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ABSTRACT
In the Norwegian oceanic fleet, whitefish onboard processing creates a great 
amount of rest raw materials. Cod heads are nutritious and a good source for 
production of high-quality marine peptides. Frozen cod heads, captured by 
trawl or longline, were evaluated based on the lightness and redness in the 
neck cut to compare the quality in heads from the different fishing gears. The 
heads were subjected to enzymatic hydrolysis. The hydrolysates have been 
chemically and sensory characterized. There was no significant difference in 
quality or chemical and sensory characteristics based on type of fishing gear. 
The resulting hydrolysates were of high quality, although moderately bitter. 
The study demonstrates that frozen cod heads from the oceanic fleet can be 
an excellent source of high-quality proteins for human consumption.
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Introduction

Atlantic cod (Gadus morhua) is one of the most important gadoid fish species in commercial fisheries in 
Norway (Rotabakk et al. 2011). Present consumer attention, increasing preference for natural products 
(Berton-Carabin and Schroën 2019; Ozturk and McClements 2016), and increased demand for proteins 
due to population growth make it more important to use fishery resources more sustainably. It is 
estimated that as much as 43% by weight of all whitefish is regarded as rest raw materials (Hjellnes 
et al. 2020; Slizyte et al. 2005; Tveit et al. 2020). The rest raw material, after production of fillets or headed/ 
gutted whitefish, from the oceanic fishing fleet have a high potential for increased value creation.

Cod heads represent about 20% of whole fish weight. They contain high levels of protein (14–15%), 
low lipid contents (4%), and about 6% ash (Remme et al. 2022; Tveit et al. 2020). Their chemical 
composition makes them a highly suitable raw material for the manufacture of high-quality protein 
products. Since the seafood industry is key to wealth creation and employment in Norwegian coastal 
areas (Johansen et al. 2019), there is heightened interest in new technologies for the utilization and 
value creation of cod heads. Enzymatic hydrolysis is one of a number of methods that could be used to 
transform cod heads into more profitable and marketable products, as hydrolysis is increasingly being 
used to recover valuable components from marine rest raw materials (Bougatef et al. 2012; Dale et al. 
2019; Dauksas et al. 2005; Eko Irianto and Nuri Fawzya 2018; Gildberg et al. 2002; Marti-Quijal et al. 
2020; Sae-Leaw et al. 2016; Slizyte et al. 2005; Šližytė et al. 2009; Ucak et al. 2021; Wald et al. 2016) The 
residual materials are rich in essential amino acids (Liaset and Espe 2008), and the inclusion of 
hydrolysates in food or feed will increase nutritional value. WHO recommends 0.83 g protein/kg body 
weight a day (WHO 2007). The trend for average dietary protein intake is increasing (Shan et al. 2019), 
due to a healthier diet and population growth and illustrates the need for new protein sources.
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The intrinsic quality of whitefish is affected by fish size, season of catch, sexual maturation, fishing 
ground (Bøknæs et al. 2001; MacCallum et al. 1968), and catching methods (Botta et al. 1987; 
Rotabakk et al. 2011). Fishing gear has multiple impacts on fish (Digre et al. 2017; Esaiassen et al. 
2004; Larsen and Rindahl 2008; Huse et al.), and the choice of fishing gear is determined by several 
complex parameters, e.g. historical aspects, fuel prices, politically decided fishing quotas, and prices of 
frozen vs. fresh raw material. In Norway, approximately 30% of the cod has been caught by bottom 
trawl and 15% by longline (www.fisheries.no). Longline fish is inflicted with gaffing damage (Larsen 
and Rindahl 2008; Rotabakk et al. 2011), as gaffing is a necessity for rescuing drop offs (Rotabakk et al. 
2011). During gaffing, it is crucial for the fishermen to hit the fish in the head to avoid damage in the 
more valuable filet. This, however, may lead to hemorrhages and reduced quality for the heads. Trawl 
caught fish is inflicted with bruises during hauling (Digre et al. 2017). Cod caught by trawl have 
significantly higher average of bruises and poorly bled fish compared to cod caught by longline 
(Rotabakk et al. 2011). Proper bleeding of white fleshed fish results in more attractive products. It is 
likely that the time from the fish being brought onboard until bleeding is on average longer on 
a trawler than a longliner, as longlining brings only one fish at a time on board, while trawling brings 
the whole catch at once (Rotabakk et al. 2011). Injuries are observed to increase with increasing catch 
size (Digre et al. 2010). Generally, on board fishing vessels, bleeding and gutting fish are difficult tasks 
with large hauls. It is not unusual for large hauls of fish taken by bottom trawl to be kept in storage bins 
for hours before bleeding and gutting. The last fish in the storage bin are often dead before bleeding, 
and this leads to muscle discoloration due to insufficient exsanguination and pressure on the fish 
(Olsen et al. 2013).

Fish protein hydrolysates may be utilized as protein enrichment in food products and as functional 
ingredients. A major challenge in the production of protein hydrolysates for human consumption is 
the formation of bitter and unpalatable flavor (Aspevik et al. 2016; Fu et al. 2018b; Idowu and Benjakul 
2019; Liu et al. 2016; Steinsholm et al. 2020). Bitter taste development is related to the formation of 
small hydrophobic peptides generated in the hydrolysis process (Asao et al. 1987; Aspevik et al. 2016; 
Fu et al. 2018b; Kim and Li-Chan 2006). Hydrolysates contain peptides, free amino acids, minerals, 
salt, vitamins, and other water-soluble molecules that contribute to the sensory profile (Liaset and Espe 
2008; Shumilina et al. 2015; Sundekilde et al. 2018). An objective evaluation of sensory properties is 
imperative for quality assessment of food-grade hydrolysates and is preferably performed by a trained 
taste panel (Kemp et al. 2018). Several scientific studies have addressed flavor development in protein 
hydrolysates based on marine and poultry substrates (Aspevik et al. 2016; Fu et al. 2018b; Šližytė et al. 
2017).

The aim of this study was to produce high-quality protein hydrolysates from frozen cod heads 
captured by trawl and longline and to study whether fishing gear affects quality and sensory char-
acteristics of the protein hydrolysates produced.

Materials and methods

Chemicals and enzymes

Papain (Performase ®GSM80) and Bromelain (2400 GDU/g) were procured from Enzybel 
International S.A. (Villers-le-Bouillet, Belgium). All enzymes comply with the recommended purity 
specifications for food-grade enzymes given by the joint FAO/WHO Expert Committee on Food 
Additives (JECFA) and the Food Chemicals Codex (FCC). Methanol, chloroform, hexane, formalde-
hyde used for chemical analysis were all obtained from Merck (Darmstad, Germany). Cytochrome C, 
aprotinin, insulin A, leucine enkephaline, Val-Tyr-Val, and Gly-Tyr (all from Sigma Chemical Co, 
St. Louis, MO, USA) were used as standards for molecular weight distribution. All chemicals were of 
reagent grade.
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Raw material

Atlantic cod (G. morhua) were caught by trawl or longline at similar time of year (January 2020) to 
ensure comparative raw materials and adequacy of the results. After catch, the fish were gutted and 
beheaded on board the fishing vessel. Heads were sorted from three trawl catches (T1, T2, T3) and two 
longline catches (L1, L2), shown in Table 1, directly frozen pre-rigor in blocks (20 kg) in plate freezers, 
transported to the lab, and stored (- 20°C) until thawing in May 2020.

Thawing

On the day of hydrolysis, the heads were thawed. Thawing of the frozen cod heads was done in 600 
liter bins with running tap water (5–8°C) for 3.5 hours. Temperature was measured in the water and in 
three cod heads pr. catch.

Color

After thawing, heads were evaluated according to the redness of the flesh along the neck cut. The heads 
were photographed using a 36.3-megapixel FX-format Nikon D800E, with a Nikon 35 mm f/1.8 G FX 
AF-S lens and a Nikon Speedlight SB900 full-spectrum flash. The lens and flash each had mounted linear 
polarizing filters, crossed at 90 degrees relative to each other. The purpose of the polarizing filters was to 
remove specular reflections and to provide more accurate color imaging of the skin. Images were 
acquired with full manual settings on the camera (1/250 sec exposure, ISO 100, F/5.6) and exported in 
NEF RAW format for post-processing. An X-rite ColourChecker was photographed by the same 
equipment/settings, and a custom color correction profile was created and applied to the RAW-photos 
during post-processing using Adobe Lightroom software. Images were then cropped, resampled, and 
exported in JPEG-format for final processing and analysis in LabVIEW software (NI, Austin, TX, USA).

For final image analysis, two LabVIEW programs were developed. The first program was a user 
interface where a rectangular area on the cut surface of the neck/heads is selected manually. The 
selection is done as equally as possible and with groups randomized. The selection is focused on 
keeping an area of the meat and avoiding bone and surface blood. The area selected is then exported as 
an RGB-thumbnail, as well as a copy of the original image with a green square illustrating the selected 
area. The second program performs a conversion of the thumbnails from RGB into CIE L*a*b* color 
values. For comparison reasons, both mean L*a*b*- and mean RGB-values from each thumbnail are 
extracted and exported to a spreadsheet file for multivariate statistical analysis. The mean L*a*b*- and 
RGB-values of each thumbnail were exported to a spreadsheet file for further statistical analysis.

Enzymatic hydrolysis

Before hydrolysis, the heads were cut into smaller pieces by hand and minced using a Hobart mincer 
(model AE200) with 10 mm diameter holes. The hydrolysis was performed in 4-liter closed glass 
reactors with an electrical impeller. Minced cod heads (2 kg) were mixed with 1 kg tap water. When 
the temperature of the mixture reached 50°C, the enzymatic hydrolysis was begun by adding 0.1% 

Table 1. An overview over the raw material used in this study.

Sample name Fishing gear Catch size (kg) Number of heads evaluated (20 kg)

T1 Trawl 17300 11
T2 Trawl 12600 12
T3 Trawl 15000 12
L1 Longline 17094 8
L2 Longline 17480 8
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papain and bromelain (by wet weight of raw material). After 60 min, enzymes were inactivated by 
rapid heating (2–5 min) to 90°C and held there for 10 min. Mixtures were cooled on ice to 
a temperature below 60°C before centrifugation in 1 liter batches at 2250 × g for 15 min (at room 
temperature). The fractions, water-soluble proteins, and insoluble matter were separated by pouring 
out the water-soluble fraction, which was frozen and freeze-dried prior to further analysis. Hydrolysis 
was performed in duplicate.

Chemical characterization

Moisture in the powders was determined gravimetrically after drying at 105°C for 24 h. Ash 
content was estimated according to AOAC. Total N was determined by CHN-S/N elemental 
analyzer 1106 (Carlo Erba Instruments S.Pa., Milan, Italy), and crude protein was estimated by 
multiplying total N by a factor of 6.25 (Mariotti et al. 2008). Extraction of lipids from the 
samples was performed according to the method of Bligh and Dyer (1959). The degree of 
hydrolysis was evaluated as the proportion (%) of cleaved peptide bonds in the protein hydro-
lysate, by the formol titration method described by Taylor (1957). All measurements were 
performed in triplicate.

Molecular weight distribution

Dry powders were dissolved in water to a concentration of about 1 mg/ml. All samples were analyzed 
in triplicate. The samples were analyzed on a Hitachi HPLC with a UV detector at 220 nm, using 
a Superdex peptide 10/300 column. The run was isocratic with 30% acetonitrile, 0.1% TFA in water, at 
0.4 ml/min. The sample volume was 30 µl. The tests were conducted at room temperature. The 
standards used were cytochrome C (12327 Da), aprotinin (6512 Da), insulin A (2531 Da), leucine 
enkephalin (555.6 Da), Val-Tyr-Val (379.5 Da), and Gly-Tyr (238.2 Da). The regression line for the 
standards were r2 = 0.994. The molecular weight was divided in intervals: below 200 Da, 200–500 Da, 
500–1 000 Da, 1 000–2 000 Da, 2 000–4 000 Da, 4 000–6 000 Da, 6 000–8 000 Da, 8 000–10 000 Da, 10 
000–15 000 Da, 15 000–20000 Da, and above 20 000 Da.

Sensory evaluation

Sensory evaluation of cod head protein hydrolysates was carried out focusing on sensory character-
istics of different groups of fish proteins. Five sample groups of cod head hydrolysates were analyzed 
and compared: three from trawl caught cod (groups: T1, T2, and T3) and two from longline caught 
cod (groups L1 and L2). A profiling method (Generic Descriptive Analysis, GDA) was used to evaluate 
all samples (Lawless and Heymann 2010). Seven panelists, all trained and experienced in evaluation of 
fish protein hydrolysates, evaluated all samples (ISO 8586:2012 2014).

Two panel training sessions were carried out prior to the evaluation to develop the GDA scale and 
synchronize the panelists’ use of the scale. The scale for hydrolyzed proteins consisted of nine 
attributes (Table 2). During evaluation, the intensity of each attribute for a given sample was described 
using a 15 cm line scale, which in analysis was transformed to numbers from 0 to 100. All protein 
hydrolysates were dissolved in cold tap water in 2% concentration. Each sample was ~10 ml of protein 
solution. The samples were presented at room temperature to the panelists in clear 30 ml plastic 
beakers. All samples were coded with three-digit numbers, and a duplicate was evaluated for each 
sample group. The sensory evaluation program FIZZ (2.50B, Biosystémes) was used to collect sensory 
data. The program Panelcheck (V1.4.0, Nofima, Tromsø, Norway) was used to evaluate the perfor-
mance of the panel and individual panelists.
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Statistical analysis

All experiments and measures were performed three or more times, except for the hydrolysis trials that 
were conducted in duplicate. Statistical analysis was performed using Microsoft Excel 2010 (Redmond, 
WA, USA). Significance was calculated using a t-test (p < .05). Results are reported as mean ± standard 
deviation. For evaluation of sensory attributes, the statistical program NCSS 2000 (NCSS, UT, USA) 
was used to calculate analysis of variance (ANOVA, general linear model) to compare results from the 
sample groups. The program Panelcheck (V1.4.0) was used to evaluate the performance of the panel 
and individual panelists. A correction was made for different uses of scale by the panelists. Duncan’s 
test was used to calculate multiple comparisons between sample groups. The significance level was set 
at 5%.

Results and discussion

Thawing

The temperature logs from the thawing procedure are shown in Figure 1. The heads were thawed in 
running cold water (Roiha et al. 2018), and starting temperature of the heads differed from −3.4°C to 
−9.5°C. The initially warmest heads needed 1 h to reach 0°C, whereas the coldest heads needed 
45 minutes more to reach the same temperature. Tveit et al. (2020) showed that freezing of whole 
heads to a temperature of −15°C required 5–6 hours. In the same study, thawing from −15°C required 
4 hours. The difference may be explained by the temperature logs, which were placed in the heads 
before freezing (Tveit et al. 2020). In this study, temperature logs were placed in the heads by drilling 
into the frozen material. This, however, was challenging and time-consuming, which lead to heads that 
had already started thawing when the logs were in place.

Color

The quality was evaluated according to redness and lightness of the flesh in the neck cut of the heads. 
Evaluation of redness and lightness to compare damages and quality have previously only been done 
on fish fillets. Fishing gears have multiple impacts on fish quality and can result in quality degradation 
(Digre et al. 2010; Esaiassen et al. 2004). Previous studies on fillets show that trawl caught fish are often 
higher in redness and darker than longlined fish, due to poor bleeding (Rotabakk et al. 2011). The 
trawl caught heads were sampled from three catches: T1, T2, and T3. Heads in catch T1 and T2 were 
less red than heads in catch T3 (Figure 2). Digre et al. (2010) observed that injuries increase with catch 
size. In this study, there was no correlation between catch size and redness in the neck cut. The largest 
haul was catch T1, whereas catch T3, which was redder, had a lower size.

Table 2. Sensory attributes and attribute definitions for hydrolyzed proteins. 
Scale: None (0) to much (100).

Sensory attribute Definition

ODOR
dried fish dried fish
fish skin fish skin, fish processing facility
sour sour odor

FLAVOU
dried fish dried fish
fish skin fish skin, metallic
sour sour flavor
salty salty flavor
bitter bitter flavor
astringent astringent
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The heads from longlining were redder than trawl catch T1 and T2 and less red compared to T3. 
The expectation was for whiter neck cuts, based on results reported in fillets (Rotabakk et al. 2011); 
it is, however, possible that gaffing can lead to some of the redness. When gaffing fish, it is crucial to 
aim for the head, and this leads to bleeding in the heads. Comparing trawl and longline, there was 
no significant difference in the color nor in lightness between the two types of fishing gear 
(Figure 3).
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Figure 1. The temperature curve for thawing of whole cod heads in running water at 6°C.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

b*
 (b

lu
e-

ye
llo

w
)

a* (green-red)

T1

T2

T3

L1

L2

Figure 2. The redness in the neck cut. The upper grey ring shows the high redness in T3, whereas the lower grey ring shows less redness 
in T1 and T2. The black ring in the middle shows that the heads in catch L1 are more equally red, compared to the heads in L2.

488 J. F. REMME ET AL.



Color is one of the major attributes affecting the consumer perception of quality (Francis 1995; 
Olsen et al. 2013; Soldatov 2006). It is generally accepted that whiteness is positive, and redness is 
negative when evaluating color of cod loins. The neck cuts differ in redness and lightness and reflects 
increased residual blood in some heads compared to others. The neck cut can therefore be used to 
evaluate quality. This study shows that there were differences in redness between catches, but also 
within catches. There were, however, no significant differences in redness and lightness between heads 
captured from different fishing gear.

Hydrolysate yield

After centrifugation, all hydrolysis trials produced two fractions: (1) fish protein hydrolysates (FPH) 
and (2) sediments. No oil or emulsion phases were detected. The amount of lipids in the cod heads 
were insufficient to form a separate fraction after hydrolysis, indicating that any lipids present were 
distributed between the FPH and sediment fractions. In trials using a raw material consisting of 
a mixture of cod viscera and backbones, a minimum of 6 g of lipid per 100 g of wet weight raw material 
was required in order to produce a separate oil fraction (Slizyte et al. 2004). The chemical composition 
of cod heads is 78% water, 7% ash, 1–4% lipids, and 11–15% protein (Remme et al. 2022; Tveit et al. 
2020). The cod heads in the study by Remme et al. (2022) had a lipid content insufficient to form 
a separate lipid fraction. The enzyme combination of papain and bromelain 1:1 gave a high dry matter 
content when used on cod heads (Remme et al. 2022). In the same study, several enzymes were tested, 
giving a dry matter range of 4–8%. The FPHs produced in this study consisted of 92–93% water and 
7.1–7.4% dry matter (Table 3). Both longline and trawl caught cod head protein hydrolysates had 
a mean dry matter content of 7.3%.
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Figure 3. The lightness in trawl and line caught cod heads are evenly distributed between catches and fishing gear.

Table 3. Mass balance in hydrolysis trials with cod heads from three 
trawl and two longline catches, and dry matter (%) in the hydrolysate.

Hydrolysate (g) Sediment (g) Dry matter in hydrolysate (%)

H1 1948.1 926.8 7.4
H2 1893.0 965.6 7.4
H3 1926.2 957.6 7.1
L1 1851.3 1010.1 7.2
L2 1876.6 986.6 7.3
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Freeze-dried FPH

The proximate chemical composition of FPHs is shown in Table 4. High-quality FPHs should have 
a high content of protein and low content of ash and lipids. Lipid oxidation is of great concern to the 
food industry and consumers because it results in unpalatable flavors, unpleasant odors, dark coloring, 
and potentially toxic reaction products (Kristinsson and Rasco 2000; Lin and Liang 2002; Spinelli et al. 
1972). The Food and Agriculture Organization of the United Nations has issued a standard stipulating 
that the lipid content in FPHs used for human consumption must not exceed 0.5% (w/w) (He et al. 
2013). Lipid content in freeze-dried FPHs from trawl and longlined cod heads were on average 0.6%. 
The correct commercial enzyme effectively produces hydrolysate with a low lipid content, whereas 
hydrolysis with only endogenous enzymes failed to have the same positive effect on lipid concentra-
tions (Remme et al. 2022).

Ash contents were relatively high in hydrolysates from cod heads: about 7.7% for both trawl and 
longline caught heads. It is believed that the amount of bone affects the ash content. Ash contents also 
vary with type of enzyme, as the combinations of papain and bromelain produced hydrolysates with 
significantly lower ash contents (P < .05) compared with trials using endogenous enzymes and 
Protamex (Remme et al. 2022). The protein content in FPHs from trawl and longline caught cod 
heads was 91.2 ± 1.1% and 92.1 ± 0.9%, respectively. Heads from longlining have two different neck 
cuts, one when the fish is used for fillets (j-cut) and another for headed/gutted fish (n-cut).

Amino acid composition

The amino acid composition for trawl and longline caught cod heads is shown in Table 5 and shows no 
significant difference between the two different fishing gears. The dominant amino acids in these 
CHPH are glutamic acid/glutamine and glycine, which represents 10.2 ± 0.2% and 11.5 ± 0.2% of all 
the amino acids, respectively. Several studies have reported the same predominance of glutamic and 
aspartic acid in fish hydrolysates of several fish species (Vázquez et al. 2019). In addition, aspartic acid 
(5.5%), serine (5.3 ± 0.3%), proline (5.9 ± 0.1%), alanine (5.8 ± 0.1%), lysine (5.1 ± 0.1%), and arginine 
also make up a large part of the amino acids in the CHPH. Essential amino acids (Ile, Leu, Val, Lys, 
Met, Phe, Thr, His, Arg) are also significantly present in the CHPH and make up around 29% of the 
amino acids.

Degree of hydrolysis (DH)

The degree of hydrolysis represents the proportion of cleaved peptide bonds present in a protein 
hydrolysate. The DH of the FPHs was found to vary from 16.0% to 17.0% (Table 4). An optimum DH 
value has yet to be established, so it is currently not known how to both optimize solubility and 
minimize bitterness based on DH. The DH of the hydrolysate and the size of produced peptides highly 
influence the surface activity of FPHs (Jeon et al. 1999; Kristinsson and Rasco 2000). Several reports 
have suggested that there is an optimum molecular size or chain length for peptides that ensures good 
foaming and emulsifying properties, and that extensive hydrolysis that produces small peptide 
molecules reduces these properties (Adler-Nissen and Olsen 1979; Jeon et al. 1999; Kristinsson and 
Rasco 2000; Lee et al. 2014; Quaglia and Orban 1990; Šližytė et al. 2009). Another important factor that 

Table 4. Proximate chemical composition and degree of hydrolysis (%) of freeze-dried FPHs from three trawl and two 
longline catches. Values are given as a mean ± std.

Sample Protein (%) Ash (%) Water (%) Lipid (%) DH (%)

T1 90.2 ± 1.0 7.9 ± 0.3 1.1 ± 0.2 0.6 ± 0.1 17.0 ± 0.6
T2 91.6 ± 1.2 7.5 ± 0.3 0.6 ± 0.1 0.8 ± 0.1 16.5 ± 0.2
T3 91.5 ± 0.7 7.8 ± 0.7 1.3 ± 0.3 0.5 ± 0.1 16.4 ± 0.2
L1 91.5 ± 0.6 8.2 ± 0.6 1.6 ± 0.2 0.7 ± 0.2 16.6 ± 0.6
L2 92.9 ± 0.6 7.5 ± 0.1 1.0 ± 0.6 0.6 ± 0.6 16.0 ± 0.3
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impacts the usefulness of FPH as a food ingredient is solubility. The solubility of FPHs increases with 
increasing DH (Gbogouri et al. 2004; Jamdar et al. 2010). A downside of high DH, however, is the 
production of bitter and astringent peptides (Adler-Nissen 1986; Saha and Hayashi 2001). The extent 
of changes in sensory properties is attributed to the degree of hydrolysis and, in particular, to the 
release of low molecular weight peptides constituted of hydrophobic amino acids (Raksakulthai and 
Haard 2003; Saha and Hayashi 2001).

Molecular weight distribution

In this study, fish protein hydrolysates were separated using gel chromatography in order to analyze 
peptide size composition (also known as molecular weight distribution). Since enzymes have specific 
cleavage positions on polypeptide chains, the resulting FPH products will consist of peptide 
molecules of different lengths (Barkia et al. 2010). The chain length of peptides, which depends 
on the DH, is of special interest in relation to FPH sensory characteristics, such as bitterness, as well 
as functional properties, such as emulsion capacity and solubility (Gbogouri et al. 2004). An analysis 
of peptide size distribution (Table 6) shows that the molecular weight distribution is similar in trawl 
and longline caught CHPH. Seventy percent (70%) of the peptides is below 5 kDa in size, and 94% is 
below 15 kDa. Most peptides, about 33%, are between 1 and 2 kDa, while 56% is under 2 kDa. In 
a previous study, with fresh heads from the coastal fleet that were hydrolyzed under the same 

Table 5. Amino acid composition (g/100 g) for the combined trawl and longline cod head protein 
hydrolysates.

Amino acid Trawl Line Mean Std

Taurine 1.1 1.1 1.1 0.0
Hydroxyproline 2.0 2.0 2.0 0.0
Aspartic acid + Asparaginee 5.5 5.5 5.5 0.0
Threoninee 2.9 3.0 3.0 0.1
Serine 5.1 5.5 5.3 0.3
Glutamic acid + Glutamine 10.0 10.3 10.2 0.2
Proline 5.8 6.0 5.9 0.1
Glycine 11.3 11.6 11.5 0.2
Alanine 5.7 5.8 5.8 0.1
Cystine (Cys-Cys) 0.0 0.1 0.1 0.1
Valinee 3.2 3.3 3.3 0.1
Methioninee 1.8 1.9 1.9 0.1
Isoleucinee 2.2 2.2 2.2 0.0
Leucinee 4.3 4.4 4.4 0.1
Tyrosine 1.4 1.5 1.5 0.1
Phenylalaninee 2.4 2.4 2.4 0.0
Histidinee 1.4 1.4 1.4 0.0
Hydroxylysine 0.3 0.3 0.3 0.0
Lysinee 5.0 5.1 5.1 0.1
Ammonia 1.1 1.1 1.1 0.0
Arginine 5.3 5.4 5.4 0.1
SUM amino acids 77.8 79.9 79.4
SUM essential amino acids (%) 28.7 29.2 29.2

e essential amino acids

Table 6. Proximate molecular weight distribution for cod head hydrolysates from line and trawl caught fish.

Sample > 20 kDa 20–15 kDa 15–10 kDa 10–5 kDa 5–2 kDa 2–1 kDa 1–0.5 kDa 0.5–0.2 kDa < 0.2 kDa

T1 0.03 ± 0.00 0.21 ± 0.06 14.10 ± 2.60 12.43 ± 0.99 17.20 ± 0.34 32.88 ± 2.03 10.22 ± 1.42 2.94 ± 0.44 10.00 ± 0.10
T2 0.05 ± 0.00 0.17 ± 0.07 12.51 ± 1.94 11.89 ± 0.43 17.00 ± 0.10 34.14 ± 1.47 11.30 ± 0.81 3.22 ± 0.19 9.73 ± 0.14
T3 0.05 ± 0.01 0.12 ± 0.00 13.32 ± 0.12 12.67 ± 0.01 17.54 ± 0.11 32.94 ± 0.08 10.16 ± 0.07 3.01 ± 0.01 10.20 ± 0.59
L1 0.07 ± 0.00 0.14 ± 0.02 12.66 ± 2.26 12.34 ± 0.73 17.38 ± 0.14 33.74 ± 1.58 10.61 ± 0.95 3.06 ± 0.29 10.00 ± 0.30
L2 0.06 ± 0.0 0.12 ± 0.02 12.91 ± 1.74 12.77 ± 0.63 17.73 ± 0.14 33.18 ± 1.41 9.98 ± 0.83 2.89 ± 0.25 10.35 ± 0.44
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conditions, there were major differences in MW-distribution. In this study, 39% of the peptides were 
between 2 and 5 kDa in size. Eighty percent (80%) of the peptides were smaller than 5 kDa in size, 
and 40% were smaller than 2 kDa.

The MW of bitter-tasting peptides is somewhat disputed (Fu et al. 2018b; Idowu and Benjakul 
2019), but more recent studies indicate an association between the bitter attribute and peptides with 
MW 0.5 to 1 kDa (Aspevik et al. 2016; Fu et al. 2018b).

Sensory analysis

No differences were seen between sample groups for hydrolyzed fish proteins (Table 7). Average value 
for fish skin flavor was highest in samples L1 and L2 but lowest in sample group T1. All samples had 
a mild odor and flavor of dried fish and fish skin but no sour odor and very mild or hardly detectable 
salty taste. All samples had a trace of bitter taste. A mild astringency was detected in all samples, with 
the strongest in L1 and L2 and weakest in T2 and T3.

Bitterness in FPHs is associated with hydrophobicity, degree of hydrolysis, molecular weight, proline 
residues, type of enzymes, and amino acid sequences (Idowu and Benjakul 2019). Bitterness limits the use 
of FPHs in food. Hydrophobic groups of amino acids responsible for bitterness are tryptophan, 
phenylalanine, isoleucine, trypsin, valine, and leucine (Idowu and Benjakul 2019). The more hydrolysis, 
the higher the extent of degradation of native protein structure and the more exposure of hidden 
hydrophobic peptides causing bitterness are attained (Fu et al. 2018a; Idowu and Benjakul 2019). 
Several methods have been described to reduce bitterness, such as extraction with alcohol (Wasswa 
et al. 2007), treatment with activated carbon (Saha and Hayashi 2001), chromatographic separation (Liu 
et al. 2014), and the use of butanol (Dauksas et al. 2004). However, all mentioned methods will result in 
a significant loss in yield. A reduction in yield can make commercial production irrelevant. Before 
debittering methods are used, hydrolysis should be adapted and optimized based on the raw material.

Conclusions

Fishing gear affects the quality of cod heads. Cod heads from both trawl and longline differ in redness 
in the neck cut, and this is related to poor bleeding. In this study, however, there were no significant 
differences in cod heads from three trawl catches and two longline catches. Cod heads from both 
fishing gears resulted in white protein hydrolysates, with no significant differences detected. The 
hydrolyzed proteins had a mild fish odor and fish flavor, a trace of bitter flavor, and were mildly 
astringent. The lipid content was low (0.65 ± 0.11), and the protein content was high (above 90%), 
indicating that cod heads are an excellent source for production of protein hydrolysates that can be 
used for human consumption.

Table 7. Generic Descriptive Analysis (GDA) mean values of sensory attributes (scale 
0–100) for five sample groups of hydrolyzed fish proteins.

Sensory attribute T1 T2 T3 L1 L2 p-value

ODOR
Dried fish 19 29 23 23 23 0.163
Fish skin 21 24 23 26 27 0.452
Sour 3 5 5 3 4 0.363

FLAVOR
Dried fish 27 30 25 26 28 0.712
Fish skin 23 28 28 33 31 0.191
Sour 5 5 4 4 6 0.829
Salty 7 6 6 6 7 0.410
Bitter 13 14 14 15 19 0.594
Astringent 20 17 16 20 22 0.098
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