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A B S T R A C T   

Low-cost sensors (LCS) are becoming ubiquitous in the market; however, calibration is needed before reliable 
use. An evaluation of the calibration of eight identical pre-calibrated formaldehyde LCS is presented here. The 
LCS and a reference instrument were exposed to a pollutant source(s) for the calibration measurements. After one 
year, some tests were repeated to check the drift and stability of calibration. 

This paper presents methodologies for calibration using data with significant autocorrelations. Autocorrelation 
in sensor measurements might be present when performing a frequent sampling. To obtain reliable results, sensor 
calibration methodologies must consider autocorrelation or serial correlation between subsequent measure-
ments. Experimental design can be used to reduce the risk of highly autocorrelated measurement. 

Ordinary Least Squares Estimations should not be used when measurements are autocorrelated, as their 
central assumption is that the residuals are independent and identically distributed. Two alternative methods 
considering autocorrelation using a first-order Markov scaling are proposed: Maximum Likelihood and Restricted 
Maximum Likelihood Estimation (REML). REML has better compensations for the estimated parameters and the 
scaling parameters. Akaike information criterion was used to select the most significant parameters resulting in 
formaldehyde and temperature. 

The results were presented for only one of the eight sensors. According to EPA’s recommendations, the tested 
formaldehyde LCSs were Tier III, supplementary monitoring. The LCS over-and under-estimated the values ob-
tained by the reference sensor, but they presented very similar dynamic responses, indicating that LCS could be 
used to detect concentration changes after calibration.   

1. Introduction 

Tightening building envelopes and using demand-controlled venti-
lation are commercial buildings’ most applied energy-saving strategies 
[1]. When reducing supply airflow or infiltration rates, pollutants that 
otherwise would be ventilated away may be present at higher and even 
harmful concentrations [2]. Without correct implementation, retrofits 
targeting energy efficiency can adversely affect health due to the lower 
air change rates [3,4]. 

Formaldehyde is one compound widely found in household materials 
[5]. It is also produced in cooking, wood burning, other domestic 

activities [5], and waterproofing coatings [6]. However, it is associated 
with health risks such as mucous irritation [7] and is carcinogenic 
(group 1) to humans, according to the International Agency of Research 
on Cancer (IARC) [8]. Wolkoff [9] concluded that formaldehyde and 
benzene are generally reported as sensory irritation even before being 
smelled. 

Norwegian indoor air quality should meet the air quality criteria 
based on health impacts defined in the building codes [10], the occu-
pational health codes [11], and the public health legislation [12]. 
However, several defined pollutants are rarely measured due to the high 
cost of reliable sensors. Traditionally, air pollutants were measured with 
complex, expensive, and massive equipment at fixed locations. Thus, 
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manufacturers have developed low-cost air quality sensors to measure 
air parameters and airborne pollutants. Technological advances in metal 
oxide semiconductors, for the detection of gaseous compounds [13] 
allowed the development of sensors with a much lower cost than the 
certified reference instruments. Typically, they are less accurate and 
suffer from cross-sensitivities with other pollutants. They are usually 
smaller sensors, measure constantly, provide real-time monitoring, and 
are easily deployed. They can send the information to IoT servers or 
record data in loggers. Thus, the availability of such sensors will likely 
continue to grow [14]. 

Current ambient air monitoring could be improved if LCS could 
produce reliable data under typical ambient conditions. However, pre-
liminary tests [15–20] suggest poor to uncertain reliability. Some do not 
perform well under typical ambient conditions or do not correlate with 
data from regulatory measurement equipment [20]. A recent analysis of 
112 studies on LCS [21] concluded that only a few studies followed US 
EPA guidelines [22] to examine performance. LCSs often suffer from 
errors due to internal causes (such as cross-sensitivities with other pol-
lutants, drift, bias …) and external causes (such as temperature and 
relative humidity) [23]. Therefore, it is urgent to characterize the actual 
performance of LCS and educate the users about the potential and lim-
itations of these sensors [14]. Understanding the sensors’ limitations is 
needed to interpret the data output and its weakness [24]. A poor un-
derstanding of flaws (problems with experimental design) and limita-
tions (factors that constrain the applicability of study findings) can lead 
to undesirable outcomes such as alarmistic behaviors. For some gaseous 
measurements, cross sensitivities to confounding compounds over-
predict the measured pollutant [25] precisely as drift may [26]. 

With the universalization of the use of LCSs, better recommendations 
regarding placement should be delivered together with the sensor 
datasheets as the users know less about IAQ measurements. This 
knowledge is even more critical when using these sensors to control 
ventilation. 

To compensate for their lower accuracy, dealing with the error is 
crucial no matter the accuracy required by the application of the sensor. 
Giordano et al. [27] revised the needs and challenges of achieving 
reliable data from particulate matter LCS. They summarized their 
knowledge on best practices in calibration considering data collection 
and model analysis, but they did not address the autocorrelation in the 
measurements. 

1.1. Objectives 

This study has two main objectives: 
1-Testing the performance of eight formaldehyde sensors in com-

parison to laboratory-grade equipment. The evaluation uses measure-
ments at the beginning of the sensors’ lives and after one year. 

2- Support that non-mathematician IAQ researchers can do a good 
calibration of LCS and that they are able to evaluate the results within 
the calibration range. The results of only one of these eight sensors are 
presented as the goal is to focus on the calibration procedure. For that, 
the article will address the following:  

• The challenge of having frequent sampling yielding autocorrelated 
measurements and tests taken with very heterogeneous data collec-
tion periods  

• Establish the best calibration estimation method that considers the 
autocorrelation of the calibration measurements and that the num-
ber of samples in the tests is not equal. The method must do a correct 
estimate of parameters and the uncertainties. 

Contrarily to most of the existing articles evaluating LCS, this article 
focuses on the evaluation of the calibration process, which would also 
apply to other sensors when the data sampling results are autocorre-
lated. In this article, the experimental design is thoroughly described, 
discussed, and evaluated. The common application of R2 evaluations to 
study correlations is confronted. It is mathematically wrong to use OLS 
when the residuals are not independent and identically distributed (iid). 
Thus, this article demonstrates an alternative methodology for this 
situation. 

2. Methodology 

In this study, eight identical Dart formaldehyde WZ-S LCS were 
calibrated using measurements in a laboratory’s small chamber. The 
sensors were exposed to the same formaldehyde sources as laboratory- 
grade equipment. Some of the experiments were repeated after one 
year. The data obtained by low-cost and professional-grade sensors were 
compared to establish a model representing the sensor behavior and 
then estimate the residuals, i.e., the error in the model-based pre-
dictions. This article has created a procedure for estimating a weighting 
according to the autocorrelation based on the first-order Markov. Then a 
simple method using this weighting was created. To the authors’ 
knowledge, the method presented here considering and weighting the 
autocorrelation using a first-order Markov scaling has not been used in 
the sensor calibration field. 

2.1. Measurement equipment 

2.1.1. Indoor air sensing stations and LSC sensors 
Eight equal in-house mounted IAQ stations were assembled 

comprising LCSs to measure formaldehyde, TVOC, temperature, and RH. 
The LCSs were selected based on user-friendliness (these sensors had 
available information on the internet regarding mounting) and pre- 
calibrated from the factory (according to the producers, they should 
not need any pre-use calibration). Table 1 summarizes the LCS’s model, 
type, and technical specifications. More information about the kit, the 
LCS not discussed in this article (commercial Sension LCS to measure 
particle matter SPS30, CO2 SCD30) and their calibration can be found in 
Ref. [30]. 

The Dart Sensor WZ-S is a micro fuel cell formaldehyde sensor. In 
addition to formaldehyde, the other parameters were studied to see if 
they were confounding parameters. Air temperature and RH were 
measured with SHTC1 from Sensirion and TVOC with SGP30 from 
Sensirion. Sensors SGP30 and SHTC1 were integrated into the Arduino 
Shield SGP30_SHTC1 from Sensirion. 

All the sensors were connected to an Arduino via a customized shield 

Nomenclature 

CO2 Carbon Dioxide 
CH2O Formaldehyde 
CV Coefficient of variation 
HVAC Heating, ventilation, and air-conditioning 
IAQ Indoor Air Quality 
LCS Low-cost sensor 
MAE Mean absolute error 
ML Maximum likelihood 
MV Measured value 
NMB Mean Normalized Bias 
OLS Ordinary Least Squares 
PCC Pearson Correlation Coefficient 
PM Particulate matter 
RH Relative humidity 
REML Residual maximum likelihood estimates 
RMSE Root mean squared error 
TVOC Total volatile organic compound  
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card. The logged values were sent to a Raspberry Pi via USB cable. The 
Dart Sensors WZ-S were connected using a custom-written code. The 
complete code for Arduino and Raspberry Pi was available on GitHub. 
LCS collected data every 5 min, and measurements were converted to 30 
min averages. The Arduino Shield SGP30_SHTC1 was connected using 
code from Adafruit [31] and Sensirion AG [32], available on GitHub. 
This sensor needs a pre-calibration file based on 12 h of calibration in the 
air. This pre-calibration is done because when the sensor is exposed 
(measuring or not) to conditions (RH and temperature) outside the 
recommendations, the RH signal may offset. After being in normal 
temperature and humidity, the sensor will slowly return to standard 
specifications [33] (removing the offset). The resulting calibration files 
to standard specifications were stored in the Raspberry Pi. This cali-
bration to standard specifications was done previously to the one 
explained in the remaining of the article and should be done each time 
the sensors are used so that the following calibration makes sense. The 
data processing and further analysis were done with R software [34]. 

2.1.2. Reference monitoring equipment 
Graywolf FM-801 was deployed as the reference instrument for 

formaldehyde measurements, and it was calibrated before the experi-
ments. The Graywolf sensor uses photoelectric absorptiometry to read 
the sensor’s absorbance change that formaldehyde induces. A small 
colorimetric sensor cartridge is used for passive diffusion sampling. 
Graywolf FM-801 measures the absorption change between each 30-min 
interval and then calculates the difference. The value reported by the 
unit represents the average of over 30 min. The sensor has a detection 
range from 25 μg/m3 to 1230 μg/m3 and an accuracy of ±10% for 
readings larger than 48 μg/m3 [28]. The sensor suffers from 
cross-sensitivity to methanol, ethanol, isopropanol, carbon monoxide, 
phenol, acetaldehyde H2, chloroform, limonene, styrene, acetaldehyde, 
ozone, H2S, and SO2, among others [28]. Pegasor AQTM Indoor was 
deployed for measuring RH and temperature [29]. RH range: 0–100%; 
producer-reported accuracy ±1.5% within 0–90%. Temperature range: 
40 - 80 ◦C; producer-reported accuracy ±0.2 ◦C in the range 0–40 ◦C. 

2.2. The chamber setup 

The calibration evaluation of the formaldehyde LCS was conducted 
in the 1.5 m3 plexiglas mini environmental chamber in Trondheim, 
Norway showed in Fig. 1. The chamber is equipped with dedicated 
ventilation, heating, and humidification systems run as the tests 
required. The HVAC system consists of extract and supply fans to control 
the ventilation rate and a small computer fan for mixing the chamber’s 
air, a radiator, and a humidifier. 

The sensors were launched at least 2 h before introducing the air 
pollution source. All the ventilation supply was turned off at the 
beginning of each experiment, right before the start of pollutant gen-
eration and monitoring. The background concentrations of formalde-
hyde were negligible at the start of the experiments. The air exchange 
was reduced to infiltration, which was minimized by blocking the 
openings with duct tape. Each experiment was monitored with both the 
LCS and the reference sensor continuously. In some cases, the sensors 
measured at least 1 h after the pollutant source was stopped/removed. 

The eight IAQ stations and the reference sensor stood in a circle 
around the pollutant source during the experiments, as shown in Fig. 1. 
For the experiments with chipboards, these were placed along the walls 
of the mini chamber. 

2.3. Experiment description 

The performance evaluation was done by comparing formaldehyde 
measurements with the eight equal LCSs and the reference sensor. 

The calibration-tests details are summarized in Table 2. Test A was 
conducted under uncontrolled ambient temperature and RH in the 
chamber, thus, representing typical temperatures and RH in the labo-
ratory in a Norwegian winter. In tests B, C, D, E, and F, a heater and a 
humidifier were run to control the temperatures and relative humidity. 
Tests with wood chipboards were repeated after one year, as Table 2 
specifies, to study the repeatability of the results and drift of the 
equipment. 

When wet, wood chipboards produce formaldehyde and TVOC at a 
higher range than under normal conditions. Formalin is a source of 
formaldehyde and methanol. 

It was expected that in one year, the aging of the LCS would be 
negligible [27]; however, at the same time, problems with drift or 
problems with singular defective units would be identified. In-between 
calibrations, the sensors were used for routine measurements in 
schools. Effects of a differential exposure history during this period were 
considered by studying the recorded measurements. The recorded 
measurements were compared. In this case, the maximum measured 
concentrations did not differ by more than 9 %, and the effect of dif-
ferential exposure history was assumed negligible. 

2.4. Use of correlated data in calibrations 

A calibration model is a regression model developed from the 
response of a sensor to known sources (customarily measured with a 

Table 1 
Technical specification LCSs data retrieved from, SVM30 [33], Dart WZ-S [35].  

Sensor name Parameter Sensor 
type 

Measurement range/size 
range 

Accuracy collected from 
datasheets 

Single unit price when bought 
in NOK 

Dart Sensors WZ-S Formaldehyde MOS 0,03 - 2 ppm ≤0.001 ppm 148 
Sensirion Arduino Shield 

SGP30_SHTC1a 
TVOC 
Air Temperature Relative 
humidity 

MOx 
CMOS 

0–60′000 ppb 
− 30 ◦C–100 ◦C 
0%–100% RH 

1 ppb or 6 ppbb 

±0.3 ◦C 
±3% RH 

190  

a This sensor uses SHTC1 for measuring T/RH and SGP30 for measuring TVOC. Sensirion does not recommend the use of this sensor for new designs anymore: 
https://www.sensirion.com/en/environmental-sensors/gas-sensors/multi-gas-humidity-temperature-module-svm30/. 

b 1 ppb from 0 ppb to 2008 ppb, and 6 ppb from 2008 ppb to 11110 ppb. 

Fig. 1. Picture of the experimental setup with the formalin source in the center. 
The eight equal IAQ stations and the reference sensor in a circle equidistantly to 
the source. 
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reference sensor). To have a good calibration model is not so important 
to have a good fit of the measurements fed but to precisely predict/es-
timate new/unseen measurements within the calibration range. 

Measurements have to be taken carefully to do a good calibration. 
For instance, if an additional measurement were taken only 1 s after the 
previous measurement, then the additional information of this new 
measurement would be limited. These two measurements are said to be 
serially correlated using statistical terminology, and such correlation in 
time for the same phenomena is often called autocorrelation. 

Most often, standard OLS is used for analyzing data from calibration 
studies. OLS techniques assume that the measurements are independent 
and identically distributed (iid). Often this can be assured by an 
experimental design where the time distance between samples is large 
and constant. 

However, the measurements might have been obtained in a more 
heterogeneous setting in some cases. An example could be that for some 
tests, several measurements might have been obtained during a few 
hours at that test, whereas sometimes, just a single measurement is 
conducted on other tests. Measurements within a single test can often be 
highly correlated in time. A high autocorrelation must be considered in a 
proper data analysis to obtain reliable conclusions. 

The validity of using simple linear models or the effects of the 
experimental design are seldom discussed. Calibration quality is usually 
addressed as the coefficient of determination (R2) between the evaluated 
and the reference instruments [21]. However, R2 should only be used if 
the measurements are independent (not correlated) and evenly distrib-
uted. In the actual study, the lag-1 autocorrelation is 0.972, which is a 
high autocorrelation; thus, it has to be taken into account. This paper 
describes methodologies for conducting proper calibration analysis 
given such highly correlated data. 

To understand the problem, let an extreme case be considered. It is 
assumed that the correlation between measurements taken on the same 
day was 1, whereas the correlation between measurements taken on two 
different days was 0. For simplicity, it will be assumed that 1000 mea-
surements were obtained for one day, whereas for nine days, a single 
measurement was obtained for each day. Since the correlation was 1 
within the same day, a single measurement contains all relevant infor-
mation, and the 999 remaining measurements do not provide further 
information. 

Using OLS, all measurements will have the same weight. The cali-
bration line would be very close to the perfectly correlated observations 
on the day with 1000 measurements, and the influence from the nine 
other measurements will be minor. The resulting calibration line will 
thus be highly biased towards the line through the 1000 measurements. 
Using OLS, it is (wrongly) assumed that there are N = 1009 observa-
tions, and consequently, the uncertainty of the parameter estimates will 
be very low (proportionally to 1/N = 1/1009). Finally, R2 will be very 
high (close to 1), and the Residual Standard Error will be very low, 

which does not reflect reality. 
A proper weighting of the measurements is needed to do the correct 

analysis. Since the correlation was one within the same day, the 1000 
measurements should effectively count only as one measurement. Since 
the correlation was assumed to be zero between days, the best calibra-
tion can be found using a weighting where the 1000 measurements were 
treated as a single measurement, and consequently, there are effectively 
only N = 10 observations. The uncertainty of the parameter estimates of 
the best calibration will be much higher (proportional to 1/10), and the 
Residual Standard Error will be much higher, but it would reflect the 
true calibration error needed if the calibrated sensor is expected to be 
used on a day in future. 

This paper describes methods for calibration which take the actual 
autocorrelation into account and provide proper calibration curves and 
uncertainty estimates no matter how the measurements are taken. To 
the authors’ knowledge, the suggested approach for handling auto-
correlated measurements using a first-order Markov scaling has not been 
used to calibrate LCS. 

2.4.1. Regression models used for calibration 
The classical regression model is a statical relationship between a 

dependent variable Yt and p independent variables X1t, X2t, …, Xpt. For 
these sensor calibration experiments, the observations occur succes-
sively in time; therefore, an index t is introduced to denote the mea-
surements at time t. In the calibration, the p independent (or 
explanatory) variables imply that adjusting for experimental conditions, 
like temperature and moisture, is possible. 

A nonlinear function for the calibration curve can be used if a linear 
calibration curve does not fit the experimental data well for some cali-
bration experiments. Thus, the general regression model will be intro-
duced 

Yt = f (Xt, t; θ) + εt (1)  

where θ = (θ1θ2,…θm)
T is a vector of the m unknown parameters, f is a 

known function of the p + 1 independent variables Xt =

(X1t ,X2t ,….,Xpt)
T and t. 

The error term εt is assumed to be a random variable with a mean 
zero (E[εt] = 0), and the variance Var[εt ] = σ2

t , is assumed to depend on 
the time t. Furthermore, it is assumed that the residuals are correlated in 
time: 

Cov
[
εti, εtj

]
= σ2Σij (2)  

where Σij is a weight. In the following, it is assumed that the independent 
variable is known, i.e., Xt = xt. 

The central assumption in linear regression is that the sequence of 
error terms is a sequence of independent and identically distributed 

Table 2 
Description of calibration activities and resulting formaldehyde concentration reported as the highest 30-min average concentration with the reference sensor. TVOC is 
reported as the highest measured 5-min concentration by the 8 LCS. Conditions of temperature and relative humidity are shown as the average ± the standard 
deviation.  

ID Source Test duration in 
minutes 

Temperature and 
RH 

Date Activity description Formaldehyde μg/ 
m3 

TVOC 
ppb 

A Formalin 150 min 20.2 ± 0.2 ◦C 
28 ± 0.41% 

Feb 2020 Beaker with (liquid 37%) formalin. Radiator 
and Humidifier off 

336 1695 

B Wet wood chipboard 780 min 19.9 ± 0.1 ◦C 
48.8 ± 13.7% 

Feb 2020 1 wet board size 1m2. Humidifier on 224 1802 

C Wet wood chipboard 180 min 21.1 ± 0.5 ◦C 
26.8 ± 0.25% 

March 
2021 

4 wet boards size 1m2. Humidifier off 606 55 

D Wet wood chipboard 120 min 27.7 ± 0.8 ◦C 
64.7 ± 9.7% 

March 
2021 

3 wet boards size 1m2. Radiator on, 
Humidifier on 

451 105 

E Wet wood chipboard 90 min 23.5 ± 0.9 ◦C 
72.6 ± 8.4% 

March 
2021 

1 wet board size 1m2 Radiator off, Humidifier 
on 

41 214 

F Wet wood chipboard + wet 
glass wool insulation 

180 min 21.2 ± 0.5 ◦C 
35 ± 3.7% 

March 
2021 

2 wet boards size 1m2, 0.7m2 wet insulation. 
Radiator and Humidifier off 

22 278  
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(IID) random variables [37]. The above formulation contains a gener-
alization that allows for varying uncertainty (variances) and a hetero-
geneous time sequence of autocorrelated error terms. Readers are 
referred to Madsen [37] for more details on how this is considered in the 
general nonlinear setting. 

2.4.1.1. The general linear model. The calibration curve is often 
assumed to be linear, which allows using the general linear model or 
multiple linear regression model: 

Yt = XT
t θ + εt (3)  

where Xt = (X1t,X2t,….,Xpt)
T is a known (non-random) vector and 

θ = (θ1, θ2,…, θm)
T. The error term εt has zero mean and covariance 

Cov[εti, εtj] = σ2Σij 

N observations of the dependent and independent variables are 
assumed: 

(Yt1, xt1), (Yt2, xt2) ,…, (YtN , xtN) (4) 

These observations occur successively in time, but observations at 
any given point in time, e.g. at non-equidistant time points, are allowed. 
This implies that very flexible experimental design and sampling times 
are allowed. 

The total model for the N observations can be written 

Y = xθ + ε (5)  

where the design matrix x has dimension N × p. Following the defini-
tions given in Eq. (3), E[εt ] = 0, and the covariance matrix for the re-
siduals ε is Var[ε] = σ2Σ where Σ = [Σij].

Linear regressions assume that the residuals are independent and 
identically distributed (IID). This is described using the above formu-
lation by putting Σ = І, being І the identity matrix leading to Ordinary 
Least Squares Estimation (OLS). However, this assumption is often 
violated in calibration problems and cannot be used. 

2.4.1.2. Covariance and correlation structure. The covariance matrix Σ 
has to be specified appropriately to get reasonable estimates. Hence, 
both the variance and the correlation structure of the residuals εt have to 
be described. 

The general formulation of the covariance matrix for the residuals is 
given by Eq. (2). By inspection of the data from these calibration ex-
periments, it is seen that consecutive time residuals within a single test 
appear to be dependent. Similarly, it seems reasonable to assume that 
the variance is the same for all the residuals; thus, only the correlation 
structure must be specified. 

In this case, it seems reasonable to assume that the correlation 
structure is an exponentially decaying function of the time distance 
between two observations, i.e., 

Cor
[
εti , εtj

]
= ρ|ti − tj| (6)  

where ρ is the correlation between two observations one-time unit apart. 
For hourly data, this is the hour-to-hour correlation. This corresponds to 
assuming a first-order Markov structure, or an Autoregressive first-order 
model, for the residuals [37]. Higher values of ρ coefficients denote a 
stronger correlation. 

The assumption in linear regression is that Σ is known, but this is 
seldom the case in practice. In Ref. [37] a relaxation procedure is 
described, but for the above-mentioned problem, the likelihood function 
can be written assuming that the residuals are Gaussian. 

2.4.1.3. Maximum likelihood estimates. The maximum likelihood 
method aims to describe the variation in the data by assuming a prob-
ability density and accounting for the autocorrelation. The consider-
ation of autocorrelation will be advantageous in both forecasting and 

control. 
As before equation (5) is considered for all N observationsand the 

residuals are assumed Gaussian, i.e., the measurements follow the 
Gaussian distribution 

Y ∈ N
(
xθ, σ2Σ

)
(7)  

and contrarily to other authors, a first-order Markov correlation for the 
residuals Σ is assumed so that the correlation structure can be modeled 
and specified by 

Σij = Cor
[
εti , εtj

]
= ρ|ti − tj| (8) 

The above assumptions imply that the joint density for all observa-
tions, Y, is 

fy(y) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
2πσ2)N

√

detΣ
exp

[

−
1

2σ2(Y − xθ̂)T Σ− 1(Y − xθ̂)
]

(9) 

Which implies that apart from a constant, the log-likelihood function 
for the unknown parameters is defined with equation (10): 

log L(θ, ρ;Y)= −
1
2

log det(Σ) −
N
2

log σ2 −
1

2σ2(Y − xθ)T Σ− 1(Y − xθ) (10) 

The maximum likelihood estimates are found using numerical 
methods by maximizing equation (10). Estimates of the uncertainty of 
the parameter estimates are found using the observed Fisher Informa-
tion Matrix; see Ref. [38] for details. In this article, the problem was 
implemented in R, and the GLS function was used in the NLME package. 
The Maximum Likelihood (ML) method and the residual maximum 
likelihood method (REML) were used. The ML method has the weakness 
that the variance estimates are biased, but this problem is handled by the 
REML method. The REML estimator corrects the estimated variance 
components for the degrees of freedom lost in estimating the fixed effect 
parameters; hence, the REML estimates the random effects more accu-
rately. In practice, ML and REML give similar results and converge for 
large samples. Readers are referred to Ref. [38] for details. 

2.5. Error determination 

The idea of the error determination is to evaluate:  

1) the accuracy that refers to how close the sensor reports to the true 
value or reference measurement,  

2) the precision that responds to how consistently is the sensor reacting,  
3) the bias that looks for systematic errors in reporting a value. 

As already proven, it is impossible to demonstrate in this case that 
the residuals are independent and identically distributed. Therefore, 
using R2 that quantifies the strength of the association (information 
about the goodness of a fit of a model) by equation (11) is not relevant 
for ML and REML. The ML or REML methods will "weight" the data, 
considering its information to consider it more reasonably. Thus, the fit 
will never be as good as when using the regression line considering all 
the data. 

R2 = 1 −

∑(
CLcs,i − ĈLCS,i

)2

∑(
CLcs,i − CLCS,i

)2 (11)  

MAE =

∑N

i=1

̂|CLCS,i − Cref ,i

⃒
⃒
⃒
⃒
⃒

N

(12)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(
ĈLCS,i − Cref ,i

)2

N

√
√
√
√
√
√ (13) 
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For precision metrics, mean absolute error (MAE; eq. (12)) and root 
mean squared error (RMSE; eq. (13)) will often be used. For equations 
(11)–(13) Cref and CLCS are formaldehyde concentrations measured by 
the reference monitor and LCS, respectively, ĈLCS,i is the predicted value 
and CLCS,i the mean value. 

MAE and RMSE calculate the average model prediction error, and 
their value can range from zero to values as high as the measured con-
centrations themselves. These parameters are useful to evaluate the 
fitted models’ accuracy. 

As these calibration models are built on different scales of formal-
dehyde concentrations, normalizing the accuracy metric is important so 
that models can be compared. Reporting normalized and absolute 
metrics is necessary when reporting errors. Normalizing performance 
metrics allows models to be appropriately compared between environ-
ments where concentration ranges are different [27]. The Coefficient of 
Variation (CV) and Mean Normalized Bias (MNB) are recommended 
guidelines by the United States Environmental Protection Agency (US 
EPA) for the evaluation of sensors [22] and thus, introduced in this 
article. 

MNB =
1
N

∑N

i=1

(
CLCS,i − Cref ,i

)

Cref ,i
(14)  

CV =
σ
μ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

CLcs,i − CLCS
)2

N

√

CLCS

(15) 

However, R2, MAE, and RMSE do not account for autocorrelations. 
These performance indicators are created with the basic assumption that 
measurements are independent, which they are not in our case. They are 
nevertheless reported in this article to compare to other existing 
literature. 

The Akaike information criterion (AIC) is a measure of the model’s 
fit. AIC measures the quality of one model relative to the other as long as 
the models are constructed with the same estimate principle. For 
example, it will compare two different OLS models or two different 
REML models with different parameters, but not one OLS and one REML 
model. AIC provides a means for model parameter selection [39]. It is 
calculated using formula (16), where k is the number of estimated pa-
rameters in the model andL̂ the maximum value of the likelihood 
function for the model. As the Log-likelihood is a measure of model fit. 
The lower the number, the better the fit. 

AIC = 2k − 2 ln (L̂) (16) 

For evaluation of the ML or the REML models, no error formulation is 
recommended as the evaluation would be very much dependent on the 
use of the sensor and other statistical parameters out of the scope of this 
article. In the case of ML and REML, a numerical method is often needed 
for finding the parameters which maximize the likelihood function. 

2.6. Calibration procedure 

The procedure for calibration followed the steps described below:  

1 Check that all sensors react similarly to the exposure to the reference 
source. Before corrections can be studied, it should be controlled that 
all the units respond similarly to the same event [27]. Malings [40] 
defined intra-unit consistency when the variability is less than 20 % 
between equal units.  

2 Log transformation of the data. To make it more normally 
distributed.  

3 Study the calibration model most suitable to the available data, in 
this case, considering autocorrelated measurements and heteroge-
neous sampling lengths. The model sought was fitted using all the 
measured variables. 

4 Repeat the fitting of the model only with the most significant vari-
ables chosen using the Akaike information criterion.  

5 Evaluate the results based on the EPA suggested performance goals 
by application for MNB and CV according to Ref. [15]. This evalu-
ation is done according to the values described in Table 3 

3. Results and discussion 

3.1. Raw measurements 

Fig. 2 shows the raw measurements (out of the box) of all the eight 
sensors, and in black, the reference equipment (not for TVOC as a 
reference instrument was not available). For most of the measurements, 
all sensors react similarly. For temperature, the LCS overestimates the 
values compared to the reference sensor. For RH, the LCS over and 
underpredict the RH. For formaldehyde, LCS mostly overpredicts, being 
especially wrong in test A where the overprediction is especially high 
due to cross sensitivities with other gases. For TVOC, all LCS sensors 
predict similarly. 

The sensors react similarly to the events to which they are exposed. 
The average difference among the LCS is 14%, 1%, 3%, and 18% for 
formaldehyde, temperature, RH, and TVOC, respectively. In the 
following, only the measurements and the models for calibrating sensor 
station S1 will be reported. 

3.2. Calibration using formaldehyde, RH, temperature, and TVOC 

The log transformation was done to have data that are more normally 
distributed. 

The results for only one sensor are presented to exemplify the cali-
bration methodology, but the results for all the other sensors were very 
similar. 

Firstly, all the measured parameters were used to fit the calibration. 
Table 4 shows the parameters for OLS, ML, and REML after taking the 
logarithm of the data for sensor station 1. 

OLS is just shown here for comparison to other literature, but given 
the performed experimental design (autocorrelation of the data and 
heterogenous sampling), its use is not recommended for the collected 
data. Given that not all the tests were equally long, with OLS, the longer 
ones will significantly affect the estimation. OLS is based on minimizing 
the sum of squares of the difference between the observed dependent 
variables in the dataset. Thus, when having autocorrelations, the fitting 
using OLS will be very good for the dataset fed-in. However, when using 
the calibration estimates to predict other “unseen” datasets, OLS esti-
mates will perform poorly because they are “overfitted for the calibra-
tion dataset.” 

A practical example is given for clarity. If measurements of the size of 
a river are mostly taken after the snow-melting period, a huge river will 

Table 3 
EPA suggested performance goals by application for MNB and CV according to 
[15].   

MNB range CV range 

Tier I: Education and Information − 0.5 < MNB 
<0.5 

CV < 0.5 for all 
pollutants 

Tier II: Hotspot Identification and 
Characterisation 

− 0.3 < MNB 
<0.3 

CV < 0.3 for all 
pollutants 

Tier III: Supplemental Monitoring − 0.2 < MNB 
<0.2 

CV < 0.2 for all 
pollutants 

Tier IV: Personal Exposure − 0.3 < MNB 
<0.3 

CV < 0.3 for all 
pollutants 

Tier V: Regulatory Monitoring − 0.07 < MNB 
<0.07 

CV < 0.07 forO3 

− 0.1 < MNB 
<0.1 

CV < 0.1 for CO and 
PM2.5 

− 0.15 < MNB 
<0.15 

CV < 0.15 for NO2  
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be predicted and may be perfectly predicted. However, its size will be 
overpredicted when the corrections are used to predict the same river in 
summer. Therefore, even though in Table 4, Fig. 4, and Fig. 5 the OLS 
predicts the measurements by the reference equipment with the smallest 
errors, the model is not recommended. Calibration is needed so that the 
sensors can be used to predict unseen data, and if the model is overfitted 
to the calibration dataset, each time that a measurement is taken outside 
of the dataset conditions, the sensor will not be reliable. ML and REML, 
as they consider autocorrelations, will not produce the best fitting of the 
measured data but will be the models that estimate best the calibration 
so that the sensor works best when used with new data. 

Considering the OLS, based on p-values, TVOC is not a significant 
parameter, but formaldehyde, RH, and temperature are significant. 
However, when considering ML and REML, TVOC becomes significant 
instead of formaldehyde. In the last cases, some VOCs causing cross- 
sensitivities are produced, e.g., the test with wooden materials, mak-
ing cross sensitivities so important that TVOC becomes an explanatory 
variable. According to their manufacturers, the reference formaldehyde 
sensor has known cross-sensitivity with possible-present VOC such as 

limonene, styrene, propionaldehyde, n-Nonyaldehyde, benzaldehyde, 
and acetaldehyde, among others, while the Dart formaldehyde sensor 
has cross sensitivities with ethanol phenol, ethylene among others and 
all these could have been degassed from our test. ML and REML weight 
the data based on the autocorrelations; therefore, TVOC cross- 
sensitivities with formaldehyde gain importance. 

Most published works use temperature and relative humidity in 
linear fits to increase the fitting (e.g., Crilley et al., [41]). However, for 
ML and REML, RH is not a significant parameter as these sensors are 
already compensated for it in the out-the-box measurements [33]. 

Fig. 3 shows the autocorrelation of the residuals of the ML model. 
The model’s residuals are highly autocorrelated, and this figure shows 
the importance of considering and describing autocorrelation as it may 
affect the reliability of the models if not accounted for. By using auto-
correlation, the one-step forecast error of ML and REML will be much 
smaller. The variance of the one-step forecast error is proportional to 1 
minus the squared value of the autocorrelation in lag 1 [37]. When lag1 
autocorrelation is high, the uncertainty of short-term predictions is 
highly reduced. 

Fig. 2. Out-of-the-box response of the eight sensors to the six exposure tests. Every facet plots the results of each test, and the points are colored based on the sensor. 
Dots in black represent the reference instrument. 

Table 4 
Fitting of parameters using the different estimations. A p-value less than 0.05 was considered statistically significant. The middle part of the table shows the errors with 
typical formulations, and the lower part shows the evaluation according to EPA recommendations. OLS is just shown here as a comparison point, but its use is not 
recommended for calibration given the experimental design.   

OLS p-value ML p-value REML p-value 

Intercept 4.934 0.000 − 7.83029 0 − 7.958 0 
FA 0.748 4.73E-05 0.176965 0.423 0.152 0.491 
Temperature − 4.976 3.74E-06 6.721079 0 6.870 0 
RH 0.661 0.015 − 0.37359 0.078 − 0.377 0.072 
TVOC 2.576 0.190 2.227658 0.019 2.303 0.016 
Residual standard error 0.211  0.48  0.63  
R-squared 0.7751      
AIC − 5.76  − 128.9467  − 127.0673  
RMSE 0.203  0.543  0.540  
MAE 0.146  0.509  0.512  
ρ 0.65  0.972  0.972  
CV 0.20 Tier II/IV 0.1486 Tier III 0.1482 Tier III 
MNB 4.29e-18  0.112 0.099  
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Fig. 4 shows the fitting results when using all the measured param-
eters. The OLS fitting follows the values on the top part of the graph very 
well. Most of these values correspond to the same test, test B (defined in 
Table 2). OLS will not consider the autocorrelation of the values, and as 
this test is the test with more points, it has a larger effect on the fitting 
parameters. The suggested ML and REML will account for the autocor-
relation, and thus the fitting of these points is much worse. When using 
REML or ML, the model considers only the "new information" from a test, 
and thus it predicts individual points in test B poorly, but it predicts 
much better the ones in the lower part of the graph as they have new 
information. Overall, the ML and REML show a more balance fit to the 
data. 

Fig. 5 shows the predictions facetted by the test. Tests A, B, and C are 
the longest tests and thus very well predicted by OLS; however, tests D-F 
have a similar error for all three methods (test defined in Table 2). ML 

and REML overpredict results for tests C–F and underpredict in A and B. 
OLS under and overpredicts in tests A and B, underpredicts in tests C and 
D, and overpredicts in tests E and F. The fact that results are under and 
over-predicted makes the calibration more unreliable due to 
randomness. 

Using stepwise regression, a regression model was built that mini-
mizes the AIC value for ML and REML models. A simpler model was 
developed using the AIC to measure the loss of information while 
removing variables. The model considering only formaldehyde and 
temperature as the explanatory variables is selected in this case. The AIC 
penalizes adding more variables; thus, only the variables that are better 
predictors are maintained. In this case, TVOC has the lowest AIC value, 
and it is the parameter where less information will be lost when being 
removed. 

Additionally, multicollinearity is checked. Multicollinearity happens 
when two or more predictor variables are highly correlated. TVOC and 
formaldehyde are strongly correlated. Hence when removing multicol-
linear predictors, the remaining predictor will still contain most of the 
information [42]. Keep in mind that resulting AIC values with different 
estimates should not be compared. 

3.3. Calibration using formaldehyde and temperature 

Table 5 shows the results for the model considering only formalde-
hyde and temperature. Formaldehyde and temperature are significant 
for all three types of models. OLS results are included in Table 5 to 
compare to other existing literature but will not be further discussed. 

According to EPA’s recommendations, the sensors are evaluated as 
Tier III, supplementary monitoring for all the sensors with these models. 

Fig. 6 is not substantially different from Fig. 4. The prediction of the 
larger values is better with these models. This is probably a consequence 
of removing TVOC from the model, which gives formaldehyde mea-
surements more weight. The same can be concluded by looking at the 
smaller MAE and RMSE with fewer parameters. 

Both Figs. 6 and 7 show that the LCS predicts the trends of formal-
dehyde concentration reliably. However, Fig. 7 shows that despite being 
the error smaller in REML and ML, the models still have a systematic 
bias. Tests A and B were underpredicted, test C was very well predicted, 
and D, E, and F were overpredicted. Measurements A and B were per-
formed with no heater and only a humidifier for the latter. During the D 
and E, the radiator was on, and in F, none was on. Therewas a second 
difference; these measurements were taken one year apart. In the mid- 
time, the sensors were exposed to different concentrations of formal-
dehyde during several measurements, and what we see may be drift due 
to the loss of baseline or accumulation of material on the oxidizing 
membrane. The measurement principle relies on a two-electrode elec-
trochemical type, operating by the diffusion principle. Clogging of the 
membrane may incur wrong measurements or over predictions. 

Fig. 3. ACF of the residuals for the ML model.  

Fig. 4. Fitting of LCS measurements using all measured variables as explana-
tory variables. 

Fig. 5. Prediction of calibrated values using OLS, ML, and REML methods. Results facetted by test.  
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It is also important to note that three years after using the sensors, 
two of the eight sensors stopped working, two years before the sensor’s 
five-year expected lifetime [35]. According to EPA’s recommendations, 
these sensors should only be used for supplementary and not for regu-
latory monitoring. However, as they respond well to the changes in 
trends, they can be used to control personal exposure. 

3.4. Summary of the essential parameters to make a good calibration 

To evaluate sensors, it is common in the literature to develop linear 
models that correlate measurements with a laboratory-grade sensor and 
an LCS, and by evaluating the R2, the goodness of the fit or the sensor is 

concluded. 
However, at least three elements should be considered before 

developing such correlations, 1) the experimental design, 2) the auto-
correlations, and 3) the selection of the best model. 

3.4.1. Experimental design and limitations of the presented tests 
It is essential to make an experimental design that ensures causal and 

proper dependencies in the data [43]. The following facts affected the 
selection of the model that could be used for calibration:  

• The length of the measurements was not equal for all the tests. Some 
tests went overnight, and others lasted only a couple of hours. Dif-
ference test lengths would affect a linear model by giving overweight 
to the longer test. For test B, the idea behind having so long mea-
surements was to see if, after exposure, the sensors returned to the 
initial baseline or if they suffered from drift. 

• The same tests were run at slightly different humidity and temper-
atures, but these were not constant during the test or from test to test. 
We intended to test at "dry-wet" and "cold-warm" conditions as 
Demanega did [36]. Neither the radiator nor the humidifier main-
tained constant conditions, and conditions averaged around the set 
points. Having constant factors would help establish or not the effect 
of a single factor. Dependent variables could be measured at different 
levels, intervals, or ratios, affecting the level of precision attainable 
here; these variables could only be measured and not controlled 
[43]. 

• The selected tests were known from the literature to produce form-
aldehyde [44]; however, too little attention was set to the different 
TVOCs that were simultaneously produced, resulting in 
cross-sensitivities for both formaldehyde and the TVOC sensors. For 
example, formaline is a known source of formaldehyde, but it con-
tains methanol, to which the WZ modules and the Graywolf sensor 
have a strong cross-sensitivity. Cross-sensitivity is a prevailing 
challenge for sensors that measure gaseous pollutants [21].  

• If a high autocorrelation is seen for the measurements, then this 
autocorrelation has to be taken into account to give reliable esti-
mates for highly correlated measurements. As a rule of thumb, 
conventional OLS methodologies can be used if the autocorrelation is 
less than, say, 0.3. 

3.4.2. Importance of describing the correlation 
OLS assumes independent observations, and if this is not fulfilled, 

then the outlined measures that describe the systematic variation in the 
data should be used. 

In general, LCSs measure with a high sampling rate, i.e., with a small- 
time distance between the individual data points. In such cases, the 
calibration error at two consecutive measurements is often highly 
correlated. Using measurement campaigns with more frequent sampling 
than needed would often yield overestimated R2 [40] due to autocor-
relations in the time series. In the case of frequent sampling, the errors 

Table 5 
Estimation of parameters using the different estimations.   

OLS p- 
value 

ML p- 
value 

REML p-value 

Intercept 4.21 5.7E- 
04 

− 6.18 1.0E- 
04 

− 6.33 1.00E- 
04 

FA 1.03 1.8E- 
14 

0.63 0 0.62 0 

Temperature − 3.69 3.7E- 
05 

4.62 2.0E- 
04 

4.77 1.00E- 
04 

Residual 
standard error 

0.25  0.42  0.53  

R-squared 0.70      
AIC − 159.7  − 125.9  − 123.7  
RMSE 0.245  0.37  0.37  
MAE 0.193  0.32  0.33  

CV 0.19 Tier 
III 

0.15 Tier 
III 

0.15 Tier III 
MNB 9.66e- 

17 
− 0.11 − 0.09  

Fig. 6. Fitting of LCS measurements using formaldehyde and temperature as 
explanatory variables. 

Fig. 7. Prediction of calibrated values using ML and REML methods. Results facetted by test.  
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from the one-time point are often highly correlated with the sampling 
error at a neighboring time point. Compared to more scarcely sampling 
points, the extra points arising from the frequent sampling over a long 
time do not provide extra information proportional to the relative 
number of samples. Using several test exposures at different environ-
mental conditions and with different sources rather than very frequently 
sampled measurements are recommended to develop calibration 
models.The LCS collected data every 5 min, and the measurements were 
averaged every 30 min to be compared to the laboratory-grade sensor. 
Measurements taken continuously will almost always be autocorrelated 
and result in models with autocorrelated residuals. 

One condition of linear regression is that the residuals are indepen-
dent and identically distributed. However, in calibration, when the 
sampling is done as here, continuously, this assumption is then often 
violated. Measurements are taken often with little variations of the 
source, thus with measurements very correlated to the previous. 
Consequently, generalized least squares estimation must be considered 
so that the explanatory variables fully describe the autocorrelation. ML 
considers the autocorrelation, but REML has better compensations for 
the estimated and scaling parameters (related to the variance). 

3.4.3. Selection of best model 
In our analysis, the best model is selected based on a test for signif-

icant parameters and a comparison between different model candidates 
using the AIC criterion. In general, the ML approach provides a robust 
framework for model selection even in the case of autocorrelated errors. 
However, the REML approach is preferred for the final parameter esti-
mation since it provides more unbiased estimates of the variances. 

3.4.4. Performance of the tested formaldehyde LCS 
Both LCS and the reference sensor present very similar dynamic re-

sponses, which means that LCS could be used to detect concentration 
changes. However, there were quantitative discrepancies even after the 
calibration. These discrepancies over-and under-estimated the values 
obtained by the reference sensor. The LCS and the reference sensor 
suffer from cross-sensitivities to some VOC released by the tested sour-
ces. However, the cross-sensitivity reaction is different for the different 
chemical compounds and sensors, making the evaluation of the precise 
values more complicated. 

The present study suggests that these sensors have the potential to be 
used in indoor environments as Supplemental Monitoring. According to 
EPA’s recommendation as Tier III, a sensor can be used to improve the 
characterization of concentration gradients [22]. This would mean 
triggering the proper responses for the control, but this control would 
need to focus on trends better than values. 

4. Conclusions 

LCSs use is becoming widespread in the market. However, these 
sensors are often delivered from the provider with limited information 
regarding use and performance, reliability, and response to aging or 
drift. This article analyzes the performance of eight IAQ stations with the 
same formaldehyde sensor type via comparison with reference equip-
ment. Tested sensors were pre-calibrated from the factory at purchase, 
and the drift is removed via a 12 h calibration before the experiments. 

The tests were run in a mini chamber as a collection of measurements 
of formaldehyde. The lengths of the tests were heterogeneous based on 
the estimated duration of the exposure. Some tests were run in cold, 
warm, dry, and wet conditions controlled with a domestic radiator and 
humidifier. The experimental design did not ensure that tests data were 
not autocorrelated. 

Given the autocorrelation of the measurements, Ordinary Least 
Squares Estimations should not be used. In this article, there are two 
alternative methods for evaluating the calibration: Maximum Likelihood 
and Restricted Maximum Likelihood Estimation. ML considers the 
autocorrelation, but REML has better compensations for the estimated 

and scaling parameters (related to the variance). This article has created 
a procedure for estimating a weighting according to the autocorrelation 
based on the first-order Markov. Then a simple method using this 
weighting was created. Finally, the AIC criterion was used to select the 
most significant parameters, and for the calibration of the formaldehyde 
sensor, formaldehyde and temperature were estimated as significant 
parameters. 

According to EPA’s recommendations, these models evaluate the 
sensors as Tier III supplementary monitoring. These results are pre-
sented for only one of the eight sensors. Out of the eight, one sensor 
stopped working during the calibration tests (a second one stopped 
recently after continuous use), and the remaining six presented similar 
performance. 

The main message is that when sensors collect data continuously 
with a very high-frequency interval, there is often little difference be-
tween measurements, which are often highly autocorrelated. OLS 
cannot be used in this case and different models considering the auto-
correlation are necessary. This paper exactly presents such new methods 
that can use data that are autocorrelated. The practical implication is 
that these models allow handling heterogeneous test sampling. This 
means they can use data where in some tests, many samples are taken on 
the same day, and some tests where much fewer tests are taken, and then 
measurements after some days without data sampling. 

The LCS and the reference sensor suffer from cross-sensitivities to 
some VOC released by the tested sources. Even if there were discrep-
ancies where the LCS over-and under-estimated the values obtained by 
the reference sensor, they both presented very similar dynamic re-
sponses, indicating that LCS could be used to detect concentration 
changes. The present study suggests that these sensors have the potential 
to be used in indoor environments as Tier III supplemental Monitoring 
(according to EPA’s recommendation), especially for triggering appro-
priate controls. 
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