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Abstract—This paper proposes a stochastic continuous-time
optimization model for coordinating the operation of flexibility
reserve in a hybrid hydro-thermal-wind power system. The pro-
posed continuous-time model captures the sub-hourly uncertainty
and variations of wind power and load, and accurately models
and schedules the ramping flexibility of the hydrothermal system
to match the uncertainty and variations of wind power and load.
A simplified Northern European system is studied over a 30-
hour period to examine the potential of using hydropower as
a comprehensive flexibility provider. Norwegian hydropower is
shown to be a significant source of flexibility used to mitigate
wind power variations, especially during ramping constrained
periods. The hydropower provides 73.5% of the balancing energy
in the base case, which includes smoothing out longer wind
power deviations as well as rapid ramping relief. The short-term
implications of increasing the offshore wind power in the North
Sea by 50% compared to 2020 was also studied in the Northern
European test system. The increased wind power causes steeper
ramping in the net load, which drives the hydropower to its full
balancing potential to allow thermal units to operate within their
ramping limits.

Index Terms—Hydrothermal scheduling, hydropower, wind
power, flexibility reserve, continuous-time scheduling.

NOMENCLATURE

Sets and Indices
J Thermal generators, index j
K Water value cuts, index k
L HVDC cables, index l
M Hydropower plant-reservoir pairs, index m
A Areas in the system, index a
Id/b/om Reservoirs that discharge/bypass/spill into m, in-

dex i
S Second-stage scenarios, index s
T Time intervals, index h
Main Variables
flh Flow on HVDC cable [MW]
gjh Generated thermal power [MW]
pmh Generated hydropower [MW]
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qin
mh Total controlled flow into reservoir [m3/s]
qnet
mh Net flow into reservoir [m3/s]
qrel
mh Total flow released out of reservoir [m3/s]
qbmh Flow through bypass gate [m3/s]
qdmh Flow through turbine [m3/s]
qomh Flow through spill gate [m3/s]
r

hyd,↑/↓
mh Reserved hydropower capacity up/down [MW]
r

th,↑/↓
jh Reserved thermal capacity up/down [MW]
suth
jh, sd

th
jh Startup, shutdown of thermal generator [MW]

suhyd
mh, sd

hyd
mh Startup, shutdown of hydropower plant [MW]

uhyd
mh Hydropower unit commitment decision
uth
jh Thermal unit commitment decision
vmh Reservoir volume at time interval start [m3]
wmh Reservoir volume within time interval [m3]
ycrt
sah Power curtailment [MW]
yshd
sah Load shedding [MW]
zs Future expected system cost [C]
Main Parameters
∆Wsah Wind power scenario deviation [MW]
δh Length of time interval [s]
ηm Hydropower efficiency [MWs/m3]
γ
↑/↓
jh Thermal ramping increase for start/stop [MW/s]

C
th
j , C

th
j Thermal startup, shutdown cost [C]

C
hyd
m , Chyd

m Hydro startup, shutdown cost [C]
πs Scenario probability
Ccrt Power curtailment cost [C/m3]
Cshd Load shedding cost [C/m3]
Cb Penalty for bypassing water [C/MW]
Co Penalty for spilling water [C/MW]
Cj Marginal cost of thermal generator [C/MW]
Dk Water value cut constant [C]
Fmaxl Maximal flow limit on HVDC cable [MW]
G
max/min
j Maximal/minimal thermal capacity [MW]

Gla Grid coefficient determining cable flow direction
Iumh Natural inflow from creek intakes [m3/s]
Imh Natural inflow into reservoir [m3/s]
K th
j Thermal reserve capacity cost [C/MW]

Khyd
m Hydro reserve capacity cost [C/MW]

Lah Forecasted load [MW]
N Number of time intervals in T
P
max/min
m Maximal/minimal hydropower capacity [MW]
Qbm Maximal flow through bypass gate [m3/s]
Qdm Maximal flow through turbine [m3/s]
R
↑/↓
j Thermal unit ramping limits [MW/s]

V 0
m Initial reservoir volume [m3]
Vm Maximal reservoir capacity [m3]
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Wah Forecasted wind power [MW]
WVmk Water value cut coefficient [C/m3]

I. INTRODUCTION

A. Motivation

THE transition from traditional power systems dominated
by conventional power generation to hybrid energy sys-

tems with significant amounts of variable renewable energy
sources (VRES) is well underway in many power systems
around the world. Such a fundamental shift is an important
part of eventually reaching a net-zero emission and climate-
neutral society, which is currently the stated long-term goal of
the European Union [1].

There are several new challenges related to operating a
hybrid power system, mainly related to the variability of
renewable resources. Optimal coordination between different
resources to mitigate the low flexibility of VRES is a cen-
tral issue. The problem requires detailed modelling of the
responsiveness of each generation technology in the system
to fairly estimate their combined flexibility, or lack thereof.
The stochastic nature of VRES must also be considered in
the scheduling of power production and reserve capacity,
as forecast errors will inevitably cause deviations between
scheduled production and actual net load. Such imbalances can
be modelled through stochastic optimization techniques, and
are an essential driver behind the advancement of stochastic
scheduling models in the last decades [2].

In addition to limited resource flexibility, hybrid systems
are faced with the challenge of adapting to the current elec-
tricity market structure to handle ramping scarcity in real-
time balancing. The day-ahead electricity markets in Europe
typically have a time resolution of 15, 30, or 60 minutes, which
results in piece-wise constant production schedules for each
time interval after the market is cleared [3]. Even if the load
and VRES power production were perfectly deterministic, the
discrete market structure creates a type of structural power
imbalances because the net load is a continuous function
of time. Structural imbalances exhibit a largely deterministic
behavior as they are occur in the transition from one market
bid interval to the next [4], [5]. Regulatory changes such as
finer market trading granularity could alleviate some structural
imbalances [6], though moving from trading energy to power
profiles should be considered [7].

An example of a large hybrid system is the interconnected
power system in Northern Europe, which contains flexible
hydropower in Norway with large and cascaded reservoirs,
and conventional thermal generation in Continental Europe
with considerable emerging offshore wind power resources in
the North Sea [8]. The growth in high-voltage direct current
(HVDC) transmission capacity from Norway to continental
Europe and Great Britain increases the potential for utilizing
the hydropower flexibility to help balance the larger system.
The role of hydropower as a large-scale flexibility provider
will become more valuable as the transition towards a carbon-
neutral power system continues. To harness and transport the
hydropower flexibility across country lines, it is critical to
develop modelling tools that can take a holistic approach

to short-term balancing of both structural imbalances and
stochastic VRES forecast deviations.

B. Literature Survey

The operational planning of hydrothermal systems has been
investigated over several decades, resulting in various well-
established models. Long-term scheduling models such as [9]
and [10] focus on calculating prices and finding the optimal
long-term reservoir strategy given the seasonal weather uncer-
tainties. Medium-term models such as [11] refine the long-
term strategy and pass it to the short-term operational models
like [12], which translate it into market bids and production
plans for tomorrow. However, these traditional hydrothermal
optimization models are based on discretizing the optimization
horizon into time intervals with piece-wise constant power
generation. Such models are unable to properly capture the
rapid changes in VRES power production and the ramping
limitations of the power generation in the system.

The problem of the hidden inflexibility in traditional op-
timization models has led to research on power-based unit
commitment (UC) models where the power generation is
no longer assumed to be constant through the time interval.
Allowing linear power production profiles is the simplest ex-
tension of the energy-based UC formulation and was shown to
perform better than both deterministic and stochastic energy-
based UC models in [13]. Continuous-time optimization was
first introduced to power system operation in [14], [15],
and generalizes the idea of power-based optimization models.
Bernstein polynomials are used to describe the time-dependent
decision variables in the models, while it is still possible to
solve them as mixed-integer linear programs (MILPs), unlike
related non-linear model formulations in adjacent fields such
as [16]. The framework enables the modelling of flexible and
inflexible units in a more realistic way than standard discrete-
time models and can capture high-ramping events in VRES
production.

Stochastic continuous-time models have been formulated
previously to account for the uncertainty of VRES power
generation. The multi-stage stochastic model in [17], [18]
are examples of this. The stochastic model in [18] uses
different fidelity for the polynomial expansion in the first and
second stage problem formulations to allow higher variations
in the realized net load. A flexibility reserve product that
provides reserve capacity for both energy and ramping relief is
formulated in the stochastic continuous-time model found in
[19], which also incorporates energy storage. Hydropower in
cascaded topology, however, is fundamentally different from a
energy storage system due to the physical dynamics between
different reservoirs and hydropower’s large energy storage
potential. The cascaded hydropower generation is modeled
in a deterministic continuous-time framework in [20]. The
case study in [21] shows that the deterministic hydrothermal
continuous-time model was able to coordinate flexibility and
avoid abrupt flow changes on HVDC lines due to rapid
fluctuations in wind power compared to a discrete-time UC
model of 15-min resolution. Although generic energy storage
systems are modeled in the stochastic optimization frameworks
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in [17], [18], no previous work has attempted to include large-
scale hydropower in a cascaded topology into a stochastic
continuous-time model, which is pursued in this paper.

C. Contributions

This paper develops a stochastic continuous-time model
for coordinating the operation of cascaded hydropower units
with considerable storage capacity, thermal generation with
limited flexibility, and uncertain wind power. The proposed
model represents a fundamental approach to the problem of
coordinating flexibility in a hybrid power system over very
short and intermediate time scales. The flexible hydropower
can be used both for ramping flexibility within a time interval
(hour) and for shifting production to accommodate forecast
errors in wind power. Compared to the deterministic models
published in the authors’ previous work in [20], [21], several
new modifications to the continuity constraints are required
to achieve a tractable and flexible hydropower formulation
when uncertainty is added. This includes formulating the
continuity constraints over the branching point of the scenario
tree through simple initial conditions on the second-stage
variables. The results from the case study show how the model
uses the hydropower resources for both ramping relief and
large-scale wind energy balancing, contributing up to 73.5%
of the total balancing energy of the system. When the installed
wind power capacity is increased by 50%, the hydropower
is pushed towards its limits for providing balancing services,
constrained by both HVDC transmission capacity and internal
power limits. The proposed model can thus be used to gain
insight into the short-term flexibility limits and capabilities of
hybrid power systems, which will be highly relevant for both
system operators and power producers.

In summary, the main contributions of this paper include:

• The paper presents a new stochastic continuous-time
optimization framework, which includes a detailed hy-
dropower description in a cascaded topology.

• The proposed framework represents a holistic approach
to short-term hybrid power system balancing with hy-
dropower. Both structural market imbalances and stochas-
tic imbalanced caused by VRES forecast errors are dealt
with by the modeling.

• The proposed model provides new insights to understand
the short-term impacts of incorporating high amounts of
offshore wind in an interconnected hybrid power system
with significant hydropower resources.

D. Organization of the Paper

The rest of this paper is organized as follows: The proposed
stochastic continuous-time model is formulated in Section II
and the cases study based on the Northern European power
system is presented in Section III. Concluding remarks and
ideas for future work are found in Section IV, and the funda-
mental properties of continuous-time optimization models are
described in Appendix A.

II. THE PROPOSED OPTIMIZATION MODEL

A two-stage continuous-time unit commitment and reserve
procurement model for a hydrothermal system with offshore
wind power joined by HVDC cables is formulated in Sec-
tions II-A to II-C. The main assumption of the proposed
model is that the operation of the hybrid power system can
be modelled by minimizing the total operational system costs
of thermal and hydropower units, while aiming to procure
flexibility for minimizing the wind curtailment in the system.
The load in each area is assumed to be deterministic, and
only the uncertainty in wind power generation is considered
in the formulation. The continuous-time formulation of the
model also assumes that all temporal data can be represented
as continuous and smooth functions in time of a finite degree
[18]. However, the assumption of continuity is relaxed for the
optimal hydropower production schedule and related quantities
as detailed further in Section II.

The mathematical formulation of the proposed model repre-
sents the short-term operation of the hybrid system considering
system dispatch under wind power uncertainty, followed by
real-time balancing. The overall goal of the model is to
minimize the cost of unit commitment, energy production, and
reserve procurement for the whole system given uncertainty
in the wind power production. The most important first-
stage decisions are thus to determine the unit commitment,
production schedules, and reserve capacity allocation of all
units, in addition to the scheduled flow on the cables between
the areas. The uncertainty in wind power generation is realized
in the second stage, and so the procured reserve capacity from
the first stage is activated to balance the deviation. Respecting
the physical constraints of the system and individual units,
such as ramping on thermal units and the water balance of the
hydropower system, is essential in both the scheduling and
balancing stages. Wind power is considered to be known for
a short period at the beginning of the optimization horizon
before branching into several possible scenarios, giving rise
to the two-stage formulation.

The variables of the model are written as lower case Latin
letters, and variables and other symbols in bold signify a
column vector representing the coefficients of the underlying
Bernstein polynomials. This matrix notation is used throughout
the paper and is explained in detail in Appendix A. The model
formulation is organized into three main parts: Section II-A
describes the objective function, while Section II-B and Sec-
tion II-C describe the first-stage and second-stage constraints
of the model, respectively. Section II-B and Section II-C are
further split into subsections that formulate the constraints
related to thermal units, the hydropower topology, and sys-
tem wide constraints. In addition, Section II-C4 defines the
continuity constraints necessary to enforce a smooth transition
from the initial deterministic time period to the time period
with uncertain wind power production.

A. Objective Function

The objective function Ω for the stochastic model is to min-
imize the total expected cost of operating the interconnected
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hydrothermal system:

min Ω =
1

4
1
ᵀ
∑
h∈T

δh

[ ∑
m∈M

(
Cbqbmh + Coqomh

)
+
∑
j∈J

Cjgjh

+
∑
m∈M

Khyd
m

(
rhyd,↑
mh + rhyd,↓

mh

)
+
∑
j∈J

K th
j

(
rth,↑
jh + rth,↓

jh

)]
+
∑
h∈T

∑
m∈M

(
C

hyd
m suhyd

mh + Chyd
m sdhyd

mh

)
+
∑
h∈T

∑
j∈J

(
C

th
j su

th
jh + C th

j sd
th
jh

)
+
∑
s∈S

πs∆Ωs. (1)

The first-stage variables are expressed with Bernstein poly-
nomials of degree three, while the second-stage variables are
of fidelity five. The higher fidelity in the second stage makes
it possible to model higher levels of variability in the wind
power. The first line of the objective is the total incurred
spillage and bypass penalties, and the scheduled cost of the
thermal generation. Bypass and spillage penalties are incurred
when water is bypassed around the power plant or spilled
out of the reservoir, respectively. Figure 1 illustrates how the
different waterways are modelled. As in [18], an explicit cost
for the reserved hydropower capacity and thermal capacity is
added in the second line of the objective function. The cost
is assumed to be constant over the optimization horizon and
equal for upward and downward reserves. The total objective
function cost has been calculated by integrating the time-
varying and continuous curves of third degree over the whole
optimization horizon by use of (16) in Appendix A. The
startup and shutdown costs of the thermal and hydropower
plants are summed up in the third and fourth lines, while the
last term in the fourth line of (1) is the expected cost of the
balancing stage. The cost ∆Ωs is the second-stage objective
function cost in scenario s ∈ S with probability πs, which is
the sum of penalties and operational cost of the thermal and
hydropower plants:

∆Ωs = zs +
1

6
1
ᵀ
∑
h∈T

δh

[
ρhyd

∑
m∈M

(
∆p+

smh + ∆p−smh

)
+
∑
j∈J

(
C+
j ∆g+

sjh − C
−
j ∆g−sjh

)
+
∑
m∈M

(
Co+∆qo+smh − C

o−∆qo−smh

)
+
∑
m∈M

(
Cb+∆qb+smh − C

b−∆qb−smh

)
+
∑
a∈A

(
Cshdyshd

sah + Ccrtycrt
sah

)]
. (2)

The expected future cost of the system and the deployment
cost of the activated hydropower reserves (∆p±smh) make
up the terms in the first line of (2). The expected future
system cost zs is bounded by linear constraints calculated
by long-term hydrothermal models such as [9], which are
described further in Section II-C3. Note that some of the
second-stage variables are formulated as deviations from the
first-stage variables with a preceding ∆ symbol, and are

Fig. 1. Depiction of the different waterways for discharging, bypassing and
spilling water between reservoirs. Natural inflow enters the system in two
different ways, either into the reservoir (triangle) or directly into the main
tunnel of the plant (rectangle).

therefore not listed in the nomenclature. The cost of activating
hydropower reserves ρhyd is the same in both directions and
considered equal for all hydropower units. The operational and
deployment cost of the thermal reserves (∆g±) is found in the
second line, where the cost coefficients C±j are related to the
marginal cost Cj of the thermal units so that C−j < Cj < C+

j .
This means that a deployment cost is paid when reserves
are deployed in either direction in addition to the change in
operational cost of the thermal units compared to the scheduled
production cost1. Line three and four of the second-stage
objective function apply the same cost structure to changing
the bypass (∆qb±smh) and spillage (∆qo±smh) flows in the second
stage. This is done to discourage the model from unnecessary
changes in the bypass and spillage decisions in the balancing
stage. Finally, the last line of (2) is the cost of shedding load
and curtailing wind in all areas.

B. First-Stage Constraints

The first-stage constraints model the unit commitment
decisions, reserve procurement, and production scheduling
decisions of the interconnected system. A continuous-time
formulation of third degree is used to model the first-stage
constraints.

1) Thermal production constraints: All thermal generators
are scheduled according to the following unit commitment and
ramping constraints:

gjh + rth,↑
jh ≤ G

max
j uth

jh (3a)

gjh − rth,↓
jh ≥ G

min
j uth

jh (3b)

0 ≤ r
th,↑/↓
jh ≤

(
Gmaxj −Gminj

)
1 (3c)

uth
jh =

[
uth
jh, u

th
jh, u

th
j,h+1, u

th
j,h+1

]ᵀ
(3d)

F0(gjh) = 0, h 6= N (3e)

F1(gjh) = 0, h 6= N (3f)

suth
jh − sdth

jh = uth
j,h+1 − uth

jh (3g)

−R↓jh ≤
1

δh
K

ᵀ
3 · gjh ≤ R↑jh (3h)

1Note that the negative sign for C−
j ∆g−sjh in (2) means that some of

the scheduled thermal fuel costs are recovered when regulating down, but a
premium balancing cost is still payed since C−

j < Cj .
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R↑jh = R↑j

[
uth
jh, u

th
j,h+1 + γ↑jhsu

th
jh, u

th
j,h+1

]ᵀ
(3i)

R↓jh = R↓j

[
uth
jh, u

th
jh + γ↓jhsd

th
jh, u

th
j,h+1

]ᵀ
(3j)

uth
jh ∈ {0, 1} (3k)

0 ≤ suth
jh, sd

th
jh ≤ 1 (3l)

{suth
jh, sd

th
jh} of SOS type 1. (3m)

Theses constraints are primarily based on the formulation
of [15]. The thermal generation and the procured reserve
capacity in the upward and downward direction must obey
the minimum and maximum generation limits of the gen-
erator in (3a)–(3c). Note that the convex hull property in
(13) in Appendix A is used to ensure that the continuous
curves represented by the coefficient vectors are within the
generator bounds. The binary commitment variable uth

jh can
be interpreted as the commitment status of the generator
at the beginning of interval h, and is incorporated into the
generation limit constraints by the vector in (3d). Note that
this formulation requires N+1 commitment variables for each
generator, as the commitment status at the end of the horizon
is included. The formulation allows the thermal units to use the
whole interval h to smoothly start up or shut down production,
which is necessary since the generation trajectory is required to
be C1 continuous by (3e)–(3f). The startups and shutdowns of
the generators are counted in (3g). The ramping constraints for
the generators are formulated in (3h), which is based on taking
the derivative of the thermal production trajectory gj(t) and
using the relation in (14) in Appendix A. The upper and lower
ramping trajectory bounds are formulated in (3i) and (3j). The
commitment variables are used to make a tight formulation of
the ramping constraint. Extra care must be taken for the middle
vector component to ensure that the ramping constraints do not
interfere with the upper and lower generation bounds when a
unit starts up or shuts down. Additional ramping capability
γ
↑/↓
jh R

↑/↓
j is used to relax the ramping constraint in this case,

and must satisfy γ↑/↓jh ≥
3Gmin

j

δhR
↑/↓
j

− 1 for the unit to be able to

start up or shut down. The startup and shutdown variables are
formulated as continuous variables which are part of a special
ordered set (SOS) of type 1 in (3l)–(3m), which means that
at most one of the variables for each j ∈ J and h ∈ T can
be nonzero.

2) Hydropower constraints: The constraints governing the
management of the hydropower plants and reservoirs are given
in (4a)–(4t) and based on the formulation in [20]:

vm0 = V 0
m (4a)

vm,h+1 − vmh =
1

4
δh1

ᵀ·qnet
mh (4b)

wmh = vmh1 + δhN
ᵀ
3 · qnet

mh (4c)

qnet
mh = Imh + qin

mh − qrel
mh − qomh (4d)

qin
mh =

∑
i∈Idm

qdih +
∑
i∈Ibm

qbih +
∑
i∈Iom

qoih (4e)

qrel
mh = qdmh + qbmh − Iumh (4f)

pmh = ηmqdmh (4g)

pmh + rhyd,↑
mh ≤ P

max
m uhyd

mh1 (4h)

pmh − rhyd,↓
mh ≥ P

min
m uhyd

mh1 (4i)

suhyd
mh − sd

hyd
mh = uhyd

m,h+1 − u
hyd
mh, h 6= N (4j)

F0(qomh) = 0, h 6= N (4k)

F0(qbmh) = 0, h 6= N (4l)
0 ≤ wmh ≤ Vm1 (4m)

0 ≤ qdmh ≤ Qdm1 (4n)

0 ≤ qbmh ≤ Qbm1 (4o)

0 ≤ qomh,q
rel
mh (4p)

0 ≤ r
hyd,↑/↓
mh ≤

(
Pmaxm − Pminm

)
1 (4q)

uhyd
mh ∈ {0, 1} (4r)

0 ≤ suhyd
mh, sd

hyd
mh ≤ 1 (4s)

{suhyd
mh, sd

hyd
mh} of SOS type 1. (4t)

The volume balance of the reservoirs is kept by (4a) and
(4b), where the volume variables vmh is the volume at the
start of interval h. The change in volume over a time interval
is found by integrating the net flow into the reservoir by
using the relation in (16) in Appendix A. The time-varying
volume within time interval h is found by using (15) in
Appendix A, and is described by wmh in (4c). Equations (4d)–
(4f) describe how water can flow through the three different
waterways between reservoirs, see Figure 1 for an illustration.
All waterways may lead to different downstream reservoirs
or directly out of the system. The regulated flow into the
reservoir is found by summing up the discharge, bypass and
spillage flows from the connected upstream reservoirs. It is
necessary to introduce the water released from the reservoir
(qrel
mh) to properly model the unregulated inflow which enters

the system between the reservoir and plant. Regulated inflow
enters directly into the reservoirs and may therefore be stored.
The power output of the generator is approximated as linearly
related to the discharged water through the turbine in (4g). Due
to the large problems size, the hydropower production function
is assumed to be concave, see [22] for more accurate treatment.
The unit commitment and startup/shutdown constraints are
found in (4h)–(4j), which includes the spinning reserve capac-
ity procurement and the binary commitment status. Note that
the upper and lower generation limits of the hydropower units
are not modelled in the same way as the thermal units in (3a)
and (3b). Since starting a hydropower unit usually takes less
than a minute, the hydropower production trajectories are not
required to be continuous over time intervals. Consequently,
the hydropower units are allowed to instantaneously start up or
shut down production from one interval to the next. The bypass
and spillage variables are still forced to be C0 continuous
in (4k) and (4l). The remaining constraints (4m)–(4t) are the
imposed physical bounds for the variables.

3) System constraints: System wide constraints for the ar-
eas connected by HVDC transmission lines are the following:∑

m∈Ma

pmh +
∑
j∈Ja

gjh −
∑
l∈L

Glaf lh = Lah −Wah (5a)

− Fmaxl 1 ≤ f lh ≤ Fmaxl 1 (5b)

F0(f lh) = 0, h 6= N (5c)
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F1(f lh) = 0, h 6= N (5d)∑
j∈J

F0(r
th,↑/↓
jh ) = 0, h 6= N (5e)∑

m∈M
F0(r

hyd,↑/↓
mh ) = 0, h 6= N. (5f)

The load and forecasted wind power are C1 continuous
input parameters, and must be balanced by the total thermal
and hydropower generation in each area in addition to the
imports and exports on the transmission lines in (5a). The
coefficient Gla is either ±1 or 0, and dictates the positive flow
direction on line l if it is connected to area a. Equation (5b)
bounds the maximal and minimal flow on each transmission
line, and (5c) and (5d) force the line flow to be C1 continuous.
Even though the individual hydropower production variables
are discontinuous over time interval shifts, the C1 continuity
of all other components of the power balance constraint forces
the sum of the hydropower production to be C1 continuous.
The total reserved thermal and hydropower capacity in both
directions is required to be C0 continuous in (5e) and (5f).

C. Second-Stage Constraints

The uncertain wind power generation is realized in the
second stage, and the reserved capacity of the generators of the
system is deployed to keep the system in balance. The first
h0 time intervals of the optimization horizon is considered
deterministic with known wind power output, which makes it
possible to model a smooth transition of the uncertain wind
power from time h0. The second-stage variables are therefore
only defined for the time periods h ∈ {h0, . . . , N} ≡ Tscen.
The second-stage variables are formulated as deviations from
their first-stage values where applicable, signified by a pre-
ceding ∆ symbol. The connection to the first-stage production
schedule, reserve capacity procurement, and unit commitment
decisions make up the tightest coupling between the stages.
However, the first-stage water flow and reservoir volume plans
also affect the second-stage hydropower operation, as shown in
Section II-C2. The constraints listed in the following subsec-
tions are valid for all scenarios s ∈ S, and scenario dependent
data and decision variables are marked by a scenario subscript
s. The time-dependent scenario variables are modelled using
5th degree Bernstein polynomials to capture the fast variations
of the wind power production.

1) Thermal production constraints: The constraints dictat-
ing the change in thermal production as reserve capacity is
deployed are valid for all thermal generators and time intervals
h ∈ Tscen:

−X
ᵀ
3,5 · r

th,↓
jh ≤ ∆gsjh ≤ X

ᵀ
3,5 · r

th,↑
jh (6a)

1

δh
K

ᵀ
5 ·
(
X

ᵀ
3,5 · gjh + ∆gsjh

)
≤ X

ᵀ
2,4 ·R

↑
jh (6b)

1

δh
K

ᵀ
5 ·
(
X

ᵀ
3,5 · gjh + ∆gsjh

)
≥ −Xᵀ

2,4 ·R
↓
jh (6c)

F0(∆gsjh) = 0, h 6= N (6d)

F1(∆gsjh) = 0, h 6= N (6e)

∆gsjh = ∆g+
sjh −∆g−sjh (6f)

0 ≤ ∆g±sjh. (6g)

The deployed thermal reserve power ∆gsjh is bound to
be within the limits determined by the first-stage reserve
procurement in Section II-B1. The elevation matrix X3,5 is
used to lift the first-stage reserve variables to the higher fidelity
of the second-stage variables. Ramping constraints are applied
to the entire second-stage generation in (6b) and (6c) that
enforce the same upper and lower ramping trajectories as in the
first-stage constraints (3i) and (3j). The second-stage change
in production is required to be C1 continuous in (6d) and (6e),
and is explicitly split into positive and negative parts ∆g±sjh
in (6f) and (6g) to distinguish upward and downward reserve
activation.

2) Hydropower constraints: The second-stage hydropower
related decisions for all time intervals h ∈ Tscen are also
formulated as deviations from the first-stage solution governed
by the constraints in Section II-B2:

∆vsm,h0
= 0 (7a)

∆vsm,h+1 −∆vsmh =
1

6
δh1

ᵀ ·∆qnet
smh (7b)

∆wsmh = ∆vsmh1 + δhN
ᵀ
5 ·∆qnet

smh (7c)

∆qnet
smh = ∆qin

smh −∆qrel
smh −∆qosmh (7d)

∆qin
smh =

∑
i∈Idm

∆qdsih +
∑
i∈Ibm

∆qbsih +
∑
i∈Iom

∆qosih (7e)

∆qrel
smh = ∆qdsmh + ∆qbsmh (7f)

∆psmh = ηm∆qdsmh (7g)

−X
ᵀ
3,5 · r

hyd,↓
mh ≤ ∆psmh ≤ X

ᵀ
3,5 · r

hyd,↑
mh (7h)

F0(∆qosmh) = 0, h 6= N (7i)

F0(∆qbsmh) = 0, h 6= N (7j)

0 ≤ X
ᵀ
4,6 ·wmh + ∆wsmh ≤ Vm1 (7k)

0 ≤ X
ᵀ
3,5 · qdmh + ∆qdsmh ≤ Qdm1 (7l)

0 ≤ X
ᵀ
3,5 · qbmh + ∆qbsmh ≤ Qbm1 (7m)

0 ≤ X
ᵀ
3,5 · qomh + ∆qosmh (7n)

0 ≤ X
ᵀ
3,5 · qrel

mh + ∆qrel
smh (7o)

∆qosmh = ∆qo+smh −∆qo−smh (7p)

∆qbsmh = ∆qb+smh −∆qb−smh (7q)

∆psmh = ∆p+
smh −∆p−smh (7r)

0 ≤ ∆qo±smh,∆qb±smh,∆p±smh. (7s)

The change in volume and flow between the reservoirs,
(7a)–(7g), are analogous to the first-stage constraints (4a)–
(4g). Note that the inflow is deterministic and is not part of
the second-stage volume and flow deviation constraints. The
change in hydropower production is constrained to be within
the bounds of the procured reserve capacity in (7h), and the
spillage and bypass is forced to remain C0 continuous in the
second stage by (7i) and (7j). The total volume, discharge
and bypass in the second stage must still be within their
respective physical bounds, which is ensured by constraining
the sum of the first-stage and second-stage variables in (7k)–
(7m). Similarly, the total spillage and reservoir release is kept
non-negative by adding (7n) and (7o). The change in spillage,

Authorized licensed use limited to: Sintef. Downloaded on May 19,2022 at 07:24:40 UTC from IEEE Xplore.  Restrictions apply. 



1949-3029 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2022.3175430, IEEE
Transactions on Sustainable Energy

7

bypass and hydropower production are split into positive and
negative parts in (7p)–(7s). As was the case for the change in
thermal generation, the split of the second-stage hydropower
production variables is done to identify upward and downward
reserve deployment correctly.

3) System constraints: The deviation between realized wind
power and forecasted wind power, ∆Wsah, must be balanced
in the second stage for all time intervals h ∈ Tscen. In
addition, the future expected cost of the system, zs, is taken
into account:

zs ≥
∑
m∈M

WVmk(vm,N+1 + ∆vsm,N+1) +Dk (8a)∑
m∈Ma

∆psmh +
∑
j∈Ja

∆gsjh −
∑
l∈L

Gla∆fslh

= −∆Wsah − yshd
sah + ycrt

sah (8b)

− Fmaxl 1 ≤ X
ᵀ
3,5 · f lh + ∆fslh ≤ Fmaxl 1 (8c)

F0(∆fslh) = 0, h 6= N (8d)

F1(∆fslh) = 0, h 6= N (8e)∑
m∈Ma

F0(∆psmh) = 0, h 6= N (8f)∑
m∈Ma

F1(∆psmh) = 0, h 6= N (8g)

0 ≤ ycrt
sah ≤ max{0,∆Wsah} (8h)

0 ≤ yshd
sah. (8i)

The expected cost of the hydrothermal system is bounded by
the set of linear constraints k ∈ K in (8a), which depends on
the total final volume of all hydropower reservoirs in scenario
s. The coefficients WVmk and constant term Dk are calculated
by long-term hydrothermal scheduling models that consider
the system operation on a time horizon of several seasons,
such as [9]. The constraints are the result of the Benders
decomposition scheme used in the long-term model, and the
cuts can be used as end value description for the water in short-
term models. Using more or less water in a given scenario
results in higher or lower future expected costs according to
these cut constraints. The power balance in (8b) allows the
change in wind to be balanced by deploying thermal and
hydropower reserves and changing the flow on the HVDC
lines. In addition, wind curtailment and load shedding are
possible options for keeping the balance. Note that (8h) only
allow the curtailment of wind down to the forecasted wind
power value. The total flow on HVDC lines are bound by the
flow constraints in (8c), and is required to be C1 continuous in
(8d) and (8e). The C1 continuity of the sum of the hydropower
production is enforced directly by (8f) and (8g).

4) Initial continuity constraints: The continuity constraints
applied to the second-stage variables in the previous subsec-
tions do not ensure a smooth transition from the schedule in
the initial deterministic period to the real-time operation in
each scenario. To remedy this, the following constraints based
on (19)–(20) in Appendix A are added for all scenarios s ∈ S:

∆g
(0)
sj,h0

, ∆g
(1)
sj,h0

= 0 ∀j ∈ J (9a)

∆f
(0)
sl,h0

, ∆f
(1)
sl,h0

= 0 ∀l ∈ L (9b)

∆q
b,(0)
sm,h0

= 0 ∀m ∈M (9c)

∆q
o,(0)
sm,h0

= 0 ∀m ∈M (9d)∑
m∈M

∆p
(0)
sm,h0

,
∑
m∈M

∆p
(1)
sm,h0

= 0. (9e)

Constraint (9a) force the thermal production and ramping
in all scenarios to be continuous at time t = h0 with respect
to the scheduled first-stage production. The other constraints
have a similar effect of enforcing C0 and/or C1 continuity at
time t = h0.

III. CASE STUDY

In this section, the stochastic continuous-time model in
Section II is used to investigate the behaviour of a hydro-
thermal-wind system when additional wind power is integrated
into the generation mix. A simplified Northern European
system is used in the case study where Norwegian hydropower
is coupled to Continental Europe with offshore wind power.
This is a highly relevant use-case for the model, as Norwegian
hydropower is seen as an important source of balancing in the
European transition towards net zero emission.
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Fig. 2. Wind power input data used in the base case run of the stochastic
continuous-time model. The wind power production in the first 6 hours is
deterministic (blue line), while the forecasted wind power (red line) and wind
power scenarios (black lines) apply for the following 24 hours.

A. System Description

The hydrothermal system used in the following sections is
based on a simplified version of the Northern European sys-
tem. An area containing only hydropower production is con-
nected to a thermal area with an HVDC line, while a third wind
power area is connected to the thermal area. This represents the
coupling of the hydropower-dominated Norwegian system to
the continental European system (Netherlands, Germany and
Denmark) with considerable offshore wind power resources.
A cascaded hydropower topology is used in the hydropower
area, which is based on a real Norwegian watercourse with a
total of 535.3 MW installed capacity divided among 12 linked
reservoir-plant pairs, see [23] for a more detailed description of
the hydropower system. The hydropower area is considered to
represent the total Norwegian hydropower capacity of roughly
32 GW. The thermal units, HVDC cables, and installed wind
power in the rest of the system are scaled down by an

Authorized licensed use limited to: Sintef. Downloaded on May 19,2022 at 07:24:40 UTC from IEEE Xplore.  Restrictions apply. 



1949-3029 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2022.3175430, IEEE
Transactions on Sustainable Energy

8

equivalent amount to resemble a miniature Northern European
system. The thermal area consists of 20 units (one nuclear, one
oil, 9 gas, and 9 coal) picked from the 2019 update of the IEEE
reliability test system [24]. After scaling the thermal units, a
total of 921.2 MW thermal capacity is located in the thermal
area. The transmission capacity between the hydropower and
thermal areas amounts to 63 MW, while the offshore wind
power capacity is 172 MW.

B. Input Data and Wind Power Scenario Generation

The linear cut constraints used in the future system value
description in (8a) was calculated by the long-term hy-
dropower scheduling model in [9] by optimizing the use of
the hydrothermal system over a period of 156 weeks, and
the initial volumes of every reservoir are set to 60% of its
maximal volume. Inflow to the hydropower system are based
on historic inflow data during winter, and is considered to
be deterministic and is kept as a discrete hourly time series
in the continuous-time model. The thermal marginal costs Cj
were calculated based on the data in [24], and the same is
true for the thermal startup and shutdown costs. The other
cost parameters of the objective function are listed in Table I.
The hydropower reserve capacity and activation costs are 40%
and 30%, respectively, of an estimated "marginal cost" for the
hydropower system based on the coefficients of the binding
cut when the end volume is assumed to be the same as the
initial volume. Similarly, the thermal reserve costs parameters
are based on the marginal costs as suggested in [18].

TABLE I
OBJECTIVE FUNCTION COST PARAMETERS

Cost parameter Symbol Value

Bypass Cb 100 e/Mm3

Spillage Co 200 e/Mm3

Bypass change Cb± (1 ± 0.1)Cb

Spillage change Co± (1 ± 0.1)Co

Hydropower startup, shutdown C
hyd
m , C

hyd
m 100 e

Hydropower reserve capacity K
hyd
m 9 e/MWh

Hydropower reserve activation ρhyd 6.75 e/MWh
Thermal reserve capacity K th

j 0.4Cj

Thermal reserve activation C±
j (1 ± 0.3)Cj

Load shedding Cshd 4500 e/MWh
Wind curtailment Ccrt 60 e/MWh

The generated wind power production scenarios, shown in
Figure 2, are based on forecasted and realized wind power time
series from western Denmark from October 2019 to April 2020
[25]. The stochastic model has a 6 hour period in the beginning
which is deterministic, while the remaining 24 hours have
uncertain wind power production. The piece-wise constant
forecast error for each day was calculated in 15 min resolution,
and this data was then fitted to a multivariate Gaussian kernel
density function of 96 random variables. The tools in the
SciPy package [26] in Python was used to fit the data to the
multivariate Gaussian kernel. The estimated density function
was then used to generate 200 equiprobable wind power
deviation scenarios of 15 minute resolution and 24 hour length,
which were added to the wind power forecast for October 14th,

2019 to create the full wind power scenarios. Values exceeding
the wind power capacity or falling below zero were truncated
to these limits. The scenarios were then reduced down to 20
by the standard backward scenario reduction algorithm [27].
The wind power data in the 6 hour long deterministic period is
based on realized wind power from 18:00 to 24:00 on October
13th, and was inserted before the start of the 20 scenarios.

The discrete-time wind power scenarios were converted to
continuous-time data suitable for the proposed optimization
model by constructing a constrained least square error (LSE)
optimization program. The quadratic LSE program finds the
coefficients of Bernstein polynomials of degree 5 that best
fit the piece-wise constant wind power data while taking into
account continuity constraints and boundary conditions. The
transition from the deterministic to the uncertain wind power
period is especially important to consider in the LSE fit,
as the values and derivatives of the wind power scenarios
are all equal and continuous at the beginning of hour 7.
The continuity constraints are imposed in the same way as
in the full continuous-time optimization model presented in
Section II, and the same is true for the upper and lower wind
power limits.

The load for the hydropower area and thermal area are
considered deterministic for the whole period, and is calculated
based on load data from Norway and Germany from January
2nd 18:00 to January 3rd 24:00 in 2020 [28], [29]. The load
series for the two areas are scaled down to have peaks of 85%
of the installed thermal and hydropower capacity, respectively.
The continuous-time load data was also created by fitting
the piece-wise constant load data to Bernstein polynomials
of degree 3 in a LSE optimization program.

C. Model Comparison and Results

The stochastic continuous-time hydrothermal model is im-
plemented and solved using Pyomo [30], [31] and CPLEX
12.10 [32]. The extensive form of the stochastic model con-
tains about 680k constraints and 420k variables, including 980
binary and 948 SOS 1 variables. A MIP gap of 0.09% (768
e) was reached after 72 hours on a machine with 24 CPUs
at 3.50 GHz and 128 GiB RAM, though a reasonable gap
of 0.78% was found after 16 hours. As noted in previous
work such as [20], the calculation time of the continuous-
time model is substantial for the relatively small system size
of 20 thermal units and 12 hydropower plants. This can be
attributed to several factors, such as the choice of polynomial
degree in both model stages and the fact that no decomposition
techniques have been employed. Solving the extensive form
of any stochastic model quickly becomes intractable, and
using Benders’ decomposition or similar solution schemes
would likely improve the calculation time. Such performance
enhancement issues are not the focus of this paper, though it
is an important factor in broadening the appeal of stochastic
models in general.

Another model run identical to the first one except for a 50%
increase in the system wind power energy was also solved. All
wind power data was uniformly scaled by a factor of 1.5 for
the second model run, and so the shape of the wind power
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(a) Base case
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(b) Increased wind case
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Fig. 3. The left and right figures show the hydropower production in the stochastic continuous-time model in the base case and the increased wind case,
respectively. The red lines represent the planned production schedule (first-stage decisions) and the black lines show the realized hydropower production in
the scenarios after reserve capacity has been activated (second-stage decisions).
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(b) Increased wind case
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Fig. 4. The left and right figures show the thermal production in the stochastic continuous-time model in the base case and the increased wind case, respectively.
The red lines represent the planned production schedule (first-stage decisions) and the black lines show the realized thermal production in the scenarios after
reserve capacity has been activated (second-stage decisions).
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(b) Increased wind case
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Fig. 5. The left and right figures show the flow of power on the HVDC line in the stochastic continuous-time model in for the base case and the increased
wind case, respectively. The red lines represent the planned transmission schedule (first-stage decisions) and the black lines show the realized line flow in the
scenarios (second-stage decisions). The blue dashed lines show the total transmission capacity of the HVDC cable. The flow is positive when moving from
the hydropower area to the thermal area.
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(a) Base case
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(b) Increased wind case
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Fig. 6. A stacked plot of the total reserve capacity allocation on hydropower and thermal units in the base case and the increased wind case. The light blue
region shows the total reserve capacity allocated on hydropower units, while the gray region is the total thermal reserve capacity allocation. Reserve capacity
in the downward direction is shown as negative values.

TABLE II
AGGREGATED OPTIMIZATION RESULTS FOR THE TWO CASES. NEGATIVE

LINE EXCHANGE SHOW A NET IMPORT TO THE HYDROPOWER AREA.
RESERVE CAPACITY RESULTS ARE PRESENTED AS AVERAGE VALUES.

Sum quantity Base case Increased wind

Scheduled wind energy 3 041.6 MWh 4 562.3 MWh
Scheduled thermal energy 14 453.3 MWh 13 455.6 MWh
Scheduled hydro energy 10 805.7 MWh 10 282.7 MWh
Scheduled line exchange -337.9 MWh -860.9 MWh

Expected hydro bal. energy 293.1 MWh 373.2 MWh
Expected thermal bal. energy 105.6 MWh 224.6 MWh
Expected load shedding 0.1 MWh 0.7 MWh
Expected wind curtailment 21.8 MWh 33.4 MWh

Hydro reserve capacity up 39.8 MWh/h 50.0 MWh/h
Thermal reserve capacity up 24.7 MWh/h 45.9 MWh/h
Hydro reserve capacity down 12.0 MWh/h 16.0 MWh/h
Thermal reserve capacity down 11.4 MWh/h 18.9 MWh/h

scenarios and forecast is the same as in Figure 2. All other
input data was kept the same for the two cases. The model
with increased wind power reached a MIP gap of 0.83% in the
72 allotted hours, showing that it is more demanding to solve
compared to the base case with less wind power. The purpose
of the second case with more wind power is to investigate how
the system will handle the variations of a substantial amount of
new wind power capacity and how the flexible units are used
in the real-time balancing to deal with the uncertainty of wind
power. Aggregated numerical results for the two model runs
are shown in Table II, and Figures 3 to 5 show the aggregated
hydropower generation, thermal generation, and the line flow
for both cases.

Table II is split into three sections, where the first one
lists the total scheduled power generation for the different
generation types, as well as the aggregated scheduled HVDC
flow from the hydropower to the thermal area. Note that
"scheduled" production and line flow means the first-stage
solution of the production and flow variables over the 30
hour horizon. The 50% increase in wind power from the
base case to the increased wind case equates to 1520.7
MWh additional forecasted wind energy. Since the load is

equal in both cases, the extra wind energy displaces some
of the thermal and hydropower production in the system.
The total thermal generation is reduced by 997.7 MWh in
the increased wind case, while the hydropower generation
is reduced by 523.0 MWh. The strong temporal coupling
imposed by the continuity constraints in the continuous-time
model formulation restricts the model from abruptly changing
thermal power output to accommodate the wind power. The
wind power scenarios are also out of phase relative to the peak
load in the system, which means that the system must deal
with a steeper ramping in the net load in the increased wind
power case. This can clearly be seen in the thermal generation
results shown in Figure 4. The thermal power production in the
increased wind case has a much lower minimum production
and a higher peak production compared to the base case.
This results in a steeper and longer ramping period in the
thermal area, which is challenging for the ramping constrained
thermal units. However, the solution is still feasible under the
tight continuous-time thermal ramping constraints. The total
energy exchange between the hydropower and thermal areas
are negative in both cases, signifying that the hydropower
area is a net importer of power. The net import is increased
by over 150% in the increased wind case, which is equal
to the decrease in hydropower production. In the increased
wind case, Figure 5 shows that the scheduled flow from the
thermal area to the hydropower area is at the line capacity in
the peak wind power hours from 6 to 12, which means that the
hydropower system is absorbing as much of the wind power
as possible in this period. This limits the ability of using the
hydropower for downward balancing energy, and the thermal
units must be used for this purpose in the congested period.

The numbers in the second section of Table II shows the
expected balancing energy delivered from hydropower and
thermal units, in addition to the expected load shedding and
wind curtailment. Note that the balancing energy is calculated
as the sum of the absolute value difference between the
first-stage scheduled production and the second-stage scenario
production. Both the cases show that the hydropower resources
are used for system balancing to a large extent, contributing
73.5% of the total balancing energy in the base case. The

Authorized licensed use limited to: Sintef. Downloaded on May 19,2022 at 07:24:40 UTC from IEEE Xplore.  Restrictions apply. 



1949-3029 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2022.3175430, IEEE
Transactions on Sustainable Energy

11

hydropower covers virtually all of the system balancing in the
upward ramping period from hour 14 to 18 in both cases,
which allows the thermal units to ramp up to cover the
peak load. The amount of balancing energy delivered from
thermal units is drastically higher in the increased wind case
compared to the base case, which shows the limit for how
much the hydropower system can contribute to the overall
system balancing. Part of this limitation is due to the congested
HVDC line from hour 6 to 12 as discussed earlier. Another
reason is the imposed smoothness and tight time-coupling of
the hydrothermal continuous-time formulation, which implic-
itly captures the systems ability to react to fast sub-hourly
variations in a more realistic way compared to analogous
discrete-time models.

The average total reserve capacity procured on the hy-
dropower and thermal units is shown in the final section of
Table II, while Figure 6 shows the allocated reserve capacity
as a function of time. Note that the unit in the table is denoted
as MWh/h, indicating that it is the average reserve capacity
delivered over the 24 hour stochastic period. The total procured
reserve capacity increases by roughly 49% in both directions
in the increased wind case, with the thermal units providing
more downward reserve capacity than the hydropower units.
The increased wind case requires a substantial amount of extra
upward reserve capacity between hours 6 and 12 to balance
the lack of wind in some of the scenarios compared to the base
case, as shown in Figure 6. Note that the first six deterministic
hours are not shown in the figure since zero reserve capacity is
allocated in this period. The hydropower is able to provide all
of the upward reserve capacity between hour 19 and 29 (peak
net load period) in the base case due to the relatively low wind
power output. The thermal units are required to take some of
this burden in the increased wind case. Figure 3 shows that
the hydropower production in most scenarios reach a flat upper
plateau between hour 18 and 24 in the increased wind case,
signifying that the online hydropower units are producing at
maximum capacity.

IV. CONCLUSION

In this paper, a stochastic continuous-time hydrothermal
model with uncertain wind power was presented. It models
both structural imbalances and forecast deviations, and is
well suited for investigations of the short-term balancing
impacts of integrating large amounts of VRES into an existing
hydrothermal system. The continuous-time model accurately
estimates the flexibility of the combined system by enforcing
smooth operation while accounting for activation of reserve ca-
pacity to balance wind power variations. The presented model
serves as a theoretical benchmark for optimal coordination
of flexible hydropower units, conventional thermal generation,
and intermittent wind power generation. The proposed method
can be applied to the other hybrid power system in order
to characterize the variability and stochasticity of uncertain
energy sources.

The case study in Section III uses a simplified Northern
European system to show that hydropower can contribute
significantly to the balancing of the interconnected system.

The hydropower provided 73.5% of the balancing energy in the
base case, which allows the thermal units time to ramp up to
cover the peak net load in the thermal area. When the installed
wind power capacity is increased by 50%, the hydropower
is pushed towards its limits for providing balancing services.
This is in part due to limited transmission capacity between
the areas, which forces an increased use of thermal units for
real-time balancing.

Finding ways of improving the calculation time of stochastic
continuous-time models with energy storage is an important
path of future research. Applying Lagrange relaxation schemes
to complicating constraints could prove an effective way of
decomposing continuous-time models. The continuity con-
straints are a prime candidate for such decomposition, since
they couple the model both in time and across polynomial
coefficients. It is very computationally demanding to solve
the model presented in this paper, and efficient solution
schemes are required before it can be solved for larger systems.
Performing sensitivity analysis over multiple axis to show the
robustness of the solution would also become practicable with
lower solution times.
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APPENDIX
FUNDAMENTAL PROPERTIES AND NOTATION

For further reading and references concerning the properties
mentioned here, the reader is directed to [15] and Appendix C
in [33]. In the continuous-time framework, time-dependent in-
put data and variables are described by Bernstein polynomials
of a finite degree n. There are n+ 1 of these polynomials:

Bin(t) =

(
n

i

)
ti(1− t)n−i, i ∈ {0, 1, ..., n}, (10)

and they form a basis for polynomials of positive degree less
than or equal to n on the time interval t ∈ [0, 1]. Vector
notation simplifies further definitions, denoted using bold text:

Bn(t) =
[
B0n(t), B1n(t), ..., Bnn(t)

]ᵀ
. (11)

A continuous curve x(t) on the interval t ∈ [0, 1] can be
constructed by finding the vector of appropriate polynomial
coefficients x such that:

x(t) = x
ᵀ ·Bn(t). (12)

The curve x(t) is easily bounded by the use of the convex
hull property, which guarantees that the curve is confined
within the limits of the coefficients:

x ≤ xmax1 ⇒ x(t) ≤ xmax. (13)

Note that 1 denotes a constant vector of ones with appro-
priate length, which is used to describe the constant xmax

in polynomial space since 1
ᵀ · Bn(t) = 1. When using the

representation in (12), the derivatives and integrals of x(t)
can be described by the linear relationships:

dBn(t)

dt
= Kn ·Bn−1(t) (14)
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∫
Bn(t)dt = Nn ·Bn+1(t) (15)∫ 1

0

Bn(t)dt =
1

n+ 1
1, (16)

where Kn and Nn are matrices of size (n+ 1)× n and (n+
1)× (n+ 2), respectively. As the Bernstein polynomials form
a basis, Bernstein polynomials of degree n can be represented
as Bernstein polynomials of any higher degree m by using the
(n+ 1)× (m+ 1) elevation matrix Xnm:

Bn(t) = XnmBm(t), n ≤ m. (17)

The definition in (12) can be extended to form a piece-wise
polynomial representation of the curve x(t) on a longer time
horizon t ∈ [0, N ]. The time horizon is first discretized into
several time intervals h ∈ T of length δh, then the curve can
be represented as:

x(t) = x
ᵀ
h ·Bn

(
t− th
δh

)
, th ≤ t ≤ th+1. (18)

Here, th represents the start time of interval h. To enforce
continuity on x(t) in the change from interval h to h+ 1, two
functions F0 and F1 are defined as follows:

F0(xh) = x
(n)
h − x

(0)
h+1 (19)

F1(xh) = x
(n)
h − x

(n−1)
h − x

(1)
h+1 + x

(0)
h+1, (20)

where the notation x
(j)
h represents the jth vector component.

The constraints F0(xh) = 0 and F1(xh) = 0 impose
continuous values and derivatives on x(t) over the interval
change, respectively.

The time-dependent input data and decisions of the
continuous-time model formulated in Section II are based on
the definitions and properties in this appendix. The decision
variables of the model become the vector coefficients of the
Bernstein polynomials in addition to binary unit commitment
variables, and a mixed integer linear problem formulation is
recovered.
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