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Abstract—Energy Management Systems (EMSs) are software
tools that support the grid operators to monitor, control and op-
timize generation, transmission/distribution, and loads in a elec-
trical grid. Microgrids (”small scale” grids) have the potential to
facilitate the energy management of a local grid with distributed
energy resources (DER). In this paper, a Dockerized framework
for remote EMS deployment is proposed and illustrated. The
deployment of an EMS on a real system is time-consuming and
may be hard to implement. To overcome this challenge, this work
draws inspiration from the Software as a Service (SaaS) business
model to propose an EMS2aaS framework. This paper thus aims
at providing a starting point to researchers and developers that
would need to implement and test an EMS on a real pilot facility.

Index Terms—energy management system, Docker, framework,
Software as a Service, energy microgrid, model predictive control

NOMENCLATURE

BESS Battery Energy Storage System
CIL Computer-in-the-loop
DER Distributed Energy Resource
EMS Energy Management System
EMS2aaS EMS Software as a Service
GPU Graphics Processing Unit
HWIL Hardware-in-the-loop
LAN Local Area Network
MOSIOP MOdelling, SImulation, and OPtimization
POC Point Of Connection
PV Photovoltaic
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SDK Software Development Kit
(S)MPC (Stochastic) Model Predictive Control
SoC State of Charge
RES Renewable Energy Source
SaaS Software as a Service

I. INTRODUCTION

A. Motivation and Background

The Centre for Intelligent Electricity Distribution
(CINELDI) is one of the centres for environmental-
friendly energy research in Norway (FME) [1]. CINELDI
works towards digitalizing and modernising the electricity
distribution grid for higher efficiency, flexibility, and
resilience. The research centre is led by SINTEF, one of
Europe’s largest independent research organisations. Part of
SINTEF’s work in CINELDI, and the ROME project [2],
focuses on research and development efforts for developing
an intelligent Energy Management System Software as a
Service (EMS2aaS) framework. The main idea behind the
software as a service (SaaS) business model is to avoid
installation and maintenance of hardware and software at the
customer premises. Instead, the software (application) runs
on the cloud and is delivered over the Internet. Important
requirements for the customer are to have an appropriate
Internet connection and a client (PC) to access the cloud
application. In the context of this paper, the goal is to offer
a cloud application (software delivered over the Internet) as
a service to optimize the energy management of a particular
microgrid. The EMS2aaS framework illustrated in this paper
consists of three main parts: (i) A cloud-based EMS solution
that scales for microgrid hardware-in-the-loop (HWIL), and
computer-in-the-loop (CIL) simulations; (ii) Probabilistic load
forecast modelling using non-linear Bayesian regression [3];
and (iii) Stochastic Model Predictive Control (SMPC) as
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EMS [4]. This paper addresses the work related to (i),
providing a foundation for the implementation and the
deployment of the parts at (ii) and (iii).

B. Relevant Literature

Microgrids are seen as means to facilitate the management
of a grid contingency and the local optimization of energy
supply by controlling distributed energy resources (DER) [5].
In microgrids, one can broadly differentiate between gen-
eration and load DERs. In the former, DERs may include
photovoltaic (PV) panels, wind turbines, diesel generators
and energy storage systems. Loads, on the other hand, are
classified as either critical or non-critical, with the latter being
perceived as flexible loads. A generalization of microgrids is
presented in Figure 1. Microgrids can either be operated in
island mode with no electrical connection to a larger grid; or,
grid-connected mode with a direct connection to the utility
grid via a Point of Connection (POC). Note that an islanded
microgrid can be illustrated as the non-islanded microgrid in
Figure 1 without the POC to the utility grid.
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Fig. 1: Grid-connected microgrid (based on [5]).

In a microgrid, an energy management system (EMS) is
essential for optimal use of the distributed energy resources
in an intelligent, reliable, and coordinated way [6] [7] [8]. In
CINELDI and the ROME project, Stochastic Model Predictive
Control (SMPC) is proposed as an EMS for microgrids. An
example of MPC-based EMS for microgrid is given in [9].
MPC is a receding horizon control approach, where an online
optimization problem is solved sequentially over a receding
horizon to find the optimal control input relative to some
chosen cost function. A model is used to make predictions
of the system’s future behavior. MPC is useful for systems
with constraints like for example upper and lower bounds
on state of charge (SoC) in a battery energy storage system

(BESS). Furthermore, the cost function allows defining a self-
chosen metric to optimize i.e., one can minimize the cost of
purchased energy from the utility grid. As a receding horizon
control approach, MPC is useful for improving the controller
robustness concerning model and prediction uncertainties and
disturbances.

Researchers want to test and validate their developed EMS
solutions (for instance MPC-based) on real systems (such as
microgrids). However, the deployment on a real system is
time-consuming and may be hard to implement. This is a likely
reason why, to the authors’ best knowledge, real-world de-
ployment and demonstration of research-based EMS solutions
[10] relatively rarely is reported in the research literature. The
concept of Software as a Service (SaaS) is discussed in [11]
which is a survey on different cloud computing applications
for smart grids. Further, the challenges and opportunities of
such a system are available in the study [12].

C. Contributions and Organization

An EMS2aaS framework, as suggested in this paper, con-
tributes to speed up deployment time and to easily switch
between hardware-in-the-loop (HWIL), and computer-in-the-
loop (CIL) simulations. This divides research-based imple-
mentations from the real system with the advantage to keep
the two parts separated, as long as a clear interface is defined.
Further, a general framework, as suggested in this paper,
allows for easy adaptation to other systems/microgrids, and
therefore, it may speed up the development time for future
research.

This paper is organized as follows. The target system for
the EMS2aaS validation, Skagerak Energilab is presented in
Section II. The software as a service framework is described
in Section III and its basic setup is described in Section IV.
The conclusion and further work of the paper are given in
Section V.

II. THE SKAGERAK ENERGILAB PILOT FACILITY

The Skagerak Energilab [13] is a pilot facility used in
CINELDI and, in this work, it is considered as the target
system for the EMS2aaS validation. More in detail, the Sk-
agerak Energilab is a fully functional (virtual re-configurable)
microgrid built around the Skagerak Arena soccer stadium in
Skien, Norway. Previous research work based on the same
physical system is available in [14] where a cost-benefit
analysis for the operational strategies was carried out. In
this previous work, however, system operation was simulated
assuming perfect foresight for a full year of historic data, and
load forecasts and uncertainties were not taken into account.

The microgrid of Skagerak Energilab is illustrated in Figure
2. The microgrid has an 800 kW peak power PV plant,
covering an area of 4400 m2 and with an expected production
of around 650 000 kWh yearly, installed as a renewable energy
source (RES). Further, the microgrid consists of a 1100 kWh
capacity battery energy storage system with 800 kW peak
charging/discharging power, several residential loads, and the
Skagerak Arena loads. As seen in Figure 2, the battery and the



floodlights are connected to a different substation than the PV
plant, Skagerak Arena loads, and the residential loads. The
residential loads consist of forty-two private buildings, nine
businesses, and two cooperative residential buildings [15]. The
Skagerak Energilab is by default connected to the main grid for
supplying power in times when the battery and PV plant does
not deliver sufficient power. However, the microgrid enables
island mode for use-cases, where the connection to the main
grid is disconnected.

Fig. 2: An overview of the Skagerak Energilab microgrid, in
Skien Norway.

III. DOCKERIZED FRAMEWORK

Docker is selected as the main technology to build our
software as a service framework. Docker is the de-facto
standard to build and share containerized applications [16].
A container is a standardized unit packaging software for
development, shipment, and deployment. A Docker container
image (aka Docker image) is a standalone package including
everything needed to run an application, i.e. code, tools,
libraries, and settings. Docker images can be found in the
collection of existing Docker images at Docker Hub or they
can be designed for the specified application using a Docker
file. Docker images running on a Docker engine become
Docker containers, where a Docker container is an instance
of the Docker image. An application/software deployed in a
Docker container will have the same behavior independently
of the operating system and hardware layer where the Docker
engine is running. For example, a Docker container can run
seamlessly on a Windows or a Linux machine, given that the
appropriate Docker engine is installed.

Figure 3 illustrates the suggested architecture to apply the
EMS2aaS framework to the Skagerak Energilab pilot facility.
The main idea is to use Docker to build a micro-service-
oriented architecture [17] to achieve a reliable and easy-to-
scale architecture, such as discussed in [18]. The SINTEF
server runs the Modelling, Simulation, and Optimization (MO-

SIOP1) container and the processing container, in addition
to a database with historical data. As several applications
are designed and implemented to run on the SINTEF server,
Docker Compose is used to define and run the containers
for these applications. Docker Compose is a tool for multi-
container applications, which simplifies the configuration of
the containers and enables all containers to be started with
one single command.

Note that in the Figure 3, there are two geographical
regions, one at SINTEF premises in Trondheim (left side of
the figure), and one at Skagerak Energilab in Skien (right
side), both in Norway. Both SINTEF and Skagerak Energilab
have local area networks (LANs), protected behind a firewall,
and are connected through the cloud. As seen in Figure 3,
the SINTEF developers and researchers can either test their
algorithms on the actual pilot, a hardware-in-the-loop (HWIL)
simulation, or on an emulator, a computer-in-the-loop (CIL)
simulation. The Skagerak Energilab emulator is in short a
virtual representation of the actual Skagerak Energilab pilot.
An emulator enables researchers and developers to test and
verify their work without the need to deploy them on the actual
pilot.

Communication between SINTEF and either the Skagerak
Energilab or the emulator is sent through the big data stream-
ing platform, Azure Event Hub [19]. Examples of commu-
nication are the current state of charge (SoC) data transfer
from the BESS, or current production from the PV plant, or
optimal rate of charge or discharge reference signals from
the EMS to the BESS. The Azure Event Hub is a cloud-
based service and it provides client software development kits
(SDKs) for several programming languages like Java, C++,
Python, and Go. As a cloud-based platform, Azure Event
hub allows events to be streamed and received to the pilot
facility, Skagerak Energilab, with minimal implementation
demands required by the EM2SaaS framework. This is valid
also for the Skagerak Energilab site, therefore with minimal
implementation demands required, the possible violation of
the pilot facility’s security policies is minimized. Further, the
cloud-based approach makes it indifferent for the SINTEF
server whether it communicates with the emulator or the actual
plant.

The Azure Event hub platform can receive and process
millions of events each second and provides backup solutions
to avoid information loss. Each event contains a measurement
of a single signal at a given time instance. All the received
measurements from the Event Hub are processed by the
processing container running on the SINTEF server. After that,
all processed measurements are saved in the historical database
running on another container in the same SINTEF server.

The SINTEF server runs the modelling, simulation, and
optimization (MOSIOP) container. The container is used to
model the assets at Skagerak Energilab, i.e., the PV plant or
the BESS. These models are used by the SMPC-based EMS,

1In this container we run the SMPC-based EMS algorithm; more informa-
tion about the SMPC formulation is available in an accompanying paper also
submitted for dissemination [4].
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Fig. 3: Suggested high-level architecture for the EMS2aaS when applying it to the Skagerak Energilab pilot facility. The green
dashed circle illustrates the possibility to switch between the CIL and HWIL mode.

therefore simulation and optimization along the SMPC reced-
ing horizon are running here. The SMPC can interface with the
probabilistic load forecasting models2, trained on data from the
historical database, that samples a set of scenarios (time series)
of load demand and PV generation for the operational planning
horizon of the SMPC. Figure 4 schematically illustrates the
data flow and interfaces between the models and algorithms
that are incorporated in the EM2SaaS framework.

The SMPC could potentially benefit from the use of Graph-
ics Processing Units (GPUs) for performing Monte Carlo
simulations for sample-based SMPC approaches [20]. It is
envisioned that the proposed framework could easily be de-
ployed on available GPU cloud computing services [21], or
on proprietary servers with dedicated GPU resources. Finally,
note that with small configuration changes one could run
these three (or even more) Docker containers on two or more
different servers.

The database for historical data on the SINTEF server
is a TimescaleDB database [22], where each communicated
signal is assigned a separate data table. TimeScaleDB is a
PostgreSQL database for time-series, where PostgreSQL is
an open-source, object-relational database [23]. An object-
relational database includes the benefits of object-oriented
approaches into a relational database [24]. This makes for a

2For more information about the probabilistic load forecasting we refer to
an accompanying paper also submitted for dissemination [3].

more powerful and advanced database with more possibilities
for in-build objects and complex procedures, compared to a
relational database like MySQL. MySQL is the most popular
relational database [25] and it can be useful to be used for com-
parison. The TimeScaleDB database includes features such
as specialized functions related to time, date, and timezone
and faster queries. The database is deployed as a container
using the TimescaleDB Docker image. Deploying the database
as a container makes deployment simple and attainable for
inexperienced users and it contributes to the containerized
approach of the whole architecture.

IV. EMS2AAS FRAMEWORK SETUP

As mentioned in the previous section, Docker Compose
is used to orchestrate the respective containers, which are
processing, MOSIOP, and DataBase, on the SINTEF server.
The configuration of the required services is defined in a
YAML file, where a service can consist of one or more of
the same container. The YAML file used for deployment of
the EMS2aaS framework is given below as:
version: '3'
services:

postgresql:
container_name: cineldi_postgresql
image: timescale/timescaledb-postgis:latest-pg11
ports:
- 5433:5432

volumes:
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Fig. 4: Schematic of data flow and interfaces between models and algorithms incorporated in the EM2SaaS framework.

- /etc/localtime:/etc/localtime:ro
- /<location>/data:/var/lib/postgresql/data
- /<location>/etc:/etc/postgresql
- /<location>/log:/var/log/postgresql

env_file:
- database.env # configure postgres

restart: unless-stopped

azure:
container_name: azure_client
image: emssaas/azure_client:latest
depends_on:
- postgresql

environment:
- TZ=Norway/Trondheim

restart: unless-stopped

mosiop:
build:

context: .
args:
COINHSL_SRC_PATH: ./coinhsl-2019.05.21.tar.gz
CONAN_SRC_PATH: ./conan

privileged: true
ports:

- 'SERVER_IP_ADDRESS:2222:22'
cap_add:

- SYS_PTRACE
volumes:

- '$HOME/.Xauthority:/root/.Xauthority:rw'
- /<location>:/<location>

environment:
- DISPLAY

image: 'cineldi/mosiop:latest'
tty: true

Listing 1: The YAML file used by Docker compose to deploy
the energy management framework. <location >is any chosen
file location on the SINTEF server.

The YAML file consists of three different services, Post-
greSQL for the database container, azure for the processing

container, and mosiop for the MOSIOP container. The images
of the database and processing container are found at Docker
Hub, while the MOSIOP container image is built by using
a Dockerfile. All containers deployed using Docker Compose
are automatically connected through a default network, which
ensures that establishing communication between the launched
containers is a non-issue. Services/Container, like for instance
PostgreSQL, can be equipped with ports. Ports are useful for
communication with software and standalone containers not
connected to the Docker Compose network. By defining ports,
one can easily determine which services can be reached from
the outside or not, which is useful for shielding safety-critical
procedures and for having control of the communication flow.
As seen in the YAML file, services can have associated
volumes. A Docker volume is a standalone ”memory location”
hosted and managed by the Docker engine, independently
of the local PC. Volumes can contain information and data
needed and/or saved by containers. Several containers may
access and manage the same volume. In the YAML file, the
volumes are assigned to a local location on the SINTEF server
to ensure that the volumes’ content is preserved, when and if
containers or volumes are stopped or deleted. To deploy all the
services defined in a YAML file, only the following command
is required:

$ docker −compose up −d

Note that Docker Compose only deploys changed, deleted,
or stopped containers to minimize the efforts if some of the
containers are already running.

V. CONCLUSION AND FURTHER WORK

This paper has proposed an EMS2aaS framework being
developed at SINTEF with the ultimate goal of deploying



and demonstrating an EMS remotely. This work contributes
to the CINELDI efforts towards digitalizing and modernising
electricity distribution. The short-term goals that have been
defined were: i) to allow researchers and developers to easily
access data from a microgrid pilot facility; ii) to use these
data to build prediction models; iii) to develop and test EMS
algorithms and prototypes against the Skagerak Energilab em-
ulator. These three goals are achieved at the time of submission
for this paper, and the paper presents the current status of the
demonstration. Further work is needed to close the loop with
the actual microgrid pilot facility (Skagerak Energilab). This is
essential to achieve the ultimate goal and to validate the EMS.
Validation will involve sending the control/reference signals to
the actual pilot facility instead of the emulator, as illustrated
in the green dashed circle in Figure 3.

Finally, the application of relevant technologies (Docker,
Azure Event Hub, and PostgreSQL) for implementing the
framework was illustrated. This illustration was not meant
to be a thorough review (or tutorial) of these technologies;
rather, the objective was to provide a starting point, as well as
simplifying the work (by giving simple setup guidelines), to
other researchers and developers that would need to implement
and test an EMS on a real pilot.

REFERENCES

[1] SINTEF. (2020) Centre for Intelligent Electricity Distribution.
Accessed: 2020-12-11. [Online]. Available: https://www.sintef.no/
projectweb/cineldi/

[2] RCN. (2018) Resilient and Optimal Micro-Energy-grid (ROME).
Accessed: 2020-12-11. [Online]. Available: https://prosjektbanken.
forskningsradet.no/#/project/NFR/280797/Sprak=en
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