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Abstract: The Human Activity Recognition (HAR) system allows various accessible entries for the
early diagnosis of Diabetes as one of the nescient applications domains for the HAR. Long Short-Term
Memory (LSTM) was applied and recognized 13 activities that resemble diabetes symptoms. After-
ward, risk factor assessment for an experimental subject identified similar activity pattern attributes
between diabetic patients and the experimental subject. Because of this, a trained LSTM model
was deployed to monitor the average time length for every activity performed by the experimental
subject for 30 consecutive days. Concurrently, the symptomatic diabetes activity patterns of diabetic
patients were explored. The cosine similarity of activity patterns of the experimental subject and
diabetic patients measured 57.39%, putting the experimental subject into moderate risk factor class.
The experimental subject was clinically tested for risk factors using the diabetic clinical diagnosis
process, known as the A1C. The A1C level was 6.1%, recognizing the experimental subject as a patient
suffering from Diabetes. Thus, the proposed novel approach remarkably classifies the risk factor
level based on activity patterns.

Keywords: diabetes; early staging; human activity recognition; long short-term memory; smart-
phone sensors

1. Introduction

The primary source of human nutrition is blood glucose. Insulin, a pancreatic hor-
mone, allows glucose to reach human cells for energy intake. Sometimes, the human body
does not make enough insulin; however, the body may not use insulin well. That being the
case, glucose remains unused in the blood and does not enter the cells. With time, this can
cause health issues due to too much glucose in the blood. Diabetes is a disorder that arises
when blood glucose, commonly known as blood sugar, becomes too much.

Globally, Diabetes is a growing health concern, as the number of people suffering from
Diabetes is increasing day by day. People who have Diabetes are more likely to be exposed
to other medical issues. Unless Diabetes is not diagnosed and managed adequately to
stabilize blood sugar levels, the risk of cardiovascular disease, including certain coronary
artery diseases, heart attack, cortex, and blockage of the coronary arteries, may increase
considerably. A significant peril of Diabetes is that it can trigger nerve damage, which
is also known as neuropathy. Erectile dysfunction can also be ascribed to neuropathy.
By procrastinating the diagnosis process, Diabetes can cause kidney damage, resulting
in kidney failure and the need for renal transplants. Diabetes induces eye damage, also
referred to as retinopathy, if the eye becomes too deteriorated before diabetes diagnosis.
Over and above, Diabetes causes gastritis, which induces nausea, sprays, and stomach pain,
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causing the delay or avoidance of food movement in the intestines. Therefore, it is vitally
important to recognize the early signs of Diabetes because it can become a chronic disease
that threatens life. The above facts make it clear that Diabetes has a more significant impact
if it is diagnosed late, and it should be controlled in the early stages to reduce its severity.

Except for specific symptoms, many diabetes symptoms can be so subtle that some
people do not perceive them unless they acquire long-term disease casualties. Symptoms of
type 2 diabetes are generally faster and often more catastrophic over several weeks or even
months. The International Diabetes Federation revealed a worrying figure. They claimed
that most adults in the UK could not name any of any symptoms indicating the early onset
of Diabetes. They also affirmed that only 1 in 100 could spot any diabetes symptom and
that only one in five could spot any of the significant diabetes symptoms. In the UK, 81%
of adults were unable to identify weight loss, and 70% were unable to identify the slow
healing of cuts and bruises as symptoms of Diabetes, which are regarded as major diabetes
symptoms. In the blurred version, excessive thirst, and frequently using the bathroom, the
recognition proportions were 67%, 31%, and 38%, respectively. Subsequently, 46% of people
affected with Diabetes are undiagnosed in the UK. In the USA, there are 29.1 million people
who have Diabetes, and one out of four of them do not know that they have Diabetes.
Additionally, 86 million people, which is more than 32% of adults, have prediabetes.

Moreover, 91% of pre-diabetic patients overlook any symptoms of Diabetes. Diabetes
is Australia’s seventh most frequent cause of illness and death. A total of 1.8 million
Australians have Diabetes, including 1.3 million people who have been diagnosed, and an
estimated 500,000 are undiagnosed.

The incidence of Diabetes disorder is becoming more common nowadays, but there is
no cure available. One practical approach would be to have an early and accurate diagnosis
of the disorder. Opportunistic pharmacological intervention is one diagnosing criterion
that can be used before symptoms are identified. An oral glucose or fasting plasma glucose
tolerance test is cumbersome and unpropitious. The A1C test, commonly referred to as the
hemoglobin A1C or HbA1c test, is a standard test that examines the normal blood sugar
levels used to diagnose prediabetes and Diabetes. It is costly and has notable problems in
terms of standardization and performance. These tests are intense and involve training
and experienced medical practitioners and laboratories to analyze samples, which are
often challenging issues. Although several endeavours created paper and pencil screening
tests for Diabetes that have been introduced, they remain ineffective, and their throughput
varies widely from community to community [1]. Therefore, a consistent and reliable Point
of Care (POC) capillary blood glucose test is recommended by the WHO to assess the
risk factors in patients with irregular POC capillary blood glucose readings and monitor
diabetes patients. This test has substantial benefits but also needs to be measured in terms
of cost-effectiveness [2].

Diabetes is a major growing concern worldwide, as the number of people suffering
from Diabetes is increasing day after day. New research on the projection of the overall
expenditure for diagnosing Diabetes was released by the American Diabetes Association
in 2018. The report provides a comprehensive breakdown of the costs along with the class,
ethnicity, cultural lines, and state-by-state cost distribution. The overall projected expense
of Diabetes was USD 327 billion in 2017, which was 26% more from previous figures of
USD 245 billion in 2012. Undiagnosed Diabetes is often oriented towards potential adverse
health conditions, diabetes complications, and associated cardiovascular diseases [3]. There
may be additional financial implications for treating Diabetes and the chronic diseases
associated with Diabetes. Diabetes puts considerable inflationary pressure on capital
accumulation resources in the United States due to its growing incidence and elevated
cost of treatment [4]. Roughly 20% of health care expenditure in the United States goes
to Diabetes medication. An annual medical expenditure per capita is twice as much for
a diabetes-free person [4]. Regardless of the age or type of Diabetes, the treatment often
requires a transition period, increasing costs by a considerable margin. The Australian
economy loses USD 14 trillion in diabetes-related expenditure annually. Therefore, should
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there be a contrivance to the early diagnosis of Diabetes to reduce the costs associated with
the early diagnosis of Diabetes in a successful and resilient?

Based on early research, it is evident that Diabetes is negatively correlated with
physical activities. Physical activities are identical to the daily tasks or actions that carry out
other purposes. A phenomenological or meaningful pattern of body motions is comprised
of human activities. Different human activities impair the life of a human being in various
ways. Some activities are associated with cardiovascular endurance. Jogging, walking,
cycling, walking upstairs, and walking downstairs are the commonly mentioned names
of such activities. Conversely, drinking, eating, and using the toilet are associated with
preserving the log concerning excretion. Furthermore, activities such as falling down make
it easier to identify weaknesses. In addition, the discerning of an indication that these
activities linked with type 2 diabetes, or NIDDM, is enhanced through activities including
lying down, standing up, itching the genitals, and sitting. From previous studies, it can be
seen that human activities certainly influence the development of NIDDM.

Where possible, public health service allocations should be focused on accurate assess-
ments of an individual’s health condition, the incidence of disease, injury, and disability,
their prevention, and the related costs. For instance, if the everyday life reflects a low
level of exercise performance, a person will become obese in the future. Physical activity
involves all movement to improve energy usage, while physical exercise is scheduled and
organized [5]. Physical activities significantly stimulate the regulation of the blood glucose
in Diabetes mellitus, enhance cardiovascular health conditions, increase the tendency of
losing more weight, and enhance the possibly the achieving best-being. Experts advocate
physical exercise to patients with Non-Insulin-Dependent Diabetes Mellitus (NIDDM)
because it promotes insulin susceptibility [6]. Additionally, recommendations for physical
activity and aerobic exercise should indeed be tailored to the individual’s particular prefer-
ences. Without weight decrease or little exercise, 15–30% of people living with prediabetes
will be diagnosed with type 2 diabetes within five years. The risk of dying of Diabetes
for adolescents is 50 times greater than it is for diabetes-free adolescents, and the cost to
individuals with Diabetes is half as high as it is for individuals without Diabetes with
an early diagnosis. More physical activity can create a safeguard against the growth of
NIDDM by contributing to the maintenance of a fat balance.

As disclosed here, human activity comprises considerable sequences produced by
the body parts. If a similar dataset can be developed, the detection of particular human
activities is possible. The Human Activity Recognition (HAR) is a system that describes
these techniques to classify activities from data produced by sensors according to the body’s
movements. This seems to be directly applicable to video, image, or sensor data related to
physical executability. Smartphone usage is skyrocketing in today’s world. Smartphones
also come with a range of sensors, for instance, a barometer, magnetometer, GPS sensor,
and many more. Smartphone sensors can considerably impact the values of sensor data
based on the smartphone’s position and environment. The physical gestures of a human
being assess these variations and address distinct sensor values even though they have
a considerably distinct kinesthetic sensibility. Plenty of applications in divergent areas
have already been conducted with HAR, but there are still a few areas where HAR may
be appointed. Research works on intelligent households, protection of the elderly, falling
prevention, and so forth are conducted using HAR. Nevertheless, they have still been
incapable of operating HAR for the biomarker analysis of any disease.

One of the unattended applications of HAR is the diagnoses of diseases, such as
Diabetes, mental disorders, cancer, insomnia, cardiovascular diseases, among others that
are directly correlated with the pattern of daily activities [7,8]. The most notable gap in
the research is a non-appearance of HAR used to diagnose any disease. Staging Diabetes
by correlating the activity patterns of a diabetes-affected patient is a brand-new approach
to HAR use. Thereby, our findings differed from those studies that have been previously
conducted. This provisional scrutiny is one of such aspects of this study, including novel
findings. With thorough knowledge of other studies regarding the associations of human



Electronics 2021, 10, 2194 4 of 20

activity with Diabetes and the advancement of HAR in recent years, we had an elementary
foundation to forge ahead and accomplish the research goal. We sought to initiate an
unprecedented mechanism to assist HAR based on smartphone sensors. HAR was unfolded
in real-time to monitor activity patterns and carbohydrate intake with meals. Based on
activity durations, if activities were mostly related to diabetic patients, we dispatched early
diagnosis, notifying the subject before Diabetes could cause deterioration in the subject.

This study applies a sensor-based smartphone HAR application. Activities that
facilitate identifying symptoms associated with type 2 diabetes or Non-Insulin Dependent
Diabetes Mellitus were recognized as necessary information. After that, the sensor data
were fused with the Long Short-Term Memory-related activities that were identified.
Irrelevant activities, which are performed along with symptomatic diabetes activities, were
also recognised to ensure the system’s robustness. We achieved 98.48% validation accuracy.
Next, the risk factor for effective diabetes classification was measured using similar qualities
characterizing the similarity of the activity patterns among diabetic patients and the
experimental subject. An Android application was produced to gather sensor data from the
experimental subject. We gathered data concerning the experimental subject’s day-to-day
activities for 30 consecutive days. The experimental subject’s sensor data were processed
in the pre-trained LSTM model. Daily activity patterns were recognised by prediction. In
this way, we figured the mean time spent executing every activity from our experimental
subject’s predicted activity log.

We also surveyed the diabetes symptomatic activity patterns of diabetic patients.
After assembling required data from the diabetic patients, Cosine similarity was used to
estimate the similarity of activity patterns of the experimental subject and diabetic patients.
The similarity value was hypothesized as the risk factor for the experimental subjects. To
determine the similarity, we considered the activity patterns and six progressively physical
properties, i.e., height, weight, blood pressure, evidence of diabetic patients in first degree
relatives, age, and gender. The Cosine similarity measure of 57.39% put the experimental
subject into the moderate risk factor class. Concomitantly, the experimental subject was
clinically tested to confirm the risk factor diagnosis using the diabetic clinical diagnosis
process, called the A1C. The level of the A1C assay was 6.1%, which recognized the
experimental subject as a patient suffering from Diabetes, which confirms the conclusion
determined by our suppositional scrutinization.

2. Related Work

Investigators have used HAR recognition since the 1980s because of its field of im-
plementation and its links with other areas such as safety and medicine, the relationship
between people and computers, etc. As HAR is excellent for field research, researchers
have chosen a range of approaches to conduct HAR. To briefly go over the history of the
HAR system, we studied tri-axial gyroscope, triaxial accelerometer, relative humidity, and
temperature sensor data to recognize activities, namely sitting, walking, jogging, lying
down, walking upstairs and downstairs, cycling, standing, and squatting over the toilet to
cover the background of HAR systems [9–14].

Ambient sensors were used to capture images or video by some researchers to execute
HAR [15–19]. Some of these researchers used wearable sensors [20–23]. Smartphone
sensors are also popular among researchers to implement HAR [24–27]. There are instances
of researchers who worked on some particular sensors to execute a specific function, such
as working as an accelerometer, gyroscope, magnetometer sensor, etc. [28,29]. When
conducting the recognition process with different sensor positioning on different body
positions, outcomes had several variations. Alsheikh, Selim [30] employed accelerometer
and barometer sensors to perform the recognition process of seven activities states such
as staying still, walking, running, going up to an elevator, going down an elevator, going
upstairs, and going downstairs with the employment of six learning models and acquired
accuracy up to 90.7%. Ignatov [29] employed a tri-axial accelerometer to recognize eight
activities: falling, running, jumping, walking, walking quickly, step walking, walking



Electronics 2021, 10, 2194 5 of 20

upstairs, and walking downstairs using a Convolutional Neural Network (CNN) classifier
incorporating 31,688 instances. Moreover, Alsheikh and Selim [30] trained a Deep Belief
Network (DBN) and other standard classifiers on three non-identical datasets to exhibit a
clear comparison. The accuracy of the deep model was 98.23%, 91.5%, and 89.38% in the
WISDM, Daphnet, and Skoda datasets, respectively. On the M-health and Skoda datasets,
Ha and Choi [28] had to use a multimodal CNN with two-dimensional kernels, achieving
the accuracy of 98.26% and 97.92%, respectively. Similarly, Jiang and Yin [22] enhanced the
implication of CNN on three public datasets for executing the HAR process. They acquired
accuracies of 95.18%, 97.01%, and 99.93%. Ronao and Cho [24] also performed the activity
recognition process on the data of 30 subjects, considering 21 of them for training and the
rest for the testing phase using a CNN classifier. They performed the recognition process
with the help of three classifiers, a custom decision tree, automatically generated decision
tree, and an Artificial Neural Network (ANN), and had an overall accuracy of 82% for
the custom decision tree classifier, 86% for the automatically generated decision tree, and
82% for the ANN. As mentioned earlier, images and videos were employed to perform
the human activity recognition process. Moreover, Bodor and Jackson [15] developed an
intelligent video system to detect pedestrian inroads and abnormal or suspicious pedestrian
behaviours using vision algorithms. Furthermore, Weinland and Ronfard [17] detected
poses and activities from a single image and image sequence and introduced a histogram
of an oriented gradient-based pedestrian descriptor to achieve better outcomes.

In conducting our study on HAR, we have used Long Short-Term Memory (LSTM),
which in and of itself is a developed specialization of a traditional Recurrent Neural Net-
work over a very common deep level classifier. LSTM has been used in this research since
highly publicized HAR application performance has shown comparable results with LSTM
classification. There are several real-life mobile sensing applications. Such frameworks
employ smartphone-built mobile sensors to perceive behavioural patterns so that human
activity is easier to understand. Chen and Zhong [31] proposed a feature extraction ap-
proach based on LSTM to recognize human activities with tri-axial accelerometer data.
Experimental findings on the LSTM public datasets (WISDM) show that LSTM is realistic
and reliable, achieving 92.1% accuracy for the test dataset. In light of two standard datasets,
Opportunity and Skoda, Ordóñez, and Roggen [32] implemented the LSTM and CNN
network fusion to perform the dominant grading function. With regard to the Opportunity
dataset, the former results of the other studies were overtaken by a 4% margin for day-to-
day activities, and the margin of improvements of Skoda, a car manufacturing company
dataset, was around 6%. Bidirectional LSTM has also confirmed a dominant output by
feeding accelerometer and gyroscope sensor data to six human activities in [33], which
achieved an accuracy of 92.67%. Moreover, Zhao, and Yang [34] found that better results
were acquired while HAR was being introduced using the Public Dominant Datasets and
Incentive Datasets to implement Residual Bidir-LSTM. The performance of the public
domain dataset was improved by 4.8% compared to earlier results and was improved by
3.7% in terms of Opportunity F1.

Researchers argued that increased general exercise could prevent Diabetes and that
greater exercise, including swimming, tennis, and racing, could still be more supportive
than being less energetic [6]. The researchers conducted a cross-sectional and environ-
mentally sound survey of 87,253 American females aged 34–59 [35]. After a follow-up
of 8 years, they assumed that the risk factor of NIDDM for the most active woman was
two-thirds of what it would be compared to the least active woman. Tuomilehto and
Schwarz [36] examined 522 middle-aged, overweight individuals with reduced sugar
sensitivity. They indicated that the non-pharmacological action of high-risk individuals
with asthma discourages or postpones the occurrence of type 2 diabetes. The researchers
indicated that physical engagement increases awareness and that regular strength work-
outs lead to weight reduction and improve alcohol tolerance [37]. These results show that
the most engaged person showed a risk of NIDDM that was two-thirds less than the risk of
the least actively engaged person. They also noted that obesity is one of the central insulin
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insensitive sites and that most obese people have improved opposition to insulin and/or
some level of intolerance to glucose. Furthermore, around 80% of all patients with NIDDM
are obese. Another study found that higher physical activity levels are associated with a
lower prevalence of type 2 diabetes in cross-sectional and ecological studies [38].

A comparative study has shown that women who are constantly active in activities
such as walking, jogging, running, biking, callisthenics, aerobiological dancing, rowers,
lap swimming, squash, and tennis, are at the lowest risk of Diabetes in comparison to
women who consistently participate in sedentary activities (RR = 0.59; 95% confidence
interval) [39]. The research proposed that a considerably greater likelihood of obesity was
linked to the time spent watching T.V. In recent studies on Australian aborigines and a
survey of Zuni Indians, researchers stated that increased physical activity levels might
benefit motivated volunteers with NIDDM [40]. The American Diabetes Association has
argued that long-term periodic physical programs are viable for individuals with reduced
glucose and type 2 diabetes with appropriate compliance levels or with the avoidance of
glycemia [41]. Furthermore, periodic physical activity has continuously been demonstrated
to decrease triglyceride-rich VLDL values; this indicates a lower degree of hyperglycemia.
In contrast, Impaired Glucose Tolerance (IGT) was a mid-stage NIDDM connected to an
elevated danger of creating NIDDM. Therefore, diet and exercise procedures substantially
reduced diabetes incidence in people with IGT who were over six years of age. Moreover,
Tuomilehto and Schwarz [36] studied 523 subjects (172 men and 350 women) who were
members of high-risk groups, such as first-grade relatives of patients with type 2 diabetes,
overweight, 40–65 years of age, and had impaired glucose tolerance and proposed exercises
such as walking, jogging, swimming, and aerobics (140–200 mg per deciliter). They found
that both men and women at a higher risk of type 2 diabetes could prevent the diagnosis
of type 2 diabetes with modifications to their lifestyles. Additionally, in these cases, the
overall incidence of Diabetes declined by 58%.

This study demonstrated the use of HAR in pointing out the relative prevalence of
NIDDM. This provisional system may exclude the complexities and clinical diagnosis costs
of Diabetes and might determine a prognosis of the risk factor for Diabetes staging before
it becomes severe. Alongside this, previous researchers operated with a frequency of 50 Hz
for the data collection process [42,43]. A data amassing process with higher frequency is
profoundly energy-consuming. High-frequency data processing can help achieve more
accuracy with the cost of power consumption. Lower frequency data processing can be
energy efficient, but the accuracy slope will have a negative gradient. This provisional
system differed from those of studies. We attempted to keep the accuracy level of the HAR
process steady using a low frequency of 1 Hz for less energy consumption. Data amassment
regarding symptomatic diabetes activities for different versatile conditions accelerated the
activity recognition process. Concurrently, this system introduced a novel modus operandi
to the early staging of Diabetes based on the patterns of daily performed activities.

3. Materials and Methods

With knowledge of earlier studies on the associations between human activities and
NIDDM, we had our elementary foundation to forge ahead to accomplish a real-time
diagnosing system to forewarn people before the deteriorated effects of Diabetes occurred.
We also emphasized creating possible improvements in HAR performance to corroborate
a robust system. Furthermore, the applications of this scrutinization have also been
encompassed in later sections to show new doors leading to the advancement of modern
science. The process that determines the risk factor in HAR-assisted diabetes type 2 as well
as NIDDM is composed of three sub-processes. The entire approach is formulated as it
appears in Figure 1.
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3.1. Human Activity Recognition

In the first sub-step, human activities are recognized with the effective implementation
of the LSTM model. To conduct this task, this section narrates the processes for identifying
the symptomatic activities of Diabetes.

3.1.1. Symptomatic Activities

We sought to identify activities similar to the symptoms of Diabetes because of a
widely disparate aspect of Diabetes. Daily exercise could even reduce the risk of developing
the development of insulin resistance. Types of Diabetes, the intensity of exercise, and the
complicating factors associated with Diabetes differ in the complexities associated with
blood glucose control [44]. Walking, walking upstairs, walking downstairs, jogging, and
cycling were classified as activities linked with cardiovascular movement in this regard [45].
In contrast, we recognized drinking, eating, and toilet activities to record the urination
log [46]. Moreover, acquisition activities, such as falling, make it easier to identify physical
weakness [47]. The aptitude to recognize activities such as lying down, sitting, itching the
genitals, and standing strengthens the capability to detect complaints correlated with type
2 diabetes [48].
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3.1.2. Sensors’ Data Collection

On a 1 Hz frequency, we configured an application that gathers data from gyroscope,
accelerometer, relative humidity, and temperature sensors. The linear acceleration of
movement was measured through the accelerometer, whereas the gyroscope measured the
angular rotational velocity. Smartphones perceive humidity and temperature within their
surroundings using relative humidity and temperature sensors and interpret the records
into electric signals. Accelerometer and gyroscope sensors measure the rate of change;
they only measure the rate of change for different activities performed by the smartphone
user. Moreover, symptomatic activities of Diabetes are also able to be differentiated based
on the environment. Sitting on a chair in a room and sitting on a higher commode in
a washroom shows different temperature and humidity levels than a living room and a
washroom, respectively. On this account, we leveraged the accelerometer and gyroscope
sensors together with the relative humidity and temperature sensors.

The smartphone might be removed from the user’s pocket; possible causes include
placing the device on any chair, bed, or any other location or when the smartphone needs
to be charged. Moreover, the user may use the device for browsing, typing, or talking.
In typing, browsing, or talking via phone, the user may remain in the seated, standing,
or lying positions. Therefore, we have included these activities in a separate category
called irrelevant activities. Thus, we have included irrelevant activities to be recognized
together with diabetic symptomatic activities. Another significant issue we needed to
determine is whether an individual can place the smartphone in his/her pocket in any
position, such as in the flipped position or if the smartphone is upside down or downside
up. Because of this, we have amassed data by keeping the phone in four conceivable
positions in the pocket. To ensure that the system is more robust, we collected data from
indoors and from outdoor circumstances. For instance, the stipulated data subjects walked
through a mall, on a free road, on a busy road, in a room, and so forth, and the data sensors
collected walking data for all of these situations. We considered a mode for sitting in a
squatting position and a normal sitting mode for using the toilet, with the sensors collecting
data on the lower commode and the higher commode, respectively. We commenced the
data collection process with the help of 10 volunteers who agreed to assist this study.
Nominated volunteers were subjected to the data accumulation process and amassed data
for 14 previously mentioned diabetic symptomatic activities. They were all young, healthy,
and had no underlying health issues. The trial dataset had 7000 occurrences for each
diabetic symptomatic activity, different from the irrelevant activities. There were 10,000
occurrences of irrelevant activities in the trial dataset. Altogether, the dataset holds 101,000
occurrences of 14 unique activities.

3.1.3. Data Pre-Processing

Data collection processes are reliable in the real world, and problems such as contra-
dicting information, poor or upsetting data, out-of-go values, and null values can affect
the information collection process. The term pre-processing refers to the transformation
of information into a defensible arrangement to salvage such noisy data. Since we used
an Android application, there was the potential for programming issues or execution
over-burden, which may create flawed data.

All the more, null values may happen because of different problems, such as applica-
tion blunders, flawed sensors, uproarious conditions or development, and so forth. To our
benefit, the collected data demonstrated no null values; subsequently, pre-processing for
dealing with missing values was not required. Another type of uproarious data, called out-
liers, alludes to such data values in a dataset that causes an unusual conveyance in a data
arrangement. They dwell at an irregular separation from the general dissemination. Conse-
quently, any value showing a z-score more prominent than a determined upper threshold
value or a value that is not a lower threshold value were considered outliers. After finding
all of the outliers for every specified feature, we replaced the outliers with the mean of
that feature. Applying Min-Max standardization to a dataset with the characteristics of
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various scales brought under an unconcerned scale may encourage the learning process to
master utilizing that dataset. Since the dataset additionally incorporates diverse properties
with various units, for example, meter per square second for the tri-axial accelerometer,
radian per second for the tri-axial gyroscope, the percentage for relative humidity, and
Fahrenheit for temperature, we practised Min-Max standardization to scale them between
an aloof scope of 0 and 1. Sensor signals lose their smoothness due to the gravitational field,
and thus fluctuation occurs. The Butterworth low pass filter can be defined as a type of
signal processing filter that is designed to convert a generated frequency into a smooth one.
Fourier transforms break down any signal and can be exhibited as a sinusoidal signal, and
a Fourier transform was employed in this process. After the employment of the filtration
process, we achieved a valuable outcome, which can be depicted by the following figure,
Figure 2, for the X-axis of the accelerometer sensor.

Figure 2. Generating smooth signal from accelerometer sensor data (upper) using a Butterworth low
pass filter (lower).

Low-dimensional subspace tradeoff lowers time complexity to speed up the clas-
sification process. We had to recognize activities from bulk smartphone sensor data.
Consequently, we investigated the roughly equivalent value to select which vectors could
be removed without losing an excess of data. The eigenvalues of the eight principal compo-
nents (PCs) are depicted in Figure 3. In the wake of arranging the Eigen pairs, the following
inquiry is “What number of essential segments are we going to decide upon for our new
component subspace?” A helpful measure is the supposed “clarified fluctuation”, which
can be determined from the eigenvalues [49]. The clarified change reveals how much
data fluctuation can be accredited to every one of the chief segments. Though there were
only eight features, the data size was too big. Therefore, we needed to make a reasonable
tradeoff to speed up the classification approach. The PCs with a covariance that is greater
than 0.1, an eigenvalue is greater than 1.0, and the covariance among the eigenvalues being
greater than 0.1 have been selected for this study.

Figure 3. Covariance value of principal components.
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3.1.4. LSTM Model Assessment

Human consciousness or intelligence, despite their endurance, do not begin to think
without assistance. In the same way as human reasoning, it is possible to develop a sub-
stantial pattern over fired data during back-propagating in a decision-making system. Data
must, however, be generated progressively. Recurrent Networks outperform other neural
systems in sequential machine learning by using conditional reflexive learning approaches.
Compared with conventional recurring networks, LSTM conducts a superior event to ease
the evaporation of the recurring network’s inclination when learning sequence. The basic
notion underlying the LSTM model is that memory cells are retained or remembered long-
distance constraints of prior inputs into the hidden state of the Recurrent Network, which
stores previous groups that do not fade away. Human actions have developed consecutive
subservient behaviours over time, and similarly, human activities recycle examples for
specific activities. LSTM, therefore, examines and forms its input groups, a collection of
sensor data for the activity recognition within the window. The backpropagation of LSTM
is taught to perceive and forecast errors in time over the input.

An LSTM cell is formed through an architectural point of view by a considerable
memory cell block, as demonstrated in Figure 4. Hidden state and cell state are two states
that stream data and make minor alterations by multiplying and adding it individually.
The vital mechanics, known as gates, are used to recall sequences and controls in memory
blocks. A gate called the forget gate is used to improve the execution of the LSTM network
by removing less important data or data that are never required again for the LSTM using
channel multiplication. To determine which data to dispose of and which order needs to
be maintained, a logistic function contains the input in that particular phase (xt) and the
hidden state of the previous cell (ht−1). After the forgetting state, the cell state concludes in
this manner:

Ct = ft∗ Ct−1 (1)

Figure 4. The architecture of Long Short-Term Memory.

Here, forget state and the past cell state are represented by ft and Ct−1, respectively.
The state of forgetting is defined as follows:

ft =
1(

1 + e−(W f ∗[ht−1,xt ]+b f )
) (2)

The weight matrix is Wf, and the bias vector is bf. The cell state is multiplied by the
sigmoid function’s output vector. An input gate then adds to the cell state. The additional
sigmoid function is a filter that manages which values are added to the cell state and makes
a vector with a tangent function that includes any feasible value. Afterward, the cell state
is complemented with the candidate values for the tangent function and the output of the
sigmoid layer. Accordingly, only sequences that are essential and not excessive are then
appended to the cell state. Consequently, after the input state, the cell state becomes:

Ct = ft∗ Ct−1 + it∗ C′t (3)
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Where its input state holds the sigmoid layer, and C′t holds candidate values. The two
functions are listed below:

it =
1(

1 + e−(Wi∗[ht−1,xt ]+bi)
) (4)

C′t =

(
1− e−2(Wc∗[ht−1,xt ]+bc)

)
(
1 + e−2(Wc∗[ht−1,xt ]+bc)

) (5)

Bi and bc are bias vectors in those cases, and Wi and Wc are the weight matrices of the
input cell and the moderate cell state, respectively. A second filter is used to select which
components of the cell state are to be produced. Following the setting of the cell state by
hyperbolic tangent, the sigmoid function and vector are generated. The sigmoid function
and the vector are used to scale data in the −1 to +1 range. Subsequently, the vector result
of the regulatory filter and the tangent function is directed to the hidden state as output.
This product generates only the most important sequences. As a direct consequence, the
cell state is generated by output:

Ct = ot∗ ht (6)

Here, ht is the vector of hyperbolic tangent values, and ot is the regulatory filter. Two
functions are written below:

ot =
1(

1 + e−(Wc∗[ht−1,xt ]+bo)
) (7)

ht =
ot ∗

(
1− e−2(Ct)

)
(
1 + e−2(Ct)

) (8)

Where Wo and bo are the target gate’s weight matrix and bias vector, respectively.
Gers and Schmidhuber [50] counseled a small adjustment in the peephole connection
of the fundamental LSTM model. The increased peephole linked its interior cells to
its multiplicative gates, familiarizing itself with the fine refinement between the spike
sequences. The forget, input, and output gates were therefore allocated as:

ft =
1(

1 + e−(W f ∗[ht−1,xt ]+b f )
) (9)

ft =
1(

1 + e−(W f ∗[ht−1,xt ]+b f )
) (10)

ot =
1(

1 + e−(Wc∗[ht−1,xt ]+bo)
) (11)

Lu and Salem [51] combined the forget and input gates in a segregated study. In
this paradigm, choosing what to forget and which new data should be incorporated is
preferable. In the forget gate, this blended model tends to forget input sequences and
injects additional values into the state while forgetting more established patterns. As a
consequence, the cell state is obtained by this model:

Ct = ft∗ Ct−1 + it∗ C′t (12)

3.1.5. Fusing LSTM and Evolution

The dataset was divided into two parts. The first segment can be fed into the model
network to form a sequence that accounts for 70% of the dataset, and the trained model
will be endorsed at a later stage and comprises 30% of the dataset.

The construction of an integrated vector is depicted in Figure 5 by rearranging the
dataset as a sliding window. A 3D vector is required to measure the group and time stages,
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and the stacked layer sizes of the window are also called input shapes. 1000 values are
installed as a batch. The batch size refers to how many different examples the network feeds
at once. The frequency within each example in the time vibrating pattern is described in
time steps. The input data are then sent to several mounted LSTM layers folded throughout
all of the time steps, with the layer size equal to the LSTM model’s hidden layer dimension.
The 3D vector is also present in the cell’s output, as it was in the input shape. The LSTM
output cell incorporates an additional final output that performs a Softmax activation
function to arrange multiclass characteristics.

Figure 5. Proposed LSTM Network.

With a standard deviation of 0.23% between 20-fold of the test dataset, the proposed
LSTM model achieves 98.4818% classification accuracy. The model’s function was assessed
using datasets from the public domain to make a comparative analysis. The model’s
overall accuracy in the MHEALTH dataset was 78.09%, the WISDM dataset was 95.85%,
the UCI-HAR dataset was 95.78%, the Skoda dataset was 95.81%, and the OPPORTUNITY
dataset was 92.63%. Because the capabilities of the datasets can not only adaptively extract
activity features but also has fewer parameters, the findings indicate that the proposed
dataset has higher robustness and a better activity detection capability than the contenders.
Contrarily, Chen and Zhong [31] and Hernández and Suárez [33] proposed a feature
extraction approach based on LSTM and Bidirectional LSTM models, respectively. In
the relevant literature, Ha and Choi [28] presented CNN-pf and CNN-pff models on the
Skoda and M-health datasets and had a 98.26% and 97.92% accuracy rate, respectively.
However, this proposed LSTM outperformed models from previous works and dominated
in terms of accuracy. Cheng and Huang [52] proposed an activity recognition system
using commodity WiFi devices. They presented a machine learning Gaussian Mixture
Hidden Markov Model (GMM-HMM) and achieved an average accuracy greater than 97%
on self-collected datasets. In another study, [53] evaluated among K-Nearest Neighbors
(KNN), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and Random
Forest (RF) modeling. However, they showed the combined acceleration, and jerk features
yielded above 87% for all classifiers describing the changes in body acceleration correctly
and mutually exclusive from the sensor orientation. To make a fair comparison, we
incorporated the performance of classical machine learning algorithms, which include
Support Vector Machines (SVMs) and K-Nearest Neighbor (KNN). Using SVMs and KNN,
we achieved 97.53% and 97.04% accuracy, respectively. This scenario shows that the
LSTM model provides greater activity detection capability and robustness than some
baseline machine learning algorithms. As a necessary consequence of reduced model
parameters, factually pre-processing techniques, and robust regularization, the training
matrices show smooth and independent fluctuations. Along with this state-of-the-art HAR,
we can presume that the proposed LSTM had a high achievement rate in recognizing
the symptomatic activities of Diabetes. To support the hypothesis, Figure 6 resembles a
confusion matrix and reveals that walking, lying down, going upstairs, and cycling is all
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making significant prediction blunders on the propositional dataset. Both the true and
predicted label quantities are multiples of thirty in this case.

Figure 6. Confusion matrix of the LSTM model.

3.2. Tracking Activities of Experimental Subject

Tracking activity patterns will open another way to progress human activity recog-
nition. With the fruitful achievement of human activity recognition for thirteen of the
referenced activities, we moved towards deploying the trained LSTM model to track the
activity pattern of an experimental subject in this section.

3.2.1. Data Collection from Experimental Subject

Targets who had been assessed for their diabetes risk factor were symbolized based
on the obtained data. We developed another Android application to collect data from
a target data subject. The reason for developing a new application was to actualize the
label-less data collection from an individual for thirty consecutive days. The new Android
application had two core pages. On the main page, there were six fields where the subject
could input their specific height, weight, blood pressure, evidence of diabetic patients
in first-degree relatives, age, and gender. Here, we collected the height and weight to
measure the Body Mass Unit known as BMI. We also required the sensor data from the
participants’ smartphones. Thus, after filling in the basic information fields, in the second
stage, pressing the start button would quickly begin amassing data from sensors and would
persistently send them to the server. Moreover, associating the Android application to the
server benefitted us by allowing data to be captured daily. Moreover, if there were any
need to halt the amassing procedure under any circumstances, pressing the stop button
would prove helpful. It was evident that when collecting data from smartphone sensors
in a continuous manner for 30 days, ambiguity would emerge, such as maintaining the
smartphone continually attached to the body, always keeping the data collection application
on in the background, among other concerns. We made every effort to ensure that the data
collection process went as smoothly as possible.
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The target subject data arrived at a frequency of 1 Hz during the 30-day course.
Although 30 days is roughly equivalent to 2,592,000 s, according to our calculations, there
should be 2,592,000 instances, but in reality, we could not obtain the appropriate volume
of data from the experimental subject. We amassed smartphone sensor data for 951,728 s
concerning activities that persisted for 30 days for the experimental subject. This means that
the individual collected data for 8.81 h a day on average. The reason why the amount of
data has decreased is the fact that the application was unexpectedly shut down, smartphone
operations accidentally stopped, etc. Despite these hurdles, the amounts of data collected
from each subject satisfactorily represented their activity patterns.

3.2.2. Fusing Pre-Trained LSTM Model on Experimental Subject’s Dataset

Data were gathered from the experimental subject; we again pre-processed that data
utilizing the referenced pre-processing approach and used that approach for the prepared
data to predict the activities performed over the most recent thirty days. We delivered the
data into our prepared classifier, the LSTM model, and recognized the activities employing
prediction for the experimental subject. In the wake of classifying all of the attributes of the
cases for each subject, we then gauged how much time an individual spent executing every
activity. To do this, above all else, we determined the number of occurrences demonstrating
a particular activity in Figure 7.

Figure 7. Activities performed by the target subject over thirty persistent days.

Since the data were gathered at the 1 Hz frequency, the total number of occurrences
for every activity characterizes the number of seconds the subject executed the activity
over the most recent 30 days. In this way, by ascertaining the number of times that every
particular activity had been performed, we discovered the time spent executing every
activity over the most recent thirty days. Yet, we needed the time in minutes, which is
why we began calculating time in minutes instead of seconds. Furthermore, we needed an
average time interval to prosecute every particular activity in a day. In this manner, we
partitioned the total minutes for every activity over thirty days to discover the normal time
for each activity in a day. We calculated the normal amount of time that a subject spent
executing each activity every day following the above procedure.

3.3. Similarity Measurement

The valedictory phase assessed the risk factor of Diabetes with a method of similar
interventions. To produce the final result, this section merged two divergent processes
to fabricate the outcome. The data collection process from diabetic patients will be first
explained and then accompanied by a risk factor computation and interpretation.

The main motive behind data collection for diabetes symptoms is to discover the time
spent on the selected 13 activities. We attempted to determine how much time a patient
spends performing walking, sitting, standing, eating, drinking, sleeping, jogging, cycling,
walking upstairs, walking downstairs, falling, and genital itching activities. The motive
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behind recording the duration was to correlate a subject’s everyday activities with the
duration that each activity was performed for. We collected data from the Chattogram
Diabetic General Hospital patients who were either waiting to give blood for a test or
to receive their test reports. Our research group visited the hospital for two months and
talked to the patients individually to collect the data. We collected data from 97 patients
at most, all of whom were suffering from Diabetes. The questionnaire that we used was
an inquiry concerning secondary information, for example, the patients’ gender, weight,
height, do/did their parents have Diabetes and the mode of their blood pressure. The
questionnaire also contained inquiries about their activities, for instance, how much time
they spent walking, jogging, eating, drinking; the amount of time the patients rest, keep
standing, cycle, or lay down; how frequently the patient goes upstairs, downstairs, for
urination; is there any incident where they have fallen on account of physical illness?;
do they have any itching sensations?; and so on. Most people who have Diabetes, it is
not due to a straight genetic group of factors or physical lifestyle or diet; rather, it is a
combination of both [54,55]. Type 2 diabetes is related to cardiovascular health issues,
including hypertension and excessive triglyceride levels in the body or a history of cardiac
or stroke [56]. Type 2 diabetes mellitus and health issues and physical lifestyle overlap in
the population; hence, we considered secondary information mentioned with their physical
activities as primary information.

Similarity measure alludes to a function that evaluates the closeness between two
objects or samples. It characterizes the separation between the comparing features or the
dimensions of two items. Another factor we should be worried about when processing
similarity measures is estimating the distinctive dimensions that must be normalized, and
the general influence of a sole dimension may turn into a critical issue. Cosine similarity
estimates the Cosine of the angle between two multidimensional vectors of inner item space.
Euclidian distance estimates the ruler distance between two multidimensional objects
where the Cosine similarity considers the angle between those two objects considering
their characteristics as parts of the vector. Depending on the values of the θ, the similarity
measurement is defined. When cos θ = 1, the two vectors are similar when cos θ = 0,
which indicates that the two vectors or objects have no similarity. Let θ be the slanted angle
of these two vectors. At that point, the Cosine similarity between these two items can be
expressed by

cos θ =
A.B
‖A‖‖B‖ =

∑
p
i=1 AiBi

2
√

∑
p
i=1 Ai

2 2
√

∑
p
i=1 Bi

2
(13)

where Ai and Bi are segments of vectors A and B, and ‖A‖ and ‖B‖ are the Euclidian norms
of vectors A and B.

4. Assessment of Risk Factor

We utilized Cosine similarity to estimate the similarity between the experimental
subject’s data and data from the diabetic patients. We pre-processed the estimation of these
measurements utilizing Min-Max normalization to take out the control of a single dimen-
sion. In the wake of normalizing the data, each line was changed into its relating vector
representation when leading the similarity estimation process. T is a vector representing a
case experimental subjects’ dataset, and P is a vector representing an example of a dataset
of diabetic patients. Every vector has seventeen vector parts, specifically, age, gender,
percentage of Diabetes in first degree relatives, blood pressure, Body Mass Index, walking,
sitting, standing, jogging, cycling, fallen, urination, lying, itching, drinking, eating, and
using stairs; looking at the seventeen dimensions, the Cosine similarity between these two
vectors can be expressed as,

cos θ =
T.P
‖T‖‖P‖ =

∑17
i=1 TiPi

2
√

∑17
i=1 Ti

2 2
√

∑17
i=1 Pi

2
(14)
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If the similarity value is more than 75%, we obtain a comparability estimation that
there should be an occurrence of the subject having been drastically affected by Diabetes.
Alternatively, an estimation of 35% is produced in the event of the ordinary one. As such,
we decided that a similarity higher than 75% would be viewed as a high-risk factor level,
and the percentage under 35% would be viewed as a low-risk factor level. Additionally,
any incentive between 35% and 75% would be viewed as a moderate risk factor dimension.

When we contrasted the data of the diabetes=-affected people with the 97 cases of data
gathered from diabetic patients, we discovered a moderate similarity estimation. Figure
8. includes a line graph so that the correlation values between the experimental subject
and diabetic patients are better demonstrated. For the experimental subject, we achieve
an average similarity estimation of 57.3916%, which legitimizes that the activities of that
individual match the diabetes symptom patterns. Thus, the average similarity measure of
57.3916% puts the patient into the moderate risk factor class. The only target subject we
previously referenced was that the target patient was moderately affected by Diabetes.

Figure 8. Correlation values between the experimental subject and the diabetic patients.

Notwithstanding, it is not possible to consider any single hypo-glycemia test related to
the risk of microvascular or macrovascular complications. An acute glucose consumption
metric is likely to be more informative than a previous glucose measurement concerning
Diabetes. The A1C provides a dependable glycemic measurement and successfully corre-
lates with the risk of complications of long-term Diabetes. The A1C assay offers several
technical advantages compared to the currently used glucose lab measurements, including
pre-analytic and analytics. The investigation of [57] postulated that the focal points of A1C
in contrast with Fasting Plasma Glucose (FPG) or Plasma Glucose Concentration 2 hours
after oral glucose challenge (2HPG) to determine a diabetes diagnosis. The International
Expert Committee for the Diagnosis of Diabetes recommends that the A1C assay is an
exact proportion of the incessant glycemic levels and corresponds well with the danger
of diabetes complexities. Some past research propounded that individuals with an A1C
level higher than 6% but less than 6.5% are likely to be the most at risk for Diabetes, but
this should not be regarded as an outright limit for initiating deterrence measures [58–60].

During the experiment, we wanted to determine the risk factor level for the experi-
mental subject. Thus, the experimental subject was tested using the A1C assay, and the
level of A1C was 6.1%, indicating that the experimental subject is suffering from Diabetes,
which corroborated the results determined through our procedure. Along these lines, we
can presume that our procedure had a high achievement rate in discovering the diabetes
risk factor from activity patterns. As far as the similarity measure is concerned, we have
seen that our procedure of determining risk factors shows higher performance. It justifies
that our process correctly classified the experimental subject as moderately affected by
Diabetes and determined the diabetes risk level that the subject is suffering from.

5. Conclusions and Future Scopes

People who have diabetes are more likely to suffer severe health complications. Dia-
betes is a leading cause of cardiovascular disease, blindness, kidney failure, and lower limb
amputation for almost all high-income countries. Furthermore, people with diabetes are at
increased risk for infectious diseases. According to the Centers for Disease and Prevention
(CDC), people with diabetes are at a higher risk of contracting a serious disease, for in-
stance, pneumonia, for people with Diabetes who develop COVID-19. The immune system
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is not functioning well in people who suffer from Diabetes, making battling infection
more difficult in their bodies. In the context of high blood glucose, the novel coronavirus
can, however, continue to survive. In combination with chronic inflammatory disorders,
elevated blood sugar levels make rehabilitation from diseases such as COVID-19 much
slower among individuals with Diabetes. Diabetes patients also present a 7% risk of death
from COVID-19. Consequently, diabetic patients need to be constantly monitored.

We endeavoured to determine such a procedure to assist in the early diagnosis of
Diabetes in this study and applied extensive research to draw conceivable and fruitful
results. The active sense can be effective in suppressing Diabetes by increasing the NIDDM
risk factor at an early stage. The proposed system leverages the performance of Human
Activity Recognition and determines a brand-new modus operandi for the early staging of
Diabetes based on daily activity patterns. Lower power consumption by employing sensor
data at the 1 Hz frequency in the data collection process, and data amassment regarding
activities for different versatile conditions, applying various felicitous pre-processing of
the training data along with an effective deep learning classifier were implemented in
this work, corroborating a robust system to forewarn the patient before the deteriorative
effects of Diabetes. In the future, we anticipate a few modifications to our approach such
that our system is implemented in day-to-day practice. The proposed approach will be a
successful start to work reporting on how human activity could also be used to recognize
their probability of disease discrepancies.

We collected data whenever the smartphone was in the participant’s pant pocket.
However, smartphones cannot always be kept in a pant pocket. Sometimes, it is kept in a
shirt pocket or hand when performing the activities we considered. However, the LSTM
classification model was not trained. Furthermore, no female subjects were included in
the HAR data collection process, which is a significant flaw in our research. We, therefore,
need to train our classifier to manage these specific types of information to create a more
stable system. When resting, an individual may not always have their smartphone with
them. However, we have ignored this condition. As such, a method should be determined
to identify when the participant is sleeping and is without their smartphone. This system
requires that people maintain a connection to the internet for information from their smart-
phone to be retrieved and transferred to a server. We also concentrated on smartphones,
but our research would be stronger if we also concentrated on handheld devices, such
as smartwatches.

Author Contributions: E.H.B. and A.B. conceived and designed the experiments, performed the
experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,
prepared figures, and/or tables. M.Z.U. conceived and designed the experiments, reviewed drafts of
the paper. A.K.M.M. conceived and designed the experiments, performed the experiments, analyzed
the data, contributed reagents/materials/analysis tools, prepared figures and/or tables, reviewed
drafts of the paper. He led the project. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was partially supported by the Center for Research & Publication, International
Islamic University Chittagong, Bangladesh (Project No- IRG 180102). The funders had no role in
study design, data collection, analysis, decision to publish, or manuscript preparation.

Data Availability Statement: Data is describing within the article. The data that support the findings
of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Narayan, K.V. How generally applicable is a simple diabetes detection questionnaire? Nat. Clin. Pract. Endocrinol. Metab. 2006, 2,

196–197. [CrossRef] [PubMed]
2. WHO. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of A WHO/IDF Consultation; WHO:

Geneva, Switzerland, 2006.

http://doi.org/10.1038/ncpendmet0141
http://www.ncbi.nlm.nih.gov/pubmed/16932283


Electronics 2021, 10, 2194 18 of 20

3. Li, R.; Zhang, P.; Barker, L.E.; Chowdhury, F.M.; Zhang, X. Cost-effectiveness of interventions to prevent and control diabetes
mellitus: A systematic review. Diabetes Care 2010, 33, 1872–1894. [CrossRef] [PubMed]

4. Association, A.D. Economic costs of Diabetes in the US in 2012. Diabetes Care 2013, 36, 1033–1046. [CrossRef] [PubMed]
5. Chen, L.; Pei, J.H.; Kuang, J.; Chen, H.M.; Chen, Z.; Li, Z.W.; Yang, H.Z. Effect of lifestyle intervention in patients with type 2

diabetes: A meta-analysis. Metabolism 2015, 64, 338–347. [CrossRef] [PubMed]
6. Helmrich, S.P.; Ragland, D.R.; Leung, R.W.; Paffenbarger, R.S., Jr. Physical activity and reduced occurrence of non-insulin-

dependent diabetes mellitus. N. Engl. J. Med. 1991, 325, 147–152. [CrossRef]
7. Duong, T.V.; Bui, H.H.; Phung, D.Q.; Venkatesh, S. Activity Recognition and Abnormality Detection with the Switching Hidden

Semi-Markov Model. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), San Diego, CA, USA, 20–25 June 2005.

8. Bachlin, M.; Plotnik, M.; Roggen, D.; Maidan, I.; Hausdorff, J.M.; Giladi, N.; Troster, G. Wearable assistant for Parkinson’s disease
patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 436–446. [CrossRef]

9. Barna, A.; Masum, A.K.M.; Hossain, M.E.; Bahadur, E.H.; Alam, M.S. A Study on Human Activity Recognition Using Gyroscope,
Accelerometer, Temperature and Humidity Data. In Proceedings of the 2019 International Conference on Electrical, Computer
and Communication Engineering (ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019.

10. Bahadur, E.H.; Masum, A.K.M.; Barua, A.; Alam, M.G.R.; Chowdhury, M.A.U.Z.; Alam, M.R. LSTM Based Approach for Diabetic
Symptomatic Activity Recognition Using Smartphone Sensors. In Proceedings of the 2019 22nd International Conference on
Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18–20 December 2019.

11. Masum, A.K.M.; Bahadur, E.H.; Ruhi, F.A. Scrutiny of Mental Depression through Smartphone Sensors Using Machine Learning
Approaches. Int. J. Innov. Comput. 2020, 10. [CrossRef]

12. Masum, A.K.M.; Bahadur, E.H.; Shan-A-Alahi, A.; Chowdhury, M.A.U.Z.; Uddin, M.R.; Al Noman, A. Human Activity
Recognition Using Accelerometer, Gyroscope and Magnetometer Sensors: Deep Neural Network Approaches. In Proceedings of
the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India,
6–8 July 2019.

13. Masum, A.K.M.; Barua, A.; Bahadur, E.H.; Alam, M.R.; Chowdhury, M.A.U.Z.; Alam, M.S. Human Activity Recognition Using
Multiple Smartphone Sensors. In Proceedings of the 2018 International Conference on Innovations in Science, Engineering and
Technology (ICISET), Chittagong, Bangladesh, 27–28 October 2018.

14. Masum, A.K.M.; Jannat, S.; Bahadur, E.H.; Alam, M.G.R.; Khan, S.I.; Alam, M.R. Human Activity Recognition Using Smartphone
Sensors: A Dense Neural Network Approach. In Proceedings of the 2019 1st International Conference on Advances in Science,
Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019.

15. Bodor, R.; Jackson, B.; Papanikolopoulos, N. Vision-BASED human Tracking and Activity Recognition. In Proceedings of the 11th
Mediterranean Conf. on Control and Automation, Rhodes, Greece, 18–20 June 2003.

16. Ni, B.; Wang, G.; Moulin, P. Rgbd-Hudaact: A Color-Depth Video Database for Human Daily Activity Recognition. In Proceedings
of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November
2011.

17. Weinland, D.; Ronfard, R.; Boyer, E. A survey of vision-based methods for action representation, segmentation and recognition.
Comput. Vis. Image Underst. 2011, 115, 224–241. [CrossRef]

18. Xia, L.; Aggarwal, J. Spatio-temporal Depth Cuboid Similarity Feature for Activity Recognition Using Depth Camera. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013.

19. Aggarwal, J.K.; Xia, L. Human activity recognition from 3d data: A review. Pattern Recognit. Lett. 2014, 48, 70–80. [CrossRef]
20. Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2014, 15, 1321–1330. [CrossRef]
21. Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical human activity recognition using

wearable sensors. Sensors 2015, 15, 31314–31338. [CrossRef]
22. Jiang, W.; Yin, Z. Human Activity Recognition Using Wearable Sensors by Deep Convolutional Neural Networks. In Proceedings

of the Proceedings of the 23rd ACM International Conference on Multimedia, New York, NY, USA, 26–30 October 2015.
23. Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, convolutional, and recurrent models for human activity recognition using wearables.

arXiv 2016, arXiv:1604.08880.
24. Ronao, A.C.; Cho, S.-B. Deep convolutional neural networks for human activity recognition with smartphone sensors. In

International Conference on Neural Information Processing; Springer: Cham, Switzerland, 2015.
25. Reyes-Ortiz, J.-L.; Oneto, L.; Sama, A.; Parra, X.; Anguita, D. Transition-aware human activity recognition using smartphones.

Neurocomputing 2016, 171, 754–767. [CrossRef]
26. Ronao, A.C.; Cho, S.-B. Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst.

Appl. 2016, 59, 235–244. [CrossRef]
27. Hassan, M.M.; Uddin, M.Z.; Mohamed, A.; Almogren, A. A robust human activity recognition system using smartphone sensors

and deep learning. Future Gener. Comput. Syst. 2018, 81, 307–313. [CrossRef]
28. Ha, S.; Choi, S. Convolutional Neural Networks for Human Activity Recognition Using Multiple Accelerometer and Gyroscope

Sensors. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29
July 2016.

http://doi.org/10.2337/dc10-0843
http://www.ncbi.nlm.nih.gov/pubmed/20668156
http://doi.org/10.2337/dc12-2625
http://www.ncbi.nlm.nih.gov/pubmed/23468086
http://doi.org/10.1016/j.metabol.2014.10.018
http://www.ncbi.nlm.nih.gov/pubmed/25467842
http://doi.org/10.1056/NEJM199107183250302
http://doi.org/10.1109/TITB.2009.2036165
http://doi.org/10.11113/ijic.v10n1.259
http://doi.org/10.1016/j.cviu.2010.10.002
http://doi.org/10.1016/j.patrec.2014.04.011
http://doi.org/10.1109/JSEN.2014.2370945
http://doi.org/10.3390/s151229858
http://doi.org/10.1016/j.neucom.2015.07.085
http://doi.org/10.1016/j.eswa.2016.04.032
http://doi.org/10.1016/j.future.2017.11.029


Electronics 2021, 10, 2194 19 of 20

29. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl. Soft
Comput. 2018, 62, 915–922. [CrossRef]

30. Alsheikh, M.A.; Selim, A.; Niyato, D.; Doyle, L.; Lin, S.; Tan, H.P. Deep Activity Recognition Models with Triaxial Accelerometers.
In Proceedings of the Workshops at the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February
2016.

31. Chen, Y.; Zhong, K.; Zhang, J.; Sun, Q.; Zhao, X. Lstm Networks for Mobile Human Activity Recognition. In Proceedings of the
2016 International Conference on Artificial Intelligence: Technologies and Applications, Bangkok, Thailand, 24–25 January 2016.

32. Ordóñez, J.F.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition.
Sensors 2016, 16, 115. [CrossRef] [PubMed]

33. Hernández, F.; Suárez, L.F.; Villamizar, J.; Altuve, M. Human Activity Recognition on Smartphones Using a Bidirectional LSTM
Network. In Proceedings of the 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), Bucaramanga,
Colombia, 24–26 April 2019.

34. Zhao, Y.; Yang, R.; Chevalier, G.; Xu, X.; Zhang, Z. Deep residual bidir-LSTM for human activity recognition using wearable
sensors. Math. Probl. Eng. 2018, 2018. [CrossRef]

35. Manson, J.E.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C.; Rosner, B.; Hennekens, C.H.; Speizer, F.E.; Rimm, E.B.; Krolewski, A.S.
Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet 1991, 338, 774–778. [CrossRef]

36. Tuomilehto, J.; Schwarz, P.; Lindström, J. Long-term benefits from lifestyle interventions for type 2 diabetes prevention: Time to
expand the efforts. Diabetes Care 2011, 34 (Suppl. 2), S210–S214. [CrossRef]

37. Helmrich, S.P.; Ragland, D.R.; Paffenbarger, J.R. Prevention of non-insulin-dependent diabetes mellitus with physical activity.
Med. Sci. Sports Exerc. 1994, 26, 824–830. [CrossRef]

38. Hu, F.B.; Sigal, R.J.; Rich-Edwards, J.W.; Colditz, G.A.; Solomon, C.G.; Willett, W.C.; Speizer, F.E.; Manson, J.E. Walking compared
with vigorous physical activity and risk of type 2 diabetes in women: A prospective study. JAMA 1999, 282, 1433–1439. [CrossRef]

39. Hu, F.B.; Leitzmann, M.F.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C.; Rimm, E.B. Physical activity and television watching in
relation to risk for type 2 diabetes mellitus in men. Arch. Intern. Med. 2001, 161, 1542–1548. [CrossRef] [PubMed]

40. Kriska, M.A.; Bennett, P.H. An epidemiological perspective of the relationship between physical activity and NIDDM: From
activity assessment to intervention. Diabetes Metab. Rev. 1992, 8, 355–372. [CrossRef] [PubMed]

41. Zinman, B.; Ruderman, N.; Campaigne, B.N.; Devlin, J.T.; Schneider, S.H. Physical activity/exercise and Diabetes mellitus.
Diabetes Care 2003, 26, S73. [PubMed]

42. Lee, J.; Kim, J. Energy-efficient real-time human activity recognition on smart mobile devices. Mob. Inf. Syst. 2016, 2016.
[CrossRef]

43. Li, C.; Niu, D.; Jiang, B.; Zuo, X.; Yang, J. Meta-HAR: Federated Representation Learning for Human Activity Recognition. In
Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 12–23 April 2021.

44. Association, A.D. 3. Foundations of care and comprehensive medical evaluation. Diabetes Care 2016, 39 (Suppl. 1), S23–S35.
45. Coombes, B.; Tucker, K.; Hug, F.; Scott, A.; Geytenbeek, M.; Cox, E.R.; Gajanand, T.; Coombes, J.S. Relationships between

cardiovascular disease risk factors and Achilles tendon structural and mechanical properties in people with Type 2 Diabetes.
Muscles Ligaments Tendons J. 2019, 9. [CrossRef]

46. Hou, J.; Sun, H.; Xiao, L.; Zhou, Y.; Yin, W.; Xu, T.; Yuan, J. Combined effect of urinary monohydroxylated polycyclic aromatic
hydrocarbons and impaired lung function on Diabetes. Environ. Res. 2016, 148, 467–474. [CrossRef]

47. Sinclair, A.J.; Abdelhafiz, A.H.; Rodríguez-Mañas, L. Frailty and sarcopenia-newly emerging and high impact complications of
diabetes. J. Diabetes Complicat. 2017, 31, 1465–1473. [CrossRef]

48. Davies, T.T.; Graue, M.; Igland, J.; Tell, G.S.; Birkeland, K.I.; Peyrot, M.; Haltbakk, J. Diabetes prevalence among older people
receiving care at home: Associations with symptoms, health status and psychological well-being. Diabet. Med. 2019, 36, 96–104.
[CrossRef] [PubMed]

49. Valle, S.; Li, W.; Qin, S.J. Selection of the number of principal components: The variance of the reconstruction error criterion with
a comparison to other methods. Ind. Eng. Chem. Res. 1999, 38, 4389–4401. [CrossRef]

50. Gers, F.A.; Schmidhuber, J. Recurrent Nets That Time and Count. In Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium,
Como, Italy, 27 July 2000.

51. Lu, Y.; Salem, F.M. Simplified Gating in Long Short-Term Memory (Lstm) Recurrent Neural Networks. In Proceedings of the 2017
IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017.

52. Cheng, X.; Huang, B.; Zong, J. Device-free Human Activity Recognition Based on GMM-HMM using Channel State Information.
IEEE Access 2021, 9, 76592–76601. [CrossRef]

53. Nurwulan, R.N.; Selamaj, G. A Comparative Evaluation of Acceleration and Jerk in Human Activity Recognition Using Machine
Learning Techniques. In Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health
Informatics, Surabaya, Indonesia, 8–9 October 2020.

54. Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and gender differences in risk, pathophysiology and complications of type 2
diabetes mellitus. Endocr. Rev. 2016, 37, 278–316. [CrossRef] [PubMed]

55. Bener, A.; Yousafzai, M.T.; Al-Hamaq, A.O.; Mohammad, A.G.; DeFronzo, R.A. Parental transmission of type 2 diabetes mellitus
in a highly endogamous population. World J. Diabetes 2013, 4, 40. [CrossRef]

http://doi.org/10.1016/j.asoc.2017.09.027
http://doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://doi.org/10.1155/2018/7316954
http://doi.org/10.1016/0140-6736(91)90664-B
http://doi.org/10.2337/dc11-s222
http://doi.org/10.1249/00005768-199407000-00003
http://doi.org/10.1001/jama.282.15.1433
http://doi.org/10.1001/archinte.161.12.1542
http://www.ncbi.nlm.nih.gov/pubmed/11427103
http://doi.org/10.1002/dmr.5610080404
http://www.ncbi.nlm.nih.gov/pubmed/1307524
http://www.ncbi.nlm.nih.gov/pubmed/12502622
http://doi.org/10.1155/2016/2316757
http://doi.org/10.32098/mltj.03.2019.14
http://doi.org/10.1016/j.envres.2016.03.038
http://doi.org/10.1016/j.jdiacomp.2017.05.003
http://doi.org/10.1111/dme.13790
http://www.ncbi.nlm.nih.gov/pubmed/30062788
http://doi.org/10.1021/ie990110i
http://doi.org/10.1109/ACCESS.2021.3082627
http://doi.org/10.1210/er.2015-1137
http://www.ncbi.nlm.nih.gov/pubmed/27159875
http://doi.org/10.4239/wjd.v4.i2.40


Electronics 2021, 10, 2194 20 of 20

56. Pell, S.; D’Alonzo, C.A. Some aspects of hypertension in Diabetes mellitus. JAMA 1967, 202, 10–16. [CrossRef]
57. Committee, I.E. International Expert Committee report on the role of the A1C assay in the diagnosis of Diabetes. Diabetes Care

2009, 32, 1327–1334. [CrossRef]
58. WHO. Use of Glycated Haemoglobin (HbA1c) in Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation; WHO:

Geneva, Switzerland, 2011.
59. Zhou, X.H.; Ji, L.N.; Luo, Y.Y.; Zhang, X.Y.; Han, X.Y.; Qiao, Q. Performance of HbA1c for detecting newly diagnosed Diabetes

and prediabetes in Chinese communities living in Beijing. Diabet. Med. 2009, 26, 1262–1268. [CrossRef] [PubMed]
60. Cohen, R.M.; Haggerty, S.; Herman, W.H. HbA1c for the Diagnosis of Diabetes and Prediabetes: Is It Time for a Mid-Course Correction?

Oxford University Press: Oxford, UK, 2010.

http://doi.org/10.1001/jama.1967.03130140068008
http://doi.org/10.2337/dc09-9033
http://doi.org/10.1111/j.1464-5491.2009.02831.x
http://www.ncbi.nlm.nih.gov/pubmed/20002479

	Introduction 
	Related Work 
	Materials and Methods 
	Human Activity Recognition 
	Symptomatic Activities 
	Sensors’ Data Collection 
	Data Pre-Processing 
	LSTM Model Assessment 
	Fusing LSTM and Evolution 

	Tracking Activities of Experimental Subject 
	Data Collection from Experimental Subject 
	Fusing Pre-Trained LSTM Model on Experimental Subject’s Dataset 

	Similarity Measurement 

	Assessment of Risk Factor 
	Conclusions and Future Scopes 
	References

