
Materials Science & Engineering A 832 (2022) 142500

Available online 10 December 2021
0921-5093/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

An improved modelling framework for strength and work hardening of 
precipitate strengthened Al–Mg–Si alloys 

Feng Lu a, Jonas K. Sunde b, Calin D. Marioara c, Randi Holmestad b, Bjørn Holmedal a,* 

a Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz Veg 2, NO-7491, Trondheim, Norway 
b Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway 
c SINTEF Industry, NO-7465, Trondheim, Norway   

A R T I C L E  I N F O   

Keywords: 
Strengthening model 
Yield strength 
Work hardening 
Aluminium alloy 
Needle-shaped particles 
Precipitate-dislocation interaction 

A B S T R A C T   

A modelling framework for the strength and work hardening contributions in age hardened Al–Mg–Si alloys is 
presented. The modelling work is based on transmission electron microscopy (TEM) measurements of the needle- 
shaped precipitate lengths and cross sections, and on stress-strain curves up to fracture, obtained by tensile tests 
applying a necking correction. For strains beyond the uniform limit, further work hardening is found to be 
strongly suppressed by the presence of the precipitates. At strains up to about 10–15%, new models are proposed 
for the description of the work hardening at different aging conditions. A detailed way of accounting for the 
contribution from generation of dislocation loops around non-sheared precipitates is formulated, based on the 
precipitate size and shape distribution. However, this mechanism overestimates the work hardening, and as an 
alternative, a new mechanism is suggested, assuming that the precipitates act as obstacles for moving disloca-
tions and contribute to restrict their average slip length, leading to increased storage rate of the dislocations. The 
model captures measured stress-strain curves at different aging conditions well.   

1. Introduction 

The AA6xxx series Al–Mg–Si alloys gain their strength from pre-
cipitates, which nucleate, grow, and coarsen during thermal aging. 
Providing good ductility and corrosion resistance, these alloys play a key 
role in e.g., architectural and building products and are increasingly 
important as lightweight solutions in transport applications. Even 
though the material cost is higher than for steels, reduced manufacturing 
costs, favorable lifetime costs and lower carbon footprint make them 
competitive, e.g. for body-in-white applications [1]. Not only the initial 
yield strength is important but also the uniform elongation. An example 
is extruded profiles for building applications which are often delivered 
in T64 condition. It is less strong than the peak aged alloy but with a 
higher uniform elongation due to a stronger work hardening. 

The strength of the age hardened alloys stems from the precipitates 
formed during aging. The alloy composition and the prior thermo-
mechanical processing influence the shape, number density, size, and 
volume fraction of the precipitates. The metastable β˝ phase is consid-
ered as the main strengthening phase in peak aged Al–Mg–Si alloys [2], 
though other precipitates may occur concurrently [3,4]. Several earlier 
works [5–10] have investigated the strengthening effect of these 

precipitates. Rods or needle-shaped precipitates are formed with the 
length direction along <100> in the AlMgSi alloys [11]. Depending on 
the precipitate length, one precipitate needle may penetrate multiple 
{111} aluminum glide planes, and form dislocation obstacles at the in-
tersections. A needle-shaped particle intercepts more glide planes than a 
spherical particle with the same volume and therefore contributes with 
more dislocation obstacles. Depending on needle cross section and type 
of precipitate, it contributes with either shearable or non-shearable 
obstacles for the moving dislocations. A critical size is commonly sug-
gested as the shearable/non-shearable limit, often assumed to occur at a 
precipitate size close to the average size found at the peak aged condi-
tion [6,12,13]. Shearable precipitates can be cut by dislocations when 
their particle obstacle strength is exceeded. In an overaged state, most of 
the precipitates are strong and non-shearable, i.e., they have maximum 
obstacle strength. 

In the strength model considered in the work by Deschamps et al. 
[14] and later by Myhr et al. [15,16], the mean obstacle strength was 
estimated from a model considering a volume distribution of spherical 
particles, where the needle shaped precipitates were converted to 
volume-equivalent spheres, defining the equivalent radius, which is the 
main parameter of this model. Esmaeili et al. [17] accounted for the 
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needle shape of the precipitates in the calculation of the yield strength, 
but then based on the average volume fraction and needle cross section, 
rather than on the detailed size distribution. Recently, both the aspect 
ratio and the length distribution of the needles are considered in the 
model by Holmedal [6], see also the recent discussion by Sunde et al. 
[18]. 

In strength models, a realistic estimation of the obstacle strength of 
shearable precipitates is challenging to obtain based on experiments and 
characterization. In practice it is handled by a simple model that is 
calibrated to estimate the correct stress levels for underaged conditions. 
The size and aspect ratios may be measured by TEM [18], or alterna-
tively it can be estimated by modelling of diffusion controlled precipi-
tation kinetics [5,19]. 

During deformation, the strength will increase. The dislocation/ 
precipitate-dislocation interactions raise the complexity of the work 
hardening of Al–Mg–Si alloys, due to the increased number of 
dislocation-based obstacles created during plastic deformation. The rate 
of increase is influenced by the presence of precipitates, which may alter 
the competition between dislocation storage and dislocation annihila-
tions by dynamic recovery. The athermal storage is increased by storage 
of dislocation loops, either shear loops or prismatic loops, related to the 
bypassing of non-shearable precipitates, i.e. geometrically necessary 
dislocations (GNDs) [20]. In general, the storage rate of dislocations is 
inversely proportional to the mean free slip length, which decreases with 
the increased number of dislocation-based obstacles formed during 
plastic deformation. 

It is reasonable to ask if a high number of precipitate-based obstacles 
affect the mean free slip length? This is an aspect not being paid 
attention to so far, but which is addressed in the model suggested here. 
However, in classical models, only the increased storage rate of GNDs 
generated around non-shearable particles are accounted for. This 
mechanism will increase the total storage rate of dislocations and 
correspondingly make the dislocation density increase faster. Unlike the 
precipitate-based obstacles, the dislocation-based obstacles are not 
thermally stable and can be annihilated during deformation, i.e., dy-
namic recovery. The dynamic recovery of the dislocations is, as a first 
approximation, based on the total dislocation density. Hence, due to the 
higher storage rate with GNDs, dynamic recovery will be invoked at 
smaller strains than without non-shearable precipitates. In a refined 
model, it has been suggested [21], that when prismatic loops are formed, 
the dislocation density near the non-shearable particles will increase 
locally and lead to earlier dynamic recovery in these regions. The in-
fluence on the dynamic recovery of the presence of a high number of 
shearable precipitates has not been considered so far, but when the 
density of particle-based obstacles become comparable to the density of 
dislocation-based obstacles, an interfering effect on the dynamic re-
covery might be expected. 

Friis et al. [22] and more recently Ghosh et al. [23], applied the Nes 
model [24,25] for the evolution of the dislocation structures and cor-
responding work hardening of Al–Mg–Si alloys at various aging condi-
tions. Friis et al. [22] predicted the precipitate distribution applying the 
model by Myhr et al. [15] for the strength contribution from the pre-
cipitates, while Ghosh et al. [23] applied a simpler estimate of this 
strength contribution, based on the volume fraction and average volume 
of the precipitates. More recent works by Myhr and co-workers [10,16, 
26,27], combines various versions of the simplified Mechanical 
Threshold Strength (MTS) work-hardening model [28] with various 
versions of the same precipitation strength model. GNDs are accounted 
for, while the dynamic recovery of dislocations is assumed not to be 
affected by the precipitates. All these works add the stress contribution 
from precipitates to the term for dislocation strengthening linearly, i.e., 
the work hardening is treated independently of the strength contribution 
from the precipitates. However, since both dislocations and precipitates 
contribute with relatively strong obstacles, these stress terms should in 
theory be added quadratically, according to Kocks et al. [29]. Cheng 
et al. [30], analyzed the interactions between these two types of 

hardening terms and suggested a nonlinear combination with an expo-
nent between two (quadratic) and one (linear). For the evolution of the 
dislocation density estimates, they used a simplified version of the MTS 
model [28], while rough estimates were applied for the stress contri-
butions from precipitates and elements in solid solution. 

The work hardening is challenging to measure, since tensile tests of 
age hardened alloys neck at low strains. Still, this is important, since in 
forming or crash-performance simulations, stress-strain curves are 
required as model input for strains significantly beyond the onset of 
necking. Some works simply extrapolate the Voce equation [31] for the 
stress until fracture or fit the flow stress until fracture by inverse 
modelling [32] or combine other advanced methods [33,34]. A direct 
experimental method can be to use a low-friction compression test [35], 
which however is limited by the barreling instability induced by the 
friction. Another method, that will be applied here, is to apply necking 
corrections for uniaxial tensile tests, based on optical measurements of 
the necking contour [36–38]. 

The aim of the present study is to analyze a modelling framework for 
predicting strength and work hardening of an Al–Mg–Si alloy. The 
experimental work to be considered here, was reported earlier by Sunde 
et al. [18], and the part of it required here is presented in Chapter 2. It 
consists of extensive measurements of precipitate size and cross section 
distributions by TEM and tensile testing with stress-strain curves up to 
fracture obtained by necking corrections. In Chapter 3, the modelling 
framework is formulated. The precipitate strength term is based on a 
model recently suggested by Holmedal [6]. This model considers the 
needle shape of the precipitates in terms of length and thickness distri-
butions quantified by TEM measurements. During deformation, the 
number of dislocation-based obstacles increases, while the number of 
obstacles due to the precipitates remains constant. The model pre-
dictions of initial strength and work hardening depend on how the 
mixture of these two types of obstacles are handled. A more refined 
version of the modelling approach by Cheng et al. [30] is developed, 
where the GNDs due to Orowan looping of the non-shearable pre-
cipitates are precisely accounted for by applying the measured size 
distribution of the precipitates. Furthermore, another mechanism for 
slip-length restrictions by the precipitates is suggested and tested. The 
results are presented and discussed in Chapter 4. Based on that, con-
clusions are made in Chapter 5. 

2. Experiments 

The Al–Mg–Si alloy, AA6082, was received from Neuman 
Aluminium Raufoss as extruded cylinders with cross-sectional diameter 
of 30 mm. The chemical composition is provided in Table 1. 

A thorough TEM investigation and tensile tests of the same alloy and 
the same aging treatments as considered here, were reported earlier by 
Sunde et al. [18]. Hence, only a summary of these results is given. All 
specimens were solution heat treated in a salt bath at 540 ◦C for 12 min, 
followed by water quenching. After 10 min at room temperature, the 
specimens were artificially aged in an oil bath at 180 ◦C to various aging 
times, listed in Table 2. The alloy reached peak strength after 3 h aging. 
X-ray diffraction analyses showed no sign of recrystallization after the 
heat treatments. The grain size was determined to be approximately 23 
μm, by line intercept in the radial direction, from light optical micro-
scopy. Manganese-containing dispersoids were formed prior to extru-
sion, during the homogenization treatment, i.e. 2 h heating to 560 ◦C 
and subsequently 2 h holding time at this temperature before air cooling. 
The dispersoids remain thermally stable during the aging treatment of 
the alloy. Their mean radius was approximately rdisp ≈ 46 ± 1 nm and 

Table 1 
Nominal chemical composition (wt. %/at. %) of the AA6082 alloy.  

Alloy Si Mg Cu Fe Mn 

Al–Mg–Si 0.88/0.85 0.72/0.80 0.03/0.01 0.24/0.12 0.51/0.25  
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their volume fraction was approximately fdisp ≈ 0.85% ± 0.09%, based 
on TEM measurements of about 550 particles. 

2.1. Precipitate length distributions 

Details about the TEM work are referred to Sunde et al. [18]. Pre-
cipitate parameters, such as lengths and cross-sectional areas, were 
measured from bright-field TEM images acquired in the <100> Al zone 
axis. Fig. 1 shows an example of two TEM images of the precipitate 
microstructure at the peak aged condition and a schematic drawing of a 
typical electron energy loss spectroscopy (EELS) spectrum, including the 
formula used in Sunde et al. [18] to calculate sample thickness for each 
TEM image. For each ageing condition, roughly 200 to 400 precipitate 
lengths were measured, as well as 70 to 150 cross-sectional areas. 

For representing the size distribution of the NA measured pre-
cipitates, for simplicity, the two parameters of a log-normal distribution 
can be calibrated [7,22,39], or a Gaussian distribution may be applied 
[40]. More precisely, one can divide the sizes into classes of a certain 
bin-size and plot histograms. In our previous work [18] on this alloy, 
histograms were shown and log-normal distributions calibrated. How-
ever, in the current work, a kernel density estimator (KDE) is applied 
with a Gaussian kernel. Firstly, an uncorrected KDE, φ̂l, is written as: 

φ̂l =
1
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Note that 
∫∞

0
φ̂ldl = 1. Here h is the kernel bandwidth, estimated by 

Scott’s Rule [41]: 

h≈ d⋅NA
− 0.2⋅σl (2) 

The standard deviations σl of the precipitate length (l) distribution is 
obtained from the TEM data, and d = 0.8 is a constant. A correction of 
the KDE is suggested, to ensure that φl goes towards zero at l = 0. A 
normal distribution φ̂ l(0)exp( − 0.5(l/h)2

), i.e., a kernel centred on l = 0 
with width h, is subtracted from φ̂l. This is safe in terms of keeping the 
distribution positive valued for l > 0. However, the new distribution 

must be renormalized to ensure that 
∫∞
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, l ≥ 0 (3) 

Fig. 2 presents the precipitate needle-length distributions at various 
aging conditions. Both histograms, KDE estimates and a fitted log- 
normal distribution are compared in the figure, showing particle dis-
tributions counted from TEM measurements from alloy specimens aged 

Table 2 
The aging times selected for TEM studies.  

20 min 3 h 12 h 24 h 1 week 2 weeks 1 month  

Fig. 1. Bright-field TEM images acquired in the <001> Al zone axis at the 3 h aging condition. Measurements of precipitate lengths (a) and cross-section areas (b) 
are indicated. In (c) a schematic drawing of a typical electron energy loss spectroscopy (EELS) spectrum is shown, with the formula used to calculate sample thickness 
for each TEM image. 
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at 180 ◦C. The log-normal distribution provides a very good fit at the 
underaged and peak aged conditions, while at overaged conditions one 
or two smaller additional peaks appear at larger precipitate lengths. The 
detailed TEM observations in Fig. 3, indicate the presence of several 
precipitate phases, present already in the peak aged condition. As the β′′

particles become relatively fewer at overaged conditions, they do not 
dominate the size distribution that much anymore. The log-normal 
distribution can only fit the main peak, which is due to the β′′ parti-
cles. Both the KDE and the histogram rely on a well-chosen bin size or 
kernel width. The KDE applying Scott’s Rule to estimate the kernel 

Fig. 2. Histograms, KDE (purple dashed line) and a best fit of a log-normal distribution (red line) for the precipitate length distributions. The statistics are from TEM 
measurements of a specimen aged at 180 ◦C for (a) 20 min, (b) 3 h, (c) 12 h, (d) 24 h, (e) 1 week, (f) 2 weeks, (g) 1 month. (h) shows the aspect ratio Ω = l/

̅̅̅
a

√
based 

on the mean length and cross section area at the different aging times. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 3. (a) Example of virtual dark-field image formed from a SPED scan acquired in the [001] Al zone axis at the 3-h aging condition. (b) Selected region from SPED 
scan with phase mapping results shown below. (c) PED raw data patterns from indicated pixels in (b) showing characteristic diffraction patterns from β′′ and β′

precipitate phases, see Ref. [42] for details about this technique. 
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bandwidth, is expected to give the most precise description of the dis-
tributions. Note that the distributions here are normalized, hence the 
number density of precipitates Nv is required as an additional informa-
tion for each aging condition. These are given in Table 3. 

In the model, it is assumed that the aspect ratio of the precipitates, Ω, 
depends on the length of the precipitates. Hence, Ω can be estimated 
based on measurements of the average cross-section area and average 
particle length at various aging times, as shown in Fig. 2(h). The co-
efficients c and m are estimated based on a least squares fit of Equation 
(7) to this curve, giving c = 0.55 and m = 0.74. 

2.2. Approximation of solute levels in the precipitates and in the Al matrix 

The crystal structures and the chemical compositions of the 
Al–Mg–Si(-Cu) precipitate phases are known to a large extent [28–30]. 
Based on scanning precession electron diffraction (SPED), the fractions 
of the solutes contained in precipitate phases were estimated in 
Ref. [18]. Fig. 3 shows an example of the result of a SPED scan of a peak 
aged sample. For the region selected, it is seen that the precipitates are 
mainly of β′′ type (red), as expected, but that there are also some few β′

precipitates present (green). 
Having firstly estimated the solute levels contained in the pre-

cipitates for a given aged condition, also the levels of atoms in solid 
solution in the matrix were estimated in Ref. [18], from the alloy’s 
chemical composition, as the counterpart of the amount in precipitates 
and dispersoids. The Si atoms being part of primary particles formed 
during casting and the dispersoids formed during the homogenization of 
the alloy, remain stable during further aging heat treatments. This 
amount depends on the homogenization procedure and was estimated 
using the Alstruc model [43,44]. Alternatively, a simpler rule of thumb 
[22] could have been used for a rougher estimate of the Si content. 

Table 4 summarizes the solute fraction of each element reported in 
Ref. [18], both as part of precipitates and as atoms in solid solution. The 
fraction of Si consumed by primary particles and dispersoids during 
casting and homogenization, as estimated by the Alstruc-model, was 
accounted for and the estimated Si-concentration in the matrix after 
casting and homogenization was 0.72/0.7 wt%/at%. With increased 
aging time, Si, Mg, and Cu are consumed by the precipitates, while the 
concentration of elements in solute solution is decreasing. 

2.3. Tensile testing 

Uniaxial tensile tests were performed at room temperature, and the 
results are reported in Ref. [18]. An open-source software [45] was 
applied for continuously measuring the geometry change of the spec-
imen during the test, i.e. the radius of the minimum cross-sectional area 
and the radius of curvature of the necking contour. A detailed descrip-
tion of the software and its algorithms are given in Ref. [38]. A 
two-parameter equation [46] was applied to fit the ratio between these 
two radii as a function of the tensile strain and applied for a necking 
correction, according to Ref. [47], for determining true stress-strain 
curves beyond necking and until fracture. The resulting stress-strain 
curves were fitted by a four-term Voce equation, for which the param-
eters are tabulated in Ref. [18]. 

Fig. 4 (a) shows stress-strain curves, subtracted the initial yield stress 
to emphasize the work hardening, up to the onset of necking. The 3 h 
peak aging and the 12- and 24-h aging conditions give curves with less 
work hardening compared both to the more overaged conditions and to 
the underaged condition after 20 min aging. Fig. 4(b) presents the stress- 

strain curves all the way until fracture, obtained by using the necking 
corrections for each aging condition. 

Stress-strain curves up to large strains at room temperature are 
commonly analyzed in terms of stage II, III and IV work hardening and 
saturation at sufficiently large strains, [48]. The stages are more easily 
recognized in the Kocks-Mecking (KM) plot in Fig. 4(c) than in the 
corresponding stress-strain curves in Fig. 4(b). An ideal stage II corre-
sponds to linear initial work hardening, which is seldom seen at room 
temperature, but which occurs at very low temperatures for tensile tests 
of single crystals. However, the initial plateau in the KM plot in Fig. 4(c) 
for the 3-,12- and 24-h conditions, and the corresponding, almost linear 
stress-strain curves plotted up to the uniform strain limit in Fig. 4(a), can 
be interpreted as stage II behavior. Stage III corresponds to a linear 
decay in the KM plot and is clearly recognized for all cases in Fig. 4(c). In 
pure metals or in alloys with elements in solid solution tested at room 
temperature, stage III typically lasts for strains up to 50–100%, at which 
the work hardening saturates towards a constant stress-strain slope, 
typically 30–40 MPa for aluminum alloys [49]. This is the characteristic 
plateau in the KM-plot for linear stage IV behavior. However, as seen 
from Fig. 4(b), stage III ends at considerable smaller strains for the aged 
and ssss conditions, shortly after reaching the uniform strain, at less than 
20% strain for all cases. The peak age condition (3 h) has a strong stage 
III work hardening but no stage IV. Instead, the curve reaches stress 
saturation right after the end of stage III. For the other conditions, a clear 
stage IV is seen, with a work hardening rate comparable to stage IV in 
other aluminum alloys but occurring at a much smaller strain than in 
non-heat treatable alloys. 

3. Mechanical modelling 

The stress contributions from the different mechanisms are often 
simply added together [15,50]. Consider the combination of two sets of 
dislocation obstacles, say of densities ρ1 and ρ2 with corresponding in-
dividual stress contributions σ1 = α1μb ̅̅̅̅̅ρ1

√ and σ2 = α2μb ̅̅̅̅̅ρ2
√ . Then, if 

their obstacle strength and obstacle density are about the same, it would 
be inconsistent to add them, i.e., α1μb ̅̅̅̅̅ρ1

√
+ α1μb ̅̅̅̅̅ρ2

√
∕= α1μb ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ρ1 + ρ2

√ . 
In this case σ2 = σ2

1 + σ2
2. However, in cases of one set of weak obstacles, 

e.g., solutes, and one set of strong obstacles, an additive rule is justified. 
The dislocation-based obstacles are rather strong and of comparable 
density as non-shearable precipitates, hence the quadratic rule applies at 
overaged conditions. At early-stage precipitation, the clusters and 
early-stage precipitates are more similar to solutes, and their stress 
contributions should be added linearly. Underaged conditions can be 
anywhere between these two extremes, and a pragmatic approach, 
similar as the one used by Cheng et al. [30], will be applied: 

σf = σ0 + σss +
(

σn
p + σn

d

)1
n (4) 

The exponent n is a parameter between 1 (corresponding to weak 
obstacles) and 2 (corresponding to strong obstacles from the pre-
cipitates). Here σss, σp and σd are the flow-stress contributions from solid 
solution, precipitation, and dislocations, respectively. Furthermore, σ0 is 
a stress contribution to account for other stress contributions. The 
Peierls stress is negligible in fcc, hence the initial yield stress can be as 
low as a few MPa in coarse grained high-purity aluminum alloys. The 
Hall-Petch constant is small for aluminum [51], about 0.07 MPa

̅̅̅̅̅
m

√
, for 

the extruded alloys like those considered here with grain size of about 
5–10 μm, this contribution is about 10–20 MPa. As shown by Zhao et al. 
[52], small amounts of Fe and Si increases the strength significantly, 

Table 3 
The number density of precipitates in each aged condition, from Ref. [18].  

Aging time 20 min 3 h 12 h 24 h 1 week 2 weeks 1 month 

Nv
(
μm− 3) 73,240 67,024 49,247 46,489 1498 1130 1021  
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approximately 10 MPa, which here is also accounted for by the term σ0. 

3.1. Needle-shaped precipitate strengthening 

The stress estimate by Holmedal [6] is based on the dislocation 
simulations by Vaucorbeil et al. [53,54], from which the following stress 
expression was obtained: 

σp =Mτ= αpMμb ̅̅̅̅̅np
√ f

3
2

(

1 −
1
6

f 5
)

(5) 

Here M = 3.05 is the Taylor factor, calculated from the measured 
extrusion texture, using the ALAMEL crystal-plasticity model [55]. 
Furthermore, μ = 27GPa is the shear modulus and b = 0.286 nm the 
Burgers vector of the alloy. Note that the shear modulus applied in 
Ref. [6] by a mistake was put unrealistically low, hence a higher one is 
applied here, similar as in Refs. [15,50]. The constant αp equals 0.9 
according to simplified discrete dislocation simulations by Vaucorbeil 
et al. [53,54]. However, the due to simplified estimates for e.g. the 
dislocation line tension, slightly other values might be justified. A 
needle-shaped precipitate of length l penetrates several parallel {111} 
slip planes and contributes with an increasing number of 
dislocation-based obstacles. For this case, in the strength estimate by 
Equation (5), np =

̅̅̅
3

√
Nvl/3 = fv/(

̅̅̅
3

√
a) is the number density of 

precipitate-based obstacles per area slip plane, where fv is the volume 
fraction of the precipitates, a is the average cross-sectional area of the 
precipitate needle, and f is the mean non-dimensional obstacle strength, 
where 0 ≤ f ≤ 1, [56]. 

The obstacle strength of each precipitate-based obstacle depends on 
the cross-sectional area that the dislocation must cut through. Pre-
cipitates with a cross-sectional area larger than a critical value ac, are 
non-shearable, for which f = 1. The following model is used for esti-
mating the cutting strength: 

f =min
((

a
ac

)κ

, 1
)

(6) 

Here κ = 2, is an empirical parameter, and the average cross- 
sectional area of precipitate needles at the peak-aged condition is 
assumed as the critical size for the point, from which the precipitates can 
be regarded as obstacles of maximum strength. It is reasonable to as-
sume that this corresponds to the shearable/non-shearable transition. 
However, the strength can be at this high level also for shearable pre-
cipitates that are difficult to shear. Hence ac does not necessarily directly 
correspond to the shearable/non-shearable transition. In this work ac =

12.5nm2 is used. The model [6] assumes a correlation between the 
length and cross section of the needle-shaped precipitates. An empirical 
relation is assumed for the aspect ratio Ω is as a function of the average 

Table 4 
The amount of Si, Mg and Cu (wt.%/at.%) as part of the precipitates (p) and in solute solution (ss). The condition ssss (super-saturated solid solution) indicates the as- 
quenched condition, from Ref. [18].  

Element Aging time 

ssss 20 min 3 h 12 h 24 h 1 week 2 weeks 1 month 

Si (p) 0/0 0.29/0.287 0.4/0.392 0.42/0.400 0.42/0.412 0.4/0.389 0.46/0.445 0.48/0.469 
Mg (p) 0/0 0.26/0.287 0.36/0.399 0.33/0.410 0.39/0.429 0.45/0.506 0.5/0.557 0.52/0.583 
Cu (p) 0/0 0.003/0.001 0.0078 

0.0026 
0.009/0.003 0.012/0.004 0.015/0.005 0.021/0.007 0.027/0.009 

Si (ss) 0.72/0.7 0.4/0.383 0.29/0.278 0.27/0.27 0.26/0.258 0.29/0.281 0.23/0.225 0.21/0.201 
Mg (ss) 0.72/0.80 0.46/0.513 0.36/0.401 0.39/0.39 0.33/0.371 0.27/0.294 0.22/0.243 0.2/0.217 
Cu (ss) 0.03/0.01 0.027/0.009 0.0222/0.0074 0.021/0.007 0.018/0.006 0.015/0.005 0.009/0.003 0.003/0.001  

Fig. 4. Comparison of stress-strain curves (a) up to the onset of necking and (b) until fracture. In (c), the work hardening rate is shown as a function of the flow stress, 
i.e., a Kocks-Mecking plot. 
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precipitate length l: 

Ω=
l
̅̅̅̅
a

√ = max(clm
, 1) (7) 

Here c and m are two coefficients that must be calibrated. The 
bookkeeping and estimates required for Equation (3) were worked out in 
Ref. [6], where the mean obstacle strength of the precipitates is esti-
mated from the statistical distribution of the measured precipitate 

lengths, φl. Note that here the distribution 
∫∞

0
φldl = Nv is not normalized, 

hence φl ≈ Nvφl 

f =
∫

fAdnp∫
Adnp

=

∫∞
0 flφldl
∫∞

0 lφldl
=

⎛

⎜
⎝

1
aκ

c

∫Ωc
̅̅̅ac

√

0

l2κ+1

Ω(l)2κφldl+
∫∞

Ωc
̅̅̅ac

√

lφldl

⎞

⎟
⎠

1
lNv

(8) 

This size distribution is estimated from the TEM results. 

3.2. Solid-solution strengthening 

Atoms in solid solution give a considerable contribution σss to the 
yield stress of the tested alloy. It is assumed that the strength contri-
bution from each element can be added together [15,57]: 

σss =
∑

i
kiC

2
3
i (9) 

Here ki are constants related with the size, modulus, and electronic 
mismatch of the specific element. The constants kSi, kMg, kCu are given as 

66.3  MPa/(wt%)
2
3, 29.0  MPa/(wt%)

2
3 and 46.4 MPa/(wt%)

2
3, respec-

tively [15], and Ci is the mass fraction of each element in solid solution. 
From a theoretical point of view, this way of adding strength contribu-
tions from different solutes is strictly non-consistent. This is illustrated 
by that one gets another stress if one splits the concentration of one atom 
type into three and applies the formulae. However, the formulae is 
calibrated in earlier works and is pragmatically used here, providing 
reasonable estimates of the solute stress contributions. 

3.2.1. Work hardening modelling 
The work hardening is due to the stress contribution from the dis-

locations, σd, described by: 

σd =Mτ = Mαμb
̅̅̅ρ√ (10) 

Here, M is the Taylor factor, ρ the dislocation density and α a con-
stant in the range from 0.3 to 0.5. The generalized model by Kocks and 
Mecking [58] is applied for the evolution of the dislocation density ρ, i.e. 

dρ
dεP

=M
dρ
dγ

=M
(

2
bλ

+
2

bλG
+

2
bλD

− kρ
)

(11) 

Here b is the magnitude of the Burgers vector. The plastic strain is 
related, by εP = γ/M, to γ, the resolved shear strain (the standard 
effective one added from all slip systems). In plastically deformed ma-
terials, a distinction can be made between statistically stored disloca-
tions (SSDs), which are stored by mutual random trapping, and GNDs. 
The first term on the right-hand side of Equation (11) models the 
athermal storage rate of SSDs. This term is inversely proportional to the 
mean free slip length, λ, of the SSDs. The second term models the 
athermal storage rate of GNDs and is inversely proportional to the 
geometrical slip length λG. This term contributes due to storage of 
dislocation loops generated by the non-shearable particles. The third 
term considers slip length restrictions from the grain boundaries, and 
λD ≈ D, where D is the grain size. The last term handles the dynamic 
recovery of the dislocations, which in general cases depends on strain 
rate and temperature, but for a given temperature and a limited range of 
strain rates k is here kept constant for a given alloy condition. 

The dislocations will form prismatic dislocation loops when inter-
acting with the manganese containing dispersoids, formed during ho-

mogenization. Following Zhao and Holmedal [21], an estimate of the 
contribution to the athermal storage of GNDs is 

dρdisp

dεP
= M

2
bλdisp

, λdisp =
2rdisp

3ηfdisp
(12) 

Here ρdisp is the density of GNDs from the loops, fdisp is the volume 
fraction of dispersoids, rdisp is the average radius of the dispersoid par-
ticles and η is a constant of order unity. In theory [21], η = 1 for pris-
matic loops and η = 1/2 for shear loops or for prismatic loops when 
vacancy type loops are not formed. The latter value provided the best fit 
on the work by Zhao and Holmedal and is therefore also used here. 

The potential formation of prismatic loops when a dislocation by-
passes a non-shearable needle shaped precipitate, is not as simple as for 
the case of approximately spherical shaped dispersoids. Extensive cross- 
slip would have to be involved for the dislocation to overcome the length 
direction of the precipitate during the loop formation. Geometrically 
non-octahedral slip on {100}<011> slip systems would make it simpler, 
but since the {100} planes are not densely packed, the critical resolved 
shear stress will be large at room temperature. The authors are not 
aware of any experimental observation of prismatic loops punched out 
from needle shaped, non-shearable precipitates in AA6xxx alloys. Ac-
cording to Ashby [20], shear loops are unstable at strains beyond a few 
per cent, due to pile-ups, but the stress could be relaxed by some amount 
of cross glide along the needle shaped precipitate. The density of GNDs is 
here assumed to increase due to the shear loops formed around the 
needle-shaped precipitates, for which dρprec can be estimated for one 
particle as 

dρprec = no2
(

1+
̅̅̅
3

√ ) ̅̅̅
a

√
(13) 

It is assumed that the dislocation length of one Orowan loop equals 
the cross-sectional perimeter of the precipitate needle in the slip plane it 
goes through, estimated as 2(1 +

̅̅̅
3

√
)
̅̅̅
a

√
. The number of dislocation 

loops per needle no can be estimated for the given shear strain, dγ, 
applied to the precipitate 

γ =
̅̅̅
3

√
nob
l

(14) 

Combining Equations (13) and (14) and integrating to sum up con-
tributions to the athermal storage of dislocations from interactions with 
particles larger than their critical size for shearing, gives 

ρprec =

∫∞

lc

2
(
1 +

̅̅̅
3

√ )
l2 γ φldl

̅̅̅
3

√
bΩ

, λ− 1
prec =

(
1 +

̅̅̅
3

√ )

̅̅̅
3

√

∫∞

lc

l2 φldl
Ω

(15) 

Note that for the special case of a narrow size distribution of non- 
shearable particles, ρprec = 2(1 +

̅̅̅
3

√
)fvγ/

̅̅̅̅̅̅
3a

√
b, which may serve as a 

first approximation in overaged conditions. The total GND contribution 
from dispersoids and precipitates can be written: 

λ− 1
G = λ− 1

prec + λ− 1
disp (16) 

The average slip length, λρ due to SSDs, is commonly assumed to be 
controlled by dislocations. However, in the age hardened alloys the 
precipitates form a high density of strong obstacles that also will reduce 
the mean slip length of the dislocations. Hence a slip length, λp, based on 
the average distance between precipitate-based obstacles in the slip 
plane, should also be accounted for. Similar as argued for the strength 
contribution, the combination of these two slip lengths will be 
quadratic, and the total mean slip distance λ, of SSDs will be given by 

1
λ2 =

1
λ2

ρ
+

1
λ2

p
(17) 

A well-established estimate for the dislocation-based slip length λρ is 
applied, i.e., it is proportional to the average distance between 
dislocations: 
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λρ =
C
̅̅̅ρ√ (18) 

Similar, λp is proportional to the average distance between non- 
shearable precipitate-based obstacles, written as: 

λp =
Cp
̅̅̅̅̅̅̅̅

n(ns)
p

√ (19) 

Here, Cp ≈ 30 is applied. The area density n(ns)
p of obstacles from non- 

shearable precipitates can be estimated from the length distribution as 

n(ns)
p =

̅̅̅
3

√

3

∫∞

lc

lφldl (20) 

Note that alternatively, Equation (18) can be expressed as n(ns)
p =

f (ns)
v /(

̅̅̅
3

√
a(ns)), where f (ns)

v is the volume fraction and a(ns) the mean cross- 
sectional area of the non-shearable precipitates. Hence the basic length 

scale is 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f (ns)
v /a(ns)

√

, as compared to f (ns)
v /

̅̅̅̅̅̅̅̅̅
a(ns)

√
for the GND storage 

mechanism. 

4. Modelling-results and discussion 

4.1. Strength modelling 

The stress component σ0 is put equal to 35 MPa, corresponding 
approximately to the initial stress in a tensile test of commercial pure 
aluminum, but also accounting for strength contributions from disper-
soids and the grain size, which are small compared to the main contri-
bution from the precipitates. The stress from the solutes σss can be 
estimated by Equation (9) using the solute concentrations listed in 
Table 4. The calculated σss evolution is presented in Fig. 5(a). As a 
consequence of precipitate nucleation, growth and coarsening, it de-
clines with increased aging time. As the stress contribution of the solute 
is approximately 80 MPa for the as quenched condition, the estimated 
yield strength is 115 MPa, which is within the error of the experimental 
measured initial yield stress. 

Fig. 5(a) also presents the change of the stress component σp with 
aging time. It increases from 177 MPa after 20 min to 303 MPa after 12 h 
aging. It drops only slightly to 293 MPa after 24 h aging but softens 
considerable after 1 week and beyond. 

Fig. 5(b) shows a comparison of the estimated strengths by the 
proposed model and experimental data at each aging condition. The 
factor αp = 0.66 provides a good overall fit. A good agreement with 
experiments verifies the accuracy of the proposed strength model. The 
maximum deviation is about 32% for the condition with one-week 
aging, while the minimum deviation is about 1%, corresponding to 
12 h aging. The deviation for the peak aged condition is small, within 
2%. The estimates tend to be too low at the under aged conditions and 
too high at overaged conditions. At overaged conditions, the precipitate 
strength contributions vary for different precipitate phases present. 
Furthermore, fewer and larger particles make the TEM statistics less 
reliable. 

4.1.1. Work hardening at large strains 
In their work, Cheng et al. [30] made the simplifying assumption that 

the stress contribution from the dislocations, σd, was the same for all 
aged conditions. Their σd(ε) curves were based on the tensile test of the 
ssss condition, from which σd(ε) was directly measured. However, σd(ε)
will be different after different aging times, as the elements in solid 
solution are consumed by the precipitates. However, even at the 
severely overaged conditions, some level of solute remains in the matrix. 

In this work, the solute concentrations are estimated based on a 
detailed characterization of the precipitates. It is expected that σd varies 
approximately linearly with the concentration of elements in solid so-

lution [59]. Hence, an estimate of how σd(ε) varies with the level of 
solute concentration is made by assuming that σd, at a given strain ε, 
increases linearly with the solute concentration, CMg + CSi + CCu, i.e., 
between the curves of the commercially pure aluminum alloy and the 
ssss. In both these cases, without the precipitates, σd(ε) can be derived 
directly from the respective stress-strain curve. Hence a necking cor-
rected stress-strain curve was obtained from a tensile test of a DC-cast 
commercially 99% pure (2 N) alloy with a grain size of about 100 μm. 
Note that the Taylor factor, M = 2.82, is applied for the random texture, 
calculated by the ALAMEL model [60]. This is a smaller value than the 
commonly applied estimate by the simpler full-constraint Taylor model 
but more in accordance with crystal plasticity finite element calculations 
[61]. Corrections were made to find a 2 N curve for the same Taylor 
factor as the ssss curve, i.e., σd→σdMssss/Mpure and ε→εMpure/Mssss. 

The tensile tests curves by Cheng et al. [30] were limited by the 
uniform strain. It is interesting to firstly extend their analysis and see 
how it applies at the larger strains measured as part of this work. At the 
underaged and peak aged conditions the geometrical slip length re-
strictions are small, and Cheng et al. [30] assumed they could be 
ignored. Hence, when knowing σd and σp and the coefficient n, the 
stress-strain curves could be obtained by Equation (4). To provide esti-
mates of σd up to larger strains, calibrations of the 2 N and ssss curves 
were made up to a strain of 50%, and σd(ε) curves for the aged condi-
tions were obtained by interpolation as explained above. The smaller 
grain size and the dispersoids in the AA6082 will introduce some extra 
initial work hardening that here in the large strain estimates will be 
ignored. These contributions will, however, be considered below, in the 
more detailed analysis at smaller strains. 

Following the work by Cheng et al. [30], the values of n that provide 
the best fit up to the uniform strain, were chosen, and the results are 

Fig. 5. (a) Stress contribution from precipitates and atoms in solid solution as a 
function of the aging time. (b) Comparison of experimental yield strength and 
predicted yield strength for the AA6082 alloy aged at 180 ◦C to various 
aging times. 
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shown in Fig. 6(a) and (c) for the 20 min and the 3 h curves. For the case 
of 20 min aging, a simple addition of the terms (i.e., n = 1) gives a very 
good fit, while at 3 h aging, n = 1.3 gives the best fit. Note, however that 
at larger strains, the measured aged curves show much less work hard-
ening. It is obvious that the stress-strain behavior at large strain is 
different with the presence of the precipitates than without. In the peak 
aged 3 h condition the curve is completely flat, indicating that a 
different dynamic recovery mechanism is invoked due to the 
precipitates. 

From a physical point of view, each obstacle provided by the pre-
cipitates is rather weak after 20 min aging, justifying adding the stress 
terms for this case. This provided a good fit of the stress-strain curve in 
Fig. 6(a). Hence the linear interpolation of σd between ssss and the 2 N 
alloy is regarded a good approximation. However, after 3 h aging the 
precipitates act as strong obstacles, of similar strength as the dislocation- 
based obstacles, and n = 2 should be expected, according to the theory. 

Another important result from Fig. 6(b) and (d), is that at larger 
strains, the stress-strain curves become significantly flatter than pre-
dicted by any choice of n. The 3 h curve shows no work hardening 
beyond a strain of about 15%. This means that the dynamic recovery is 
strongly influenced by the presence of the precipitates. The modelling of 
the influence of precipitates on the dynamic recovery is very interesting 
but beyond the scope of this work. 

4.2. Work-hardening modelling 

According to the proposed model, which follows the work by Cheng 
et al. [30], the work hardening is given by: 

dσf

dε =

⎛

⎜
⎝

σp
(

σn
p + σn

d

)1
n

⎞

⎟
⎠

n− 1

dσp

dε +

⎛

⎜
⎝

σd
(

σn
p + σn

d

)1
n

⎞

⎟
⎠

n− 1

dσd

dε (21) 

To assess the qualitative results from the modelling work by Cheng 
et al. [30], an increased level of precision will be aimed in the current 
work. The precipitates were accounted for based on detailed TEM 

statistics, both when determining the geometrical slip length re-
strictions, when calculating σp, and when estimating the solute de-
pendency of σd. Furthermore, a new mechanism is proposed for slip 
length restriction imposed by the precipitates, by that the total mean slip 
distance of SSDs is modified. Hence, if λp is ignored, the model will be 
consistent with the model by Cheng et al. [30]. The results obtained by 
this approximation will be referred to as “model 1”. 

The basic idea behind the geometrical slip length is the formation of 
GNDs in form of Orowan loops around the precipitates or prismatic 
loops. It is questionable if prismatic loops can form from needle-shaped 
precipitates, the authors are not aware of any observation of that. The 
loops contribute to the dislocation density and are assumed to increase 
the number of dislocation-based obstacles for the mobile dislocations. 
However, Orowan loops formed around a needle shaped particle will 
form obstacles at the same location as the particle itself forms a strong 
obstacle. A relevant question is if this obstacle can be counted twice? 
Hence in a second variant, denoted “model 2”, λprec is ignored (i.e., λG =

λdisp), while λp is included. An exception is the 20 min condition, for 
which the precipitates are weak obstacles that do not influence the work 
hardening, i.e., model 1 and model 2 are equal in this case. A third case 
could be to include the influence of the precipitates both in terms of λG 
and λp, which would give the strongest work hardening. However, the 
work hardening in this third case turns out to be unrealistic high, hence 
it is not included in the presented results. 

Note that a simple one-parameter work-hardening model like the one 
considered here, is not valid at large strains. Furthermore, it is clear from 
Fig. 6 that the dynamic recovery is significantly different at larger 
strains, hence only strains up to 15% will be considered for calibrating 
the models. At peak and over aged conditions, the particles act as strong 
dislocation obstacles, and it is reasonable to assume n = 2, while for the 
20 min aging the particles are weak and n = 1, resulting in equal results 
for both model 1 and model 2 in Fig. 8(a) for this case. 

In the work hardening model, σd = Mαμ ̅̅̅ρ√ is given by the solution of 
Equation (11). For ssss and 2 N, i.e., the alloys without precipitates, the 
constants k and C can be calibrated from the measured curves. Note that 

Fig. 6. Stress-strain curves by the model by Cheng et al. [30] compared to the experimental curves for material aged at 20 min (a, b) and the peak aged condition in 
(c, d). The detailed stress-strain curves at strains up to 0.1 are shown in (a, c). 
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the different grain sizes for these two conditions are now accounted for, 
as this contribution cannot be ignored at small strains. In order to esti-
mate the σd(ε) curves for the aged conditions, σd at each strain ε, is linear 
interpolated as a function of the solute concentration, being estimated 
by CMg + CSi + CCu. Interpolation is performed between ssss and 2 N 
stress-strain curves, as calculated by the calibrated model, while setting 
the grain size infinitely large and the Taylor factor M = 3.05 in the 
model. For each of the interpolated stress-strain curves, k and C are 
given in Table 5. The interpolated σd(ε) curves are shown in Fig. 7, These 
curves are then used for calibrating k and C for each ageing condition, 
being required for running model 1 and model 2. In the work hardening 
models, the following parameters are applied: α = 0.3,μ = 27GPa,b =

0.287nm.

Fig. 8(b–g) shows model results for peak and over-aged conditions. In 
general model 2, with the new model for the slip-length restriction due 
to precipitates, gives a good agreement with the experiments, while 
model 1 predicts too strong work hardening, i.e., with slip-length re-
striction based on storage of GNDs around precipitates. 

In Fig. 8(b), for the peak aged condition, the black dashed line rep-
resents model 2, but without the contribution from λp, i.e., making the 
slip length not being influenced by the precipitates. The low initial work 
hardening is then solely due to the nonlinear mixing of a strong work 
hardening contribution from σd and no work hardening from σp, as 
described by Equation (21) with n = 2. This is the result, if assuming, 
similar as Cheng et al. [30], that the precipitates do not contribute to 
storage of GNDs in the peak aged condition, i.e. that most of the pre-
cipitates are shearable. The mechanism proposed by model 2 provides 
the right amount of work hardening. If model 1 should predict a lower, 
reasonable work hardening in this case, λG would have to be larger, 
which would be the case if fewer particles were non-shearable, i.e., the 
critical precipitate size for the non-shearable transition was reached 
considerably later than at the peak aged condition. Recent 
high-resolution TEM might indicate that this may be the case [62], 
hence this alternative explanation cannot be completely ruled out. 

The precise counting of precipitates in TEM is not an easy task. Even 
though a thorough counting is performed in Ref. [18], precipitate size 
statistics that are representative for the bulk sample is always chal-
lenging to obtain. Even though it can be discussed how representative 
the quantitative detailed measurements are for the alloys, the results are 
qualitatively good, and the same procedures are applied for all aged 
conditions. Hence, the large difference between the two models justifies 
the conclusion, that the suggested model 2 for the influence of the 
precipitates on the slip length restrictions on the SSDs provides a more 
realistic work hardening than accounting for geometrical necessary 
dislocations by model 1. As discussed by Holmedal [63], the slip length 
is restricted by dislocation obstacles. It is reasonable to also count the 
precipitate-based obstacles, at least the strongest ones. In the suggested 
model 1, only precipitates larger than the critical size are included when 
calculating this contribution. However, this limit is not necessarily 
correlated with the shearable versus non-shearable transition, but rather 
with when the obstacles for dislocation glide contributed by the pre-
cipitates get similar cutting strength as the dislocation-based obstacles. 

5. Conclusion 

The yield stress and work hardening of age hardened Al–Mg–Si alloy 
have been analyzed and modelled based on input from detailed TEM 
characterization of the precipitate structure and compared to necking 
corrected tensile tests at different aging conditions. It is concluded that 
the work hardening at strains beyond necking is severely suppressed due 
to the presence of precipitates, with no work hardening at all for the 
peak aged condition. At strains up to about 15%, the yield stress and 
work hardening are modelled by accounting for the detailed precipitate 
size distribution, when estimating the particle stress contribution and 
the slip length restrictions. A refined version of the classical estimate of 

the storage rate of GNDs by dislocation looping of non-shearable pre-
cipitates is developed. However, this mechanism overestimates the work 
hardening, and it is concluded that it is either not acting, or the shear-
able transition occurs for particles that are considerable larger than the 
average size at the peak aged condition. Instead, a new mechanism for 
the slip length restriction, based on treating precipitate based and 
dislocation-based obstacles in a similar way, is suggested. This model 
provides realistic results for peak- and overaged conditions. 

Data availability 

The raw data required to reproduce these findings cannot be shared 
at this time due to technical or time limitations. The processed data 
required to reproduce these findings are available from https://gitlab. 
com/ntnu-physmet/necking-correction/-/tree/master/MSEA 
paper2022 and https://ars.els-cdn.com/content/image/1-s2.0-S092150 
9321001313-mmc1.pdf. 

Credit author statement 

Feng Lu: Investigation, Conceptualization, Methodology, Software, 
Writing – original draft preparation, Writing- Reviewing and Editing. 
Jonas. K. Sunde: Methodology. Calin. D. Marioara: Supervision. 
Randi Holmestad: Supervision. Bjørn Holmedal: Conceptualization, 
Methodology, Supervision, Writing- Reviewing and Editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 

Table 5 
k and C from interpolated curves, for each ageing condition.  

Aging 
time 

20 
min 

3 h 12 h 24 h 1 
week 

2 
weeks 

1 
month 

C  22.04 25.15 25.00 26.07 26.86 29.24 30.30 
k  15.05 14.98 14.98 14.95 15.14 14.89 14.86  

Fig. 7. Estimated σd without GNDs and for an infinite grain size as a function of 
plastic strain, for different solute levels at each aging condition, required for the 
calibration of C and k in Table 5. First, calibrations of the model are made to the 
2 N aluminum curve and ssss curve, accounting for dispersoids, grain size and 
the Taylor factor. These two curves are included in the figure. Then the plotted 
curves are found by linear interpolation as a function of the solute concentra-
tion between these two curves, using M = 3.05 (for the AA6082 texture) in 
the model. 
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the work reported in this paper. 
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[26] O.R. Myhr, Ø. Grong, C. Schäfer, An extended age-hardening model for Al-Mg-Si 
alloys incorporating the room-temperature storage and cold deformation process 
stages, Metall. Mater. Trans. A. 46 (2015) 6018–6039, https://doi.org/10.1007/ 
s11661-015-3175-y. 

[27] O.R. Myhr, O. Grong, S. Klokkehaug, H.G. Fjoer, A.O. Kluken, Process model for 
welding of Al-Mg-Si extrusions Part 1: precipitate stability, Sci. Technol. Weld. 
Join. 2 (1997) 245–253, https://doi.org/10.1179/136217197791069911. 

[28] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC 
case, Prog. Mater. Sci. 48 (2003) 171–273, https://doi.org/10.1016/S0079-6425 
(02)00003-8. 

[29] U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and kinetics of slip, Prog. 
Mater. Sci. 19 (1975) 1–291. 

[30] L.M. Cheng, W.J. Poole, J.D. Embury, D.J. Lloyd, The influence of precipitation on 
the work-hardening behavior of the aluminum alloys AA6111 and AA7030, Metall. 
Mater. Trans. A. 34 (2003) 2473–2481, https://doi.org/10.1007/s11661-003- 
0007-2. 

[31] C. Defaisse, M. Mazière, L. Marcin, J. Besson, Ductile fracture of an ultra-high 
strength steel under low to moderate stress triaxiality, Eng. Fract. Mech. 194 
(2018) 301–318, https://doi.org/10.1016/j.engfracmech.2017.12.035. 

[32] G.H. Majzoobi, F. Fariba, M.K. Pipelzadeh, S.J. Hardy, A new approach for the 
correction of stress-strain curves after necking in metals, J. Strain Anal. Eng. Des. 
50 (2015) 125–137, https://doi.org/10.1177/0309324714555384. 
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