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Abstract— A data-driven stochastic MPC strategy is pre-
sented as an EMS for the Skagerak Energilab microgrid.
Uncertainties, introduced due to the intermittent nature of RES
and load demands, are systematically incorporated into the
MPC problem via adaptive chance-constraints. These chance-
constraints promote admissible probabilistic operation of the
microgrid within the stipulated SOC bounds of an ESS.
For computational tractability, these chance-constraints are
approximated by solving the inverse cumulative distribution
function of a disturbance innovation sequence. This disturbance
innovation sequence defines the difference between forecast and
realized disturbances, and is sampled for a sliding window
as disturbances are revealed over closed-loop operation. No
a-prior assumptions are made on the distribution function
of the disturbance innovation sequence; instead, solving the
Maximum Spacings Estimation problem (off-line), we adapt
some parametrized distribution function to fit this disturbance
innovation sequence. The proposed strategy has computational
complexity comparable to nominal deterministic MPC, promote
the satisfaction of constraints in a probabilistic sense, and,
decrease closed-loop operational costs by 26%.

I. INTRODUCTION

The Energy Management System (EMS) for microgrids
is primarily concerned with the energy balance between
generation and consumption in the most efficient manner.
This entails managing energy deficits/excess that satisfy both
economical and operational criteria; whilst, ensuring stable
power delivery to local load consumers [1]. The prolifera-
tion of Renewable Energy Sources (RES) within microgrids
implies intermittent power generation. To manage this inter-
mittent nature of RES, Energy Storage Systems (ESS) have
been advocated as a viable solution [2]. The introduction
of ESS, however, increases the computational complexity of
the underlying optimal energy balance problem with EMS’s.
That is, to optimally operate ESS within an EMS, one is often
concerned with solving a dynamic optimal control problem
over a time horizon of operation.

Model Predictive Control (MPC) is considered a promis-
ing optimal control strategy for EMS’s that include ESS
[3]. MPC defines a receding-horizon control strategy which
solves a constrained (deterministic) Optimal Control Problem
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(OCP) iteratively. The popularity behind MPC is that of an-
ticipating, and counteracting, disturbances over the receding-
horizon of operation in order to maximize performance and
satisfy system constraints. Although MPC does provide some
form of robustness against disturbances, unforeseen large
forecast errors may cause the MPC strategy to lose recursive
feasibility. That is, for the state at the next time step, there
may not exists a feasible control policy [4].

Recently, Robust MPC (RMPC) and Stochastic MPC
(SMPC) have received considerable attention due to their
attractive ability to incorporate uncertainties in the OCP, in
a systematic manner. RMPC methods rely on bounded deter-
ministic descriptions of uncertainties where early work led to
min-max OCP formulations, and more recently, tube-based
approaches [5]. RMPC has not been widely adopted in in-
dustry due to the inherent computational complexity, and the
overestimation of disturbances often results in unnecessary
performance deterioration [6]. Furthermore, uncertainties for
real-world systems are often characterized by their proba-
bilistic nature and does not align with bounded deterministic
descriptions. SMPC exploits probabilistic uncertainty de-
scriptions in the form of chance-constraint formulations. The
latter either need to be satisfied in the expectation, or at least
to some a-prior specified probability level. Key challenges
for SMPC are the computational complexity associated with
uncertainty propagation through complex system dynamics
and cost; and, chance constraints in general results in a non-
convex optimization problem whose explicit evaluation may
be intractable [7]. Scenario based approaches can be used
to approximate and satisfy the chance constraints to provide
probabilistic guarantees. The latter strategy is popular in the
sense that scenario trees can be constructed from data and
the assumption of independence a not imposed; however,
it is still unclear how to identify the appropriate number
of scenarios [7], [8]. Another common strategy to handle
chance constraints is to reformulate stochastic programs as a
deterministic problem with constraint tightening. Satisfying
these tightened constraints, in a deterministic setting, equates
to satisfying the chance constraints in a probabilistic setting.
Some strategies calculate constraint tightening policies ex-
plicitly by solving the inverse cumulative distribution func-
tion (CFD) for a known underlying distribution while other
strategies enforce Chebyshev type inequalities to guarantee
chance constraint satisfaction (see [9] and references therein).

This work draws inspiration from earlier contributions
made in [10] in the sense that we solve the inverse CDF for
some underlying distribution to obtain constraint tightening
policies. Enforcing these constraint policies in a deterministic
setting implicitly satisfy the concerned chance constraints in
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a probabilistic setting. What distinguishes this work from
[10] is that we do not assume the distribution to be known
a-priori. Instead, in this work we consider the disturbance
innovation sequence. In a data-driven approach we fit a
distribution function, using Maximum Spacings Estimation
[11], to the historical disturbance innovation sequence over
a receding horizon, and subsequently update a constraint
tightening policy to be applied when we solve the open-
loop MPC problem. This, in essence, defines a systematic
data-driven approach to seek trade-offs between fulfilling
control objectives and satisfying the chance constraints in
a probabilistic sense, while adaptively adjusting constraint
tightening policies as input disturbances are being revealed
during process operation. As case study to illustrate intro-
duced concepts, we consider the Skagerak Energilab pilot
[12] which is a fully functional microgrid located in Skien
Norway.

II. THEORY

We consider the stochastic LTI system

xk+1 = Axk +Buk +Bddk(ξ) +Gwk (1a)
yk = Cxk (1b)

in which (1a) defines the evolution of the discrete state
xk ∈ Rnx primarily driven by: control input uk ∈ Rnu ;
measured input disturbance, dk(ξ) ∈ Rnd ; and, unmeasured
process noise wk ∈ Rnw . dk(ξ) is the disturbance realization
for a particular scenario denoted by the index ξ ∈ Ξ, in
which the set Ξ defines the representative set of forecast
scenarios under which (1a) can evolve. For compact
notation, we henceforth adopt dk to describe measured
input disturbances with the a-prior estimate d̂k := E(dk)
such that we can define the measured disturbance error
as ∆dk := dk − d̂k for all k ∈ I>0. Stochasticity of (1)
for the single process measurement yk ∈ R is defined in
(1b). A ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ R1×nx defines
the respective process and measurement matrices, whereas
Bd ∈ Rnx×nd and G ∈ Rnx×nw models the influence of
measured and unmeasured disturbances on the system state.

Assumption 1 (Boundedness on innovation uncertainty):
The innovation sequence of measured input disturbance
errors ∆dk, and system disturbances wk, are assumed i.i.d
zero mean variables with unknown probability distributions
being Pd and Pw, respectively. Their CFD’s satisfy the
generalized inverse distribution function.

Let d̂N |k := [d̂k|k, d̂k+1|k, ..., d̂N−1|k] define the N -
successive measured input disturbance forecasts as predicted
from time t = k. Then, for some given control input
sequence uN |k :=

[
uk|k, uk+1|k, ..., uN−1|k

]
, we define the

uncertain system with state prediction by

xj+1|k = Axj|k +Buj|k +Bdd̂j|k+ + G̃w̃j|k (2a)
yj|k = Cxj|k (2b)

for all j ∈ Ik:k+N−1. For compact notation, xj+1|k defines
the value of x at future time tj+1, predicted from time tk

and xk|k = xk. In (2a), we define G̃ := [G,Bd] and w̃j|k :=
[wj ,∆dj|k]>. As common in SMPC, the predicted state xj|k
can be split into its equivalent deterministic nominal part,
zj|k := E(xj|k); and, zero mean stochastic error part, ej|k
[13] such that

xj|k = zj|k + ej|k, ∀j ∈ Ik:k+N (3)

To simplify optimization, parametrization of the control is
widely used when the system of interest is linear [5]. Let
K ∈ Rnx×nu be some stabilizing feedback gain such that
Acl := A + BK is Schur. The control parametrization can
consider either feedback from the predicted state, or, the
predicted error [14]. Resorting to the latter, we adopt the
parametrized predicted input

uj|k := Kej|k + vj|k, ∀j ∈ Ik:k+N−1 (4)

where vj|k ∈ Rnu becomes the new free SMPC control
optimization variable. Substituting (3) and (4) into (2) allows
us to define the respective predictions of the nominal state
and stochastic error as

zj+1|k = Azj|k +Bvj|k +Bdd̂j|k, z0|k = xk

ej+1|k = Aclej|k + G̃w̃j , e0|k = 0
(5)

In SMPC, the control objective is to (approximately) mini-
mize the expected value of the quadratic cost over the given
N -step prediction horizon i.e.,

E

k+N−1∑
j=k

x>j|kQxj|k + u>j|kRuj|k

 (6)

in which Q ∈ Rnx×nx , Q � 0 and R ∈ Rnu×nu , R � 0 are
some defined penalty weights on the quadratic terms. From
(3), and having E(ej|k) = 0, the deterministic equivalent to
the probabilistic cost value (6) can be expressed as

JN (xk) =
k+N−1∑
j=k

z>j|kQzj|k + v>j|kRvj|k (7)

For the stochastic measured output (1b), we concern us with
the following inequality constraint

bHcc yj|k ≤ bhcc ,∀j ∈ Ik:k+N−1 (8)

to be enforced for the uncertain predicted states (2) in which
c ∈ I1:ns

being the c-th inequality constraint. The notation
bHcc and bhcc define the c-th row and entry of the matrix
H and vector h, respectively. Constraint (8) enforced for a
stochastic setting, characterized by multiple scenario real-
izations ξ ∈ Ξ, can either be evaluated by expectation type
constraints, or more comprehensively, as chance constraints
[14]. In the latter, we consider the following probabilistic
chance constraint formulation

Pk
(
bHcc yj|k ≤ bhcc

)
≥ 1− bεcc ,∀j ∈ Ik:k+N−1 (9)

which states the probability of not violating the constraint
c ∈ I1:ns

with a given probability of ε ∈ (0, 1].



Proposition 1: For the random variable bHcc Cej|k, ∀c ∈
I1:ns

, j ∈ Ik:k+N−1 with corresponding CFD function Fj|c
defined for the j-th prediction stage given the c-th inequality
constraint, there ∃ηj|c ∈ R such that the probabilistic chance
constraint (9) can equivalently be stated as

bHcc Czj|k ≤ bhcc + ηj|c (10)

Proof: The CDF Fj|c and its inverse for the random
variable bHcc Cej|k exists by Assumption 1 [13]. Substitut-
ing (3) into (9) and grouping stochastic and deterministic
sides together yields

Pk
(
bHcc Cej|k ≤ −bHcc Czj|k + bhcc

)
≥ 1− bεcj (11)

(11) is equal to stating ∃ηj|c ∈ R such that bHcC Czj|k −
bhcc 6 ηj|c and Pk

(
bHcc Cej|k ≤ −ηj|c

)
≥ 1 − bεcc. By

the existence of Fj|c, it follows that from Fj|c
(
−ηj|c

)
≥

1− bεcc we can define ηj|c := −F−1j|c

(
1− bεcj

)
.

Based on the nominal cost index (7) (approximate equiv-
alent to the stochastic cost objective (6)), and deterministic
constraints (10) (approximate equivalent to the probabilistic
chance constraints (9)), the deterministic OCP equivalent to
the stochastic approach of interest for this work is formulated
as

min
vN|k

JN (xk) (12a)

s.t. zj+1|k = Azj|k +Bvj|k +Bdd̂j|k (12b)
bHcc Czj|k ≤ bhcc + ηj|c (12c)
Duj|k ≤ g (12d)
z0|k = xk, ∀j ∈ Ik,k+N−1, c ∈ I1,ns

(12e)

where in (12c) we define ηj|c according to Proposition 1. We
define the control vector vN |k :=

[
vk|k, vk+1|k, ..., vN−1|k

]
and (12d) defines additional control constraints. The optimal
solution of (12) is evaluated by the optimal control vector
v0
N |k :=

[
v0k|k, v

0
k+1|k, ..., v

0
N−1|k

]
where the optimal reced-

ing horizon control law at time tk is defined κN (xk) := v0k.
The next time step evolution of (1) using control law κN (xk)
defines the next evolved system state at time t = k + 1 as
xt.

Note 1: ηj|c in (12c) promotes a form of constraint tight-
ening (backoff), such that when satisfied, it implies that (8) is
satisfied in a probabilistic sense with a probability of 1− ε.
For the case where we enforce constraint (8), opposed to
(12c), in (12) (i.e., ηj|c → 0), then (12) reduces to the
standard deterministic MPC formulation.

III. ADAPTIVE DATA-DRIVEN CHANCE-CONSTRAINTS

Initial assumptions on the probability distributions of Pd
and Pw, characterizing model and exogenous disturbance un-
certainty, may impose overly conservative chance constraints.
The ambition here is to adapt these constraints (implicitly
updating the statistics of Pd and Pw) by incorporating mea-
sured disturbance input uncertainties, as revealed over the
receding horizon of operation. The strategy is to learn and
construct less conservative probabilistic chance constraints

that will increasingly promote economic incentives during
closed-loop operation.

Note 2: We assume here the initial assumptions on Pd and
Pw always results in more conservative constraint tightening
in the form of ηj|c. The latter can be artificially introduced
by scaling αηj|c in which α(t0) > 1, lim

t→T
α(t)→ 1.

We proceed presenting a strategy for adapting some
parametrized function approximation of the CFD functions
used in (12c). That is, for some parameter matrix θ ∈
Rnp×(N−1); bθci ∈ Rnp defines the np ∈ I>1 parameters
associated with the parametrized CFD function approxima-
tion F θj (≈ Fj|c) defined for the j ∈ Ik:k+N−1-th stage
along the prediction horizon. These parameters are adapted
sequentially over a receding horizon of operation as uncer-
tainty reveals itself and taking into account historic open-
loop predictions. Let L := k−N−M+1. Suppose at time tk
we have stored M -historical optimal open-loop trajectories
z0N |j :=

[
z0j , z

0
j+1|j , ..., z

0
j+N |j

]
and forecast measured input

disturbance trajectories d̂N |j :=
[
d̂j , d̂j+1|j , ..., d̂j+N−1|j

]
for the time interval j ∈ IL:k−N+1. In addition, consider
M + N − 1 historical measurements on input disturbances
and system states dL|k := [dL, dL+1, ...dk] and xL|k :=
[xL, xL+1, ..xk] for the time interval j ∈ IL:k. Then, we can
construct the innovation sample sequences Xi ∈ RM , ∀i ∈
I0:N (associated with the N respective MPC stages). Each se-
quence contains M random samples drawn from system state
and measured disturbance input observations as revealed over
the receding horizon. The i-th sample innovation sequence
is defined

Xi :=
[
X0|i, X1|i, ..., XM−1|i

]
(13)

where the random innovation sample Xs|i in (13) is defined

Xs|i := G̃

[
xL+i+s − z0L+i|L+s
dL+i+s − d̂L+i|L+s

]
(14)

for all i ∈ I0:N , s ∈ I0:M−1. The parameter vector
bθci ∈ Rnp associated with the parametrized CFD function
approximation F θi can be evaluated by solving the Maxi-
mum Spacings Estimator (MSPE) problem [11]. Suppose
the random samples of (13) has order statistics denoted
by X(0|i) < X(1|i) < ... < X(M−1|i), then the optimal
parameters bθc0i supporting the CFD function F θi can be
evaluated by minimizing the product of

bθc0i := argmin
θ

M∏
j=0

{
Fθ
(
X(j|i)

)
− Fθ

(
X(j−1|i)

)}
(15)

in which Fθ
(
X(−1|i)

)
:= 0 and Fθ

(
X(M |i)

)
:= 1. Solving

(N + 1) optimization problems of the form (15) provides
and updated parametric matrix θ which can be incorporated
into the chance constraints formulation of (12).

IV. SKAGERAK ENERGILAB

As case study for illustrating the concepts introduced in
Sections II-III, we consider the Skagerak Energilab pilot
located in Skien, Norway. Skagerak Energilab is a fully



Fig. 1. Skagerak Energilab with adjacent distribution network in Skien,
Norway.

functional microgrid pilot installation for local production,
storage and distribution of electrical energy. In addition,
Skagerak Energilab has a strong research prerogative which
allows the validation and testing of new technologies and
services [12]. In general, the control operational objective for
intelligent energy management within this pilot is to utilize
BESS capacity as means to effective load shifting given
uncertain load demands and distributed RES. The network,
as illustrated by Figure 1, consists of two segments supplied
by two different distribution transformers connected to the
upstream network. In the first segment, there is a PV plant
with peak installed capacity of 800 kW and a large industrial
demand. In the second segment, the BESS is connected with
two other load demands, one being residential loads and the
other being the Skagerak Arena football stadium. The BESS
has a capacity of 1100 kWh and 800 kW peak charging and
discharging power. We denote the produced photo-voltaic
power as PPV . Power consumption and production during
charging and discharging of the BESS is denoted PBc and
PBd, respectively. The net energy flow of the BESS is
subsequently defined by

PB = PBc − PBd; PBc > 0, PBd > 0 (16)

The industrial load associated with segment 1 is defined by
PL1 where as the combined residential and sports arena loads
associated with segment 2 is PL2. The net energy balance of
concern is formulated as

PPCC + PPV − PB − PL1 − PL2 = 0 (17)

The state-of-charge (SOC) of the BESS dynamics are defined
by the following discrete ordinary differential equation

SOCk+1 = SOCk + ηaPBck − ηbPBdk (18)

in which ηa := ηBc4t
Cmax

and ηb := 4t
ηBdCmax

. ηBc = 0.82
and ηBd = 0.86 defines the charging and discharging
efficiency coefficients; Cmax = 1100 kWh is the maxi-
mum energy capacity and ∆t = 1 h the charging time
constant. To translate the previous problem description into
the formulation of (12), we adopt the notation for the system
state x := SOC; for control vector u := [u1, u2, u3]>,
we consider control variables u1 := PPCC , u2 := PBc,
u3 := PBd; and, for vector d := [d1, d2, d3]> the measured

disturbance input variables are d1 := PL1, d2 := PL2 and
d3 := PPV . For the latter, we assume a-prior estimates to
be defined d̂i := E(di) ∀i ∈ {1, 2, 3} such that ∆di :=
di − d̂i v N (0, σ2

i ) ∀i ∈ {1, 2, 3} defines the normally
distributed measured disturbance errors with σi being the
standard deviation ∆di. Operational objectives for this case
is associated with minimizing operational costs during BESS
operation as well as import or selling energy from the grid
via PCC. The value function of interest is defined

JN (xk) =
k+N−1∑
j=k

u>j|kRuj|k (19)

in which R � 0, when chosen appropriately1, will penalize
BESS degradation cost and numerically prevent simultane-
ous charge/discharge while also reduce reliance on energy
import/export via the PCC. Although the structure of (19)
differs from (7), it does not change the generality of trans-
lating the probabilistic cost evaluation of the former into its
deterministic equivalent. For the state dynamics (12b) we de-
fine B :=

[
ηb ηa − ηb 0

]
, Bd :=

[
−ηb −ηb ηb

]
and system matrix A = 1. For the chance constraint (12c)
we have C = 1 and critical constraints preventing over
and under charging the BESS, dictates we define H :=
[1,−1]> and h := [SOCmax,−SOCmin]>. Constraints
on control inputs (12d) let us define the diagonal block
matrix D := diag([1,−1]>, [1,−1]>, [1,−1]>]) and g :=
[PCCmax,−PCCmin, Bcmax, 0, Bdmax, 0]

> −Ke.

V. PERFORMANCE ASSESSMENT AND RESULTS

We are interested assessing the closed-loop performance
for two variants of (12), iteratively solved over a receding
horizon of operation. For both variants, we choose N = 24.
In the context of SMPC with probabilistic chance constraints
(here denoted problem P1), we have adaptive constraint
tightening by means of enforcing (12c) and choosing ηj|c
according to Proposition 1. This constraint implicitly sat-
isfies the conditions under which the probabilistic chance
constraints (9) are satisfied subject to the probability of
1 − ε. For P1, we choose M = 200 and ε = 0.2 where
the latter is not a very restrictive probability on constraint
violations but instead a probabilistic incentive to operate the
process within feasible SOC boundaries 80% of the time. The
second problem of interest, denoted P2, does not consider
probabilistic chance constraints; hence, by setting ηj|c → 0
in (12c), P2 is reduced to a version similar to standard
nominal deterministic MPC where we are only concerned
in adhering to hard output constraints as formulated by (8).
Probabilistic forecast models have been trained on historical
power generation and load demand data, as obtained from
the Skagerak Energilab pilot [15]. These Markov process
models allow sampling a forecast prediction dk(ξ) for a given
scenario ξ ∈ Ξ. We resort to defining d̂k := E(dk(Ξ)) for
problems P1 and P2 given some representative set of forecast

1choosing non-zero off-diagonal elements corresponding to u2 and u3
will prevent simultaneous BESS charge/discharge during the optimal eval-
uation of (12)



Fig. 2. Probability of violating the BESS SOC constraint (9) for closed-
loop P1 and P2 operation, given the violation probability of ε = 0.2 chosen
for the SMPC chance constraint (9)

scenarios, Ξ. For performance assessment, Key Performance
Indicators (KPI)’s, in general, will be related to the probabil-
ity of violating output process constraints (SOC for the BESS
under consideration), and cost associated with the closed-
loop operation for P1 and P2. The KPI’s considered here
can be summarized as: (i) for a sampled set of disturbance
scenarios ξ ∈ Ξ, the probability P of violating BESS SOC
constraints, when for a forecast scenario dk(ξ) driving (1a),
we have that d̂k := E(dk(Ξ)) 6= dk(ξ), ∀ξ ∈ Ξ; (ii) violation
of SOC constraints implies overcharging/undercharging and
will incur operational cost penalties in terms of: (a) increased
battery degradation cost; (b) potential load shedding (cost
associated with consumer discomfort); (c) penalty cost on
importing/exporting energy from/to the grid not cleared by
utilities. For (ii), we adopt the following cost structure to
evaluate constraint violation observed during closed-loop
operation:

CV :=

{
αP recourse

Bd SOC > SOCmax

αP recourse
Bc SOC < SOCmin

(20)

α � ‖R‖∞ is the penalty cost coefficient for violating
constraints, and P recourse

Bd := SOC−SOCmax

ηb
and P recourse

Bc :=
SOCmin−SOC

ηa
define the corrective recourse battery dis-

charge/charge power flow. These recourse actions are cor-
rections taken outside the MPC to ensure a feasible SOC
operation prior to solving P1 and P2 at time tk+1. For the last
KPI of interest: (iii) defines operational cost associated with
normal battery degradation and grid import/export defined
CO := [PPCC , PBc, PBd]

>
R [PPCC , PBc, PBd].

Figure 2 illustrates the probability of violating SOC con-
straints during closed-loop operation for problems P1 and P2

when evaluated for 500 scenarios, respectively. In reference
to Figure 4, process evolution near the SOC boundaries
are observed during the morning and afternoon sessions.
For adaptive constraint tightening in P1, we note that for
all considered scenarios ξ ∈ Ξ, we do not violate SOC
constraints more than the specified η = 0.2 probability. In
contrast, the standard MPC formulation P2 does not enforce

Fig. 3. Cumulative average closed-loop cost (stacked) associated with
uncertainty violation (CV ), and, operational cost CO .

Fig. 4. Expected operational envelope for closed-loop plant evolution,
evaluated for the optimal control law κN (xk) obtained from problems P1

and P2, subject to forecast scenarios ξ ∈ Ξ.

constraint tightening with almost 50% of scenarios leading
to constraint violations.

Figure 3 illustrates the average cumulative cost as eval-
uated during closed-loop operation for problems P1 and
P2. For both problems, we have evaluated: i) cumulative
cost penalties associated with violating constraints, CV (see
(20)), given the set of disturbance predictions dk(Ξ)) realized
over the receding horizon; and, ii) the operational cost, CO,
which in this context is normal BESS degradation costs and
costs/revenue from importing/exporting from/to the grid. The
cumulative operation and uncertainty cost have been stacked
to get a better cost performance comparison between P1 and
P2. We note that for P1, constraint tightening in the chance
constraint formulation implies naturally that costs associated
with violating constraints are lower, however at the trade-off
that operational costs are increased. The latter is due to that
more energy needs to be imported/sold and the BESS are
operated more conservatively. This trade-off, irrespective of
this conservative strategy, still implies lower total average
cumulative costs evaluated for P1 when compared to P2.



Figure 4 depicts the operational envelope of the plant
(1) when operated in closed-loop control for all considered
scenarios ξ ∈ Ξ. The envelopes, for the respective MPC
strategies P1 and P2, encapsulates all the closed-loop trajec-
tories evaluated for corresponding receding horizon control
obtained by solving P1 and P2, over all input disturbance
realizations defined for the set dk(Ξ).

VI. CONCLUDING REMARKS

MPC is now consider as a mature control strategy which
have widely been adopted in industry. Despite well estab-
lished theoretical results and insights in the MPC academic
literature, the systematic treatment of uncertainty in MPC
by means of RMPC and SMPC strategies still necessitate
further investigations to be considered viable and pragmatic
solutions for general uncertain processes in industry [16].
RMPC may promote overly conservative control laws due to
uncertainties that are often overly overestimated. SMPC, in
contrast, systematically treat uncertainties in a probabilistic
sense by including chance constraints in the underlying opti-
mal control problem. Introducing chance constraints may in
general promote non-convex intractable formulations, hence
the formulation of computationally tractable methods to
propagate uncertainty is essential to the underlying success of
SMPC. Sample based approaches used for approximating the
stochastic optimization have received considerable attention
due to the natural appeal to promote a data driven method
for constructing representative scenario trees that capture
uncertainty. Despite extensive work done in scenario based
MPC for uncertain systems, the primary challenge for the
latter remains in how to appropriately select, or reduce, the
set of scenarios that not only guarantee an admissible level
of constraint satisfaction, but also promote computationally
tractable solutions [7].

In this work, a computationally tractable SMPC strategy
is presented. This strategy entails a data-driven chance con-
straint formulation where the latter is adapted on-line. Adap-
tation is done by incorporating a sliding window effect over
a realized innovation sequence of historical measured distur-
bance samples and subsequently solves the MSPE problem
given this window of samples. This approach removes the
need to implement some heuristic for scenario reduction.
Instead, the user can default to a conservative sampling
based approach of scenarios (i.e., expected mean over a set
of scenarios realizations d̂k = E(Ξ)) and by observing the
innovation sequence generated during uncertainty realization,
one can systematically update the probabilistic uncertainty
representation in the underling problem by adapting the
chance constraints appropriately. This, among other, ad-
dresses the biased uncertainty representation introduced due
to conservative sampling of scenarios. Calculations involved
for updating the chance constraints can be done off-line,
therefore not adding any computational complexity to the un-
derlying MPC problem. The computational complexity of the
proposed SMPC is similar to that of standard deterministic
MPC problem. The proposed strategy has been validated by
simulation (given measurement data taken from the Skagerak

Energilab) where it has been shown that constraint violation
of the ESS SOC can be ameliorated in a probabilistic sense
to some a-prior degree of probability.

Future work considered for the current strategy would be
to extend the individual chance constraint framework to that
of a joint chance constraints. The former are of particular
interest where one is typically concerned with multiple
ESS in a microgrid setting. Although the computational
complexity for solving the MSPE problem (15) is low, an
interesting question would be how to reduce the number
of historical samples used during this problem and instead
use methods within reinforcement learning to adapt the
underlying parameters between successive solutions of (15).
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