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a b s t r a c t

We present a medium-term hydropower scheduling model that includes inflow- and volume-dependent
environmental constraints on maximum discharge. A stochastic dynamic programming algorithm (SDP)
is formulated to enable an accurate representation of nonconvex relationships in the problem formu-
lation of smaller hydropower systems. The model is used to assess the impact of including state-
dependent constraints in the medium-term hydropower scheduling on the calculated water values.
The model is applied in a case study of a Norwegian hydropower system with multiple reservoirs. We
find that the maximum discharge constraint significantly impacts the water values and simulated
operation of the hydropower system. A main finding is that the nonconvex characteristics of the envi-
ronmental constraint are reflected in the water values, implying a nonconvex objective function. Oper-
ation according to the computed water values is simulated for cases with and without the environmental
constraint. Even though operation of the system changes considerably when the environmental
constraint is included, the total electricity generation over the year is kept constant, and the total loss in
expected profit is limited to less than 0.8%.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction flexible resources is expected to increase as the transition of the
Through the European Green Deal, the EU has set ambitious
targets for both climate change mitigation and broader environ-
mental sustainability [1]. To align capital flows with these policy
goals, the EU is in the process of defining requirements for envi-
ronmentally sustainable activities. Hence, power producers have
strong incentives to operate in an environmentally sustainable way.

Like all power plants, hydropower operations may modify the
surrounding ecosystems [2]. The environmental concerns of hydro-
power operations are often related to alteration of the flow regime
downstream the plant [3], but can also be related to the changes in
water temperatures or changed water volumes in the reservoirs. To
protectecological and recreational interests, regulationoften imposes
mitigationmeasures and limitations on operation, see e.g., Refs. [4,5].

Environmental regulation should be incorporated as constraints
in optimisation-based hydropower scheduling models. Omitting
such constraints can result in misestimation of hydropower elec-
tricity generation, revenues, and the amount of flexibility hydro-
power can provide to the electricity system [6]. The need for
fer).
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European power system moves forwards. In the transition towards
a low-carbon system, hydropower can play an important role as a
flexibility provider by responding to rapid fluctuations in inter-
mittent renewable generation and load [7]. Additional constraints
on operation may reduce this flexibility potential. To correctly
represent hydropower operation requires properly accounting for
environmental constraints imposed on hydropower production.

In this research we are concerned with operational hydropower
scheduling, i.e., the sequence of decisions that are made leading up
to the actual operation of the system. Due to the computational
complexity, the scheduling problem is normally solved for different
planning horizons and technical details. Medium-term hydropower
scheduling considers reservoir management under uncertainty
over a planning horizon of several months up to a few years. In
contrast, short-term scheduling usually concerns operational de-
cisions over a period of days to weeks, and typically accounts for
more technical details. In the decentralised Nordic system,
medium-term scheduling models are used to compute water
values, which are an essential input to the operational short-term
models [8]. The purpose of water values is to reflect the long-
term value of short-term operational decisions.

State-of-the-art methods to solve the medium-term scheduling
of hydropower systems use stochastic dual dynamic programming
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Index Sets
Dh Set of discharge segments per hydropower plant h
G Set of subsets used in the triangle method
H Set of hydropower plants
Hup

h Set of hydropower plants with outlet to plant h
J Set of iterations in SDP algorithm
K Set of time steps within each stage
N Set of reservoir segments per reservoir
N Comb

l;h Set of combinations of discrete reservoir storage
segments that includes segment l for reservoir h

N Diag
g Set of g for each diagonal g used in the triangle

method
Sp Set of endogenous states
Su Set of stochastic states
T Set of stages

Decision Variables
atþ1 Expected future profit in stage t, in V

MWh
bh,n Auxiliary variable for segment n in reservoir h
cg Auxiliary variable for set g
gn,m Weighting variable for reservoir segments n, m
fk,h Spillage in time step k from reservoir h, in m3/s
pk,h Generated electricity in time step k from hydropower

station h, in MW
qk,h,d Discharge in time step k per segment d from reservoir

h, in m3/s
uk,h Slack variable used to penalise low storage volumes

in time step k in the reservoir h, in Mm3

vk,h Storage volume in reservoir h, time step k, Mm3

Parameters
D Change in water value matrix
hh,d Efficiency per hydropower plant h and discharge

segment d, MW
m3=s

Ĥ Hydropower plant restricted by the state-dependent
maximum discharge constraint

Ẑt Sum inflow per stage t, in Mm3

lt Power price in stage t, in V
MWh

uh Scaling factor, distributing the weekly sum inflow Ẑt
to each reservoir h

4k Distribution factor of inflow to each time step k
Fj,t(…) Expected future profit matrix, in stage t,iteration j
Jh

j;tð…Þ Water value matrix for reservoir h, stage t, iteration j
qk Scaling factor for price variability in time stage k
xt Environmental state in stage t
CR Penalty cost for low reservoir filling, in V

Mm3

CS Penalty cost for spillage, in V
m3=s

FHk Conversion factor, number of hours in time step k
FC Conversion factor, flow to volume, Mm3

m3=s
FVn,m Expected future profit for reservoir segments n and

m, in V

J Maximum number of iterations in SDP algorithm
K Number of time steps in each stage
Pr(…) Transition probability matrix
Qlim
h Regulatory maximum discharge limit of hydropower

plant h, in m3/s
Qmin
h Minimum discharge limit of hydropower plant h, in

m3/s
Qmax
h;d Maximum discharge per reservoir h and discharge

segment d, in m3/s
sp Endogenous state
sut Stochastic state in stage t
T Number of stages in the planning horizon
tA First stagewhen the inflow is above a given threshold
tB Time-dependent activation stage of the

environmental constraint (16)
tC First stage when the reservoir level is above a given

threshold
tD Stage from when ”no decrease in storage volume is

allowed”
tE Stage when the environmental regulation is

deactivated
Vlim
h Environmental threshold for reservoir h, in Mm3

Vseg
n;h Volume of each segment n in reservoir h, in Mm3

Vh Initial storage volume in reservoir h, in Mm3

Vmax
h Maximum storage volume in reservoir h, in Mm3

Vmin
h Minimum storage volume in reservoir h, in Mm3

Zh Inflow to reservoir h, in Mm3
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(SDDP) [9] algorithms. These algorithms decompose the problem
without discretising the state variables (such as reservoir volume
and inflow), making it computationally tractable for systems with
multiple reservoirs. For medium-term scheduling in the Nordic
market, the combined SDP/SDDP method described in Ref. [10] is
widely used. It combines SDDP with an outer layer based on sto-
chastic dynamic programming (SDP) [11] to treat uncertainty in
market prices. Still, a major drawback of the method is that non-
convexities cannot be easily treated in the modelling.

Nonconvex problem formulations are typically needed to repre-
sent the complex interaction between power output and water [12],
and unit commitment of generators [13]. The challenge of repre-
senting nonconvex relationships in the SDDP algorithm has
frequently been addressed in the literature by the use of approxi-
mations, e.g., Refs. [14e17]. A few studies also consider accurate
modelling of non-convexities by the use of SDP [18] or stochastic
dual dynamic integer programming (SDDiP), such as in Refs. [19,20].

SDP was used early on in hydropower planning, as it allows for
explicit representation of uncertainty, e.g., in inflow and price
572
[21e23]. The method has the advantage that it can represent
nonconvex and nonlinear relationships. The main drawback of the
method is that the state variables have to be discretised, causing the
problem to grow exponentially in size with the number of state
variables (e.g., reservoirs). The method is therefore best suited to
solve systems with a small number of reservoirs, unless an aggre-
gation technique is used like in Refs. [24e26]. Despite of this
weakness, the SDP method is very well suited for accurate sched-
uling of hydropower systems with pronounced nonconvexities.

Regulators have imposed a wide range of environmental con-
straints on hydropower systems. Ecological flow requirements and
maximum ramping rates are often applied, and may have signifi-
cant impact on the flexibility of the hydro system. These constraints
have been extensively studied in the technical literature, see e.g.,
Refs. [27e29], and can be included in hydropower scheduling
models without compromising the convexity requirement of the
SDDP algorithm. However, fewer research studies consider envi-
ronmental constraints that involve state-dependencies or logical
conditions, which can not easily be treated in a convex model
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formulation [30]. Furthermore, only a very limited number of
studies discuss the impact of environmental constraints on water
values. To the best of our knowledge, the impact of environmental
constraints onwater values has only been discussed in Refs. [31,32].
In Ref. [32], an SDP-based model is used to evaluate the sensitivity
of the water values to environmental flows and ramping re-
strictions. The authors of [31] find that incorporating the same
environmental constraints into a linear programming based water
value model has significant impacts on the profitability of hydro-
power plants with one or at most two turbines.

This research considers the representation of a particular type of
state-dependent environmental constraint in the medium-term
scheduling of hydropower operation. Several European countries
consider lake water alterations to be relevant mitigation measure to
reduce impacts fromwater regulations [33], one examplebeing state-
dependent maximum discharge regulations. In the Nordic region,
suchconstraintsare imposedonseveral reservoirs, andare likely tobe
implemented in other hydropower reservoirs in the future. The pur-
pose of the regulation is to retain inflow during spring, to meet the
ecological and recreational needs forhighwater levels in the reservoir
through summer. In other regions, volume-dependent maximum
discharge constraints are also used to allocate available water be-
tween irrigation purposes and electricity production [17].

Volume-dependent maximumdischarge regulation in long- and
medium-term hydropower scheduling has previously been studied
by the use of SDDiP in Ref. [20] and approximated using SDDP in
Ref. [17]. We accurately represent state-dependent maximum
discharge constraints in a medium-term hydropower scheduling
model based on SDP. Compared to Ref. [17], a different type of
maximum-discharge regulation is considered. Furthermore, we use
a different methodology (based on SDP) allowing an accurate
formulation of state-dependent constraints. Compared to Ref. [20],
we use a more mature methodology (SDP) and take a broader view
of state-dependencies, studying a formulation of the maximum
discharge constraint with a dynamically defined constraint period
dependent on inflow. SDP-basedmodels have previously been used
to study environmental constraints in Refs. [31,32], but not for
environmental constraints that include state-dependencies such as
those discussed here.

The developedmodel is tested on a two-reservoir case study of a
Norwegian hydro system. We discuss how the state-dependent
environmental constraint modifies the resulting water value
curves from the SDP algorithm, further distinguishing our research
from Refs. [17,20], and use thewater values to simulate operation of
the system. The simulation results show the impact of the
constraint on reservoir operation and economics. The novel
contribution of this research is twofold in that we:

� Formulate amedium-term hydropower schedulingmodel based
on SDP that accurately treats state-dependencies in the
maximum allowed discharge from hydropower stations.
Maximum discharge depends on the state variables reservoir
volume, weekly inflow and a variable indicating if the low-
inflow period has ended.

� Assess the impact of including such state-dependent maximum
discharge constraints on the water value curves and shed light
on the potential impacts that system operation guided by such
curves may have. The assessment is carried out for a hydro-
power cascade in Norway.

The remainder of this paper is structured as follows: Section 2
describes the developed hydropower scheduling model; a case
study is presented in Section 3; and concluding remarks are found
in Section 4. Section 2 comprises subsections describing the weekly
decision problem (Section 2.1), the state-dependent environmental
573
constraint on maximum discharge (Section 2.2), the stochastic
variables (Section 2.3) and the solution strategy (Section 2.4). The
case study in Section 3 presents calculated water values (Section
3.2) and results from the simulations (Section 3.3).

2. Hydropower scheduling model

In the following we present a medium-term hydropower
scheduling model that is formulated for a hydropower cascade
operated by a single hydropower producer assumed to be a risk-
neutral price taker. The model maximises profit from operating
the hydropower system for a presumed stationary future system
state. The operation of the system is optimised for weekly decision
stages over a horizon of one year.

The hydropower scheduling problem is a multi-stage stochastic
optimisation problem. To solve the problem, we decompose the
overall problem into several smaller subproblems, using the princi-
ples of SDP [11]. By decomposing the problem, we obtain one
separate decisionproblem for each stage and state of the system. The
SDP algorithm solves the decision problem, described in Section 2.1,
for all stages and system states until convergence, as described in
Section 2.4. The scope of potential system states is divided into a set
of discrete states. The discrete states include all the information that
is passed between the decision stages, from t � 1 to t. The set of
states comprise subsets of endogenous states Sp and exogenous
stochastic state variables Su. The storage volume in the reservoirs is
the endogenous state variable. The stochastic state variables are: the
weekly average energy price l, the weekly total inflow into the

system Ẑ and the environmental state variable x. The stochastic
variables are represented by a discrete Markov chain, as described in
Section 2.3. The environmental state variable indicates if the so-
called ”low-inflow period” has ended. In practice, the variable in-
dicates whether the inflow level has exceeded a certain threshold
over a shorter period of time. The extension of the discrete Markov
chain to include an environmental state variable is explained further
in Section 2.3, while the environmental constraint is described
thoroughly in Section 2.2. The implementation of the environmental
constraint in the SDP algorithm is described in Section 2.4.

2.1. The weekly decision problem

The decision problem is solved for all system states, i.e., com-
binations of discrete reservoir volumes and stochastic nodes in the
Markov chain. Since the stochastic variables are known at the
beginning of the stage, each single decision problem is solved as a
deterministic problem. The stochastic nature of the problem is
managed in the SDP algorithm. Uncertainty is represented through
the price and inflow states, and the uncertainty of future realisa-
tions of the stochastic variables are reflected in the expected water
values. Each stage is divided into K number of time steps.

The objective function (1)maximises the immediate profit of the
decisions and the impact on the expected future profit given by atþ1.
The expected future profit is a function of the stochastic state of the
system and the resulting storage volume in the reservoirs at the end
of the stage. Spillage of water is penalised according to a lowcost CS.
Furthermore, operation of the reservoirs below a filling degree of
10% is penalised to represent risk-aversion of the producer.

atðsp; sut Þ ¼ max

(
lt
X
k2K

FHk qk
X
h2H

pk;h � CS
X
k2K

X
h2H

fk;h

� CR
X
k2K

X
h2H

uk;h þ atþ1ðvh2H;k¼K ; s
u
tþ1Þ

) (1)

The energy production is a function of the discharge, qk,h,d, from
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each of the reservoirs, as given in (2). The maximum and minimum
discharge is limited by (3) and (4). Furthermore, the discharge is
bounded by the availability of water in the reservoirs. The reservoir
balance (5), keeps track of the change in water volume in each
reservoir, where the volumes, vk,h, are bounded by (6). To calibrate
the reservoir management, a soft-constraint on minimum reservoir
volume is used to reflect the risk-aversion of the producer.

pk;h �
X
d2Dh

hh;dqk;h;d ¼ 0 c k2K; h2H (2)

qk;h;d � Qmax
h;d c k2K; h2H; d2Dh (3)

X
d2Dh

qk;h;d � Qmin
h c k2K; h2H (4)

vk;h � vk�1;h þ FC

0
@ X

d2Dh

qk;h;d þ fk;h

1
A

�FC
X

j2Hup
h

0
@ X

d2Dj

qk;j;d þ fk;j

1
A ¼ 4kZh

c k2Kn1; h2H

(5)

Vmin
h þ 0:1*ðVmax

h � Vmin
h Þ

� vk;h þ uk;h � Vmax
h

c k2K; h2H
(6)

While (1)e(6) describes the general decision problem, the
following equations present the interpolation in the expected
future profit function for a system with two reservoirs. The ex-
pected future profit atþ1 is a function of the storage volume in the
reservoirs at the end of the stage, and is bounded by (7)-(12). A
two-dimensional, piecewise-linear approximation obtained by the
triangle method is used to represent atþ1. The triangle method
approximates multidimensional functions by the use of linear tri-
angles, see e.g., Refs. [34,35]. The method was chosen for its ability
to approximate nonconvex functions and its simplicity [36]. The
formulation can be adapted to larger hydropower systems by
expanding the dimensions of the expected future profit
approximation.

The optimal expected future profit is obtained by convex com-
bination of the expected future profit points FVn,m using the
weighting variables gn,m, as given by (7)-(9). The points are calcu-
lated for each of the discrete reservoir states in the previous stage,
and given as input to the optimisation problem. The sum of the
weighting variables in each dimension are used to find the total
weight of the discrete volume segments for each reservoir in (10)-
(11), binding the expected future profit to the storage volumes in
the reservoirs at the end of the stage.

atþ1 �
X
n2N

X
m2N

gn;mFVn;m ¼ 0 (7)

XN

n¼1

XN

m¼1
gn;m ¼ 1 (8)

gn;m � 1; c n2N ;m2N (9)

bl;h ¼
X

fn;mg2N comb
l;h

gn;m c l2N ; h2H (10)
574
vk;h �
X
n2N

bh;nV
seg
h;n ¼ 0 c k ¼ K; h2H (11)

cg ¼
X

fn;mg2N Diag
g

gn;m c g2G (12)

p; v; q; f ;g;u2Rþ; atþ12R (13)

Nonconvex characteristics in the expected future profit function
are dealt with by restricting the weighing variables (g). In the
optimal solution, a maximum of two adjacent weights (g) in each
dimension can have non-zero values, thereby forming a square of
adjacent weighting variables that can be active. Such behaviour can
be enforced by special ordered sets of type 2 (SOS2) [37]. In SOS2,
only two adjacent variables in the set can be non-zero. SOS2 are
included inmost commercial solvers, such as CPLEX,which is used in
this research. In (14), bh is defined as one SOS2 for each dimension h
(i.e., for each reservoir). By using four weights to describe a point in
two dimensions, the model is given the freedom to decide which
points to use. To ensure one unique solution, we force the model to
use a predefined set of weights (3 out of 4) by defining the set c to be
a SOS2 in (15) [37]. The set c comprises the sum of the weights g in
the diagonal direction, hence forming a triangle of adjacent
weighting variables. Piecewise-linear formulations of functions in
two and three dimensions are thoroughly discussed in Ref. [35]. The
SOS2 defined in (14) and (15) can be removed if the future profit
function is concave, changing the formulation from anMILP to an LP.

bh SOS� 2 c h2H (14)

c SOS� 2 (15)

2.2. Activation of the environmental regulation

The purpose of the considered state-dependent maximum
discharge regulation is to meet the needs of ecological habitat and
recreational use for high water levels in the hydropower reservoir
in summer. Due to high seasonal and yearly variations in inflow,
time-dependent minimum reservoir level constraints may lead to
inefficient reservoir management during the low-inflow, winter
period and increased system costs. To avoid this, the regulation is
rather formulated as a state-dependent restriction on discharge
from the reservoir. As discussed in section 1, formulations that
include state-dependencies can present modelling challenges. We
here present a general formulation of the regulation where a se-
lection of different requirements can be included:

� Other than to honour minimum flow obligations, no discharge is
allowedwithin a given period of time, unless the storage volume
in the reservoir reaches a given threshold. If the required
threshold is reached, discharge is permitted as long as the
storage volume is kept above the threshold.

� The constraint can be activated by a given date or by the-end of
the ”low-inflow period”, i.e., inflow levels above a given
threshold over a short period. This is normally the beginning of
the snow-melting in spring.

� From a given date and until the end of the restriction period,
discharge from the reservoir is permitted as long as the storage
volume in the reservoir does not decrease.

The above regulation can be expressed mathematically by a set
of constraints. The activation and/or deactivation criteria defined in
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the regulation are often formulated as logical conditions dependent
on the state variables, i.e., storage volume in the reservoirs and
inflow. The state-dependent conditions are illustrated in Fig. 1. The
dependencies on both inflow and storage volume in the reservoir
are handled in the SDP algorithm, as described in section 2.4.

The different types of constraints imposed by the maximum
discharge regulation are described by (16)-(19). Depending on the
current state of the system, the constraints are added to the formu-
lation before the decision problem is solved. The first part of the
environmental regulation is a regulatory maximum discharge ca-
pacity constraint. When the constraint period is initiated, (16) re-
places (3) to restrict release from the reservoir only to serve
downstreamrequirements forminimumriverflows. The constraint is
activated by inflowabove a certain threshold (in tA) or bya givendate,
tB.X
d2Dh

qk;h;d � Qlim
h c k2K; h ¼ Ĥ (16)

When (and if) the storage volume in the reservoir reaches the
predefined threshold Vlim

h , constraint (16) is relaxed and replaced
with a minimum reservoir level regulation, (17)e(18). (17) is active
for the first week the storage volume in the reservoir reaches the
wanted threshold (in tC), while (18) becomes active from the
followingweek.When (17) or (18) are active, discharge is permitted
but the storage volume in the reservoir must be kept above the
threshold.

vk¼K;h � Vlim
h c h ¼ Ĥ (17)

vk;h � Vlim
h c k2K; h ¼ Ĥ (18)

Finally, for a given period, tD-tE, the storage volume in the
reservoir is not permitted to decrease. This constraint is shown in
(19). The formulation ensures that the storage level in the reservoir
at the end of a stage is equal or higher than the storage level at the
beginning of the stage. The storage level could also be bounded
over each time step k.

vk;h � Vh c k ¼ K; h ¼ Ĥ (19)

The formulation assumes that the reservoir level can be main-
tained once above the threshold. This can be challenging in some
hydropower systems due to minimum flow requirements or
negative inflow (e.g., evaporation). While we did not encounter
Fig. 1. Illustration of the state-dependent conditions in the environmental regulation.
Within the orange shaded period, the constraint can be activated by inflow above a
defined threshold, illustrated by point tA. Similarly, the no discharge restriction can be
deactivated within the green shaded area by storage volume above the reservoir
threshold, as illustrated by point tC.

575
feasibility issues, these can be avoided by including a slack-variable
that is penalised in the objective function in (18) and (19).

2.3. Stochastic variables

We consider three exogenous stochastic variables in this
research; the total weekly inflow into the system, the weekly
average energy price and the environmental state, i.e., if the inflow
has been above a certain threshold. Inflow normally has a strong
weekly correlation, while inflow and price tend to be negatively
correlated in hydro-dominated systems. The environmental state
variable is an extension of the inflow state. For computational
simplicity, we assume that the stochastic variables can be described
by discrete nodes using a Markov decision process. The following
procedure is used to generate the Markov chain:

� Inflow and price data is given as input to the model, e.g., his-
torical or forecasted data.

� An auto-regressive model is fitted to the input data. Serial cor-
relation in inflow and cross-correlation between inflow and
price is considered.

� 10 000 scenarios are sampled from the auto-regressive model.
� A given number of discrete nodes per week are generated from
the scenarios, using K-means clustering. Each node represents
one inflow value and one price value.

� The transition probabilities are determined by counting the
share of scenarios transitioning between the different nodes
from one week to the next.

In addition, information on the environmental state is required.
The environmental state represents a binary variable, indicating
whether the inflow has been above a certain threshold. For the
weeks when this is applicable, the Markov chain is expanded with
an additional environmental state (activated and not activated) in
each of the nodes, as illustrated in Fig. 2. The transition probabilities
are updated by multiplying with the probability of inflow above (or
below) the threshold in each node, presuming that the inflow level
has not previously been above the threshold. Once the environ-
mental state is activated, it can only be deactivated by the reservoir
storage level reaching above the given threshold or by a given date.

2.4. Solution strategy

The hydropower scheduling problem is solved using the SDP
algorithm described in Algorithm 1. The algorithm is based on
backwards recursion and solves the decision problem for each stage
and state of the system for a planning horizon of one year. To ac-
count for end-of horizon effects, an iterative approach is used until
the water values in the last and first stage converge. The algorithm
Fig. 2. Illustration of a Markov chain with two nodes per stage representing unique
price and inflow values, and an additional environmental state in t ¼ 3 to 4. The
additional nodes are illustrated in yellow.
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iterates over all stages ðT Þ, all reservoir states ðSpÞ and all stochastic
states ðSuÞ in lines 4e6. Sp comprises all combinations of discrete
storage volumes for the reservoirs in the system. The stochastic
variables are updated in line 7, while reservoir specific data is
576
updated for each hydropower plant in lines 8e11. The expected
future profits for all end reservoir states are updated in line 12.

The decision problem is solved in line 13 following the



Fig. 3. Topology of the modelled system. Reservoirs (triangles), power plants (rect-
angles), and water routes for discharge (solid lines) and spillage (dashed lines) are
shown. Maximal values for discharge (m3/s), production (MW), reservoir volumes
(Mm3) and average yearly inflow (Mm3) are given (not considering the environmental
constraint).
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procedure described in algorithm 2. The algorithm checks if any of
the environmental conditions described in Section 2.2 are met, and
solves the associated decision problem with the corresponding
constraints included, i.e., (16), (17), (18) or (19). The inflow
dependent early activation of the constraint is included as a sto-
chastic state x in the discrete Markov chain. The environmental
constraints are only included in a selection of the subproblems, but
the non-concave characteristics of the expected future profit
function may carry down to earlier stages before fading out. For
efficiency, the expected future profit approximation is checked for
concavity before each subproblem is solved. If the function is
concave, (14) and (15) are relaxed and the problem is solved as an
LP. If the problem is solved for a systemwithout the environmental
regulation, the decision problem is an LP described by (1)-(13).

The solution of the optimisation problem for all stochastic states
sut is used to calculate the expected future profit, in line 16. The
expected future profit is stored to matrix F. The water values are
calculated and stored to the water value matrix J in line 18,
following a similar approach as in Ref. [18]. When an iteration is
completed, convergence is determined in line 23, by comparing the
calculated water values in the last and first stage. If the algorithm
has not converged in iteration j, the water value matrix and the
expected future profit matrix for the last stage T is updatedwith the
values from the first stage in iteration j, in lines 25 and 26, before
the next iteration.
3. Case study

3.1. Case Description

This case study assesses the impact of the state-dependent
maximum discharge regulation on water values, simulated reser-
voir operation and profit from the simulated operation of the sys-
tem. First, water values are calculated in the SDP model, before
optimal operation of the system is simulated for a selection of
scenarios.

The described model is applied to the hydropower system
shown in Fig. 3. The hydropower system is based on Bergsdals-
vassdraget in Western Norway. The system comprise several hy-
dropower reservoirs and power plants, of which the two upper
reservoirs and power plants are modelled here. The modelled part
of the system has a total generation capacity of approximately
55 MW and a reservoir storage capacity of up to 360 Mm3.

The lower of the twomodelled reservoirs has a state-dependent
environmental maximum discharge constraint. The constraint is of
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the type described in Section 2.2. The discharge limitation can be
activated by inflow above the weekly average fromweek 15 and, at
the latest, in week 19. The discharge limitation is active until week
32, or until the storage volume in the reservoir is above 146 Mm3. If
the storage volume in the reservoir reaches 146 Mm3, discharge is
permitted as long as thewater level stays above the threshold. From
week 33 to week 35, the reservoir storage is not allowed to be
reduced. The constraint is deactivated in week 35. In addition, a
minimum discharge of 3 m3/s is imposed on the lower reservoir.

Two cases are considered; without the environmental regula-
tion, wo/Env, and with the environmental regulation, w/Env. In the
w/Env case, the decision problem is solved with the environmental
regulation, as given in Section 2.4. The SDP model is solved for one
year of weekly decision stages, comprising three price periods of
56 h each. A high intra-week price variation is assumed. Each of the
reservoirs are discretised into 20 equidistant points, giving 400
combinations of reservoir states. Since the focus of this research is
on the modelling of the environmental constraint, a relatively
coarse representation of uncertainty and time discretization is
included. A discrete Markov chain with 10 nodes per stage is used,
each comprising a unique price and inflow value. In the weeks
when early activation of the environmental constraint could occur,
the environmental state variable is added, leading to a total of 20
nodes per stage.

The discrete Markov chain is generated using inflow data from
58 historical years and power prices generated based on the same
inflow data. Alternatively, forecasted weather data from climate
models can be used, see e.g., Ref. [38]. The power prices were
provided from the long-term hydropower scheduling model EMPS
[25], based on a low emission dataset of the European power sys-
tem for 2030 [39]. The penalty cost of spilling water is set low, CS ¼
10�3 V

m3=s. The cost of drawing down the reservoir below 10% of the

storage capacity is set to approximately 150 V
Mm3 and 580 V

Mm3 for the
lower and upper reservoirs, respectively.

The simulation is conducted as weekly decisions in a sequence,
solving the decision problem formulated in Section 2.1 as a short-
term operational problem for each week. The same technical
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details as in the SDP model are included. The water values calcu-
lated in the SDP model are used as input to the weekly decision
problem to evaluate the value of the water in the reservoir at the
end of each week. For the w/Env case, the logical conditions for
activating the environmental constraint, as described in Section 2.2,
are checked each time the weekly decision problem is solved.
When (and if) the conditions are met, the associated constraints,
i.e., (16), (17), (18) or (19), are added to the decision problem.

The model was implemented in Julia v1.5 using the Jump
package [40] and the CPLEX 12.10 solver [41]. The relative MIP gap
is set to zero and the absolute MIP gap to 10�10.The case study was
carried out on an Intel Core i7-8650U processor with 16 GB RAM.
One iteration of the wo/Env case solved 208k decision problems in
approximately 440 s. One iteration of the w/Env case solved 224k
decision problems in approximately 1860 s, whereof approximately
40% of the decision problems were solved as MILP. By reducing the
number of problems solved as MILP, the solution time of the w/Env
case was reduced with around 30%. The algorithm converged in
16e20 iterations with a convergence criterion of 10�3 V

Mm3.
Advanced tuning of the applied MIP solver and use of parallel
processing could serve to improve the computational efficiency
[42].
3.2. Water values

The water values are the main result from the SDP model. We
are especially interested in how the water values change when
including the state-dependent maximum discharge constraint. This
is of high importance in real-life hydropower scheduling, as the
water values provide essential information for short-term decision
making.

The upper reservoir is not directly impacted by the environ-
mental regulation in thew/Env case but can be actively used to help
manage the regulation. If it is optimal to adjust the reservoir
management of the upper reservoir to reach the threshold in the
lower reservoir more rapidly, this would be reflected in the water
values of the upper reservoir. However, only minor or no changes
were seen in the water values for the upper reservoir, implying that
it is not economically profitable to release more water from the
upper reservoir to reach the reservoir threshold in the lower
reservoir earlier. This result is sensitive to several factors, such as
the expected power prices in the weeks when the constraint is
active, the strictness of the constraint and the efficiency of the
lower power plant compared to the upper power plant. Since small
or no changes were seen in the water values of the upper reservoir,
the rest of this section only considers the water values of the lower
reservoir. The water values presented for the lower reservoir are
given for a medium storage level in the upper reservoir (i.e.,
� 85Mm3).

Fig. 4 shows the calculated water values for thewo/Env case and
thew/Env case. Thewater values changewith the storage volume in
the reservoir and theweek of the year. In thewo/Env case, thewater
values are non-increasing with increasing storage volume in the
reservoir. This will always be the result from linear hydropower
scheduling models where the expected future profit is a concave
function. For low storage volumes in the reservoir, the water value
is high because of the risk of emptying the reservoir. For higher
storage volumes in the reservoir, the water value decrease as the
risk of spilling water increase. The water value is zero when water
has to be spilled because of full reservoirs. In the w/Env case, the
same behaviour of high and low water values can be observed for
low and high storage volumes, respectively. However, the water
values also sometimes increase with increasing storage volumes.
For this case, the expected future profit is therefore a nonconcave
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function.
The increasing water values with increasing reservoir storage

volumes in thew/Env case are a direct result of the state-dependent
maximum discharge constraint. The largest differences in thewater
values between the two cases can be seenwhen the strictest part of
the environmental regulation is active (week 18e32) and back-
wards in time (towards week 1). In the weeks when the constraint
is active and the storage volume in the reservoir is lower than the
threshold (146 Mm3), the water values are higher in the w/Env case
than in the wo/Env case. Since discharge from the reservoir is
strictly limited over a longer period, the model cannot take
advantage of the potential high prices within this period, unless the
threshold is reached. As a result, the water values are higher in the
w/Env case compared to thewo/Env case for storage volumes where
the maximum discharge capacity restriction can be deactivated
early.

The water values are calculated from the last to the first week of
the year, hence the impact of the constraint on the water values
from later weeks affects the earlier weeks. Week 32 is the last week
when the maximum discharge capacity restriction is active. Fig. 5
compares the water values from the two cases for selected
weeks. No large differences can be seen after the constraint is
deactivated; this is, for example, shown in Fig. 5a. In week 32
(Fig. 5b), the difference between the water value curves for the two
cases becomes more distinct. The local peak in the water value
curve for the w/Env case in Fig. 5b is a result of discharge being
permitted when the storage volume in the reservoir reaches the
threshold. Moving forwards in time, this effect is being shifted to-
wards lower storage volumes, as shown in Fig. 5c and d.

3.3. Simulation results

Simulations were run for 1000 scenarios, randomly selected
from the originally sampled scenarios. The wo/Env case and the w/
Env case were simulated for the same scenarios, using water values
from the SDP model for each of the cases accordingly. The final
simulations are conducted to test the calculated water values in an
operational decision-making setting, as well as to demonstrate the
effect of the environmental constraint on operation of the system.

The activation and deactivation of the maximum discharge ca-
pacity restriction varies between the scenarios because of the state-
dependent nature of the conditions. Fig. 6 shows when the
maximum discharge constraint is activated and deactivated in the
w/Env case for the simulated scenarios. In approximately 85% of the
scenarios, the storage volume in the reservoir reaches the threshold
before week 33, deactivating the maximum discharge constraint.
The discharge limitation is activated by high inflow before week 19
in 50% of the scenarios. Even so, inflow-dependent activation was
found to only have muted impact on the strategy and simulated
economic results for the case considered. Still, under other price
assumptions inflow-dependent activation could be of higher
importance.

The results from the simulations show a considerable change in
optimal operation when the environmental constraint is included.
Fig. 7 compares the change in storage volume in the lower reservoir
over a year for the wo/Env and w/Env cases. In general, the storage
volume in the reservoir is kept higher in thew/Env case. The largest
difference can be seen in the spring and summer weeks, when the
environmental regulation is active. In this period, no discharge is
permitted if the storage level is below the reservoir threshold. For
several weeks in this period, the median reservoir storage volume
is raised from below 100 Mm3 in the wo/Env case to over 150 Mm3

in thew/Env case, demonstrating the effectiveness of the constraint
to achieve the underlying purpose of reaching the threshold.

For most of the simulated scenarios, the storage volume in the



Fig. 4. Calculated water values for the lower reservoir in the two cases plotted for the storage volume in the reservoir and week of the year.

Fig. 5. Water values calculated in the w/Env case (dashed lines) and the wo/Env case (solid lines). The vertical lines give the reservoir threshold.

Fig. 6. Activation and deactivation of the maximum discharge restriction per week,
given in share of scenarios.

Fig. 7. Simulated storage volume in the lower reservoir in the wo/Env (purple) and w/
Env (green) cases. Min/max (dotted lines), quartiles (dashed lines) and the medians
(solid lines) are shown. The horizontal line gives the reservoir threshold.
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lower reservoir reaches the reservoir threshold in week 25e30 in
the w/Env case. This means that the optimal operation of the res-
ervoirs lies within the reservoir volume segments where the
maximum discharge capacity constraint has the largest impact on
the water values, indicating the importance of including the
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constraint in the calculation of the water values. Furthermore, the
reservoir storage volume is also kept higher in the autumn and
winter weeks in the w/Env case compared to the wo/Env case.
Higher storage volumes throughout the year, and not only when
the constraint on discharge is active, can be explained by the



Table 1
Average profit and electricity generation.

Case Reservoir Profit [/yr] Production [MWh/yr] Profit week 19e35 []

wo/Env Upper 5.16Eþ06 1.04Eþ05 1.20Eþ06
Lower 4.19Eþ06 9.00Eþ04 1.16Eþ06
Total 9.34Eþ06 1.94Eþ05 2.36Eþ06

w/Env Upper 5.15Eþ06 1.04Eþ05 1.24Eþ06
Lower 4.12Eþ06 8.98Eþ04 7.16Eþ05
Total 9.27Eþ06 1.94Eþ05 1.95Eþ06

Difference Upper �0.10% �0.0% 3.12%
Lower �1.60% �0.22% �38.46%
Total �0.77% �0.11% �17.23%
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differences in water values. Higher water values for higher storage
volumes in the w/Env case give the model an incentive to keep
more water in the reservoir when coming into the constraint
period.

A selection of average numeric results from the completed
simulations are given in Table 1. The total yearly profit from the
system is reduced by around 72 k(0.8%) in thew/Env case compared
to thewo/Env case. In the periodwhen the constraint is active, week
19e35, the total profit from electricity generation is reduced by
approximately 17% or 406 k. By shifting the electricity generation,
the model manages to keep the total generation in the w/Env case
close to the total generation in the wo/Env case, significantly
reducing the total loss in profit. This means that the loss in profit is
mainly caused by a lower average realised price of electricity, and
not reduced sales of electricity. Still, it should bementioned that the
economic results are sensitive to the power price assumptions used
in the simulations. Higher power prices in the constrained period
can increase the cost of restricting production in this period, and
vice versa.
4. Conclusion

We present a medium-term hydropower scheduling model
comprising an accurate representation of inflow- and volume-
dependent environmental constraints on maximum discharge.
Such constraints cause a pronounced nonconvexity in the sched-
uling problem. The proposed model can solve nonconvex model
formulations for smaller systems, by applying an SDP-algorithm,
where binary variables are only required to represent the non-
convex characteristics of the expected future value function. By
dynamically checking for nonconvexities in the value function, we
find that the number of weekly decision problems solved as MILPs
can be reduced significantly. Still, the required discretization of the
state space leads the SDP-algorithm to scale poorly for larger sys-
tems with more reservoirs.

Themodel is applied to a case study of a Norwegian hydropower
system with multiple reservoirs. Simulations of the system with
and without the environmental constraint show a substantial dif-
ference in operation of the reservoir to which the constraint is
imposed. In the casewith the environmental constraint, the storage
volume in the reservoir reaches the wanted threshold for most of
the scenarios. Still, the total electricity generation over the year is
maintained and total loss in profit is limited to approximately 0.8%.

The calculated water values were found to change considerably
when the state-dependent maximum discharge constraint was
included in the SDPmodel. For the reservoir towhich the constraint
was imposed, the water values were found to both increase and
decrease with increasing storage volumes in the reservoir, reflect-
ing that the expected future profit function is nonconcave. The
distinct changes in the calculated water values when the environ-
mental regulationwas considered show the importance of accurate
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modelling of such regulations. This conclusion is further strength-
ened by the optimal reservoir operation being within the non-
concave area of the expected future profit function for most of the
simulated scenarios, as demonstrated by the simulation results. If
the future profit function is used as boundary condition in opera-
tional short-term scheduling models, the nonconcave shape may
impact the results substantially.

The substantial impact on the calculated water values and
reservoir operation observed in this study support further research
on nonconvex environmental constraints. To strengthen the find-
ings from this study, future research should investigate the impact
of using accurate water values, compared to water values based on
simplified problem formulations, in operation of hydropower sys-
tems with environmental regulation. Furthermore, a wider selec-
tion of cases and hydropower watercourses with different
variations of the state-dependent maximum discharge constraint
could be analysed. Finally, a broader analysis to evaluate how well
the constraint meets the underlaying purpose of the environmental
regulation, as well as other unintended consequences like flood
risk, could be of interest.
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