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A B S T R A C T

Coastal wave propagation and transformation are complicated due to the significant variations of water depth
and irregular coastlines, which are typically present at the Norwegian fjords. A potential flow model provides
phase-resolved solutions with low demands on computational resources. Many potential flow models are
developed for offshore waves and lack of numerical treatments of coastal conditions. In the presented work,
several modifications are introduced to a fully nonlinear potential flow model with a 𝜎-grid for the purpose
of coastal wave modelling: Shallow water breaking criteria are included in addition to deepwater breaking
algorithms to approximate breaking waves over a complete range of water depth. A new coastline algorithm
is introduced to detect complex coastlines and ensure robust simulations near the coast. The algorithm is
compatible with structured grid arrangement in the horizontal plane and allows for high-order discretisation
schemes for the free surface boundary conditions for an accurate representation of complex free surfaces.
A parallelised solver for the Laplace equation is utilised to ensure fast simulations for large domains with
multi-core infrastructures.

The proposed model is validated against theories and experiments for various two- and three-dimensional
nonlinear wave propagation and transformation cases that represent typical coastal conditions. The simulations
show a good representation of nonlinear waves, and the results compare well with experiments. Furthermore,
two large-scale engineering scenarios are simulated, where the applicability of the coastline algorithm and the
parallel commutation capability of the model are demonstrated.
1. Introduction

The correct prediction of the wave environment is important for
coastal activities such as infrastructure design, aquaculture activities
and renewable energy facilities. In comparison to offshore wave fields,
more complicated wave transformations take place in the coastal area
due to bottom topography variations and irregular coastline geome-
tries. The varying bathymetry influences the local wave height, either
increasing it due to shoaling or reducing it due to breaking. Varying
coastlines change the pattern of the wave energy propagation, either
diverging the direction due to refraction and diffraction or inverting
the direction due to reflection. All the complexity from wave trans-
formations together with non-linear wave–wave interaction create an
inhomogeneous wave field. As a result, a slight change of input wave
height or direction leads to significant changes in local wave conditions.
Therefore, it is important to examine a large area of the coastal region
covering all relevant topography when efforts are made to analyse local
design conditions.
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It is challenging to model coastal waves with complicated irregular
boundaries. Especially along the Norwegian coast, the water depth
varies significantly within a short horizontal distance, usually one
characteristic wavelength. The scattered archipelagos outside the fjords
and the deep channels leading the swell into the fjords create strong
diffraction and complicated wave–wave interactions. Widely used spec-
tral wave models such as MIKE 21 SW (Warren and Bach, 1992) and
Simulating Waves Nearshore (SWAN) (Booij et al., 1999) are capable
of providing information about the wave energy distribution. However,
their phase-averaging approach has a limited capacity to represent
some of the nonlinear phenomena such as strong diffraction and re-
flection (Thomas and Dwarakish, 2015). Phased-resolved models are
needed to represent wave diffraction around large obstacles.

Since the coastal waters are typically shallow in most of the coastal
regions around the world, various phase-resolved shallow water equa-
tion models have been developed. Mild-slope assumptions have been
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adopted and successfully used to study various coastal wave processes
such as wave–current interaction (Chen et al., 2005). The signifi-
cant water depth changes within one characteristic wavelength in
the Norwegian fjords do not fulfil such assumptions. Boussinesq-type
models (Madsen et al., 1991; Madsen and Sørensen, 1992; Nwogu,
1993) are also efficient coastal wave modelling alternatives and con-
tinuous efforts have been made to represent the dispersion relation
more accurately in a deeper water condition by increasing the order
of the Boussinesq dispersive terms. Wei et al. (1995) improved the
dispersion relation for deeper water and enabled the model for strong
non-linear interaction. This development was then incorporated into
the wave model FUNWAVE (Kirby et al., 1998). Shi et al. (2012) used
FUNWAVE to simulate the three-dimensional (3D) solitary wave run-
up on a shelf with a conical island and achieved good agreement with
the experiment by Lynett et al. (2011). Madsen and Schäffer (1998)
achieved high dispersion accuracy up to dimensionless water depth to
wavelength ratio 𝑘ℎ = 6 (𝑘 is wave number, ℎ is still water depth)
with their high-order derivations. Similarly, a fourth-order polynomial
is used in the model developed by Gobbi et al. (2000) and a faithful
representation of the linear dispersion is achieved up to 𝑘ℎ = 6. These
methods result in up to fifth-order spatial derivatives in an extremely
complex equation system, which influences the numerical instability.
In addition, 𝑘ℎ = 6 is not enough for many engineering applications in
deepwater regions. Madsen et al. (2002) applied finite series expansions
from an arbitrary z-level involving up to fifth-derivative operators and
managed to represent the dispersion relation accurately up to 𝑘ℎ = 40.
This multiple expansion, however, results in a large set of equations
and more unknowns.

Taking a different approach, Lynett and Liu (2004) divided the
vertical water column into a finite number of layers with quadratic
polynomials and match them at the interfaces. This multi-layer ap-
proach shows an excellent representation of linear dispersive properties
up to 𝑘ℎ = 8 with two layers. Further development has been presented
to approximate the vertical gradient of the non-hydrostatic pressure
with fewer vertical layers in deepwater (Stelling and Duinmeijer, 2003;
Zijlema and Stelling, 2005, 2008; Zijlema et al., 2011). According to
the reported research, the flow information in the vertical direction is
sufficiently resolved with 2–3 layers in relatively deepwater conditions.
However, the increase of vertical layers leads to a significant increase in
computational costs. Monteban (2016) reported that a two-layer config-
uration results in about 10 times the computational cost in comparison
to a one-layer arrangement.

Jeschke et al. (2017) presented an approach for non-hydrostatic
shallow water models by introducing a quadratic pressure assump-
tion. In this way, the model can achieve a good equivalence to a
second-order Boussinesq model Jeschke et al. (2017) while avoiding
the numerical instabilities due to higher-order terms in a Boussinesq-
type model and the increased computational costs from a larger number
of vertical layers in a multi-layer non-hydrostatic model. The effective-
ness of such a method for simulating wave propagation over varying
bathymetry is also shown by Wang et al. (2020b). In spite of the efforts
in improving the vertical dispersion relation in shallow water equations
using different methodologies, the water depth still limits the validity
and applicability of such models. Other approaches based on classic
Korteweg–de Vries (KdV)-type equations and the Hamiltonian structure
of gravity surface waves are also explored (van Groesen et al., 2010;
van Groesen and Andonowati, 2007), the resulting models are able to
simulate long and short crested coastal waves over varying topography
of large water depth variations.

The aforementioned numerical models are derived from the shallow
water equations and utilise various techniques to improve the represen-
tation of dispersion relations in intermediate to deepwater conditions.
Another approach for simulating wave propagation in deepwater con-
ditions in a computationally efficient manner is the use of the potential
2

flow theory. Potential flow models usually solve the Laplace equation
together with the kinematic and dynamics free surface boundary condi-
tions and the boundary condition at the seabed. One of the most used
potential flow modelling techniques is the boundary element method
(BEM). Grilli et al. (1994) introduced a BEM model for wave shoaling
over a slope. After a continuous development of the model (Grilli and
Subramanya, 1996; Grilli and Horrillo, 1997), a fully non-linear model
for three-dimensional wave propagation over arbitrary bottoms was
presented and a severe breaking wave was investigated (Grilli et al.,
2001). In recent developments, robust spilling breaker models have also
been developed for complex surf zone dynamics (Grilli et al., 2020a,b).
BEM methods are computationally efficient but mathematically de-
manding. The fully populated unsymmetrical matrix in a BEM model
makes it difficult to implement high-order numerical schemes and
parallel computation techniques. Therefore, the method is sufficient
for small domain analyses but not optimal for large-scale engineering
applications.

Li and Fleming (1997) presented a three dimensional fully nonlinear
potential flow model with a low-order finite difference method and
a multi-grid solver. The model is able to simulate nonlinear wave
phenomena over a nearly complete range of water depth, however,
it lacks the capacity of representing breaking waves. Based on the
method, Bingham and Zhang (2007) applied higher-order numerical
schemes which further improved the model’s ability for represent-
ing waves of increasing nonlinearity with increasing accuracy. In
a further development, Engsig-Karup et al. (2009) introduced the
general-purpose fully nonlinear potential flow model OceanWave3D.
The model is capable of simulating different wave transformations,
including wave breaking. In addition, a GPU-accelerated version of
OceanWave3D was developed (Engsig-Karup et al., 2012; Glimberg
et al., 2013, 2019), which dramatically improved the computational ef-
ficiency of the model. An adaptive curvilinear grid is introduced, which
offers flexibility with regard to coastal geometry. However, increasingly
complex coastline geometries make curvilinear grid generation difficult
and more time-consuming.

A different technique to solve for the velocity potential is the high-
order spectral (HOS) method, where the Laplace equation is solved
analytically in the volume beforehand. Hence, only the free surface
boundary conditions need to be time-integrated, so that fewer computa-
tional resources are required. In addition, the use of Fast Fourier Trans-
form (FFT) further increases computational efficiency. Following this
methodology, several HOS models have been developed, such as HOS-
NWT and HOS-Ocean (Ducrozet et al., 2012; Bonnefoy et al., 2006a,b).
The models are highly effective for large-scale wave modelling in con-
stant water depth. However, simple analytical solutions to the Laplace
equation exist only for constant water depth (cosh-functions), but
not for more complex bathymetries and boundary conditions. Further,
certain periodic boundary conditions are required in order to efficiently
apply FFT (Fructus et al., 2005). These limitations make the HOS
method difficult to use for practical coastal engineering applications
with irregularly varying bottom topography. In more recent efforts, a
Chebyshev polynomial is used to represent the velocity potential in
the vertical direction (Raoult et al., 2016; Yates and Benoit, 2015),
which leads to the development of Whisper3D. The model shows more
flexibility with respect to irregular topography as well as nonlinear
steep and breaking waves (Zhang et al., 2019; Simon et al., 2019).
Both Whisper3D and OceanWave3D show the potential for coastal wave
modelling with significant wave depth changes. However, an efficient
coastline algorithm is needed in order to identify wet and dry cells and
to represent the coastline geometry in sufficient detail.

The complex shorelines as well as breaking wave kinematics can
be represented in 3D non-hydrostatic models. In this approach, the
pressure is decomposed into hydrostatic and non-hydrostatic compo-
nents. Stansby and Zhou (1998) and Zhou and Stansby (1999) used the
non-hydrostatic approach to solve the 3D non-hydrostatic Reynolds-

averaged Navier–Stokes (RANS) equations with a surface and bottom
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following a 𝜎-coordinate grid in the vertical direction and a Carte-
ian grid in the horizontal direction. The non-hydrostatic pressure is
olved from the Poisson equation using a conjugate gradient method.
he model represents the free surface with a single-valued function.
ere, the free surface is the upper boundary of the computational
omain with appropriate dynamic boundary conditions on normal
nd tangential stresses at the top and bottom interfaces. Based on
he methodology, Ma et al. (2012) presented the numerical model
HWAVE. The model represents highly nonlinear waves and features a

horeline algorithm. A wetting-drying algorithm is applied to detect the
horeline position based on a water depth threshold. The normal fluxes
t cell faces are set to zero for dry cells. Though the single-valued ap-
roach does not allow for a geometric representation of an overturning
ave breaker, many developments have demonstrated comprehensive
ave breaking onset criteria and algorithms that represent the energy

ransformation during wave breaking both in deepwater and the surface
one (Derakhti et al., 2016a,b,c). Lately, a unified breaking onset
riterion for surface gravity water waves in arbitrary water depth is
ummarised by Derakhti et al. (2020).

As discussed, shallow-water equation-based numerical wave models
xcel at coastal wave modelling in shallow to intermediate water depth
ut require special attention when the water depth becomes too large.
otential flow numerical models are ideal for deepwater wave prop-
gation but special techniques are needed when varying bathymetry
nd coastlines influence the wave field. The 3D non-hydrostatic models
ffer breaking and coastline algorithms but are used mostly for domains
f a limited extent (Grilli et al., 2020b). In order to model large-scale
ave propagation along the Norwegian coast with significant water
epth variations and complicated shorelines, a fast numerical model
ith combined features is needed.

In the presented manuscript, the fully nonlinear potential flow
odel REEF3D::FNPF (Bihs et al., 2020; Wang et al., 2019) is modified

nd adapted so that it is dedicated to coastal wave modelling in a
omplex coastal topographic environment. Developed as part of the
pen-source hydrodynamic framework REEF3D (Bihs et al., 2016), the
odel inherits the efficient grid generation, versatile wave generation,
igh-order discretisation schemes for the free surface boundary con-
itions and parallel computation capacity from the framework. Those
umerical implementations have been shown to be robust and effi-
ient by various applications with REEF3D::CFD. For example, three-
imensional breaking wave interaction with a vertical surface-piercing
ylinder have been investigated and validated in terms of free sur-
ace elevation, wave forces, as well as velocity fields (Alagan Chella
t al., 2017; Kamath et al., 2016) using REEF3D::CFD. Breaking wave
nteraction with multiple objects (Alagan Chella et al., 2019), complex
tructures (Aggarwal et al., 2020) and irregular breaking wave inter-
ction with a mono-pile (Aggarwal et al., 2019) were also studied and
alidated. Furthermore, a wide range of applications and engineering
cenarios have been reported using the model, including sediment
ransport and scour (Ahmad et al., 2019, 2020), floating structures
nd mooring (Martin et al., 2020) and porous coastal structure de-
ign (Sasikumar et al., 2020). The different modules within the REEF3D
ramework have also been inter-compared and consistent results have
een shown for several benchmarks (Wang et al., 2020a). Specifi-
ally, the convective terms in the free surface boundary conditions are
iscretised with the 5𝑡ℎ-order WENO scheme (Jiang and Shu, 1996)

and the temporal terms are treated with the 3𝑟𝑑-order Runge–Kutta
scheme (Shu and Osher, 1988). Parallel computation using message
passing interface (MPI) and hypre’s efficient parallelised geometric
multi-grid solver for the Laplace equation enable fast simulations for
large domains both with single-core and multi-core infrastructure. A
𝜎-coordinate system (Engsig-Karup et al., 2009) is adopted so that the
vertical grids follow the variations of the bottom topography. Various
wave generation methods are implemented to maximise the flexibility,
including a relaxation method, a Neumann boundary and the ability to
3

include wave-maker signals. w
The proposed model combines proven breaking wave algorithms
with an innovative coastline algorithm in a computationally efficient
potential flow code. The combined breaking wave algorithms detect
the wave breaking events and approximate the wave energy dissipation
due to wave breaking consistently over the complete range of water
depths. Both a depth-based criterion (Smit et al., 2013; Zijlema et al.,
2011) and a steepness-based criterion (Baquet et al., 2017) are used
to determine wave breaking both in the shallow water region and
the deepwater region. When wave breaking is detected, a filtering
algorithm (Jensen et al., 1999) and an artificial viscous damping al-
gorithm (Baquet et al., 2017) are used separately or in combination to
dissipate wave energy. The coastline algorithm includes complicated
coastlines effectively without changing the structured grid arrangement
in the horizontal plane. In contrast to the curvilinear approach and
multi-block methods (Engsig-Karup et al., 2009, 2012; Glimberg et al.,
2013, 2019), the proposed algorithm is universally applicable instead of
being case-dependent and does not require local grid refinement along
the coastline. Relaxation zones are then arranged along the detected
coastlines in order to reduce the numerical instability in the swash zone
and customise the reflection properties of the coasts.

The manuscript is organised as follows: The governing equations,
the discretisation schemes for the free surface boundary conditions, the
breaking wave algorithms and coastline algorithms are elaborated in
Section 2. Validations for several different scenarios of two-dimensional
(2D) and three-dimensional (3D) nonlinear wave propagation and
transformation are presented in Section 3. Then the model is used for
large-scale applications to analyse the wave conditions at a Norwegian
harbour and a fish farm site in Section 4. In the end, conclusions and
outlooks of the proposed model are summarised in Section 5.

2. Numerical model

2.1. Governing equations

The governing equation for the proposed fully nonlinear potential
flow model is the Laplace equation:

𝜕2𝜙
𝜕𝑥2

+
𝜕2𝜙
𝜕𝑦2

+
𝜕2𝜙
𝜕𝑧2

= 0. (1)

Boundary conditions are required to solve for the velocity potential
from this elliptic equation, specifically at the free surface and at the

ed. The fluid particles at the free surface should remain at the surface
here the pressure in the fluid should be equal to the atmospheric
ressure. These conditions must be fulfilled at all times and they form
he kinematic and dynamic boundary conditions at the free surface
espectively:

𝜕𝜂
𝜕𝑡

= −
𝜕𝜂
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− 𝑔𝜂, (3)

here 𝜂 is the free surface elevation, 𝜙 = 𝜙(𝐱, 𝜂, 𝑡) is the velocity
otential at the free surface, 𝐱 = (𝑥, 𝑦) represents the location at the
orizontal plane and �̃� is the vertical velocity at the free surface.

At the bottom, the component of the velocity normal to the bound-
ry must be zero at all times since the fluid particle cannot penetrate
he solid boundary. This gives the bottom boundary condition:
𝜕𝜙
𝜕𝑧

+ 𝜕ℎ
𝜕𝑥

𝜕𝜙
𝜕𝑥

+ 𝜕ℎ
𝜕𝑦

𝜕𝜙
𝜕𝑦

= 0, 𝑧 = −ℎ, (4)

here ℎ = ℎ(𝐱) is the water depth measured from the still water level
o the seabed.

The Laplace equation, together with the boundary conditions are
olved on a 𝜎-coordinate system. The 𝜎-coordinate system follows the
ater depth changes and offers flexibility for irregular boundaries. The
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transformation from a Cartesian grid to a 𝜎-coordinate is expressed as
follows:

𝜎 =
𝑧 + ℎ (𝐱)

𝜂(𝐱, 𝑡) + ℎ(𝐱)
. (5)

The velocity potential after the 𝜎-coordinate transformation is de-
oted as 𝛷. The boundary conditions and the governing equation in
-coordinates are then written in the following format:

= 𝜙 , 𝜎 = 1; (6)
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(7)
(

𝜕𝜎
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𝜕𝑥

𝜕𝜎
𝜕𝑥

+ 𝜕ℎ
𝜕𝑦
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)

𝜕𝛷
𝜕𝜎
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𝜕𝑥

+ 𝜕ℎ
𝜕𝑦

𝜕𝛷
𝜕𝑦

= 0 , 𝜎 = 0. (8)

Once the velocity potential 𝛷 is obtained in the 𝜎-domain, the
velocities can be calculated as follows:

𝑢 (𝐱, 𝑧) = 𝜕𝛷 (𝐱, 𝑧)
𝜕𝑥

=
𝜕𝛷 (𝐱, 𝜎)

𝜕𝑥
+ 𝜕𝜎

𝜕𝑥
𝜕𝛷 (𝐱, 𝜎)

𝜕𝜎
, (9)

𝑣 (𝐱, 𝑧) = 𝜕𝛷 (𝐱, 𝑧)
𝜕𝑦

=
𝜕𝛷 (𝐱, 𝜎)

𝜕𝑦
+ 𝜕𝜎

𝜕𝑦
𝜕𝛷 (𝐱, 𝜎)

𝜕𝜎
, (10)

𝑤 (𝐱, 𝑧) = 𝜕𝛷 (𝐱, 𝑧)
𝜕𝑧

= 𝜕𝜎
𝜕𝑧

𝜕𝛷 (𝐱, 𝜎)
𝜕𝜎

. (11)

The Laplace equation is discretised using second-order central dif-
erences and solved using a parallelised geometric multigrid precondi-
ioned conjugate gradient solver provided by the hypre library (van der
orst, 1992).

The gradient terms of the free-surface boundary conditions are
iscretised with the 5𝑡ℎ-order Hamilton–Jacobi version of the weighted
ssentially non-oscillatory (WENO) scheme (Jiang and Shu, 1996).
he implementation of the WENO scheme in the presented model is
escribed in Appendix.

For time treatment, a 3𝑟𝑑-order accurate total variation diminishing
TVD) Runge–Kutta scheme (Shu and Osher, 1988) is used. Adap-
ive time-stepping is used by controlling a constant time factor as an
quivalence to the Courant–Friedrichs–Lewy (CFL) condition:

𝑢 =
𝑑𝑥

|

|

|

max(𝑢𝑚𝑎𝑥, 1.0
√

𝑔 ∗ ℎ𝑚𝑎𝑥)
|

|

|

,

𝑐𝑣 =
𝑑𝑦

|

|

|

max(𝑣𝑚𝑎𝑥, 1.0
√

𝑔 ∗ ℎ𝑚𝑎𝑥)
|

|

|

,

𝑐𝑡𝑜𝑡 = min(𝑐𝑢, 𝑐𝑣),

𝑑𝑡 = 𝑐𝑡𝑜𝑡𝐶𝐹𝐿.

(12)

where 𝑢𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥 are the maximum particle velocities in 𝑥 and 𝑦 di-
rections at the free surface, ℎ𝑚𝑎𝑥 is the maximum water depth, 𝑔 =
9.81 m∕s2 is the gravitational acceleration.

The model is fully parallelised following the domain decomposition
strategy where ghost cells are used to exchange information between
adjacent domains. These ghost cells are updated with the values from
the neighbouring processors via Message Passing Interface (MPI).

2.2. Vertical grid arrangement

As presented by Pakozdi et al. (2021), the required uniform vertical
mesh resolution depends on the water depth and the wave period. In
order to reduce the number of cells, the model utilises a non-uniform
vertical grid arrangement which then influences how the dispersion re-
lation is represented. Therefore, the constant truncation error method is
introduced to optimise the stretching factor 𝛼 and vertical grid (Pakozdi
t al., 2021) in terms of computational speed (i.e. as few vertical grid
ells as possible) and numerical accuracy (i.e. as many vertical cells as
4

eeded).
In the model, the vertical coordinates follow a stretching function
o that the grid becomes denser close to the free surface:

𝑖 =
sinh (−𝛼) − sinh

(

𝛼
(

𝑖
𝑁𝑧

− 1
))

sinh (−𝛼)
, (13)

here 𝛼 is the stretching factor and 𝑖 and 𝑁𝑧 stand for the index of the
rid point and the total number of cells in the vertical direction.

As an example, a general description of a progressive Airy wave can
e expressed as:

(𝑥, 𝑧, 𝑡) = 𝐴(𝑧)𝐵(𝑧)𝛤 (𝑡), (14)

nd function A(z) follows:

(𝑧) = 𝐶𝑒𝑘𝑧, (15)

which is governed only by the wave number k, which can be defined
y the linear dispersion relationship to the wave angular frequency:
2 = 𝑔𝑘, (16)

here 𝑔 is the gravity acceleration.
A correct representation of the phase velocity depends on the cor-

ect representation of the wave number. The new method is based
n the assumption that a constant absolute truncation error at every
ertical location can preserve the correct shape of the function 𝑓 (𝑧) and
ield the correct wave number. Function 𝑓 (𝑧) is a Taylor expansion of
ree surface over the depth:

(𝑧) =𝑓 (𝜂) +
𝑑𝑓 (𝜂)
𝑑𝑧

(𝑧 − 𝜂) + 1
2
𝑑2𝑓 (𝜂)
𝑑𝑧2

(𝑧 − 𝜂)2 + 1
6
𝑑3𝑓 (𝜂)
𝑑𝑧3

(𝑧 − 𝜂)3

+ 1
24

𝑑4𝑓 (𝜂)
𝑑𝑧4

(𝑧 − 𝜂)4 + 𝑂((𝑧 − 𝜂)5).
(17)

If the absolute error is set to a constant E for every vertical location
nd the function 𝑓 (𝑧) and its derivatives are known, one can find a
aximum cell size 𝛥𝑧(𝜂) = 𝑧−𝜂 at every location (Pakozdi et al., 2021):

(𝑧, 𝜂) = 𝑓 (𝑧) −
(

𝑓 (𝜂) +
𝑑𝑓 (𝜂)
𝑑𝑧

(𝑧 − 𝜂) + 1
2
𝑑2𝑓 (𝜂)
𝑑𝑧2

(𝑧 − 𝜂)2
)

, (18)

= 𝐸 − 𝑓 (𝜂 + 𝛥𝑧) +
(

𝑓 (𝜂) +
𝑑𝑓 (𝜂)
𝑑𝑧

(𝑧 − 𝜂) + 1
2
𝑑2𝑓 (𝜂)
𝑑𝑧2

(𝑧 − 𝜂)2
)

. (19)

.3. Wave generation, dissipation and breaking

Flexible wave generation methods are implemented in the REEF3D
ramework (Bihs et al., 2016). When a relaxation method (Larsen and
ancy, 1983; Mayer et al., 1998) is used for the wave generation, the

elaxation function is formulated as the following:

(𝑥) = 1 − 𝑒(𝑥3.5) − 1
𝑒 − 1

𝑓𝑜𝑟 𝑥 ∈ [0; 1], (20)

where 𝑥 is scaled to the length of the relaxation zone. The free surface
velocity potential 𝜙 and the surface elevation 𝜂 are increased to the
analytical values in the wave generation zone:

𝛩(𝑥)𝑟𝑒𝑙𝑎𝑥𝑒𝑑 = 𝛤 (𝑥)𝛩𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 + (1 − 𝛤 (𝑥))𝛩𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 . (21)

Following the same methodology, the free surface velocities poten-
tial 𝜙 and the surface elevation 𝜂 are reduced to zero or initial still
water values in the wave energy dissipation zone or numerical beach
to eliminate wave reflection of the outlet boundaries.

Waves can also be generated at the inlet using a Neumann boundary
condition where the spatial derivatives of the velocity potential are
defined. In this way, the velocity potential at the boundary is calculated
using the desired analytical horizontal velocity:

𝜑𝑖−1 = −𝑢(𝒙, 𝑧, 𝑡) ▵ 𝑥 + 𝜑𝑖, (22)

where 𝑢(𝒙, 𝑧, 𝑡) is the analytical horizontal velocity.
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In addition, wavemaker motion input can also be used to generate
waves in the numerical wave tank (NWT). In the current model, three
types of wavemaker motions can be used: piston-type wavemaker, flap-
type wavemaker and double-hinged flat-type wavemaker. This enables
the numerical model to reproduce most of the experimental wave
measurements for both shallow and deepwater.

In the presented potential flow model, the free surface is represented
by a single value, therefore it is not possible for the model to represent
an over-turning breaker as in a CFD simulation (Bihs et al., 2016). How-
ever, correct detection of wave breaking events and energy dissipation
can be achieved with a breaking wave algorithm. The proposed model
aims to address both steepness-induced deepwater wave breaking and
depth-induced shallow water breaking.

The depth-induced wave breaking is activated when the vertical
velocity of the free-surface exceeds a fraction of the shallow water
celerity (Smit et al., 2013; Zijlema et al., 2011):
𝜕𝜂
𝜕𝑡

≥ 𝛼𝑠
√

𝑔ℎ. (23)

𝛼𝑠 = 0.6 is recommended from the test of Smit et al. (2013), which
also agrees with a similar study performed by Lynett (2006).

Deepwater steepness-induced breaking is activated with a steepness
criterion:
𝜕𝜂
𝜕𝑥𝑖

≥ 𝛽, (24)

where 𝛽 = 0.3 is recommended by Smit et al. (2013) from the compar-
ison to physical tests.

After a wave breaking is detected, two methods are available to
represent the energy dissipation during the wave breaking process. The
first method is a geometric filtering algorithm that smoothens the free
surface for energy dissipation (Jensen et al., 1999). Here, an explicit
scheme is used and therefore there is no 𝐶𝐹𝐿 constraint. Another
method is to introduce a viscous damping term in the free surface
boundary conditions locally around the breaking region (Baquet et al.,
2017). When wave breaking is detected, the free surface boundary
conditions Eqs. (2) and (3) then become:

𝜕𝜂
𝜕𝑡

= −
𝜕𝜂
𝜕𝑥

𝜕𝜙
𝜕𝑥

−
𝜕𝜂
𝜕𝑦

𝜕𝜙
𝜕𝑦

+ �̃�

(

1 +
(

𝜕𝜂
𝜕𝑥

)2
+
(

𝜕𝜂
𝜕𝑦

)2
)

+ 𝜈𝑏

(

𝜕2𝜂
𝜕𝑥2

+
𝜕2𝜂
𝜕𝑦2

)

, (25)

𝜕𝜙
𝜕𝑡

= − 1
2

⎛

⎜

⎜

⎝

(

𝜕𝜙
𝜕𝑥

)2

+

(

𝜕𝜙
𝜕𝑦

)2

− �̃�2

(

1 +
(

𝜕𝜂
𝜕𝑥

)2
+
(

𝜕𝜂
𝜕𝑦

)2
)

⎞

⎟

⎟

⎠

− 𝑔𝜂 + 𝜈𝑏

(

𝜕2𝜙
𝜕𝑥2

+
𝜕2𝜙
𝜕𝑦2

)

, (26)

where 𝜈𝑏 (m2∕s) is the artificial turbulence viscosity. 𝜈𝑏 is calibrated
from the comparison of the potential flow model simulations with
model test data and the CFD simulations. As a result, the value of 𝜈𝑏 is
recommended to be 1.86 (Baquet et al., 2017) for the offshore deepwa-
ter conditions and 0.0055 for shallow water breaking in the proposed
model. In the new free surface boundary conditions Eqs. (25) and (26),
the newly introduced diffusion term is treated with an implicit time
scheme so that there is no extra constraint on time step sizes.

The two wave breaking methods can also be used combined for chal-
lenging wave breaking scenarios. Wave breaking is detected whenever
one of the detection criteria is fulfilled, either when wave steepness
exceeds a threshold, or vertical velocity exceeds a threshold. There-
fore, the process is automatic. In some cases, both energy dissipation
methods can be used at the same time for sufficient energy dissipation
in extreme sea states. In this case, the artificial viscosity is added
in the free surface boundary conditions, while the filtering algorithm
smoothens the free surface geometrically.
5

Fig. 1. Illustration of the still water level ℎ, local water depth ℎ′, free surface elevation
𝜂 and coastline detection algorithm.

2.4. Coastline detection and treatment

Handling the complex coastline has been a challenge when applying
a potential flow model in the coastal area. The first difficulty is effi-
cient grid generation around the complex boundaries. The structured
curvilinear grid presented in OceanWave3D (Engsig-Karup et al., 2009,
2012; Glimberg et al., 2013) provides one solution. However, it might
be challenging to approximate the coastline geometry with a structured
curvilinear grid around complex and sharp curves. The accuracy of the
coastline is also sensitive to the grid resolution at the coastline. The
second difficulty is possible numerical instability during the wave run-
up process in the swash zone. The vertical velocity in the free surface
boundary condition Eq. (7) cannot be given directly but calculated from
derivatives of velocity potential over water depth. In some scenarios,
there is a thin layer of water in the swash zone where the water depth
can be considered as infinitesimal. In such cases, the vertical derivative
of the velocity potential at the free surface tends to be ill-defined.
This tends to cause unreasonably high particle velocities at certain
regions along the coast. When the focus is large-scale modelling where
the swash zone dynamics has less influence on the wave propagation
in the rest of the domain, the swash zone dynamics can be treated
with a simpler boundary condition. Under this assumption, an efficient
and flexible coastline algorithm is introduced to address these two
difficulties.

First, the computational cells are identified as wet cells and dry cells
following a relative-depth criterion. The local water depth ℎ′ is defined
as a sum of still water level ℎ and the free surface elevation 𝜂:

ℎ′ = 𝜂 + ℎ. (27)

𝜂 is the surface elevation, ℎ is the still water level measured from
the bottom. The relationship among ℎ′, ℎ and 𝜂 is illustrated in Fig. 1.

If the local water depth ℎ′ is smaller than a threshold ℎ̂, then the
local cell is identified as a dry cell. When a cell is identified as a dry
cell, the velocities in the cell is set to be zero:
{

𝑢 = 0, 𝑖𝑓 ℎ′ < ℎ̂,
𝑣 = 0, 𝑖𝑓 ℎ′ < ℎ̂.

(28)

The default threshold is set to be 0.00005 m according to the
practice of Zijlema et al. (2011), however, it can be customised based
on the specific conditions. The approach tracks the variation of the
shoreline accurately and avoids numerical instabilities by ensuring
non-negative water depth (Stelling and Duinmeijer, 2003; Zijlema and
Stelling, 2008).

After the wet and dry cells are identified, the wet cells are assigned
with a value +1 and the dry cells are assigned with a value −1. With
the signed initial values, the coastline is captured using a level-set
function (Osher and Sethian, 1988):

𝜙𝑙𝑠(�⃗�, 𝑡)

⎧

⎪

⎨

⎪

> 0 𝑖𝑓 �⃗� ∈ 𝑤𝑒𝑡 𝑐𝑒𝑙𝑙,
= 0 𝑖𝑓 �⃗� ∈ 𝛤 , (29)
⎩

< 0 𝑖𝑓 �⃗� ∈ 𝑑𝑟𝑦 𝑐𝑒𝑙𝑙.
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Fig. 2. Detection of the coastline and calculation of distance from the coastline for a complicated topography using the proposed coastline algorithm. The white contour in (a) is
the detected coastline, the colour shows the distance aways from the coastline, with negative values indicating inland and positive values indicated offshore. The yellow contour
in (b) is the boundary of the coast-following relaxation zone to reduce numerical instability and customise reflection properties of the coastline.
𝛤 indicates the coastline, and the Eikonal equation |

|

∇𝜙𝑙𝑠
|

|

= 1
holds valid for the level-set function. The distance perpendicular to
the coastline is also calculated based on the level-set method. From
the initial values, the correct signed distance function is obtained by
solving the following Partial Differential Equation (PDE) based reini-
tialisation function (Sussman et al., 1994). This equation is solved
until convergence and results in the correct signed distance away from
the coastline in the whole computational domain. The exact coastline
location is the zero-contour of the level set function.

𝜕𝜙𝑙𝑠
𝜕𝑡

+ 𝑆
(

𝜙𝑙𝑠
)

(

|

|

|

|

|

𝜕𝜙𝑙𝑠
𝜕𝑥𝑗

|

|

|

|

|

− 1

)

= 0, (30)

where 𝑆(𝜙𝑙𝑠) is the smoothed sign function (Peng et al., 1999).
Relaxation zones are applied along the wet side of the coastline

covering a given distance from the coastline. The size of the coast zone
is usually small in order to preserve the correct coastline geometry
and minimise the influence on flow conditions. An additional breaking
wave viscosity 𝜈𝑏 is added to the free surface boundary conditions.
The relaxation function ramps down the velocity potential and the free
surface elevation to zero and ramps up additional viscosity from the
outer boundaries of the coast zone to the coastlines to further dissipate
wave energy. This gradual process is described in Eq. (31), which can
be generally considered as a reverse process of the wave generation
zone as shown in Eq. (21). It is considered sufficiently accurate for
engineering purposes as noted by Engsig-Karup et al. (2013). The
breaking wave algorithms are also active in case of wave breaking
within the coastal zone. The effects from the relaxation function, the
added viscosity and breaking algorithms work together to effectively
dissipate wave energy within a narrow coast zone. As a result, the
coastal relaxation zone help to avoid extreme run-ups in the swash zone
and eliminate numerical instabilities in the free surface boundary con-
ditions in extreme shallow regions. In addition, the reflection property
of the coastline can be customised by adjusting the strength or size of
the coastal relaxation zones.
𝜙(𝑥) = (1 − 𝛤 (𝑥)) 𝜙(𝑥, 𝑦),

𝜂(𝑥) = (1 − 𝛤 (𝑥)) 𝜂(𝑥, 𝑦),

𝜈𝑏(𝑥) = 𝛤 (𝑥)𝜈𝑏0,

(31)

where 𝜙(𝑥, 𝑦), 𝜂(𝑥, 𝑦) and 𝜈𝑏0 are the velocity potential, the free surface
elevation and the added breaking wave viscosity at the outer bound-
aries of the coast zones. 𝛤 (𝑥) is the relaxation function as shown in
Eq. (20).
6

The proposed coastline algorithm (see Fig. 2) is intended to have
the following beneficial features:

(1) The level-set approach is flexible and universal. The convergence
of the horizontal grid is associated with the characteristic wavelength.
As a result, the resolution of the coastline geometry captured by the
level-set method represents the relevant coastal features for the input
waves. There is no need for coastline-following (i.e. body-fitted) grid
generation. Therefore, the algorithm is less case-dependent.

(2) The level-set method enables accurate capture of the shoreline
positions in an implicit manner. The method uses a smooth signed
distance function for the coastline geometry rather than representing
the coastline geometry with a body-fitted grid. This is in contrast
to structured curvilinear grid or multi-block approach (Engsig-Karup
et al., 2009, 2012; Glimberg et al., 2013).

(3) As a result of the first two features, the proposed method ensures
the quality of the grid in the horizontal plane and facilitates the im-
plementation of high-order discretisation schemes for the free surface
boundary conditions for the representation of complex nonlinear phe-
nomena. With the structured horizontal grid, domain decomposition
and parallel computation are also made straightforward.

(4) The coastal relaxation zones eliminate possible instabilities in in-
finitesimal thin water layers. The impact on the large-scale wave prop-
agation from the coastal zone can also be minimised from sensitivity
studies.

As a result, the algorithm is expected to include various complex
coastlines with a straightforward, efficient and consistent grid gener-
ation. The coastal relaxation zones do not resolve the detailed swash
zone dynamics and thus might not be suitable for all numerical models
and applications where the validation against those physical processes
is more important. However, they facilitate stable large-scale wave
propagation simulations in the proposed numerical framework.

3. Numerical simulations of wave propagation

In this section, the numerical wave model is validated against the-
ory and experimental measurements to demonstrate its flexibility and
accuracy for different scenarios. A 5𝑡ℎ-order Stokes wave propagation
over a constant water depth is simulated for over 160 wave periods
to show the accurate representation of the free surface after long-
duration wave propagation. Wave propagation over a submerged bar
in intermediate water depth is simulated to demonstrate that both
shoaling and de-shoaling processes are well reproduced in the proposed
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numerical model. A simulation of wave propagation over a steep slope
from deep to shallow water is performed to prove that the model is able
to represent wave transformation over significant wave depth variation
within a short horizontal distance. And finally, the breaking algorithm
is proven to be effective for a wave breaking over a mild slope.

3.1. Steep nonlinear wave propagation in deepwater

A steep 5th-order Stokes wave (Fenton, 1985) is generated and
propagated in a 2D numerical wave tank for a distance of 40 wave-
lengths in constant deepwater with 𝑘ℎ = 2𝜋. The input wave height is
.1275 m and the wavelength is 1 m. This results in a wave steepness
f 𝐻∕𝐿 = 0.1275 = 90%(𝐻∕𝐿)𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 , which is the deepwater breaking
imit (Le Méhauté, 1976). The waves are generated following the
lgorithm of Clamond and Dutykh (2018) in a wave generation zone
ith a relaxation function. The wave generation zone is five wave-

engths long to achieve stable wave propagation for such a nonlinear
nd steep wave. This is in contrast to the one-wavelength generation
one configuration for mildly nonlinear waves, as reported in Bihs
t al. (2020). Correspondingly, a 10-wavelength numerical beach is
rranged at the outlet boundary of the numerical wave tank to elimi-
ate wave reflection. A constant water depth of one wavelength is used
hroughout the entire domain. This steep nonlinear wave is simulated
or 120 s, corresponding to over 160 wave periods. Ten cells with a
tretching factor of 2.45 are used in the vertical direction. Adaptive
ime-stepping is used in all simulations where the 𝐶𝐹𝐿 number is
.5. Though 𝐶𝐹𝐿 = 1.0 is normally sufficient for the simulation of
ost wave propagations (Bihs et al., 2020), a smaller time step is used
ere to ensure a stable shape of the near-breaking steep wave. The
rid convergence study is performed by evaluating the wave surface
levations in time and space, the correlation coefficient between the
imulated waves and theoretical calculations from Fenton (1985) and
ass and energy conservation. The grid convergence investigations are

ummarised and presented in Fig. 3.
The grid convergence study is performed with the optimal vertical

rid choice. In order to demonstrate the effect of the vertical grid
rrangement, the surface elevations are compared when using different
ertical stretching factors, as shown in Fig. 4. It is seen that a stronger
ertical stretching factor 𝛼 leads to a higher celerity and a higher wave
rest, while a smaller 𝛼 results in the opposite effects. The optimal
hoice following the constant truncation error method gives the best
esults both for the wave celerity and amplitude. The relative wave
umber error using different stretching factors are also compared in
ig. 4c. It confirms that the optimal vertical stretching factor yields a
inimal wave number error.

From Figs. 3a and 3b, it is seen that the free surface elevations
atch the theoretical wave amplitudes and wave phases when the cell

ize is reduced to 0.02 m or smaller. The estimated wave heights also
end to converge towards the theoretical input wave height with 0.02 m
r smaller horizontal cell sizes, as seen in Fig. 3c. Furthermore, the
orrelation relation between the simulated surface elevation in space
nd the theoretical calculation is plotted over the simulation time in
ig. 3c. The simulated waves reach a static status after nearly 50 s
ropagation. Afterwards, a near-constant correction coefficient around
.0 is found with both 0.01 m and 0.02 m cell sizes. This confirms that
he simulated free surface is in synchronisation with the theoretical
alculations and that the wave celerity is well represented. Figs. 3a
o 3d demonstrate that the wave free surface is well represented in
he presented numerical wave tank over the duration of the simulation
nd a good agreement is achieved when comparing with the theory.
urthermore, the conservation of mass or volume and total energy (the
um of kinematic and potential energy) are examined in Figs. 3e and
f. It is seen that the error of the volume of the fluid domain is nearly
onstant over the duration of the simulation when a cell size of 0.02 m
r smaller is used. Small fluctuations within ±0.25% is observed possibly
7

due to the integration errors of fluid properties in the water column. A
stable small fluctuation with an amplitude of 0.15% around a constant
mean offset of 0.35% is observed when a static status is achieved after
50 s with the fine grids. For both errors, larger cell sizes produce more
significant fluctuations. Therefore, it is concluded that a cell size of
0.02 m is sufficient for a good representation of the chosen wave.

With the chosen cell size and the chosen vertical grid arrangement,
the free surface elevations obtained in the NWT using different spa-
tial discretisation schemes for the free surface boundary conditions
are compared in Fig. 5. 2nd-, 4th- and 6th-order central differencing
schemes (CDS) and 3rd- and 5th-order WENO schemes are used in the
comparison. It is seen that central differencing schemes fail to keep
the stable shape of the propagating waves even with up to 6th-order
accuracy. WENO schemes are able to capture the sharp waveforms
in a more accurate and stable manner. The 5th-order WENO scheme
shows an increased accuracy over the lower order counterpart. The
comparison provided motivation for the choice of high-order WENO
schemes for an accurate representation of surface waves, especially for
steep and nonlinear waves.

It is seen that, with the chosen cell size and the numerical setup, the
proposed model is able to accurately represent the long duration stable
propagation of a transient steep regular wave with a wave steepness
corresponding to 90% deepwater breaking limit.

3.2. Wave propagation over a submerged bar

One of the challenges in a shallow-water model is the de-shoaling
process (Wang et al., 2020b), where a single frequency wave decom-
poses into higher frequency short wave components after propagating
over a shallow water region. Those high-frequency components are
usually so short that shallow water assumptions are not valid any
longer. This leads to significant errors in both wave amplitude and
phase. Therefore, the monochromatic long wave propagation over a
submerged bar experiment performed by Beji and Battjes (Beji and
Battjes, 1993) is simulated to show the presented model’s ability to
represent the de-shoaling process. The configuration of the numerical
wave tank is shown in Fig. 6. A 2𝑛𝑑-order Stokes wave with a wave
height 𝐻 = 0.021 m and a wave period 𝑇 = 2.525 s is generated in a
relaxation zone at the inlet of the numerical wave tank. The wave gen-
eration zone is 5 m long, covering slightly more than one wavelength.
A submerged bar is located 6 m from the end of the wave generation
zone. Eight wave gauges are located at 𝑥 = 11, 16, 17, 18, 19, 20, 21, 22
nd 24 m over the submerged bar, as shown in Fig. 6. A relaxation
one of two wavelengths for wave dissipation is arranged at the outlet
f the numerical wave tank. All simulations are performed for 60
. Adaptive time-stepping is used while 𝐶𝐹𝐿 = 1.0 is maintained.
0 vertical cells with a stretching factor 𝛼 of 3.0 are used following
he constant-truncation-error method. Four cell sizes are used for the
rid convergence study: 𝑑𝑥 = 0.02 m, 0.04 m, 0.08 m and 0.16 m. The
e-shoaling process is most prominent at wave gauge 8. Therefore,
he time series of surface elevation at the wave gauge 8 obtained
sing different cell sizes are compared in Fig. 7a and the frequency
pectra derived from these time series are compared in Fig. 7b. It is
een that both 𝑑𝑥 = 0.02 m and 0.04 m reproduce the experimental
ave amplitude and frequency spectrum very well. However, there is
slightly larger phase error in the simulation with 𝑑𝑥 = 0.04 m in

omparison to 𝑑𝑥 = 0.02 m. Therefore, 𝑑𝑥 = 0.02 m is used in the
ollowing validation against the experiment.

The 𝜎-grid with 𝑑𝑥 = 0.02 m is visualised in Fig. 8 at 𝑡 = 60 s. Here,
he horizontal grid is equal-distant and the vertical grid is denser closer
o the free surface. In addition, the vertical grid follows the variation
f the bottom topography as well as the surface elevation.

Moreover, the horizontal velocity field at 𝑡 = 60 s is shown in
ig. 9. The velocities are highest at the free surface and decrease over
epth, the vertical velocity distribution is faithfully represented in the
resented simulation.
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Fig. 3a. Grid convergence investigation of steep nonlinear wave propagation in deepwater where 𝐻∕𝐻𝑚𝑎𝑥 = 0.9 (part 1).
Both the time series and the frequency spectra at all wave gauges
are compared in 10 between the experimental measurements and nu-
merical simulations.

From gauge 1 to 3, wave shoaling takes place, the wave height
increases and higher frequency components start to appear. The wave
crests, troughs and the emerging high-frequency components in the
numerical simulations all agree well with the experiments. While the
wave propagates over the shallow water region at the height of the sub-
merged bar, even higher frequency components appear, and the wave
energy starts to shift from low-frequency components to high-frequency
components. During the process, up to six notable frequencies are
observed and the highest frequency is near 2.5 Hz. The simulated wave
in the numerical wave tank represents all six frequencies as in the
experiments, the energy distribution among the six frequencies are also
correctly represented. When the waves pass wave gauges 6, 7 and 8, the
de-shoaling process becomes more significant. Here the wave energy
from high-frequency components overtakes the original input wave
frequency. With only four major frequency components left, more than
half of the wave energy is shifted to the frequency range higher than
1 Hz. During the entire wave transformation process, the numerically
simulated wave crests, troughs, phases and wave profiles are close to
the experimental measurements. The number of frequency components
and energy distribution over the frequencies in the numerical wave
tank also agree with the experiment. The model simulates the wave
transformation over a submerged bar with good agreement, including
high-frequency details.

3.3. Bi-chromatic wave propagation over a steep ramp

Steep slopes over 45◦ are typical near the Norwegian coast and
challenging for numerical modelling. The grid needs to undergo se-
vere distortion following step-like topography changes. In this section,
8

wave propagation over a steep slope from deepwater to shallow water
conditions is simulated. The NWT configuration follows the experiment
conducted at SINTEF Ocean in Trondheim (Pákozdi et al., 2019). The
illustration of the NWT setup is shown in Fig. 11. The steep slope
consists of two segments, the first segment starts 2.1 m from the
wavemaker and has a slope of 70◦, the second segment has a slope
of 45◦. The water depth is 10 m at the wave generator and 0.75 m
after the slope. A double-hinged flap wavemaker is used for the wave
generation of a bi-chromatic wave train. In order to reproduce the same
waves as in the experiment, the wavemaker motion in the physical test
is used to drive the waves in the NWT instead of the relaxation method.
A relaxation zone of 9.5 m is located at the outlet of the numerical
wave tank to absorb wave energy and eliminate reflection. Wave gauge
G0 is located at 𝑥 = 1 m in the deepwater region before the slope,
wave gauges 1–3 are located at 𝑥 = 10, 35 and 50 m in the shallow
water region after the slope. 15 cells and a stretching factor of 3.0 are
used in the vertical direction following the constant-truncation-error
method described in Section 2.2. For the time step size, 𝐶𝐹𝐿 = 1.0 is
kept constant. Three cell sizes are used for the grid convergence study:
𝑑𝑥 = 0.05 m, 0.10 m and 0.20 m. All simulations are performed for 180 s.
The time series and frequency spectra at wave gauge 0 obtained using
different cell sizes are compared in Fig. 12. Both 𝑑𝑥 = 0.05 m and 0.10 m
represent the two frequencies and the corresponding spectra energy
density accurately, however, the wave phase is better represented with
the cell size 𝑑𝑥 = 0.05 m. Therefore, 𝑑𝑥 = 0.05 m is used in the following
analysis in this section.

With the chosen grid resolution, the grid at the steep ramp is shown
in Fig. 13. In spite of the significant bathymetry change, the 𝜎-grid
follows the topography very well.

The surface elevation time histories obtained from the numerical

simulations are then compared with the experimental measurements
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Fig. 3b. Grid convergence investigation of steep nonlinear wave propagation in deepwater where 𝐻∕𝐻𝑚𝑎𝑥 = 0.9 (part 2). (a) free surface elevation in space at 𝑡 = 120 s (𝑡∕𝑇 = 162.5,
is wave period), (b) free surface elevation in time at 𝑥 = 20 m (𝑥∕𝜆 = 20), (c) mean wave height in the numerical wave tank at 𝑡 = 120 s (𝑡∕𝑇 = 162.5), (d) correlation coefficient

etween the simulated surface elevation and theoretical values estimated using the method by Fenton (1985), (e) mass/volume error over time, (d) total wave energy error over
ime.
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n Fig. 14. The input wave signal of the bi-chromatic wave is seen in
ig. 14a, and the simulated free surface time series at the wave gauges
1 to G3 show an accurate representation of the experimental wave
rofiles, amplitudes and wave phases.

As the bi-chromatic wave propagates over the steep ramp, addi-
ional second-order wave components at sum- and difference-
requencies appear as a result. It is found in Fig. 12b that the two
rincipal frequencies of the bi-chromatic wave are 𝜔1 = 0.54 Hz and
2 = 0.74 Hz. In theory, four new bounded frequencies should appear:
3 = 𝜔2−𝜔1 = 0.2 Hz;𝜔4 = 2𝜔1 = 1.08 Hz;𝜔5 = 2𝜔2 = 1.48 Hz and 𝜔6 =
1 +𝜔2 = 1.28 Hz. The time series at wave gauge 2 from the numerical
imulation and experimental measurements are used to calculate the
requency spectra. The resulting spectra are compared in Fig. 15 for
ach of the frequency components.

It is seen that all theoretical frequency components are represented
n the frequency spectra from both the experiment and the simulations.
he simulation captures the two principal frequencies 𝜔1 and 𝜔2 and
he low-frequency 𝜔3 exactly as the theoretical values and the corre-
ponding energy densities are nearly identical to the experiment. The
igh frequencies represented in the numerical simulation are slightly
ifferent from the experiment, and the relevant energy densities show
difference of 10 − 25%. However, the energy densities at the high-

requency range are very small (10−5 to 10−4) in comparison to the
rincipal frequencies (10−2). The energy differences between the sim-
lation and the experiment at the high-frequency range is negligible
9

hen they are compared in the same scale as the principal frequencies. 0
.4. Wave breaking over a mild slope

In shallow water regions close to the shoreline, depth-induced wave
reaking is a common phenomenon. However, depth-induced wave
reaking is not included in most potential flow models as their focus
s mostly on deepwater. In the presented model, a consistent wave
reaking algorithm over a complete range of water depths is intro-
uced. In this section, a depth-induced plunging wave breaker near
he coastline over a mild-slope (Ting and Kirby, 1995) is simulated.
he numerical wave tank setup is shown in Fig. 16. The slope starts
.8 m from the wave generation boundary and rises up to 0.748 m
t the outlet following a slope of 1:35. The water depth at the wave
enerator is 0.4 m. A 5𝑡ℎ-order cnoidal wave with a wave height of
.128 m and wave period of 5 s is generated at the inlet using Neumann
oundary conditions. Here, the Neumann boundary condition is a more
fficient method for wave generation as the analytical description of the
noidal wave velocity potential is more complicated. Four wave gauges
re located on the slope adjacent to the wave breaking location. From
ave gauges 1 to 4, the x-coordinates are 𝑥 = 11.8, 12.8, 13.8 and 14.1 m.

The artificial viscous damping factor of 0.0055 is used in the following
simulation for the correct representation of wave energy dissipation
during the wave breaking process. 10 vertical cells are used following
the constant-truncation-error method described in Section 2.2 based on
the water depth before the slope. The simulations are performed for 40
s with adaptive time stepping and a constant 𝐶𝐹𝐿 = 1.0. Three cell
sizes are used in the grid convergence study 𝑑𝑥 = 0.05 m, 0.10 m and

.20 m. The time histories of water surface elevation at the wave gauges
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Fig. 4. Effects of the vertical grid choice in the simulations of the steep nonlinear wave propagation. (a) and (b) show the free surface elevations in space and time using a
uniform grid (𝛼 = 1.0), the optimal stretching from the constant truncation error method (𝛼 = 2.45) and a strong stretching (𝛼 = 5.0). (c) the relative wave number error defined
by the absolute wave number differences 𝛥𝑘 divided by the theoretical wave number 𝑘0.
Fig. 5. Free surface elevations obtained from simulations using different spatial discretisation schemes for the free surface boundary conditions. CDS2, 4 and 6 represent 2nd-,
4th- and 6th-order central differencing schemes, WENO3 and 5 represent 3rd- and 5th-order WENO schemes. The black dash-dotted line represents the theory.
Fig. 6. Numerical wave tank setup for the wave propagation over a submerged bar.
2 and 3 obtained from the numerical wave tank with different cell sizes

are compared in Fig. 17.
10
As can be seen from Fig. 17, 𝑑𝑥 = 0.05 m provides a good representa-

tion of the wave crest, the wave profile as well as the phase information,
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Fig. 7. Grid convergence for the simulation of a 2𝑛𝑑 Stokes wave propagating over a submerged bar. The amplified zoom-in view of each spectrum peak are illustrated above
each harmonics for clarity.
Fig. 8. 𝜎-grid with 𝑑𝑥 = 0.02 m at 𝑡 = 60 s in the simulation of wave propagation
over a submerged bar (only the grid near the submerged bar is shown). 10 cells and
a stretching factor of 3.0 are used in the vertical direction. The grid is amplified by a
factor of 5 in the vertical direction for visualisation purposes.

while coarser grids show a constant underestimation of the wave crest.
With the chosen grid configuration, the coastal zone width convergence
study is performed with four difference widths 1 𝑑𝑥, 2 𝑑𝑥, 3 𝑑𝑥 and 4
𝑑𝑥, where 𝑑𝑥 is the horizontal cell size. The simulated time series at
wave gauges 2 and 4 using the different coastal zones are compared
in Fig. 18. It is seen that the unrealistic wave run-up and run-down in
the swash zone with near infinitesimal water depth results in spurious
waves near 30 s when only one cell is used for the coastal zone. With a
wider coastal zone, the simulation results are very similar to each other.
As a result, 2 𝑑𝑥 is chosen for the simulation since it is the minimum
width that gives consistent results while eliminating the swash zone
instabilities. Similarly, the sensitivity study on the choice of the viscous
damping factor 𝜈𝑏 in the breaking algorithm is demonstrated in Fig. 19.
It is seen that a stronger 𝜈𝑏 leads to too much energy dissipation,
𝜈𝑏 = 0.0055 gives a good representation of the wave crest changes after
wave breaking. Therefore, it is also recommended to calibrate the wave
breaking parameters with a benchmark before further studies.

Using 𝑑𝑥 = 0.05 m, 2 cells at the coastal zone and 𝜈𝑏 = 0.0055, the
time series of surface elevation at all four wave gauges are compared
with the experiment in Fig. 20. It is observed that the wave crest
increases from wave gauge 1 to wave gauge 2, showing a strong
shoaling. Then the wave crest has a sudden decrease at wave gauge
3, indicating that wave breaking occurs between wave gauges 2 and
3. The relative errors 𝜀 of the wave crest heights are also shown in
Fig. 20 besides each wave crest. The relative errors are found to be
lower than 5% in general, except for the second peak in Fig. 20b.
The simulated wave crests follow the experiment well both before
and after the breaking, showing the correct energy dissipation in the
implemented breaking algorithm. The coastal relaxation zones help to
represent the characteristics of the experimental flow field and ensure
the correct breaking wave location, indicating a close representation
of the reflection and dissipation properties of the coastline, though the
details of the run-up and run-down processes are not resolved.

One of the wave breaking events is shown in Fig. 21. Here, the wave
crest increase to its maximum and the wave front becomes vertical.
Since the free surface is single-valued, a visualisation of overturning
11
breaker is not within the scope of the model. However, it is seen from
Fig. 20 and Fig. 21 that the breaking event is correctly detected and
the wave energy is correctly dissipated in the numerical simulation.

3.5. Wave shoaling over a three-dimensional submerged reef

The previous sections demonstrate the effectiveness and accuracy
of the proposed numerical model for 2D wave propagation and trans-
formation. In this section, a 3D wave shoaling over a semi-circular
submerged reef is investigated. The numerical setup follows the ex-
perimental configuration reported by Whalin (1971). The schematics
of the numerical wave tank is illustrated in Fig. 22. The numerical
domain is 35 m long and 6.096 m wide with a constant water depth
of 0.457 m at the wave generation zone and 0.1524 m over the top
of the reef at the numerical beach. At the centreline of the numerical
wave tank (𝑦 = 3.048 m), the semi-circular submerged reef starts from
𝑥 = 7.62 m with a slope of 1 ∶ 25 until 𝑥 = 15.85 m where the reef
reaches its maximum height of 0.3046 m. Nineteen wave gauges are
arranged along the centreline between 𝑥 = 3.505 m and 𝑥 = 11.731
m with a constant interval of 0.457 m in between two wave gauges.
Thereafter, another 20 wave gauges are arranged between 𝑥 = 13.868
m and 𝑥 = 22.551 m with the same constant interval 0.457 m. A 2nd-
order Stokes wave with a wave height 𝐻 = 0.015 m and a wave period
𝑇 = 2 s is generated at the wave generation zone of one wavelength. A
numerical beach of two wavelengths is arranged at the outlet boundary
to eliminate wave reflection.

Fifty wave periods (100 s) are simulated to obtain statistical prop-
erties of the various harmonics from the shoaling process. The wave
harmonics are identified using a Fast Fourier Transform (FFT) method
from the simulated time series at each waves gauge. After a grid
convergence study on each of the harmonics, a cell size of 0.05 m
is found to be sufficient for numerically converged results. A simi-
lar grid resolution is also reported in a previous study on the same
case as reported by Engsig-Karup et al. (2009). Ten vertical cells
with a stretching factor of 1.0 (uniformly distributed) are used in
the simulation. The simulated surface elevation at the last time step
𝑡 = 100 s is shown in Fig. 23. The shoaling waves around the semi-
circular reef converge at the top of the reef, creating higher waves
and introducing significant non-linear effects. In order to validate the
model for representing this nonlinear process, the different harmonics
in the simulated wavefield using REEF3D::FNPF are compared with
the experimental measurements recorded by Whalin (1971) and the
numerical simulation results from the fully nonlinear potential flow
model OceanWave3D (Engsig-Karup et al., 2009). The comparison is
shown in Fig. 24.

Fig. 24 shows that the amplitudes of the first three harmonics follow
similar spatial variations along the centreline as the experiment as
well as the OceanWave3D simulations. It can be concluded that the
model is able to represent nonlinear 3D wave transformations with
good accuracy when compared with experiments and other similar
numerical codes.
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Fig. 9. Horizontal velocity component at 𝑡 = 60 s in the numerical wave tank of wave propagation over a submerged bar (The vertical direction is scaled by a factor of 10 for
visualisation purpose).
Fig. 10a. Comparison between the numerical results and experimental measurements for the wave transformation over a submerged bar (Part 1).
4. Engineering applications

In this section, two engineering applications are described. The
focus is on the effectiveness of the coastline algorithm for complicated
shorelines. Norway has a long coastline with complicated coastline
geometry due to the fjords and archipelagos. Fig. 25 shows the lo-
cations and the surrounding areas of the two sites for simulations
along the Norwegian coast. With these different and challenging coastal
topographies, the coastline algorithm is evaluated.

4.1. Harbour design at mehamn

The first application is the investigation of the wave conditions
inside the Norwegian harbour Mehamn. Mehamn is the north-most
12
harbour that the passenger ferry service Hurtigruten travels to. The
harbour is surrounded by two peninsulas to the east and west but
open to ocean swell at the north side. Intermediate to shallow water
conditions are found around and inside the harbour. The satellite
image from 2019 and water depth contour map of the harbour and its
surrounding area are shown in Fig. 26. The two breakwaters are marked
as BW1 and BW2 and the two peninsulas surrounding the harbour are
marked as peninsula A and peninsula B.

A model scale experiment with a scale factor of 1:80 was performed
for the purpose of breakwater design at the SINTEF Coast and Harbour
Laboratory in Trondheim (Vold and Lothe, 2009). In the experiment,
the water depth was truncated at 40 m in full scale and 0.5 m on the
experiment scale. Only part of the inlet boundary from 𝑥 = 0 to 𝑥 = 9.5
m (760 m in full-scale) is covered by the wave generator, while the
rest is blocked by a solid object, as seen in Fig. 27. Nine wave gauges
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Fig. 10b. Comparison between the numerical results and experimental measurements for the wave transformation over a submerged bar (Part 2).
are arranged in the basin: one wave gauge outside the entrance of the
harbour in order to calibrate the incoming waves and eight inside the
harbour. The physical experiment configuration is shown in Fig. 27

The proposed numerical model is used to reproduce the results in
the experiment that are converted to full-scale. The full-scale topogra-
phy in Fig. 26a is included in the numerical wave tank as shown in
Fig. 28a. The topography is oriented so that the principal wave direc-
tion is 14◦ north-northeast, the same as in the experiment (Vold and
Lothe, 2009). The numerical domain is 1760 m long in the north–south
direction, and 1440 m in the west–east direction. The maximum water
depth is 40 m, corresponding to the experiment. In the simulation,
unidirectional irregular waves are generated with a relaxation method
at the north boundary (orange box in Fig. 28b) to represent ocean swell
propagation into the harbour. Following the experiment (Vold and
13
Lothe, 2009), the wave gauges in the numerical wave tank are shown in
Fig. 28b. The theoretical input significant wave height is 3.5 m and the
peak period is 12 s. Wave gauge 1 is used for the calibration of the input
wave in the experiment as well as in the numerical wave tank. After
iterative trials, the input wave height is modified in order to obtain
a 3.5 m significant wave height at wave gauge 1. The slight increase
of wave height at a gauge 1 in comparison to the wave generation
boundary is largely due to the local shoaling effect. The JONSWAP
spectrum (DNV-GL, 2011) with a peak enhance parameter 3.0 is used
as the input power spectrum. A narrow band frequency range between
0.75𝜔𝑝 and 2𝜔𝑝 is used in the simulation, where 𝜔𝑝 represents the peak
angular frequency.

A 2D simulation is performed first in a numerical wave flume to
determine the grid arrangement for a correct representation of the input
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Fig. 10c. Comparison between the numerical results and experimental measurements for the wave transformation over a submerged bar (Part 3). (a)(c)(e)(g)(i)(k)(m)(o) surface
elevations at 8 wave gauges at 𝑡 = 60 s, (b)(d)(f)(h)(j)(l)(n)(p) frequency spectra at 8 wave gauges. Black lines are from experiments, red lines are results of REEF3D::FNPF. 𝑓∕𝑓0
is the normalised frequency and 𝑓0 is the frequency of the input wave, 𝑓0 = 1∕2.525 Hz. The grid size 𝑑𝑥 = 0.02 m and 𝐶𝐹𝐿 = 1.0.

Fig. 11. Numerical wave tank setup for wave propagation over a steep ramp.

Fig. 12. Grid convergence for the simulation of bi-chromatic wave propagation over a steep ramp. (a) time series of free race elevation at wave gauge G2, (b) frequency spectra
at wave gauge G2.

Fig. 13. 𝜎-coordinate at the steep slope in the simulation of wave propagation over a steep ramp with the horizontal cell size 0.05 m and 15 cells and a stretching factor of 3.0.
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s

Fig. 14. Comparison of free surface time series between the simulated waves and experimental measurements. (a) the input wave signal in the numerical simulation at G0. (b)–(d)
urface elevation time series at G1, G2 and G3.
Fig. 15. Frequency spectra at wave gauge G2 in the simulation of bi-chromatic wave propagation over a steep ramp, (a) frequency spectrum near 𝜔3, (b) frequency spectrum near
𝜔1 and 𝜔2, (c) frequency spectrum near𝜔4, (d) frequency spectrum near 𝜔5, (e) frequency spectrum near 𝜔6.
wave spectrum. 10 cells in the vertical direction with a stretching factor
of 2.0 is used based on the constant-truncation error method for the
water depth in the offshore region. 12 800 s simulations are performed
and the surface elevation time histories between 2000 s and 12 800
15
s at 𝑥 = 300 m are used to calculate wave spectra. 𝑥 = 300 m is
located right after the wave generation zone to ensure the input wave
quality. The simulated spectra are compared with the theoretical one
in Fig. 29. The spectrum obtained with 𝑑𝑥 = 4 m agrees with the



Applied Ocean Research 122 (2022) 103103W. Wang et al.
Fig. 16. Numerical wave tank setup for wave breaking over a mild slope.
Fig. 17. Grid convergence for the simulation of wave breaking over a mild-slope. (a) time series of surface elevation at wave gauge 2, (b) time series of surface elevation at wave
gauge 3. 2-cell size coastal zones are used in all simulations.
Fig. 18. Coastal zone width convergence study in the simulations of wave breaking over a mild slope.
Fig. 19. Sensitivity study on the viscous damping factor 𝜈𝑏 in the breaking algorithm in the simulations of wave breaking over a mild slope. The black dashed lines represent the
experimental measurements.
theoretical input wave spectrum at the peak frequency as well as at the
low-frequency end and high-frequency end. Further refinement of the
grid results in a similar spectrum without obvious further improvement.
Therefore, a horizontal cell size of 𝑑𝑥 = 4 m is used in the following
simulations. The coastal zone width convergence study is performed to
choose the minimum width that does not have a significant influence on
the wavefield while eliminating the swash zone instability. The wave
spectra at wave gauge 3 near the inlet of the harbour and wave gauge 8
near the marina inside the harbour are compared using different coastal
zone widths, as shown in Fig. 30. It is seen that when only one cell is
used for the coastline width, the spectra are significantly different from
other results at both gauges due to the instability in the swash zone and
unphysical run-up and run-down. When a coastal zone size of 2 cells
and 3 cells are used, the reproduced spectra are very similar at both
locations, especially near the peak frequencies. With the increasing
width of the coastal zone, the spectra peaks decrease monotonically at
both gauges. Similar to the finding of Section 3.4, a 2-cell coastal zone
width is used in the following simulations.
16
With a cell size of 4 m in the horizontal direction and 10 cells in
the vertical direction, the total number of cells is 1.584 million for
the full-scale 3D Mehamn simulation. The simulation is performed for
12 800 s and the time series of surface elevation between 2000 s and
12 800 s is used for the calculation of significant wave heights inside
the harbour. The 12 800 s simulation takes 7.9 h to finish using 128
Intel Sandy Bridge processors (2.6 GHz) on the supercomputer Vilje.
With the same numerical configurations, investigations are also made
to study the effects of the breakwaters. In total, four scenarios are
compared: without breakwaters, with only breakwater BW1, with only
breakwater BW2 and with both breakwaters. The surface elevations at
𝑡 = 12 800 s in all four simulations are shown in Fig. 31.

Strong wave refraction and diffraction are observed at the tips
of the two peninsulas. The water depth variations at the tips of the
two peninsulas cause the wave direction to bend towards the coast
due to refraction. This process continues along the coastline of the
two archipelagos, guiding the waves into the interior of the harbour.
Another phenomenon that leads the incoming waves into the harbour
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Fig. 20. Time series of surface elevation and relative errors of wave crest height at all four wave gauges in the simulation of wave breaking over a mild-slope.
Fig. 21. Breaking wave at 𝑡 = 10.75 s. The wave crest increases to its maximum and the wave front becomes vertical. The horizontal velocity also reach the maximum at the wave
crest (The vertical direction is scaled by a factor of 10 for visualisation purpose).
Fig. 22. Numerical wave tank setup for the three dimensional wave shoaling over a semi-circular submerged reef.
is diffraction. Diffraction first takes place at peninsula B and causes the
incoming waves to change direction and to propagate towards the inner
harbour. Both the input wave and the diffracted wave around peninsula
B meet at peninsula A and diffraction takes place in association with
a strong shoaling effect at the tip of peninsula A. As a result of the
17
combination of refraction and diffraction, the swell propagates around
the peninsulas and spreads in the entire inner harbour. The breakwaters
block the refraction process along the coastlines of peninsulas A and
B respectively and prevent the waves from being guided towards the
inner harbour. The strong diffraction pattern persists after breakwater
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Fig. 23. Surface elevation over the entire numerical wave tank of three dimensional wave shoaling over a semi-circular submerged reef at 𝑡 = 100 s (The numerical domain is
amplified 10 times in the vertical direction for the purpose of visualisation).
Fig. 24. Comparison of the three wave harmonics in the measurements, REEF3D::FNPF simulation and OceanWave3D simulation along the centreline of the three dimensional
wave shoaling experiment by Whalin (1971). ‘exp.’ represents the experimental measurements (Whalin, 1971), ‘ow3d’ represents the OceanWave3D simulations (Engsig-Karup et al.,
2009) and ‘rf3d’ represents the REEF3D::FNPF simulation.
BW1 is installed. The diffraction around peninsula A dominates the
wave propagation into the harbour. However, waves along the east
side of the harbour are reduced. Therefore, the infrastructures along the
east coastline are better protected. BW2, on the other hand, decreases
the diffraction at peninsula A significantly. Consequently, much smaller
waves are observed in the inner harbour. The combined use of the two
breakwaters is seen to reduce both the wave height along the east side
of the harbour as well as in the inner harbour.

In the physical experiment, the scenario with no breakwater and
the scenario with both breakwaters were tested. The significant wave
heights at all nine wave gauges obtained in the numerical wave tank
are then compared to the experiment for both scenarios in Figs. 32a
and 32b:

It is seen that 𝐻𝑠 at all wave gauges as well as the general trend
of wave height variation in the inner harbour agree well between
the numerical simulations and the experiments for both scenarios.
This proves that the coastline algorithm captures the complex wave
transformation near and inside the harbour. A correct representation of
18
the wave diffraction ensures an accurate calculation of the wave height
at the gauges 5 to 9. A quantitative comparison of the simulated effects
of the breakwaters is seen in Fig. 33.

The visual observation in Fig. 31 is confirmed in Fig. 33. It is
seen that the significant wave heights at all wave gauges inside the
harbour are significantly reduced after waves pass the two breakwaters
BW1 and BW2 in Fig. 26a. Breakwater 2 has a much stronger effect
than breakwater 1 on reducing wave height at nearly all wave gauges.
However, the combined usage of the two breakwaters further reduces
the wave height at wave gauges 6,7 and 9. In fact, most small leisure
boats and fishing boats are docked in the marina near wave gauge 9.
The combined usage of the breakwaters proves to be necessary in order
to protect the small boats from large motions.

The study of Mehamn harbour shows the model’s capability to
represent complicated wave transformation over natural bathymetry.
Strong diffraction near complex coastlines and breakwaters are well
represented. The computational time is only twice that of real-time
with affordable computational resources. The computational efficiency
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Fig. 25. Locations and surrounding areas of the two engineering application sites in the Norwegian coast (Statens kartverk, 2020). The red and yellow boxes in the north of the
map show the Mehamn harbour location and its adjacent area. The red and yellow boxes in the north of the map show the planned Flatøya fish farm location and its adjacent
area.
Fig. 26. Mehamn harbour: (a) satellite image; (b) water depth contour. The two breakwaters are marked as BW1 and BW2 and the two peninsulas are marked as A and B.
Fig. 27. Configuration of the physical experiment for Mehamn harbour (Vold and
Lothe, 2009). The grey shaded area at the upper boundary is the wavemaker, the
white-grey shaded area at the lower boundary is the wave absorber.
19
enables the model for large-scale engineering applications. The model
is seen to be a suitable tool for harbour planning and analysis of
coastal infrastructures and coastal protection. The coastline algorithm
has shown to be a pragmatic methodology that helps to capture the
correct large-scale statistical characteristics of the flow field with the
presence of complex coastline geometries.

4.2. Aquaculture site analysis at Flatøya

As mentioned in Section 3.2, it is challenging to represent de-
shoaling processes in shallow water models, but REEF3D::NFPF was
able to represent accurately the wave shoaling and de-shoaling in a 2D
simulation of wave propagation over a submerged bar. In this section,
the wave conditions at a planned fish farm site and its surrounding area
are simulated. The fish farm site is located near the Flatøya island in
Norway. In this scenario, waves from the offshore area propagate over
a very shallow region filled with an archipelago before reaching the fish
farm site, where the water depth suddenly increases significantly. The
presence of the archipelago creates complicated wave diffraction and
reflection in addition to the strong shoaling and de-shoaling phenom-
ena. The terrain map of the area near the fish farm is shown in Fig. 34a
where the fish farm site is shown as a red box. The offshore area has
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Fig. 28. Configuration of the simulation of wave propagation in Mehamn harbour. (a) the bathymetry of Mehamn harbour, negative values indicate areas above water level. The
bathymetry is truncated at 40 m water depth, as seen in the solid red area; (b) the orange box is the wave generation zone, the cyan box is a numerical beach, the red lines
show the coastlines detected in the model and the yellow lines show the outer boundaries of the coastal relaxation zones. All the topography are vertically scaled with a factor
of 3 for visualisation purposes.
Fig. 29. Comparison of spectrum density at the wave gauge 𝑥 = 300 m in the 2D
simulation with the input wave for Mehamn harbour.

a characteristic water depth of 300 m, and a shallow water region of
an average 20 m water depth lies in between the offshore region and
the fish farm. The water depth around the fish farm is about 200 m.
A close-up view of the fish farm is shown in Fig. 34b. The fish farm is
located right behind the Flatøya island. Here, each cell represents a fish
cage and each grid point represents a floating buoy, which is moored to
the seabed. In the following simulation, the wave gauges are arranged
at the locations of the 50 floating buoys in the fish farm.

The black box in Fig. 34a shows the chosen simulation domain. The
longitudinal dimension is 14 km (north-west to south-east direction)
and the transverse dimension is 7 km (south-west to north-east direc-
tion). Uni-directional irregular waves are generated from the offshore
boundary with 300 m water depth from the north-west 45 degree
direction. The input wave has a significant wave height of 𝐻𝑠=2.5 m
and a peak period of 𝑇𝑝 = 15 s. A JONSWAP spectrum (DNV-GL, 2011)
with a peak enhance factor 3.0 is used as the input power spectrum.
The frequency range from half of the peak frequency to double that
of the peak frequency [0.5𝜔 , 2𝜔 ] is used in all following simulations.
20

𝑝 𝑝
The numerical domain is arranged so that the wave direction is per-
pendicular to the wave generation boundary. The configuration of the
numerical wave tank is shown in Fig. 35, the domain length is 14 000 m
in the 𝑥-direction and 7000 m. The red box is the wave generation
zone. Numerical damping zones are arranged along the other three
boundaries to eliminate the interference of wave reflections from the
boundaries. The red and yellow circles show the locations of the wave
gauges, which correspond to the grid points in Fig. 34b.

First, a 2D numerical wave flume which is 14 000 m long is used
for the grid convergence study. 10 cells in the vertical direction with
a stretching factor of 2.0 is used following the method described in
Section 2.2 based on the water depth in the offshore region. 12 800 s
simulation time is used and the surface elevation time histories between
2000 s and 12 800 s at 𝑥 = 7000 m are used to calculate the wave
spectra. 𝑥 = 7000 m is at the centre of the tank and before the waves
reach the archipelago, where the wave quality must be ensured. The
simulated spectra are compared with the theoretical one in Fig. 36.
The spectrum obtained with both 𝑑𝑥 = 10 m and 𝑑𝑥 = 5 m agrees
with the theoretical input wave spectrum at both the peak frequency
and the low-frequency and high-frequency ends. The result from 𝑑𝑥 = 5
m does not further improve the representation of the spectrum so that
𝑑𝑥 = 10 m is chosen for all the following stimulations. With the chosen
grid arrangement, the resulting number of cells in the simulations is
9.8 million. Following the finding from Section 4.1, a 2-cell coast zone
width is used in the simulations.

As mentioned previously, phase-resolved models have the advan-
tage in representing some of the strongly nonlinear wave transforma-
tion processes such as strong diffraction in comparison to spectral wave
models. In this scenario, the archipelago creates a strong diffraction
pattern, especially around Flaøya. In order to verify and demonstrate
this advantage of the proposed phase-resolved wave model, the widely
used third-generation spectral wave model SWAN (Booij et al., 1999)
is used to simulate the same fish farm site.

A grid convergence study of SWAN (Booij et al., 1999) is also
performed. For a spectral wave model, the grid resolution requirement
for the offshore area is not as strict as a phase-resolved model. However,
sufficient resolution at the wave diffraction area is required. The 𝐻𝑠 at
the 10 yellow wave gauges in Fig. 35 are used for the grid convergence
study. The 𝐻 obtained when using different cell sizes are compared in
𝑠
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Fig. 30. Frequency spectra at wave gauge 3 and 8 using different coastal zone width in the simulations of Mehman harbour.
Fig. 31. Free surface elevation in the simulations of wave propagation into Mehamn harbour at 𝑡 = 12 800 s; (a) without any breakwater, (b) with breakwater BW2, (c) with
breakwater BW1, (d) with both breakwaters BW1 and BW2.
Fig. 37. As can be seen, the 𝐻𝑠 varies significantly with the refinement
of the cell size until a further refinement is made from 𝑑𝑥 = 20 m
to 𝑑𝑥 = 10 m, where near-identical results are obtained from both
simulations at all ten wave gauges. Therefore, 20 m cell size is used
for the comparison with the proposed phase-resolved model.

With the chosen grid resolutions, the surface elevation in the entire
numerical wave tank at 𝑡 = 12 800 s in the REEF3D::FNPF simulation
21
alongside with the 𝐻𝑠 distribution from the SWAN simulation are
shown in Fig. 38.

Both simulations show the wave shoaling process when the deep-
water waves propagate to the shallow water region between 𝑥 = 2000
m and 𝑥 = 6000 m. After the shoaling and possible wave breaking, the
waves start to diffract around the archipelago before reaching the fish
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b

Fig. 32. Comparison of 𝐻𝑠 at the wave gauges between the experimental measurements and numerical simulations for (a) wave propagation in Mehamn harbour without
reakwaters, (b) with both breakwaters BW1 and BW2.
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Fig. 33. Significant wave heights at all wave gauges inside the Mehamn harbour in
simulations with different breakwater configurations.

farm site, where much smaller waves are seen in comparison to the
input waves.

Close-up views near the fish farm show a more clear pattern of
strong wave diffraction around Flatøya, as seen in Fig. 39. Waves
diffract at both ends of the island and most regions behind the island
are not sheltered from incoming waves but filled with the diffracted
waves. The two diffracted waves from both ends of the island meet near
the fish farm location. Both models show a qualitative confirmation of
this wave diffraction pattern.

The spatial distribution of the 𝐻𝑠 are compared at the fish farm site
as seen in Fig. 40.

The spatial variation of the two models shows a similar pattern and
confirms that the strongest wave diffraction comes from the lower end
of the island. However, the comparison also show that significantly
larger waves are calculated in REEF3D::FNPF in comparison to SWAN.
Therefore, a quantitative comparison of the significant wave heights at
all 50 wave gauges between the two models is shown in Fig. 41.

It is seen that larger waves are calculated at all wave gauges
from the phase-resolved model in comparison to the spectrum wave
model. The differences of the simulated wave heights are summarised
in Table 1 for the 10 yellow wave gauges. The differences of 𝐻𝑠 in
percentage at all wave gauges are plotted in Fig. 42. The relative
differences are calculated as the absolute differences divided by the
corresponding values from REEF3D::FNPF. The wave heights from
SWAN are underestimated by 20% to 50%.

As a spectral wave model that solves energy action balance equa-
tions, SWAN does not give details on wave kinematics and dynamics
and cannot resolve wave diffraction (Booij et al., 1999; Ris et al., 1999).
Instead, the phase-decoupled approach by Holthuijsen et al. (2003)
is used to show the wave energy spatial distribution and changes in
wave direction qualitatively. However, this approach does not prop-
erly handle diffraction in front of reflective obstacles such as in har-
22

bours (Thomas and Dwarakish, 2015; SWAN, 2016). w
Table 1
Differences in calculated 𝐻𝑠 in the SWAN and REEF3D::FNPF simulation at the last 10
wave gauges shown as yellow circles in Fig. 35.

Wave gauges 𝐻𝑠 in SWAN (m) 𝐻𝑠 in REEF3D::FNPF (m) Difference

Gauge 41 0.1810 0.2472 26.8%
Gauge 42 0.2002 0.2902 31.0%
Gauge 43 0.2315 0.3061 24.4%
Gauge 44 0.2210 0.3561 38.0%
Gauge 45 0.2163 0.3924 44.9%
Gauge 46 0.2112 0.2820 25.1%
Gauge 47 0.1912 0.2933 34.8%
Gauge 48 0.2574 0.3370 23.6%
Gauge 49 0.2413 0.3682 34.5%
Gauge 50 0.1867 0.3697 49.5%

There exists unfortunately no in-situ measurement at Flatøya for
comparison. The challenge in representing strong diffraction when us-
ing a phase-averaged model (Thomas and Dwarakish, 2015) is possibly
the main reason behind the differences in the results. Though it is
difficult to confirm the reasoning due to the lack of measurements,
a cross-check of numerical models is recommended for coastal wave
simulations with strong diffractions.

5. Conclusions

In the presented manuscript, the fully non-linear potential flow
model REEF3D::FNPF is introduced as a model dedicated to coastal
wave modelling in challenging hydrographic environments. The model
applies high-order discretisation schemes for the free-surface boundary
condition, a second-order scheme for the Laplace solver and uses
MPI for multi-core parallel computation. These implementations ensure
highly accurate and computationally efficient numerical modelling of
wave propagation. Flexible wave generation methods are implemented
for versatile applications from experimental scale to full-scale sim-
ulations. A relaxation wave generation method is used for general
wave generations, a double-hinge flap wavemaker is used to reproduce
experimental-scale time series in Section 3.3 and a Neumann boundary
is used to reproduce the experimental configurations in the NWT in
Section 3.4. The 𝜎-coordinate arrangement allows the vertical grid
o follow the topographic variations and steep slopes at the seabed,
nhancing the flexibility of wave modelling over varying bathymetry
rom deep water to shallow water. The breaking wave algorithm detects
reaking waves and dissipates wave energy at various water depths
sing the chosen parameters according to best practices as documented
n the literature. The coastline algorithms eliminate the swash zone
nstability due to infinitesimal water depth while minimising the in-
luence of the flow field. The numerical model reproduces the wave
ropagation well in all tested validation cases. In Section 3.1, the
odel shows an accurate representation of the steep 5𝑡ℎ-order Stokes

ave surface elevation and flow information. The simulations of wave
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Fig. 34. Flayøya and the fish farm. (a) Topography around the fish farm (red box). The simulation area is shown as the black box. The input wave comes from the north-west
boundary corresponding to 300 m water depth.(b) The fish farm arrangement (Hagen, 2015). Every grid point is a floating buoy as well as a wave gauge in the numerical wave
simulation.
Fig. 35. Numerical wave tank in the simulations of REEF3D::FNPF and SWAN for wave propagation near Flatøya. The red boxes show the wave generation zone, while the yellow
boxes are the numerical damping zones. The red and yellow circles are the locations of the wave gauges. The wave gauge numbers start from the north-most row from west to
east. All wave gauges are used to compare significant wave height distribution at the fish farm area. The yellow circles are also used for the grid convergence of SWAN simulations
and the analysis of the differences between SWAN and REEF3D::FNPF.
Fig. 36. Grid convergence study for the input wave into Flatøya in 2D.
23
propagation over a submerged bar and the bi-chromatic wave propa-
gation over a steep ramp (slope larger than 45◦) show good agreement
between the numerical results and the experimental measurements,
including the de-shoaling process and the amplitudes of the emerging
bounded wave components. The wave breaking algorithm represents
correct wave energy dissipation for a plunging wave breaker as shown
in Section 3.4. The simulation of wave shoaling over a semi-circular
reef shows an accurate representation of different wave harmonics in a
nonlinear 3D scenario.

The novel coastline algorithm introduces a combination of three
steps to ensure that the complicated coastlines and the associated wave
transformation phenomena are well represented while maintaining a
simple and straightforward structured grid in the horizontal plane.
The relaxation zones along the coastlines make the coastal reflection
property customisable. In addition, the possible numerical instability in
the free surface boundary condition at the very shallow water region
is avoided. As a result, the model is able to include complicated topog-
raphy with high flexibility without compromises on numerical stability
and computational efficiency. The sensitivity of the coastal zone size is
demonstrated and it is found that two cells are sufficient to eliminate
numerical instability in the swash zone while maintaining the charac-
teristics of the coastline geometry and thus minimising the influence
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Fig. 37. Grid convergence study for the input wave into Flatøya with SWAN at the south most 10 wave gauges. 𝑁𝑝 is the wave gauge number.
Fig. 38. Wave field from the simulations of wave propagation from offshore to the fish farm site near Flatøya. (a) distribution of 𝐻𝑠 in the SWAN simulation, (b) surface elevation
at 𝑡 = 12 800 s in the REEF3D::FNPF simulation. The simulation results are magnified by a factor of 10 in the vertical direction for visualisation purpose. The red dots are the
locations of the wave gauges in both figures.
on the flow field. The simulations of the wave propagation at Mehamn
harbour are compared with experiments and confirm the large-scale
performance of the model and its multi-core computational efficiency.
24
The simulation of the wave propagation near Flatøya shows the model’s
capability to handle both complex coastline and bathymetry at the same
time. The phase-resolved nature of the model contributes to a possibly
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Fig. 39. Wave field in the vicinity of the fish farm near Flatøya. (a) distribution of 𝐻𝑠 in the SWAN simulation, (b) surface elevation at 𝑡 = 12 800 s in the REEF3D::FNPF
simulation. The simulation results are magnified by a factor of 10 in the vertical direction for visualisation purpose.
Fig. 40. 𝐻𝑠 distribution at all 50 wave gauges covering the fish farm site. (a) SWAN, (b) REEF3D::FNPF.
more accurate representation of the wave condition in comparison to
a spectral wave model when strong diffraction is present. Though the
details within the swash zone are not resolved, the wave energy is
dissipated near the coastlines. This approach shows satisfactory results
in representing wave propagation and transformations in the presented
coastal scenarios. Though the algorithm does not resolve the physics
of the dynamics near the coastlines, it is a useful technique to ensure
the correct representation of the complex coastline geometries and to
ensure stable simulations over large spatial and temporal scales in a po-
tential flow theory-based NWT. The energy-based coastline algorithm
might not be sufficient for specific studies on coastal dynamics, con-
tinuous future development of the coastline algorithm is suggested for
25
improved and more detailed representation of the near-shore processes
with further validations.

In conclusion, the proposed fully nonlinear potential flow model and
the coastline algorithm provide a working framework for coastal wave
modelling in complex coastal environments, considering accuracy, flex-
ibility and efficiency. The numerical model demonstrates its readiness
for both experimental validation and large-scale engineering scenarios.
In the future, the authors intend to keep updating this working frame-
work with the newest developments regarding breaking algorithms,
shoreline treatments and other numerical schemes to further increase
its robustness and versatility.
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Fig. 41. Comparison of 𝐻𝑠 at all wave gauges between SWANN and REEF3D::FNPF in the simulations of wave propagation in Flatøya.
Fig. 42. Differences of 𝐻𝑠 in percentage at all wave gauges between SWAN and
REEF3D::FNPF simulations at Flatøya.
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Appendix

The gradient terms of the free-surface boundary conditions are
discretised with the 5𝑡ℎ-order Hamilton–Jacobi version of the weighted
essentially non-oscillatory (WENO) scheme (Jiang and Shu, 1996). The
26
WENO stencil consists of three local essentially non-oscillatory (ENO)-
stencils based on the smoothness indicators IS (Jiang and Shu, 1996).
A large IS means a non-smooth solution in a local stencil. The scheme
is designed such that the local stencil with the highest smoothness
(smallest IS) is assigned the largest weight 𝜔𝑖 and therefore contributes
the most significantly. In this way, the scheme is able to handle large
gradients up to shock with good accuracy. The WENO approximation
for 𝛷 is a convex combination of the three possible ENO approxima-
tions. For example, in the 𝑥-direction, the discretisation is formulated
as the following:

𝛷±
𝑥 = 𝜔±

1𝛷
1±
𝑥 + 𝜔±

2𝛷
2±
𝑥 + 𝜔±

3𝛷
3±
𝑥 . (32)

The three stencils are defined as:

𝛷±
𝑥 = 1

3
𝑞±1 − 7

6
𝑞±2 + 11

6
𝑞±3 ,

𝛷±
𝑥 = −1

6
𝑞±2 + 5

6
𝑞±3 + 1

3
𝑞±4 ,

𝛷±
𝑥 = 1

3
𝑞±3 + 5

6
𝑞±4 − 1

6
𝑞±5 .

(33)

with

𝑞−1 =
𝛷𝑖−2 −𝛷𝑖−3

𝛥𝑥
, 𝑞−2 =

𝛷𝑖−1 −𝛷𝑖−2
𝛥𝑥

, 𝑞−3 =
𝛷𝑖 −𝛷𝑖−1

𝛥𝑥
,

𝑞−4 =
𝛷𝑖+1 −𝛷𝑖

𝛥𝑥
, 𝑞−5 =

𝛷𝑖+2 −𝛷𝑖+1
𝛥𝑥

(34)

and

𝑞+1 =
𝛷𝑖+3 −𝛷𝑖+2

𝛥𝑥
, 𝑞+2 =

𝛷𝑖+2 −𝛷𝑖+1
𝛥𝑥

, 𝑞+3 =
𝛷𝑖+1 −𝛷𝑖

𝛥𝑥
,

𝑞+4 =
𝛷𝑖 −𝛷𝑖−1

𝛥𝑥
, 𝑞+5 =

𝛷𝑖−1 −𝛷𝑖−2
𝛥𝑥

(35)

The weights are written as

𝜔±
1 =

𝛼±1
𝛼±1 + 𝛼±2 + 𝛼±3

, 𝜔±
2 =

𝛼±2
𝛼±1 + 𝛼±2 + 𝛼±3

, 𝜔±
3 =

𝛼±3
𝛼±1 + 𝛼±2 + 𝛼±3

(36)

and
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10

1
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2
)2

, 𝛼±3 = 3
10

1
(
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3
)2
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with the regularisation parameter 𝑒 = 10−6 and the following smooth-
ness indicators:

𝐼𝑆±
1 = 13

12
(

𝑞1 − 2𝑞2 + 𝑞3
)2 + 1

4
(

𝑞1 − 4𝑞2 + 3𝑞3
)2 ,

𝐼𝑆±
2 = 13

12
(
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)2 + 1

4
(

𝑞2 − 𝑞4
)2 ,

𝐼𝑆± = 13 (

𝑞 − 2𝑞 + 𝑞
)2 + 1 (

3𝑞 − 4𝑞 + 𝑞
)2 ,
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