trains will have to hold somewhere on

their routes, the scheduling instance changes and (in general) the schedule τ is no longer feasible.

Therefore, let φ be the function that, when the disruption occurs and according to the SP-

protocol, assigns each train t a safe place P t ∈ P(t). Trains will arrive at their assigned safe place

and will hold there until the disruption is lifted. Now, to represent the new scheduling instance

associated with the disruption event and the additional constraints imposed on the movement of

trains by the SP-protocol, we derive from the original instance G = (N,E,D) a new disjunctive

graph G′(φ) = (N ′,E′,D′) and distance function l′. The node set N ′ = N ∪ {w} contains a new

element w that represents the end of the disruption. Next, the set E′ properly contains the original

set E ⊂ E′, with their original lengths. Moreover, since we assume trains arrive at their assigned
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safe places before the disruption ends, we have (P t,w)∈E′, with l′
P t,w

= 0, for t∈ T . Also, since the

trains can only move away from their safe places after the disruption ends, we have (w,σ(P t))∈E′,

with l′
w,σ(P t)

= 0, for t ∈ T . Finally, because train routes have not changed and there are no new

blocking paths, we have D′ =D, and the edges in each disjunction maintain their original lengths.

Summarizing, the disjunctive graph G′(φ) = (N ′,E′,D′) with edge lengths l′, associated with an

assignment of safe places φ= {P t ∈P(t) : t∈ T}, is defined as follows:

• Node set N ′ =N ∪{w}. Node w represents the event end of disruption.

• Edge set E′ =E ∪Ein
w ∪Eout

w , where Ein
w = {(P t,w) : t ∈ T}, representing the fact that trains

enter their safe place before the end of the disruption, and Eout
w = {(w,σ(P t)) : t ∈ T}, rep-

resenting the fact that trains exit their safe place after the end of the disruption. Moreover,

l′e = le if e∈E, and l′e = 0 otherwise.

• Disjunctive arcs D′ =D and l′e = le for e∈ d, d∈D′.

Note that, since D′ =D, the selection S = S(τ) of G associated with the original schedule τ is also

a (not necessarily acyclic) selection of G′, although τ is not a feasible schedule for G′. Observe now

that, in order to achieve objective O1, we need to find an assignment of safe places φ and a selection

S such that G′(φ)(S) is acyclic. The next theorem provides a way to find such an assignment and

a selection in a natural and effective way by exploiting S̄. The theorem provides a necessary and

sufficient condition on φ so that G′(φ)(S) is acyclic, i.e. so that the selection induced by the original

schedule τ is still feasible after the disruption. This result is the basis for our ILP formulation in

Section 4. In the following, for any t ∈ T and P,Q ∈ P(t), we let P � Q (P ≺ Q) if Q does not

precede P (Q strictly follows P ) on the route Rt of train t. In the proof of the next Theorem 3.1 we

make use of a well known result in graph theory: Given a directed graph H = (V,A) with edge set

A, a topological ordering is a function f : V →Z+ which associates with every node a non-negative

integer such that f(v) > f(u) for all (u, v) ∈ A. Then a graph H admits a topological ordering if

and only if G does not contain a directed cycle (Cunningham and Schrijver (1998)).

Theorem 3.1. Let G(S) = (N,E ∪ S̄) be acyclic and let φ assign each train t a safe place P t ∈

P(t). Then the following claims are equivalent

i) G′(φ)(S) = (N ′,E′ ∪ S̄) is acyclic;

ii) for each (σ(Pt), Pz)∈ S with P t � Pt, we have that P z ≺ Pz.

Proof. We first show that i) implies ii). In particular, we prove that if S contains an arc (σ(Pt), Pz)

such that P t � Pt with P z � Pz, then G′(φ)(S) admits a cycle C. Indeed, since P t � Pt, then

σ(P t)� σ(Pt). Therefore, σ(Pt) follows σ(P t) on the route of train t and there is a path in G′ from

σ(P t) to σ(Pt), say Qt (see Figure 4). Similarly, as Pz � P z, G′ also contains a directed path, say

Qz, from Pz to P z. Now, we get C by concatenating (w,σ(P t)), Qt, (σ(Pt), Pz), Qz, and (P z,w).
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Figure 4 Proof of Theorem 3.1 i) -> ii).

Now we prove that ii) implies i). First observe that, since G(S) is acyclic, there is a topological

ordering f :N →{1, . . . , n} of its nodes. Now, let B = {Pt � P t : t ∈ T}, and let A=N \B. Then

N ′ =A∪B ∪ {w}. Define f ′ :N ′→Z+ as follows: f ′(u) = f(u), for u ∈A, f ′(u) = f(u) + n+ 1, if

u∈B, and let f ′(w) = n+ 1. We show that f ′ is a topological ordering of G′.

Suppose not, then there is an edge (u, v)∈E′ ∪S such that f ′(u)> f ′(v).

• If u=w, then v = σ(P z) for some z ∈ T . But then σ(P z) ∈B, f ′(σ(P z))≥ n+ 2 and we have

f ′(u) = f ′(w) = n+ 1< f ′(σ(P t)) = f ′(v), a contradiction.

• If v = w, then u = P z for some z ∈ T . But then P z ∈ A, f ′(P z) ≤ n and we have f ′(u) =

f ′(P z)≤ n<n+ 1 = f ′(w) = f ′(v), a contradiction.

• Finally, consider the case with u, v 6=w. Then arc (u, v) belongs also to G, implying f(u)< f(v).

Let u = σ(Pt) ∈ P(t), for a t ∈ T and v = Pz ∈ P(z), for a z ∈ T . Since f ′(u) > f ′(v), but

f(u) < f(v), we must have u = σ(Pt) ∈ B and v = Pz ∈ A. But this implies that t 6= z, and

(σ(Pt), Pz)∈ S. Then we have P t ≺ σ(Pt) and Pz � P z, a contradiction.

As a consequence of Theorem 3.1 we have that, if G(S) is acyclic, then we can always assign all

trains the safe places associated with their starting positions. Indeed, the following holds true.

Corollary 3.2. Let G(S) be acyclic and let φ assign each train t a safe place P̄t that corresponds

to its starting position P 0
t . Then G′(φ)(S) is acyclic.

Proof. At the beginning of the planning horizon, every train t ∈ T is in its starting position P 0
t

implying P̄t = P 0
t � Pt, for all Pt ∈ P(t). Suppose now (σ(Pt), Pz) ∈ S for some σ(Pt) ∈ P(t), Pz ∈

P(z), with t 6= z. Since no train can enter (a segment of) P 0
z before z, we must have Pz 6= P 0

z , and

so P 0
z ≺ Pz, thus verifying condition ii) of Theorem 3.1.

In our ILP model (Section 4), we assume that a newly computed schedule that factors in the safe

place assignment will also agree with the selection S associated with the original schedule τ . Then,
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Figure 5 Proof of Theorem 3.1 ii) -> i). Filled nodes represent a chosen safe place assignment.

Figure 6 Example of paths that can be used to bypass a train parked in a safe place (i.e. Shiying paths). Signals with

the same token are endpoints signals for the paths that allow to bypass the safe place segment marked with

the same color.

we have constraints imposing that the safe place assignment φ satisfies the condition ii) of Theorem

3.1.

Implementing goal O2. The purpose of goal O2 is to allow worker trains to reach the disruption,

bypassing trains that are parked in safe place. In order to model this requirement, we need first to

give a formal definition for a rail path Q to bypass a blocking path P .

Definition 3.3. Let P be a blocking path and Q be a rail path with endpoints q1 and q2. Then

we say that Q bypasses P if

(i) Q does not contain any segment of P

(ii) there exists a rail path between q1 and q2 that contains (all the segments of) P .

Informally, condition (ii) states that P "lies" between q1 and q2 and condition (i) ensures that

there is a path (Q) between q1 and q2 which avoids P . As an example, in Figure 6, path P = (s3,
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{s3, b5}, b5, {b5, b6}, b6, {b6, s4}, s4, {s4, s5}, s5) is bypassed by path Q= (s1, {s1, b1}, b1, {b1, b4},

b4, {b4, s11}, s11, {s11, s12}, s12, {s12, b7}, b7, {b7, b8}, b8, {b8, s13}, s13, {s13, s14}, s14, {s14, b11}, b11,

{b11, b10}, b10, {b10, s6}, s6, {s6, s7}, s7).

Therefore, goal O2 can be implemented by requiring that each train, once stopped in a safe place

(i.e. in a blocking path), has to be bypassed by some "short" rail path that will not be occupied by

other trains parked in their safe places. The maximum length of such short rail path is a requirement

that can be defined from time to time according to some rules fixed by the rail company. For

example, a path can be considered short if it does not exceed a given length or, alternatively, if it is

composed by at most a given number of segments. All these alternatives can be easily implemented

in the proposed model.

In the SP-protocol considered here, the rail company directly identifies the set U of paths that

can be used to bypass the trains parked in the safe places, which is thus an input to our model. In

the following, for each possible safe place P ∈ P(t) for some train t ∈ T , we will denote by UP the

set of paths of U that bypass P . Such sets UP can be easily calculated off-line for each P , once the

family U is given. Then, in our model condition O2 is satisfied if the following holds: for each train

t assigned to a safe place P ∈ P(t), at least one path Q in UP is "free", i.e. it does not intersect

with any safe place assigned to some train. We say that, in this case, Q is reserved (because of P ).

Implementing goal O3. The last goal O3 does not require further discussion, as it only affect the

objective function on the ILP model.

Summarizing, the purpose of the SPAP is to find an assignment of blocking paths to trains and

a conflict-free schedule pursuing objective O3 while conditions O1 and O2 are satisfied.

A case that must be considered is when a feasible assignment does not exist. In this situation, the

SP-protocol allows any train t∈ T to hold in the first blocking path P 0
t of its route while violating

the constraints associated with goal O2. We define such trains as halted. Note that the solution

in which all trains are halted is conflict-free (as trains are physically occupying these positions in

the instance) and satisfies the conditions imposed by goal O1 (thanks to Corollary 3.2). Clearly,

one wants to minimize the number of halted trains, which will thus be taken into account in the

objective function. It must be noted that when the number of halted trains is larger than one, some

conditions must be verified before the safe place assignment can be applied automatically in the case

of partial plan. Namely, the assignment can be carried out if, for every pair of halted trains, these

are either trailing, i.e. travelling in the same direction, or have no "interaction", that is they do

not risk having conflicts on any resource potentially reachable within the planning horizon. These

conditions are often satisfied in North-American freight railways, where traffic is relatively sparse in
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lower capacity areas in which trains are more prone to being "halted".4 In those rare cases of partial

plans in which these conditions do not apply, the SP-protocol requires the dispatcher overseeing

operations to take control of the involved trains and "manually" assign trains to their desired safe

place (if any).

4. A binary linear programming formulation for SPAP

Let T = TE ∪TW be a finite set of trains, where TE indicates east-bound trains and TW west-bound

ones.

For each train t∈ T , let P(t) be the set of its candidate safe places, ordered from the origin to the

destination. We denote with P t
0 the first blocking path on the route of t (starting position), that is

the only assignable blocking path for a halted train.

Next, we introduce the following set of binary variables:

xtP =

{
1 if train t is assigned to safe place P
0 otherwise

t∈ T, P ∈P(t)

ht =

{
1 if train t is halted in its starting position P t

0

0 otherwise
t∈ T

The first set of linear constraints implies that each train is either halted in its initial position or

assigned to a safe place.

ht +
∑

P∈P(t)

xtP= 1 t∈ T (1)

Note that the two conditions ht = 1 and xt
P t
0

= 1, although train t is physically parked in the same

blocking path (the first), actually represent very different situations. Indeed, a halted train does not

need to satisfy condition O2. Precisely to distinguish these cases, we define P ∈ P(t) to be a safe

place for t if and only if xtP = 1.

Clearly, if a train is parked (either halted or in safe place) in a blocking path P , then no other

train can be parked in a blocking path P ′ sharing a segment s∈ P ∩P ′. This is guaranteed by the

following two sets of constraints.

ht +
∑
z∈T

∑
P ′∈P(z):s∈P ′

xzP ′ ≤ 1 t∈ T, s∈ P t
0 ; (2)

xtP +
∑
z∈T

∑
P ′∈P(z):s∈P ′

xzP ′ ≤ 1 t∈ T, P ∈P(t), s∈ P. (3)

4 In denser, typically multiple track areas instead, the higher capacity available will generally work towards having

less/no halted trains altogether
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Once again, note that, since the input plan is feasible, we have that P t
0 ∩P z

0 = ∅ for any pair of

distinct trains t, z.

Now, in order to fulfill objective O1, we want the solution to satisfy the condition ii) of Theo-

rem 2.3. Therefore, for each oriented arc (σ(Pt), Pz) in the current selection S, we forbid that the

conditions P t � Pt and P z � Pz both hold true.

ht +
∑

P∈P(t)|P�Pt

xtP +
∑

P∈P(z)|P�Pz

xzP ≤ 1 (σ(Pt), Pz)∈ S. (4)

In order to implement condition O2, we need to introduce the binary variables that define the

activation of the paths in U .

yQ =

{
1 if path Q is active
0 otherwise

Q∈ U

The following constraints imply that, whenever a train is assigned to safe place P , then at least

one path in UP must be reserved.∑
Q∈UP

yQ−xtP ≥ 0 t∈ T, P ∈P(t); (5)

Then, we need to ensure that all reserved paths do not intersect the safe place assigned to some

train.

yQ +xtP ≤ 1 Q∈ U , t∈ T, P ∈P(t) : P ∩Q 6= ∅;

Since two assigned safe places cannot share a common segment, we can strengthen the previous

constraints as follows

yQ +
∑
t∈T

∑
P∈P(t):s∈Q

xtP ≤ 1 Q∈ U , s∈Q. (6)

Note that there is no analogous of constraints (5) and (6) involving the variables h instead of

variables x, as halted trains do not need to satisfy condition O2.

The set of constrains (1)-(6), plus the binary stipulation on the variables x,h, y, defines the feasible

set of solutions to the SPAP-ILP model. Observe that this set is non-empty since the solution ht = 1

for all t∈ T (all halted) is always feasible.

As for the cost of a feasible solution, we consider two components. First recall that we want the

trains to be parked in the farthest possible safe place. To this end, for train t, and each potential

safe place P ∈P(t) we associated a cost ctP that is proportional to the distance of P from the final

destination of t. In other words, ctP ′ < ctP for any P ′ ∈ P>P (t). Next, we have a cost wt for every
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halted train t. Since we want to minimize the number of halted trains, we choose wt >> ctP for any

P ∈P(t). Then, the objective function of the SPAP-ILP writes as the following cost minimization:

min
∑
t∈T

wt ht +
∑
t∈T

∑
P∈P(t)

ctP x
t
P . (7)

Note that modelling the cost of a solution in this way allows us to achieve condition O3.

As anticipated while defining the three objectives, this formulation can be modified to incorporate

different requirements. For example, we may discourage to stop a passengers train on a potential

safe place P̄ where there is not an available platform by increasing costs ct
P̄
.

In the next section we discuss our computational results over a set of instances of realistic size

and complexity. Although MILPs are in general hard to solve in practice and in theory (see Garey

and Johnson (1979)), all instances can be solved in very short computing time by a commercial

solver. This can be partly due to the special structure of our MILP. Indeed, all the (family of)

constraints but one are shared with the maximal independent set formulation (also called node

packing formulation, see Nemhauser and Wolsey (1999)). The associated integer polytope has been

much investigated in the literature, and most commercial solvers can exploit the special structure

of the constraint matrix.

5. Computational experiments

In this section, we present the results obtained by applying the SPAP formulation on sixty realistic

instances based on data provided by a class 1 North-American railroad. The underlying network

alternates single track and multiple track stretches. Tracks are bidirectional. The number of routes

within one station may vary: most stations have two bidirectional tracks, but some stations may

have three or more of them. Since the data comes from a wide area of the railway network, which

comprises almost 300 stations5, in Figure 7 we show only a couple of sample portions. In particular,

note that the network also includes junctions between different lines. Distance between adjacent

stations may vary considerably, from 6000 to 100000 ft in single track areas, while in multiple track

areas they are usually shorter (mainly spanning from 2000 to 20000 ft). The trains in the network

are mostly freight trains.

Instances. Our test-bed allows us to highlight the proactive and reactive aspect of our formulation.

As discussed in the introduction, we encounter the SPAP mainly in two application contexts:

(i) disruption management, when a major blockage occurs in the network;

(ii) partial plan recovering, when an ATMS fails to produce a solution for the entire planning

horizon.

5 although not all stations appear in every instances, as some stations are not traversed by any train during the time

interval considered
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Figure 7 Sample portions of railway network. Stations can be connected by a single or multiple (bidirectional) tracks.

Stations can have a different number of tracks. There can be junctions between different lines .

Accordingly, we generated two sets of instances. The first set S1 = {I1, ..., I10} of instances is

related to case (i). Each instance in S1 is relative to a small set of trains approaching an area affected

by a disruption, in a limited time frame of two hours. The second set S2 = {I11, ..., I60} refers to

case (ii), i.e. includes instances for which the ATMS only provides a plan with a time horizon that

is smaller than the default planning horizon.

All instances refer to a network with both single and multiple track areas. As already mentioned,

here the set U of paths that can be used to bypass the trains parked in the safe places is given

explicitly. Moreover, for each train t, we are given its planned route. Therefore, we can easily

calculate the set P(t) of the potential safe places of t- it is sufficient to enumerate all blocking paths

of t along its route. Then, for each P ∈P(t), we construct UP ⊆U by considering all paths of U that

bypass P (see goal O2 in Section 3). Observe that, in a directed graph G, a u-v path Q bypasses P

if G \Q admits a u-v path that contains P .

The dataset S1 consists of ten instances derived by network disruption occurrences, and presents

on average 4.8 trains per instance. The average number of potential safe place for each train is 8.6.

The dataset S2 contains instances having from a minimum of 18 to a maximum of 59 trains (42.6

on average). Here the number of possible safe place positions per train varies between 1 and 25 (8.4,

on average).

Settings. Since we want to park the trains as close as possible to their final destination (goal O3),

we let ctP =K · (K− itP ), where K is the maximum number of available safe places among all trains

and itP indicates the index position of the safe place segment P (the lower the index is, the closer

P is to P t
0). Moreover, as our main objective is to minimize the number of halted trains, in the

numerical experiments we set the value wt = |T |/2 ·K2.

The experiments are performed using an x64 MS Windows 10 machine with an Intel (R) Core

(TM) i7-10510U CPU and 16 GB of RAM. The algorithm is implemented in Java and uses IBM

ILOG CPLEX v12.10 (all default settings) as MIP optimizer.
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(a) Schedule

(b) Safe places assignment
Figure 8 Instance I7: the schedule for each train (above) and the safe places assignment (below) .

Computational results. Figure 8 gives a graphical representation of the input and output of SPAP

for instance I7: as input we have the schedule for each train belonging to the instance (notice

that the solid points show the current trains positions). Among the five trains, three of them are

obstructed by a disruption and need a safe place, while the remaining trains are travelling in the

opposite direction. The optimal safe place assignment (with solid rectangles) is shown in Figure 8b.

In Table 1 and Table 2, we report the computational results obtained solving our formulation on

the test instances of the set S1 and S2, respectively. The rows of the tables are associated with the

instances of the corresponding dataset. Then, in the first columns, we give some detail about the

instance - reporting the number of trains (#T ) and the average number of safe places per train

(#SP ) - and the size of the corresponding LP model, with the number of variables (#V ar) and

constraints (#Con). Finally, in columns #H and Time(ms) we report the number of halted trains in

the optimal solution and the CPU time needed to solve the formulation (expressed in milliseconds),

respectively.

We first observe that, for the instances of S1, the CPU computational times are negligible. Then,

about 90% of the instances of S2 require around 200 millisecond to be solved and only five need

more than 300 ms to produce the final SP assignments. This proves that the proposed method can

be very efficiently applied in a real-time setting. The cumulative distribution of the computational

times of the instances of S1 and S2 are presented in Figure 9.

We also want to remark that all instances are solved at the root node of the branch-and-bound

approach used by the solver. This proves the good quality of the linear relaxation of the MILP

model, that is the strength of our formulation.

In Figure 10, we show, for the two groups S1 and S2, the cumulative distribution of the instances

according to the number of halted trains in the optimal solution. In particular, for dataset S1, the

optimal solutions of about 70% of the instances do not halt any train. This is somehow surprising,



Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 21

Figure 9 Computational times cumulative distribution of dataset S1 instances (on the left) and S2 instances (on the

right).

Figure 10 Distributions of halted trains per instance for dataset S1 (on the left) and S2 (on the right).

since such instances are derived from network disruption situations. Such a percentage is about 50%

for the instances of S2. These numbers could be explained by the fact that the number of involved

trains in S1 is much smaller, which in turn implies: i) that the number of interactions (meets and

precedence constraints) is smaller and ii) that the network is less congested, which increases the

probability of fulfilling condition O2. Besides, in most of the instances of S2 (i.e. derived from a

partial plan), the trains that are set as halted by the optimal solution have a very small number

of available safe places. We also point that, aside from instances I47 and I48, in all other cases

the halted trains comply with the conditions of either been trailing trains or not having potential

interactions with each other (as described in Section 3).

6. Conclusions

In this paper, we present a non-naive formulation for the Safe Place Assignment Problem, a prob-

lem that arises in the context of railway disturbance and disruption management. Trains must be

assigned a location to "safely" park under certain circumstances, such as when a disruption occurs

on the network or when the ATMS produces a plan that can only partly be carried out. In Section 5
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Table 1 Dataset S1: metrics and computational times results.

Instance #T #SP #Var #Con #H Time(ms)

I1 7 7 278 550 0 9

I2 4 9 139 288 0 7

I3 6 8 189 425 1 8

I4 4 8 156 232 0 6

I5 5 10 221 367 0 7

I6 4 10 148 302 1 3

I7 5 9 236 546 0 9

I8 4 10 206 390 0 3

I9 4 9 168 264 0 3

I10 5 6 149 268 1 3

Table 2 Dataset S2: metrics and computational times results.

Instance #T #SP #Var #Con # H Time(ms)

I11 54 7 2873 6628 0 429

I12 47 12 3261 9020 0 246

I13 50 10 3347 8648 0 103

I14 45 13 3027 8265 1 136

I15 50 8 2835 6683 0 538

I16 54 10 3203 8552 1 165

I17 46 6 2408 5188 1 44

I18 54 10 3176 8637 0 159

I19 53 4 1828 3674 0 600

I20 53 3 1920 3692 0 42

I21 52 11 3946 10596 0 180

I22 43 12 3911 10149 0 156

I23 42 12 4071 11170 0 143

I24 44 11 3221 7904 0 182

I25 59 6 1231 3455 1 314

I26 51 6 1149 3085 1 308

I27 47 6 1112 2732 0 237

I28 46 11 1987 4229 0 31

I29 41 11 2036 4271 0 32

I30 57 11 2654 6685 0 70

I31 53 10 2174 5105 0 47

I32 57 11 2502 6895 0 91

I33 43 12 2291 5320 0 42

I34 45 11 1956 5779 1 75

I35 53 9 2147 5777 0 62

Instance #T #SP #Var #Con # H Time(ms)

I36 48 6 1479 2863 0 28

I37 40 12 1864 5394 0 47

I38 42 10 2075 4933 0 45

I39 49 11 2686 7075 1 135

I40 40 11 2458 5831 0 77

I41 45 11 2467 6469 1 121

I42 49 10 2644 7291 0 100

I43 59 11 3079 8742 2 139

I44 46 11 2610 7128 1 138

I45 49 11 2765 7398 1 157

I46 50 6 2091 4529 0 61

I47 23 2 407 743 7 6

I48 29 4 730 1183 5 19

I49 11 5 298 621 2 85

I50 31 5 997 1588 2 12

I51 31 6 1041 1747 2 22

I52 29 5 707 1423 6 18

I53 26 7 1169 2064 3 16

I54 32 6 1073 1807 2 13

I55 27 12 2021 6325 1 38

I56 44 5 1229 2070 4 27

I57 33 7 1039 1847 3 18

I58 15 6 559 973 0 16

I59 16 4 405 684 2 11

I60 27 3 596 983 12 8
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we showed that realistic instances can be solved in a very small amount of time, giving evidence that

the proposed method can be effectively applied also in a practical setting, where (quasi) real-time

performance is required. It is perhaps worth noting that the special structure of the model could be

among the reasons behind the extremely low computational time. Indeed, as we observed in Sec-

tion 4, the formulation shares all constraints except one with a maximal independent set problem,

that is, it presents a structure that most math programming solvers are able to exploit to improve

performances.

As possible future research directions, we consider the case of modeling tracks with a capacity

of two or more trains as well as the possibility of partially rerouting some of the trains. The rela-

tive closeness to the much studied maximal independent set problem could also inspire alternative

solution methods or further work to strengthen the formulation.
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